Water Resources Data Missouri Water Year 2002 By H.S. Hauck and C.D. Nagel Water-Data Report MO-02-1 # **CALENDAR FOR WATER YEAR 2002** # 2001 | | | 00 | тові | ER | | | | | NO | VEM | BER | | | | | DE | СЕМ | BER | | | |----|----|----|-------|----|----|----|----|----|-----|------|-----|----|----|----|----|------|-------------|-----|----|----| | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | 1 | 2 | 3 | | | | | | | 1 | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | | 28 | 29 | 30 | 31 | | | | 25 | 26 | 27 | 28 | 29 | 30 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | | | | | | | | | | | | | | | 30 | 31 | | | | | | | | | | | | | | | | | 2002 | 2 | | | | | | | | | | | | | JA | NUA | RY | | | | | FEI | BRUA | RY | | | | | N | 1ARC | Н | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | | 1 | 2 | 3 | 4 | 5 | | | | | | 1 | 2 | | | | | | 1 | 2 | | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | | 20 | 21 | 22 | 23 | 24 | 25 | 26 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | | 27 | 28 | 29 | 30 | 31 | | | 24 | 25 | 26 | 27 | 28 | | | 24 | 25 | 26 | 27 | 28 | 29 | 30 | | | | | | | | | | | | | | | | 31 | | | | | | | | | | 1 | APRIL | = | | | | | I | MAY | | | | | | J | UNE | | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | 1 | 2 | 3 | 4 | | | | | | | 1 | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | | 21 | 22 | | 24 | 25 | 26 | 27 | 19 | 20 | 21 | 22 | | 24 | 25 | 16 | 17 | | 19 | | | | | 28 | 29 | 30 | | | | | 26 | 27 | 28 | 29 | 30 | 31 | | 23 | 24 | 25 | 26 | 27 | 28 | 29 | | | | | | | | | | | | | | | | 30 | | | | | | | | | | , | JULY | | | | | | Αl | JGUS | T | | | | | SEP1 | EM B | ER | | | | S | M | T | W | T | F | S | S | M | T | W | T | F | S | S | M | T | W | T | F | S | | | 1 | 2 | 3 | 4 | 5 | 6 | | | | | 1 | 2 | 3 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 15 | 16 | 17 | | 19 | 20 | 21 | | 21 | 22 | 23 | 24 | 25 | 26 | 27 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 22 | | 24 | 25 | 26 | 27 | 28 | | 28 | 29 | 30 | 31 | | | | 25 | 26 | 27 | 28 | 29 | 30 | 31 | 29 | 30 | | | | | | # Water Resources Data Missouri Water Year 2002 By H.S. Hauck and C.D. Nagel Water-Data Report MO-02-1 # U.S. DEPARTMENT OF THE INTERIOR GALE A. NORTON, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director For information on the water program in Missouri write to: District Chief, Water Resources Division U.S. Geological Survey 1400 Independence Road - Mail Stop 100 Rolla, Missouri 65401 #### PREFACE This hydrologic-data report for Missouri is one of a series of annual reports that document hydrologic data collected from the U.S. Geological Survey's surface- and ground-water data collection networks in each State, Puerto Rico, and the Trust Territories. These records of surface water, surface-water quality, and ground-water levels provide the hydrologic information needed by local, State, and Federal agencies and the private sector for developing and managing our Nation's land and water resources. This report is the culmination of a concerted effort by personnel of the U.S. Geological Survey who collected, compiled, analyzed, verified, and organized the data and who typed, edited, and assembled the report. In addition to the authors, who had primary responsibility for ensuring that the information is accurate, complete, and adheres to U.S. Geological Survey policy and established guidelines, the following individuals contributed significantly to the collection, processing, and tabulation of the data: | Stephanie E. Adams | Hugh O. Edwards | Matthew S. McCray | Rodney E. Southard | |----------------------|------------------------|---------------------|---------------------| | Gary L. Alexander | Suzanne R. Femmer | John W. Melton | E. Scott Southern | | Daniel J. Armstrong | H. Craig French | Michael C. Moody | Sherry A. Ternes | | Miya N. Barr | Brett D. Giddens | David J. Peyton | S. Scott Waldron | | Danny C. Beam | Andrea J. Glazebrook | Bruce M. Ponzer | Vincent P. Walzem | | Kelly R. Brady | Thomas E. Harris | Joe M. Richards | Robert E. Whitaker | | Larry D. Buschmann | David C. Heimann | Stephen Rodgers | Matthew E. Williams | | Eric D. Christensen | Michael J. Kleeschulte | Chris J. Rowden | Don H. Wilkison | | Jerri V. Davis | Scott M. Kowalewich | Paul H. Rydlund | Gary L. Wilson | | Kayloe T. Dawson | Kathy M. Love | Shelley L. Severn | Emitt C. Witt | | Willie E. Easterling | Larry J. Lumpkin | L. Carlene Shoemate | | Sherry A. Ternes and Miya N. Barr assembled the text of the report and Gary L. Wilson modified the illustrations in the report. This report was prepared in cooperation with the State of Missouri and with other agencies under the general supervision of Loyd A. Waite, Hydrologic Surveillance Section Chief and Michael E. Slifer, District Chief, Missouri. # **REPORT DOCUMENTATION PAGE** Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. | David riightia); David 120 1; riimigidii; 171 22202 | - 1002, and to the office of management and | a Baagot, r aportion reduction r roj | oot (0.01.0100); 11doimigton, 20.2000. | | | |---|---|--------------------------------------|---|--|--| | 1. AGENCY USE ONLY (Leave blank) | AGENCY USE ONLY (Leave blank) 2. REPORT DATE March 2003 3. REPORT TYPE AN AnnualOct. 1, 2 | | | | | | 4. TITLE AND SUBTITLE | | | 5. FUNDING NUMBERS | | | | Water Resources DataMisson | uri, Water Year 2002 | | | | | | | | | | | | | 6. AUTHOR(S) H.S. Hauck and C.D. Nagel | | | | | | | | 2) AND ADDDESO(50) | | | | | | 7. PERFORMING ORGANIZATION NAME(S U.S. Geological Survey, Wate | | 8 | B. PERFORMING ORGANIZATION
REPORT NUMBER | | | | Missouri District | i Resources Division | | USGS-WDR-MO-02-1 | | | | 1400 Independence Road, Mai | il Stop 100 | | eses were we us | | | | Rolla, MO 65401 | a stop 100 | | | | | | 10114, 1110 03 101 | | | | | | | 9. SPONSORING / MONITORING AGENCY | ' NAME(S) AND ADDRESS(ES) | | 10. SPONSORING / MONITORING
AGENCY REPORT NUMBER | | | | U.S. Geological Survey, Wate | r Resources Division | | AGENCY REPORT NUMBER | | | | Missouri District | | | USGS-WDR-MO-02-1 | | | | 1400 Independence Road, Mai | il Stop 100 | | | | | | Rolla, MO 65401 | | | | | | | 11. SUPPLEMENTARY NOTES | | | | | | | Prepared in cooperation with I | Federal, State, and local agen | cies | | | | | F | | | | | | | | | | | | | | 40- DICTRIBUTION / AVAILABILITY CTAT | FEMENT | 1. | 12b. DISTRIBUTION CODE | | | | 12a. DISTRIBUTION / AVAILABILITY STAT | | | 120. DISTRIBUTION CODE | | | | No restriction on distribution. Inical Information Service, Spr | | Irom National Tech- | | | | | mear information service, spi | ingheid, virginia 22101. | 13. ABSTRACT (Maximum 200 words) | | | | | | | | | | State, and Federal agencies and | | | | | | | issouri each water year (October | | | | | | | aluable data base for developing | | | | an improved understanding of | the water resources of Misso | ouri. | | | | | Water-resources data for the 2 | 002 water year for Missouri | consist of records of sta | ge, discharge, and water quality | | | | | | | ume contains discharge records | | | | | | | sampling stations (including 2 | | | | lakes); and data for 39 crest-st | | ns, water quanty at 115 | sampling stations (merating 2 | | | | 141.00), 411.0 041.0 101.0 2 01.0 5 | 14. SUBJECT TERMS | | | 15. NUMBER OF PAGES | | | | *Missouri, *Hydrologic data, * | *Surface water, *Quality wate | er, Gaging stations, Strea | am- 567 | | | | flow, Flow rates, Lakes, Reser | | | | | | | Water analysis, Water levels, l | | | 332 | | | | | | 19. SECURITY CLASSIFICATION | 20. LIMITATION OF ABSTRACT | | | | OF REPORT | OF THIS PAGE | OF ABSTRACT | 20. 2 | | | | Unclassified | T | | Unclassified | | | # CONTENTS | | Page | |--|------| | Preface | iii | | List of surface-water stations, in downstream order, for which records | | | are published in this volume | vii | | List of discontinued surface-water discharge or stage-only stations | xii | | List of discontinued surface-water-quality stations | xv | | Introduction | 1 | | Cooperation | 1 | | Water Use2000 | 2 | |
Missouri Water-Use Fact Sheet | 2 | | Physiography | 4 | | Summary of Hydrologic Conditions | 4 | | Surface WaterStreamflow | 4 | | Water QualityStreamflow | 7 | | Special Networks and Programs | 8 | | Explanation of the Records | 9 | | Station Identification Numbers | 9 | | Downstream Order and Station Number | 9 | | | 10 | | Numbering System for Wells and Miscellaneous Sites | | | Records of Stage and Water Discharge | 10 | | Data Collection and Computation | 10 | | Data Presentation | 11 | | Station manuscript | 11 | | Data table of daily mean values | 12 | | Statistics of monthly mean data | 13 | | Summary statistics | 13 | | Identifying Estimated Daily Discharge | 14 | | Accuracy of Data and Computed Results | 14 | | Other Data Available | 14 | | Records of Surface-Water Quality | 15 | | Classification of Records | 15 | | Arrangement of Records | 15 | | On-site Measurements and Sample Collection | 15 | | Water Temperature | 15 | | Sediment | 16 | | Laboratory Measurements | 16 | | Quality Assurance of Water-Quality Data | 16 | | Data Presentation | 16 | | Remark Codes | 17 | | Dissolved Trace-Element Concentrations | 17 | | Water Quality-Control Data | 17 | | Access to USGS Water Data | 18 | | Definition of Terms | 19 | | Publications on Techniques of Water-Resources Investigations | 33 | | Surface-water station records | 46 | | Partial-record surface-water stations | 529 | | Analyses of samples collected at water-quality partial-record stations | 536 | | Index | 539 | # ILLUSTRATIONS | | | | Page | |--------|-----|---|-----------| | Figure | 1. | Graph showing source and use values and percentages for major offstream water-use categories in Missouri during 2000 | 3 | | | 2. | Map showing major drainage basins, physiographic areas, and areas of mean discharge during the 2002 water year | 5 | | | 3. | Graphs showing comparison of 2002 water-year mean discharge to long-term mean discharge | 6 | | | 4. | Diagram showing system for numbering miscellaneous sites (latitude and longitude) | 9 | | | 5. | Map showing location of surface-water stations | 37 | | | 6. | Map showing location of surface-water-quality stations | 38 | | | 7. | Map showing location of Metropolitan St. Louis Sewer District stations | 39 | | | 8. | Map showing location of stations in the Northwest Prairie | 40 | | | 9. | Map showing location of stations in the Northeast Prairie | 41 | | | 10. | Map showing location of stations in the West Central Plains | 42 | | | 11. | Map showing location of stations in the West Ozarks | 43 | | | 12. | Map showing location of stations in the East Ozarks | 44 | | | 13. | Map showing location of stations in the Bootheel | 45 | | | 14. | Map showing location of partial-record stations (surface and quality water) | 528 | | | | <u>TABLES</u> | Dogo | | Table | 1. | Comparisons of peak discharge for the 2002 water year with those for period of record for selected stations | Page
4 | | | 2. | Comparisons of the 2002 water year 7-day low flows to 7-day, 2-year low flows and minimum flows for the period of record at selected stations | 7 | | | 3. | Range of dissolved-solids concentrations in selected streams during the 2002 water year | 7 | | | 4. | Minimum and maximum daily mean suspended-sediment concentrations at two selected stations during the 2002 water year | 7 | [Letter after station name designates type of data: (d) discharge, (c) chemical, (m) microbiological, (t) water temperature, (s) sediment, and (e) elevation and/or contents] | Station Number | Page | |--|------| | UPPER MISSISSIPPI RIVER BASIN | | | Mississippi River: | | | FOX RIVER BASIN | | | Fox River at Wayland (d,c,m) | 46 | | Wyaconda River above Canton (d) | 49 | | North Fabius River at Monticello (d) | 50 | | Middle Fabius River near Monticello (d) | 51 | | Troublesome Creek near Ewing (c,m) | 52 | | South Fabius River near Taylor (d,c,m) | 54 | | NORTH RIVER BASIN | | | North River at Palmyra (d) | 59 | | Bear Creek at Hannibal (d) | 60 | | North Fork Salt River at Hagers Grove (d) | 61 | | North Fork Salt River near Shelbina (d) | 62 | | Crooked Creek near Paris (d) | 63 | | South Fork Salt River above Santa Fe (d) | 64 | | Long Branch near Santa Fe (d) | 65 | | Middle Fork Salt River near Holliday (d) | 66 | | Elk Fork Salt River near Madison (d) | 67 | | Lick Creek at Perry (d) | 68 | | Mark Twain Lake near Center (e) | 69 | | Salt River near Center (d) | 71 | | Salt River near New London (d) | 72 | | Spencer Creek below Plum Creek near Frankford (d) | 73 | | Cuivre River near Troy (d,c,m) | 74 | | DARDENNE CREEK BASIN | 7 1 | | Dardenne Creek at O'Fallon (d) | 77 | | Dardenne Creek at Old Town St. Peters (d) | 78 | | Burgermeister Spring near Weldon Spring (d,c)384304090441801 | 79 | | Mississippi River at Grafton, IL (d) | 82 | | Mississippi River below Grafton, IL (c,m,s) | 83 | | Missouri River at Rulo, NE (d) 06813500 | 90 | | Davis Creek at Mound City (d) | 91 | | Squaw Creek near Mound City (d) | 92 | | Nodaway River near Graham (d,c,m) | 93 | | Missouri River at St. Joseph (d,c,m) | 97 | | PLATTE RIVER BASIN Platte River: | | | One Hundred and Two River at Maryville (d) | 100 | | Platte River near Agency (d) | 101 | | Little Platte River near Plattesburg (d) | 102 | | Smithville Reservoir near Smithville (e) | 103 | | Little Platte River at Smithville (d) | 104 | | Platte River at Sharps Station (d,c,m) | 105 | | KANSAS RIVER BASIN Kansas River at DeSoto, KS (d) | 107 | | Sta | tion Number | Page | |---|-------------|------| | MISSOURI RIVER BASINContinued | | | | Missouri River at Kansas City (d) | 06893000 | 108 | | Blue River at Kansas City (d,c,m,t) | 06893500 | 109 | | Brush Creek at Ward Parkway in Kansas City (d) | | 118 | | Brush Creek at Rockhill Road in Kansas City (d,c,m,t) | | 119 | | Blue River at 12th Street in Kansas City (d) | | 129 | | LITTLE BLUE RIVER BASIN | 00033330 | 127 | | Longview Reservoir at Kansas City (e) | 06893791 | 130 | | Blue Springs Reservoir near Blue Springs (e) | | 131 | | Little Blue River near Lake City (d) | | 132 | | Missouri River at Waverly (d) | | 133 | | GRAND RIVER BASIN | | | | Middle Fork Grand River near Grant City (c,m) | 06896187 | 134 | | East Fork Grand River at Allendale (c,m) | | 136 | | East Fork Big Creek near Bethany (d) | | 138 | | Grand River near Gallatin (d) | | 139 | | Thompson River near Mt. Moriah (c,m) | | 140 | | Weldon River at Princeton (c,m) | 06898800 | 142 | | Thompson River at Trenton (d) | 06899500 | 144 | | No Creek near Dunlap (c,m) | 06899580 | 145 | | Medicine Creek at Harris (c,m) | 06899950 | 147 | | Medicine Creek at Laredo (d) | 06900050 | 149 | | Little Medicine Creek near Harris (c,m) | 06900100 | 150 | | Locust Creek near Unionville (c,m) | 06900900 | 152 | | Locust Creek near Linneus (d) | 06901500 | 154 | | Grand River near Sumner (d,c,m) | 06902000 | 155 | | CHARITON RIVER BASIN | | | | Chariton River at Livonia (d) | 06904050 | 160 | | Chariton River at Novinger (d) | 06904500 | 161 | | Chariton River near Prairie Hill (d,c,m) | 06905500 | 162 | | Musselfork near Mystic (c,m) | 06905725 | 165 | | LITTLE CHARITON RIVER BASIN | | | | East Fork Little Chariton River: | | | | Long Branch Creek at Atlanta (d) | 06906150 | 167 | | Long Branch Reservoir near Macon (e) | 06906190 | 168 | | East Fork Little Chariton River near Macon (d) | 06906200 | 169 | | East Fork Little Chariton River near Huntsville (d,c,m) | 06906300 | 170 | | Missouri River at Glasgow (d) | 06906500 | 173 | | LAMINE RIVER BASIN | | | | Lamine River near Otterville (d) | 06906800 | 174 | | Lamine River near Pilot Grove (c,m) | 06907300 | 175 | | Blackwater River at Blue Lick (d) | | 177 | | Missouri River at Boonville (d) | 06909000 | 178 | | MOREAU RIVER BASIN | | | | Moreau River near Jefferson City (d) | 06910750 | 179 | | OSAGE RIVER BASIN | | | | Miami Creek near Butler (d) | | 180 | | Little Osage River at Horton (d) | | 181 | | Dry Wood Creek near Deerfield (d) | | 182 | | Marmaton River below Nevada (d) | | 183 | | Osage River above Schell City (d,c,m) | | 184 | | Sac River near Dadeville (d) | | 188 | | Turnback Creek above Greenfield (d) | 06918460 | 189 | | Little Sac River: | 0.6010400 | 100 | | South Fork Little Dry Sac River near Springfield (d) | | 190 | | Little Sac River near Walnut Grove (c,m) | | 191 | | Little Sac River near Morrisville (d) | | 193 | | Stockton Lake near Stockton (e) | 06516330 | 194 | | Stat | cion Number | Page | |---|-------------|------------| | MISSOURI RIVER BASINContinued | | | | OSAGE RIVER BASINContinued | | | | Sac River at Highway J below Stockton (d) | 06919020 | 195 | | Cedar Creek near Pleasant View (d) | 06919500 | 196 | | Sac River near Caplinger Mills (d) | 06919900 | 197 | | Pomme De Terre River near Polk (d,c,m) | 06921070 | 198 | | Lindley Creek near Polk (d) | 06921200 | 201 | | Pomme de Terre Lake near Hermitage (e) | 06921325 | 202 | | Pomme de Terre River near Hermitage (d) | 06921350 | 203 | | South Grand River below Freeman (c,m) | 06921582 | 204 | | South Grand River near Clinton (d) | 06921760 | 208 | | Harry S. Truman Reservoir at Warsaw (e) | 06922440 | 209 | | Osage River below Harry S. Truman Dam at Warsaw (d) | 06922450 | 210 | | Niangua River below Bennett Spring (c,m) | 06923700 | 211 | | Niangua River at Tunnel Dam near Macks Creek (d) | 06923950 | 213 | | Lake of the Ozarks near Bagnell (e) | 06925500 | 214 | | Osage River near Bagnell (d) | 06926000 | 215 | | Osage River below St. Thomas (d,c,m) | 06926510 | 216 | | GASCONADE RIVER BASIN | | | | Gasconade River near Hazelgreen (d) | | 219 | | Roubidoux Creek above Ft. Leonard Wood (d) | | 220 | | Roubidoux Creek below Ft. Leonard Wood (d) | |
221 | | Roubidoux Spring at Waynesville (c,m) | | 222 | | Big Piney River near Big Piney (d) | | 225 | | Big Piney River below Ft. Leonard Wood (d) | | 226 | | Big Piney River at Devil's Elbow (c,m) | | 227 | | Gasconade River above Jerome (c,m) | | 229 | | Little Piney Creek at Newburg (d) | | 232 | | Gasconade River at Jerome (d) | | 233 | | Gasconade River near Rich Fountain (d) | | 234 | | Missouri River at Hermann (d,c,m) | | 235 | | Bonhomme Creek near Ellisville (d) | | 241 | | Bonhomme Creek near Clarkson Valley (d,c,m) | | 242 | | Caulks Creek at Chesterfield (d) | | 247 | | Creve Coeur Creek at Chesterfield (d) | | 248 | | Creve Coeur Creek near Creve Coeur (d,c,m) | | 249 | | Fee Fee Creek near Bridgeton (d,c,m) | | 253 | | Missouri River at St. Charles (d) | | 258 | | Cowmire Creek at Bridgeton (d,c,m) | | 259 | | Mill Creek near Florissant (d) | | 264 | | Coldwater Creek near Black Jack (d,c,m) | | 265 | | Spanish Lake Tributary near Black Jack (d) | 06936530 | 269 | | LOWER MISSISSIPPI RIVER BASIN | 07001985 | 270 | | Watkins Creek at Bellefontaine Neighbors (d,c,m) | | 270 | | Maline Creek at Bellefontaine Neighbors (d,c,m) | | 274 | | River des Peres near University City (d,c,m) | | 278 | | River des Peres Tributary at Pagedale (d) | | 282
287 | | Engelholm Creek near Wellston (d,c,m) | | 288 | | Deer Creek at Ladue (d,c,m) | | 292 | | Deer Creek at Maplewood (d) | | 292 | | Mackenzie Creek near Shrewsbury (d) | | 304 | | Gravois Creek near Mehlville (d,c,m) | | 304 | | Martigney Creek near Arnold (d) | | 309 | | maretyme, ereck mear armore (a) | 0.010200 | 202 | | S | Station Number | Page | |---|----------------|------| | LOWER MISSISSIPPI RIVER BASINContinued | | | | MERAMEC RIVER BASIN | | | | Meramec River: | | | | Maramec Spring near St. James (c,m) | 07010500 | 310 | | Meramec River near Steelville (d) | 07013000 | 312 | | Huzzah Creek near Steelville (c,m) | 07014000 | 313 | | Courtois Creek at Berryman (c,m) | | 315 | | Meramec River near Sullivan (d,c,m) | | 317 | | Bourbeuse River near High Gate (d) | | 320 | | Bourbeuse River above Union (c,m) | | 321 | | Bourbeuse River at Union (d) | | 323 | | Big River at Irondale (d) | | 324 | | Big River near Richwoods (d,c,m) | | 325 | | Big River at Byrnesville (d) | | 328 | | Meramec River near Eureka (d) | | 329 | | Kiefer Creek near Ballwin (d,c,m) | | 330 | | Williams Creek near Peerless Park (d,c,m) | | 334 | | Fishpot Creek at Valley Park (d,c,m) | | 338 | | Grand Glaize Creek near Manchester (d) | | 342 | | Sugar Creek at Kirkwood (d) | | 343 | | Grand Glaize Creek near Valley Park (d,c,m) | | 344 | | Yarnell Creek at Fenton (d) | | 348 | | Fenton Creek near Fenton (d,c,m) | | 349 | | Meramec River at Paulina Hills (c,m) | | 353 | | Mattese Creek near Mattese (d,c,m) | | 355 | | Mississippi River at Chester, IL (d,s) | | 360 | | SALINE CREEK BASIN | 07020300 | 300 | | Saline Creek: | | | | South Fork Saline Creek near Perryville (d) | 07020550 | 364 | | HEADWATER DIVERSION CHANNEL BASIN | 07020330 | 301 | | Castor River at Zalma (d,c,m) | 07021000 | 365 | | Mississippi River at Thebes, IL (d,c,m,s) | | 368 | | ST. FRANCIS RIVER BASIN | 07022000 | 300 | | St. Francis River near Mill Creek (d) | 07035800 | 377 | | St. Francis River near Saco (c,m) | | 377 | | Big Creek at Des Arc (d) | | 380 | | Big Creek at Sam A. Baker State Park (c,m) | | 381 | | | | 383 | | St. Francis River near Patterson (d) | | | | Wappapello Lake at Wappapello (e) | | 384 | | St. Francis River at Wappapello (d) | 0/039500 | 386 | | Right Chute of Little River: | 07040450 | 207 | | St. Johns Ditch near Henderson Mound (c,m) | | 387 | | Little River Ditch 1 near Morehouse (d) | | 391 | | , , , | 0/046250 | 392 | | WHITE RIVER BASIN White River: | | | | | | | | Roaring River: | 0000100 | 206 | | Roaring River Spring near Cassville (c,m) | 07050150 | 396 | | James River: | 0.000.000 | | | Pearson Creek near Springfield (d,c,m) | | 398 | | James River near Springfield (d) | | 403 | | Wilson Creek at Springfield (d) | | 404 | | Wilson Creek near Springfield (d) | | 405 | | South Creek near Springfield (d) | | 406 | | Wilson Creek near Brookline (d,c,m) | | 407 | | Wilson Creek near Battlefield (d,c,m) | | 412 | | James River near Boaz (d,c,m) | | 419 | | Finley Creek below Riverdale (d,c,m) | | 424 | | James River at Galena (d,c,m) | | 431 | | Flat Creek at Jenkins (c,m) | 07052800 | 437 | | Station Number | Page | |--|------| | LOWER MISSISSIPPI RIVER BASINContinued | | | WHITE RIVER BASIN | | | Table Rock Lake near Branson (e) | 439 | | White River below Table Rock Dam near Branson (c,t) | 440 | | White River near Branson (d) | 442 | | Lake Taneycomo at College of the Ozarks (c,t) | 443 | | Lake Taneycomo at Branson (c,m) | 445 | | Bull Creek near Walnut Shade (d) | 449 | | Swan Creek near Swan (c,m) | 450 | | Beaver Creek at Bradleyville (d) | 452 | | North Fork River near Tecumseh (d,c,m) | 453 | | Bryant Creek below Evans (c,m) | 456 | | Bryant Creek near Tecumseh (d) | 458 | | Black River: | | | West Fork Black River at Centerville (c,m) | 459 | | East Fork Black River near Ironton (c,m) 07061260 | 461 | | East Fork Black River near Lesterville (d) | 463 | | Taum Sauk Creek near Lesterville (d) | 464 | | Black River near Annapolis (d) | 466 | | Black River below Annapolis (c,m) | 467 | | Logan Creek at Ellington (d) | 469 | | Clearwater Lake near Piedmont (e) | 470 | | Black River at Poplar Bluff (d) | 471 | | Current River above Akers (d) | 472 | | Jacks Fork near Mountain View (d) | 474 | | Jacks Fork above Alley Spring (c,m) | 475 | | Jacks Fork at Alley Spring (d) | 476 | | Alley Spring below Alley (c,m) | 477 | | Mahans Creek above Eminence (c,m) | 477 | | Jacks Fork at Eminence (d,c,m) | 479 | | Jacks Fork ab 2nd Unnamed Hollow bl Eminence (c,m)370905091204001 | 481 | | | 482 | | Jacks Fork above Lick Log Hollow below Eminence (c,m) 371014091201301 Jacks Fork above Two Rivers (c,m) | 483 | | | 485 | | Jacks Fork above Powell Spring above Two Rivers (c,m) 371026091183301 | 486 | | Shawnee Creek above Two Rivers (c,m) | | | Jacks Fork above L. Shawnee Creek above Two Rivers (c,m) 371020091174101 | 487 | | Jacks Fork bl 3rd Unnamed Hollow above Two Rivers (c,m) 371054091173501 | 488 | | Current River at Van Buren (d) | 489 | | Big Spring near Van Buren (d,c,m) | 490 | | Current River at Doniphan (d,c,m) | 493 | | Little Black River below Fairdealing (c,m) | 496 | | Eleven Point River: | 400 | | Greer Spring at Greer (d,c,m) | 498 | | Eleven Point River near Bardley (d,c,m) | 501 | | ARKANSAS RIVER BASIN | | | Arkansas River: | | | Neosho River: | | | Spring River near Carthage (d) | 504 | | Spring River near Waco (d) | 506 | | Center Creek near Smithfield (c,m) | 507 | | Turkey Creek near Joplin (c,m) | 512 | | Shoal Creek at Pioneer (d) | 515 | | Shoal Creek above Joplin (d) 07187000 | 516 | | Big Sugar Creek near Powell (d) 07188653 | 517 | | Indian Creek near Lanagan (d) | 518 | | Patterson Creek near Tiff City (c,m) 07188950 | 519 | | Elk River near Tiff City (d,c,m) | 521 | | Buffalo Creek at Tiff City (d) 07189100 | 527 | # DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS The following continuous-record surface-water discharge or stage-only stations (gaging stations) in Missouri have been discontinued. Daily streamflow or stage records were collected and published for the period of record, expressed in water years, shown for each station. Discontinued project stations with less than three years of record have not been included. Information regarding these stations may be obtained from the District Office at the address given on the back side of the title page of this report. [Letters after station name designate type of data collected: (d) discharge and (e) elevation (stage only)] | Station name | Type of record | Station
number | Drainage area
(mi ²) | Period of record | |--|----------------|-------------------|-------------------------------------|------------------| | Middle Fabius River near Baring | (d) | 05497500 | 185 | 1930-196 | | North River at Bethel | (d) | 05500500 | 58.0 | 1930-197 | | Oak Dale Branch near Emden | (d) | 05503000 | 2.64 | 1955-197 | | North Fork Salt River near Hunnewell | (d) | 05503500 | 626 | 1931-194 | | Notes for bare kiver near namewers | (α) | 03303300 | 020 | 1979-198 | | Youngs Creek near Mexico | (d) | 05506000 | 67.4 | 1930-198 | | Middle Fork Salt River at Duncan's Bridge | (d) | 05506190 | 200 | 1980-198 | | Elk Fork Salt River near Paris | (d) | 05507000 | 262 | 1930-195 | | | (/ | | | 1980-198 | | Salt River near Monroe City | (d) | 05507500 | 2,230 | 1939-198 | | Calumet Creek near Clarksville | (d) | 05509700 | 15.7 | 1965-197 | | Tarkio River at Fairfax | (d) | 06813000 | 508 | 1922-199 | | larkio kiver at Fairlax | (α) | 06813000 | 506 | 1922-199 | | Mill Creek at Oregon | (d) | 06816000 | 4.90 | 1950-197 | | Nodaway River near Burlington Junction | (d) | 06817500 | 1,240 | 1922-198 | | Platte River at Ravenwood | (d) | 06818900 | 486 | 1921-192 | | | | | | 1924-192 | | | | | | 1928-193 | | | | | | 1958-197 | | White Cloud Creek near Maryville | (d) | 06820000 | 6.06 | 1948-197 | | Jenkins Branch at Gower | (d) | 06821000 | 2.72 | 1950-197 | | Line Creek at Riverside | (d) | 06821280 | 19.2 | 1975-198 | | | | | | | | Brush Creek at Main Street in Kansas City | (d) | 06893560 | 14.8 | 1970-197 | | Rock Creek at Independence | (d) | 06893600 | 5.20 | 1967-197 | | Shoal Creek at Claycomo | (d) | 06893670 | 29.8 | 1975-198 | | L. Blue River bl Longview Dam at Kansas City | (d) | 06893793 | 50.3 | 1966-199 | | East Fork L. Blue River near Blue Springs | (d) | 06893890 | 34.4 | 1974-199 | | East Fork Fishing River at Excelsior Spring | (d) | 06894500 | 20.0 | 1950-197 | | Sni-A-Bar Creek near Tarsney |
(d) | 06894680 | 29.1 | 1970-197 | | Crooked River near Richmond | (d) | 06895000 | 159 | 1948-197 | | Wakenda Creek at Carrollton | (d) | 06896000 | 248 | 1948-197 | | Thompson Branch near Albany | (d) | 06896500 | 5.58 | 1955-197 | | Thompson River at Mount Moriah | (d) | 06898100 | 891 | 1960-197 | | Weldon River near Mercer | (d) | 06898500 | 246 | 1939-195 | | Weldon River at Mill Grove | (d) | 06899000 | 494 | 1929-197 | | | (d) | 06899700 | 391 | 1957-197 | | Shoal Creek near Braymer | (α) | 06899700 | 391 | 1957-197 | | Medicine Creek near Galt | (d) | 06900000 | 225 | 1921-197 | | | (1) | 0.6000000 | 125 | 1977-199 | | West Yellow Creek near Brookfield | (d) | 06902200 | 135 | 1959-197 | | Hamilton Branch near New Boston | (d) | 06902500 | 2.51 | 1955-197 | | Mussel Fork near Musselfork | (d) | 06906000 | 267 | 1948-195 | | | | | | 1962-199 | | Thomas Hill Lake near Thomas Hill | (e) | 06906350 | 147 | 1966-197 | | Middle Fork Chariton River below Salisbury | (d) | 06906470 | 201 | 1964-197 | | Burge Branch near Arrow Rock | (d) | 06906600 | 0.33 | 1959-197 | | Flat Creek near Sedalia | (d) | 06906700 | 148 | 1958-196 | | Lamine River at Clifton City | (d) | 06907000 | 598 | 1922-197 | | South Fork Blackwater near Elm | (d) | 06907500 | 16.6 | 1954-197 | | Blackwater River at Valley City | (d) | 06907700 | 547 | 1958-197 | | Shiloh Branch near Marshall | (d) | 06908500 | 2.87 | 1952-196 | | | | | | | | Moniteau Creek near Fayette | (d) | 06909500 | 81 | 1948-196 | | Petite Saline Creek near Boonville | (d) | 06910000 | 182 | 1948-196 | | Hinkson Creek at Columbia | (d) | 06910230 | 44.8 | 1964-197 | | | | | | 1986-199 | | Station name | Type of record | Station
number | Drainage area
(mi ²) | Period of record | |---|----------------|----------------------|-------------------------------------|---| | Cedar Creek near Columbia | (d) | 06910410 | 70.2 | 1966-1982, | | Chesapeake Spring at Chesapeake | (d) | 06918444 | | 1987-1991
1926,
1932,
1936,
1954, | | Oak Grove Branch near Brighton | (d) | 06918700 | 1.30 | 1963-1968
1956-1975 | | Little Sac River at Aldrich | (d) | 06918700 | 304 | 1967-1968 | | Pomme de Terre River near Bolivar | (d) | 06921000 | 225 | 1950-1969 | | Pomme de Terre River at Hermitage | (d) | 06921500 | 655 | 1921-1965 | | South Grand River at Archie | (d) | 06921590 | 356 | 1969-1986 | | South Grand River at Urich | (d) | 06921600 | 670 | 1960-1969 | | Big Creek at Blairstown | (d) | 06921720 | 414 | 1960-1974 | | Brushy Creek near Blairstown | (d) | 06921740 | 1.15 | 1960-1975 | | South Grand River near Brownington | (d) | 06922000 | 1,660 | 1921-1971 | | Big Buffalo Creek near Stover | (d) | 06922800 | 24.2 | 1965-1977 | | Niangua River near Windyville | (d) | 06923250 | 338 | 1991-1996 | | Bennett Spring at Bennett Springs | (d) | 06923500 | | 1916-1920, | | 5 111 at 5 111 at 5 | (/ | | | 1928-1941, | | | | | | 1965-1995 | | Niangua River near Decaturville | (d) | 06924000 | 627 | 1929-1969 | | Starks Creek at Preston | (a) | 06035300 | 4.18 | 1056 1076 | | Van Cleve Branch near Meta | (d)
(d) | 06925200
06926200 | 4.16
0.75 | 1956-1976
1956-1972 | | Osage River near St. Thomas | (d) | 06926500 | 14,500 | 1931-1996 | | Big Hollow near Fulton | (d) | 06927200 | 4.05 | 1957-1972 | | - | (3) | 06000000 | 404 | | | Osage Fork Gasconade River at Drynob | (d) | 06927800 | 404 | 1962-1981 | | Laquey Branch near Hazlegreen | (d) | 06928200 | 1.58 | 1958-1972 | | Gasconade River near Waynesville | (d) | 06928500 | 1,680 | 1914-1971 | | Beeler Branch near Cabool | (d) | 06928700 | 7.78 | 1967-1976 | | Little Beaver Creek near Rolla | (d) | 06931500 | 6.45 | 1947-1975 | | Loutre River at Mineola | (d) | 06935500 | 202 | 1947-1967 | | Coldwater Creek near Hazelwood | (d) | 06936200 | 12.1 | 1996-2001 | | Coldwater Creek near St. Louis | (d) | 06936500 | 43.6 | 1959-1965 | | Meramec River at Cook Station | (d) | 07010350 | 199 | 1965-1981 | | Maramec Spring near St. James | (d) | 07010500 | | 1903-1906, | | | | | | 1921-1929, | | | | | | 1965-1986 | | Green Acre Branch near Rolla | (d) | 07011500 | 0.62 | 1947-1975 | | Bourbeuse River near St. James | (d) | 07015000 | 21.3 | 1947-1981 | | Lanes Fork near Rolla | (d) | 07015500 | 0.225 | 1952-1971 | | Bourbeuse River near Spring Bluff | (d) | 07016000 | 608 | 1943-1981 | | Dry Branch near Bonne Terre | (d) | 07017500 | 3.35 | 1955-1975 | | Sandy Creek near Pevely | (d) | 07019690 | 32.5 | 1966-1968,
1969-1972 | | Plattin Creek at Plattin | (d) | 07019790 | 65.8 | 1965-1972 | | Saline Creek near Minnith | (d) | 07020270 | 82.6 | 1968-1981 | | Brewers Creek near Ironton | (d) | 07033800 | 2.19 | 1964-1966 | | St. Francis River near Roselle | (d) | 07034000 | 234 | 1983-1997 | | Little St. Francis River at Fredericktown | (d) | 07035000 | 90.5 | 1983-1997 | | Barnes Creek near Fredericktown | (d) | 07035500 | 3.35 | 1955-1975 | | St. Francis River near Saco | (d) | 07036100 | 664 | 1983-1997 | | Clark Creek near Piedmont | (d) | 07037700 | 4.39 | 1956-1976 | | Little River Ditch 81 near Kennett | (d) | 07041000 | 111 | 1926-1979 | | Little River Ditch 1 near Kennett | (d) | 07042000 | 235 | 1926-1979 | | Little River Ditch 251 near Lilbourn | (d) | 07042500 | 235 | 1945-1991 | | Castor River at Aquilla | (d) | 07043000 | 175 | 1945-1981 | | Little River Ditch 251 near Kennett | (d) | 07044000 | 883 | 1926-1979 | | Little River Ditch 66 near Kennett | (d) | 07045000 | | 1926-1979 | # DISCONTINUED SURFACE-WATER DISCHARGE OR STAGE-ONLY STATIONS--Continued | Station name | Type of record | Station
number | Drainage area (mi²) | Period of record | |---|----------------|-------------------|---------------------|-------------------------| | Little River Ditch 66-A near Kennett | (d) | 07045500 | | 1927-1965 | | Little River Ditch 259 near Kennett | (d) | 07046000 | 89.0 | 1926-1979 | | Roaring River Spring near Cassville | (d) | 07050150 | | 1965-1968 | | James River near Strafford | (d) | 07050580 | 165 | 1973-1986 | | Wilson Creek below Springfield | (d) | 07052150 | 47.2 | 1967-1972 | | Hodgson Mill Spring at Sycamore | (d) | 07057800 | | 1965-1968 | | East Fork L. Black River near Lesterville | (d) | 07061300 | 94.5 | 1960-1990 | | Black River near Leeper | (d) | 07062500 | 987 | 1921-1994 | | Fudge Hollow near Licking | (d) | 07064300 | 1.72 | 1956-1976 | | Montauk Springs at Montauk | (d) | 07064400 | | 1964-1968 | | Big Creek near Yukon | (d) | 07064500 | 8.36 | 1949-1975,
1960-1990 | | Round Spring at Round Spring | (d) | 07065000 | | 1928-1939,
1965-1979 | | Alley Spring at Alley | (d) | 07065500 | | 1928-1939,
1965-1979 | | Current River near Eminence | (d) | 07066500 | 1,272 | 1921-1975 | | Middle Fork Little Black River at Grandin | (d) | 07068250 | 6.85 | 1980-1984 | | North Prong Little Black River near Grandin | (d) | 07068300 | 39.4 | 1980-1984 | | Little Black River near Grandin | (d) | 07068380 | 79.5 | 1980-1984 | | Little Black River below Fairdealing | (d) | 07068510 | 194 | 1980-1986 | | Logan Creek at Oxly | (d) | 07068540 | 37.5 | 1980-1984 | | Little Black River at Success, AR | (d) | 07068600 | 386 | 1980-1986 | | Fourche River near Poynor | (d) | 07068863 | 87.2 | 1976-1983 | | Eleven Point River near Thomasville | (d) | 07070500 | 361 | 1950-1976 | | Stahl Creek near Miller | (d) | 07185500 | 3.86 | 1950-1976 | | Spring River at La Russell | (d) | 07185700 | 306 | 1947-1981 | | Center Creek near Carterville | (d) | 07186400 | 232 | 1962-1991 | | Center Creek below Carl Junction | (d) | 07186475 | 299 | 1993-1995 | | Turkey Creek near Joplin | (d) | 07186600 | 41.8 | 1963-1972 | The following surface-water-quality stations in Missouri have been discontinued or converted to partial-record stations. Water-quality data (daily or periodic samples with collection frequency not less than quarterly) were collected and published for the period of record shown for each station. Discontinued project stations with less than three years of record are not included. Information regarding these stations may be obtained from the District Chief at the address given on the back of the title page of this report. [Type of record: (B) biological, (C) chemical, (M) microbiological, (S) sediment, (T) temperature] | Mississippi River at Canton Middle Fabius River near Monticello North River at Palmyra Mississippi River at Hannibal North Fork Salt River near Shelbina Middle Fork Salt River at Paris | 05495150
05498000
05501000
05501600 |
393 | C,T
S | 1969-1975 | |--|--|---------|--------------|------------------------| | Middle Fabius River near Monticello
North River at Palmyra
Mississippi River at Hannibal
North Fork Salt River near Shelbina
North Fork Salt River near Hunnewell | 05498000
05501000 | 393 | | 1000 1000 | | North River at Palmyra
Mississippi River at Hannibal
North Fork Salt River near Shelbina
North Fork Salt River near Hunnewell | 05501000 | | | 1980-1986 | | Mississippi River at Hannibal
North Fork Salt River near Shelbina
North Fork Salt River near Hunnewell | | 373 | C | 1972-1975 | | North Fork Salt River near Shelbina North Fork Salt River near Hunnewell | | 3/3 | | | | North Fork Salt River near Hunnewell | | | C,M | 1982-1989 | | | 05502500 | 481 | S | 1988-1994 | | Middle Fork Salt River at Paris | 05503500 | 626 | S | 1980-1988 | | | 05506500 | 356 | S | 1980-1997 | | Salt River near New London | 05508000 | 2,480 | C,M,T | 1967-1975 | | oute River hear new Bondon | 0330000 | 2,100 | 0,11,1 | 1977-1990 | | | | | S | 1980-199 | | Mississippi River at Alton, IL | 05587500 |
171,500 | S | 1980-1985 | | MISSISSIPPI RIVEL AC ALCOII, IL | 05567500 | 1/1,300 | ۵ | | | Mississippi River below Alton, IL | 05587550 | 171,500 | C,M | 1986-1989
1975-1989 | | , | | , | 2,11 | | | Nodaway River near Oregon | 06817800 | | C,M | 1968-1979 | | | | | | 1977-1989 | | Platte River at Platte City | 06821200 | | C | 1967-197 | | Missouri River at Sibley | 06894100 | | C,T | 1972-197 | | Thompson River near Chillicothe | 06899620 | | C,M | 1968-197 | | | | | | 1983-198 | | East Fork Little Chariton River near Macon | 06906200 | 112 | C | 1971-197 | | Middle Fork L. Chariton R. below Salisbury | 06906470 | 201 | C,M | 1983-198 | | Burge Branch near Arrow Rock | 06906600 | 0.33 | S | 1961-196 | | Lamine River near Blackwater | 06908800 | 2,610 | B,C,M,T | 1979-198 | | Missouri River at Boonville | 06909000 | 505,700 | Б,С,М,1
Т | | | MISSOURI RIVER At BOORVIIIE | 06909000 | 505,700 | 1 | 1953-195 | | Hinkson Creek at Columbia | 06910230 | 70.2 | Т | 1960-196
1987-199 | | HIMSON CICCA at Columbia | 00910230 | 70.2 | 1 | 1007 100 | | Cedar Creek near Columbia | 06910410 | 44.8 | C,M | 1987-199 | | Cedar Creek near Ashland | 06910414 | | C,M | 1983-198 | | Marais Des Cygnes River near Worland | 06916650 | 3,230 | C,M | 1962-196 | | | | | | 1972-197 | | | | | | 1977-198 | | East Fork Drywood Creek at Prairie State Park | 06917630 | | C,M | 1994-199 | | Sac River near Dadeville | 06918440 | 257 | C,M,T | 1974-197 | | | | | - / / - | 1980-198 | | | | | | 1983-198 | | | 0.601.000 | 1 160 | _ | 1054 105 | | Stockton Lake near Stockton | 06918990 | 1,160 | T | 1974-197 | | Pomme de Terre River near Hermitage | 06921350 | 615 | T | 1974-197 | | Pomme de Terre River at Hermitage | 06921500 | 615 | T | 1970-197 | | South Grand River at Urich | 06921600 | 670 | C,M | 1983-198 | | South Grand River near Clinton | 06921760 | 1,270 | S | 1991-199 | | West Fork Tebo Creek near Lewis | 06922190 | | C,M | 1983-199 | | Trib. to Middle Fork Tebo Creek nr Leeton | 06922075 | | Ċ | 1989-199 | | Tebo Creek at Leesville | 06922200 | | B,C,M,T | 1978-198 | | Osage River at Warsaw | 06922500 | 11,500 | T | 1969-197 | | Big Buffalo Creek near Stover | 06922800 | 24.2 | T | 1965-197 | | | 0.505.55 | o | | | | Big Buffalo Creek at Big Buffalo Wildlife Area | 06922850 | 24.5 | C.M | 1994-199 | | Dousinbury Creek near Wall Street | 06923150 | 39.5 | C.M | 1993-199 | | Niangua River near Windyville | 06923250 | 338 | C,M | 1991-199 | | Bennett Spring at Bennett Springs | 06923500 | | C,M | 1991-199 | | Ha Ha Tonka Spring at Ha Ha Tonka State Park | 06924500 | | C,M | 1994-199 | | Coakley Hollow Spr. Br. at Lake of the Ozarks | 06925445 | | C,M | 1994-199 | | Gasconade River near Hooker | 06928600 | | C,M | 1977-198 | | | 06935840 | | C,T | 1969-197 | | | | 338 | | | | Missouri River near St. Louis
Paddy Creek above Slabtown Springs | 06929318 | 5 5 X | C,M | 1991-199 | | Station name | Station
number | Drainage area (mi²) | Tye of
record | Period of record | |--|-------------------|---------------------|------------------|------------------| | Mississippi River at East St. Louis, IL | 07001000 | | С | 1969-1973 | | Crooked Creek near Dillard | 07013050 | | C | 1982-1988 | | Coonville Creek at St. Francis State Park | 07013030 | | C,M | 1993-1997 | | Meramec River near Eureka | 07017003 | 3,788 | C,M | 1978-1994 | | Pickle Creek at Hawn State Park | 07019000 | 3,700 | C,M | 1978-1994 | | Pickie Creek at Hawn State Park | 07020200 | | C , M | 1994-1997 | | Mississippi River at Cape Girardeau | 07020850 | | C,T | 1969-1974 | | Headwater Diversion Channel near Allenville | 07021800 | | C | 1969-1975 | | Big Creek at Chloride | 07036940 | | C | 1969-1975, | | | | | | 1983-1990 | | St. Francis River at St. Francis, AR | 07040100 | | C | 1969-1975 | | Little River Ditch 1 near Morehouse | 07043500 | 450 | C,M | 1996-1997 | | Little River Ditches near Kennett | 07046001 | | C,M | 1969-1970, | | Bittic River bittings hear Remiete | 07040001 | | C,1·1 | 1972-1973, | | | | | | 1977-1989, | | | | | | 1992-1993 | | Roaring River at Roaring River State Park | 07050152 | | C,M | 1991-1993 | | James River near Nixa | 07050152 | 273 | T T | 1966-1975, | | Danies River hear Nixa | 07030730 | 2/3 | 1 | 1977-1980 | | James River near Wilson Creek | 07051600 | | C,M | 1967-1982, | | James River hear wilson creek | 0/051600 | | C , M | 1987-1982, | | Wilson Creek near Springfield | 07052100 | 31.4 | О П | 1983-1987 | | wilson creek hear springileid | 07052100 | 31.4 | C,T | 1972-1962 | | Wilson Creek below Springfield | 07052150 | 47.2 | C,T | 1967-1970, | | | | | | 1970-1972 | | James River west of Nixa | 07052200 | 440 | C | 1962-1963, | | | | | | 1965-1967 | | Finley Creek at Riverdale | 07052340 | | C | 1967-1975 | | Double Spring near Dora | 07057475 | | C,M | 1994-1997 | | Black River at Poplar Bluff | 07063000 | 1,245 | C,M | 1983-1987 | | Black River below Poplar Bluff | 07063050 | | С | 1969-1975 | | Main Ditch near Neelyville | 07063330 | | C | 1969-1975 | | Middle Fork Little Black River at Grandin | 07068250 | 6.85 | T | 1980-1984 | | North Prong Little Black River near Grandin | 07068300 | 39.4 | C,M | 1980-1984 | | Little Black River near Grandin | 07068380 | 79.5 | C,M,S,T | 1980-1984 | | Bittit Biack River hear Granarii | 07000300 | 75.5 | C,11,5,1 | 1000 1004 | | Logan Creek at Oxly | 07068540 | 37.5 | C,M,S,T | 1980-1984 | | Little Black River near Naylor | 07068550 | | C | 1969-1975 | | Little Black River at Success, AR | 07068600 | 386 | C,M,S,T | 1980-1986 | | Fourche River near Poynor | 07068863 | 87.2 | T | 1976-1983 | | Fourche River near Middlebrook, AR | 07068867 | | C | 1969-1975 | | Spring River near Thayer | 07069170 | | С | 1969-1975 | | Mammoth Spring at Mammoth Spring, AR | 07069170 | | C,M | 1994-1996 | | Eleven Point River below Bardley | 07009200 | | C,M | 1969-1975 | | Spring River near Waco | 07186000 | 1,164 | C | 1965-1975, | | Spring River hear waco | 07100000 | 1,104 | C | 1977-1978, | | | | | | 1980-1981 | | Center Creek near Carterville | 07186400 | 232 | C,M | 1980-1989 | | TITLE OF SOLUTION SOL | 0.100100 | 202 | J , 1·1 | 1700 1707 | | Shoal Creek above Joplin | 07187000 | 427 | C,M | 1968-1968, | | | | | | 1979-1982 | | Shoal Creek near Galena, KS | 07187560 | | C | 1968-1975 | | Lost Creek at Seneca | 07188500 | 42 | C | 1967-1975 | | Little Sugar Creek at Caverna | 07188820 | | C | 1967-1975 | | Buffalo Creek at Tiff City | 07189100 | | C | 1967-1975 | | | | | | | #### INTRODUCTION The Water Resources Division of the U.S. Geological Survey, in cooperation with local, State, and Federal agencies and organizations, obtains a large quantity of data pertaining to the water resources of Missouri each water year (October 1 to September 30). These data, accumulated during many water years, constitute a valuable data base for developing an improved understanding of the water resources of Missouri. To make these data readily available to interested parties outside the U.S. Geological Survey, the data are published annually in this report series, entitled "WATER RESOURCES DATA - MISSOURI." This volume contains records for water discharge at 172 gaging stations; elevation at 12 lakes and reservoirs; water quality at 113 sampling stations (including 2 lakes); and data for 39 crest-stage stations. Records of discharge and stage of streams, and contents or stage of lakes and reservoirs were first published in a series of U.S. Geological Survey Water-Supply Papers entitled, "Surface Water Supply of the United States." These Water-Supply Papers were in an annual series through September 30, 1960, and then in a 5-year series for 1961-65 and 1966-70. Records of chemical quality, water temperature, and suspended sediment were published from 1941 to 1970 in an annual series of Water-Supply Papers entitled, "Quality of Surface Waters of the United States." Records of ground-water levels were published
from 1935 to 1974 in a series of Water-Supply Papers entitled, "Ground-Water Levels in the United States." Water-Supply Papers are in the libraries of the principal cities in the United States or may be purchased from the U.S. Geological Survey, Information Services, Federal Center, Box 25286, Denver, CO 80225. For water years 1961 through 1974, streamflow data were released by the U.S. Geological Survey in annual reports on a Stateboundary basis. Water-quality records for water years 1964 through 1974 similarly were released either in separate reports or in conjunction with streamflow records. Beginning with water year 1975, water data for streamflow, water quality, and ground water are published in Survey reports on a State-boundary basis. These reports carry an identification number consisting of the two-letter State abbreviation, the last two digits of the water year, and the volume number. For example, this volume is identified as "U.S. Geological Survey Water-Data Report MO-02-1." For archiving and general distribution, the reports for water years 1971-74 also are identified as water-data reports. These water-data reports are for sale in paper copy or in microfiche by the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161. Additional information, including current prices, for ordering specific reports may be obtained from the District Chief at the address given on back of the title page or by telephone (573) 308-3667. #### COOPERATION The U.S. Geological Survey and State and local agencies and organizations in Missouri have had cooperative agreements for the systematic collection of streamflow records since 1921, and for water-quality records since 1964. Organizations that assisted in collecting data published in this report through cooperative agreements are: City of Columbia City of Perryville City Utilities of Springfield Holt County Kansas City Water Service Department Metropolitan St. Louis Sewer Dist. Missouri Department of Conservation Missouri Department of Natural Resources Geological Survey and Resource Assessment Division Water Protection and Soil Conservation Division Water Pollution Control Program The following Federal, State, and local agencies and organizations assisted in the collection of data published in this report by providing funds or services: Missouri Department of Transportation St. Charles County Rivers and Streams Proj. Ameren UE Company of Missouri National Park Service, Midwest Region Sho-Me Power Electric Cooperative U.S. Army Corps of Engineers U.S. Department of Agriculture U.S. Forest Service U.S. Department of the Army U.S. Department of Commerce National Oceanic and Atmospheric Administration National Weather Service U.S. Department of Energy U.S. Fish and Wildlife Service #### WATER USE--2000 Listed below are general water-use facts for the state of Missouri. The major water uses and percentage of surface water and ground water for 2000 are shown in figure 1. #### MISSOURI WATER USE FACT SHEET - Total water use in Missouri was 8,240 million gallons per day (Mgal/d). - Total population was 5.60 million, an increase of 5.3 percent from 1995. - Per capita water use for all uses was 1,470 gallons per person per day. - Surface-water withdrawals totalled 6,450 Mgal/d, about 78.3 percent of the total use. The largest use was in the St. Louis and Kansas City metropolitan areas. - Ground-water withdrawals totalled 1,790 Mgal/d, about 21.7 percent of total use. The largest ground-water use was for irrigation in southeastern Missouri. - 6. The largest overall use of water was for thermoelectric power generation, about 5,640 Mgal/d to produce 76,700 gigawatthours of electricity. - 7. Surface water accounts for 5,620 Mgal/d (99.8 percent) of the thermoelectric power generation use. About 5,200 Mgal/d of surface water was used by plants with once-through cooling water systems; the remainder was used by plants with recirculating cooling water systems. - The largest use of ground water was 1,380 Mgal/d for irrigation. Total irrigation water use was 1,430 Mgal/d. - Water withdrawals by public suppliers was 872 Mgal/d; 68.1 percent surface water and 31.9 percent ground water. - 10. Domestic water use was 491 Mgal/d; 11 percent self-supplied and 89 percent public-supplied. Per capita domestic water use was 87.8 gallons per person per day. - 11. Commercial water use was 87.0 Mgal/d; 14 percent self-supplied and 86 percent public-supplied. - 12. Industrial and mining water use was 200 Mgal/d; 40 percent self-supplied and 60 percent public-supplied. - 13. Public use and losses were 238 Mgal/d, calculated from the total water withdrawals for public supply minus deliveries to domestic, commercial, industrial, and thermoelectric uses. - 14. Non-irrigation agriculture water use was 156 Mgal/d for livestock and aquaculture use. About 83.3 Mgal/d is used for fish farms and in-stream fish hatcheries. - 15. Water use for in-stream and off-stream hydroelectric power generation was 10,900 Mgal/d to produce 408 gigawatt-hours of electricity. These values are not included in the withdrawal totals, as the water was left in or returned to the stream with no appreciable losses. Figure 1. Source and use values and percentages for major offstream water-use categories in Missouri during 2000. #### SUMMARY OF HYDROLOGIC CONDITIONS #### PHYSIOGRAPHY Missouri has three distinct physiographic areas—the Central Lowland in the north and west, the Mississippi Alluvial Plain in the southeast, and between them the Ozark Plateaus (Figure 2). The Central Lowland includes most of the area north of the Missouri River and a large area south of the river in the western part of the State. Elevations range from about 450 to 1,000 feet above National Geodetic Vertical Datum of 1929. The area has numerous wide, flat valleys incised by rivers. The Ozark Plateaus in the southern part of the State is wooded, rugged, and has deep, narrow valleys with sharp ridges separating the valleys. Elevations range from about 1,000 to 1,600 feet above National Geodetic Vertical Datum of 1929. The Mississippi Alluvial Plain (Bootheel) is a relatively flat area of about 3,000 square miles in the extreme southeast part of the State. Elevations range from about 200 to 300 feet above National Geodetic Vertical Datum of 1929. The area is well drained and contains excellent farmland. #### Surface Water--Streamflow Streamflow varies seasonally in Missouri and often reflects precipitation patterns unless the stream is regulated. Precipitation was above normal throughout the entire state during January and May. Missouri received below normal precipitation during February. Above normal precipitation was experienced in the Northwest Prairie (figure 3) in April; the Northeast Prairie in October, April, and August; the West Central Plains in October, and April; the West Ozarks in October, December, April, and July; the East Ozarks in October, November, December, March, April, August, and September; and the Bootheel in October, November, December, June, and September. Generally, the 2002 water year mean discharges were greater than long-term mean discharges in southern and northeast Missouri and less than long-term mean discharges in northwest Missouri (figure 2). Monthly discharges during the 2002 water year and long-term monthly mean discharges at six representative stations are shown in Figure 3. Peak discharges for the 2002 water year are compared to the peak discharges for the period of record at 14 selected gaging stations in Table 1. The 7-day average low flow for the 2001 water year is compared to the 7-day, 2-year low flow and minimum flow for selected stations in Table 2. The 7-day, 2-year low flow is the 7-day average minimum flow with a recurrence interval of 2 years. Table 1: Comparisons of peak discharge for the 2002 water year with those for period of record for selected stations | ber. | ecced stations | • | | | |---|------------------|---------|------------|----------------| | | Peak dischar | | | charge for | | | <u>2002 wate</u> | er year | period | of record | | | Cubic feet | | Cubic feet | | | Station identification | per second | Date | per second | Date | | 05495000 Fox River at Wayland | 10,900 | May 13 | 26,400 | Apr. 22, 1973 | | - | | - | • | - | | 05587450 Mississippi River at Grafton, Ill. | 380,000 | May 15 | 598,000 | Aug. 1, 1993 | | 06893000 Missouri River at Kansas City | 73,900 | May 13 | 573,000 | July 14, 1951 | | 06894000 Little Blue River near Lake City | 5,130 | May 25 | 42,300 | Aug. 13, 1982 | | 06897500 Grand River near Gallatin | 28,700 | May 12 | 89,800 | July 7, 1993 | | 06905500 Chariton River near Prairie Hill | 37,100 | May 13 | 37,100 | | | 06933500 Gasconade River at Jerome | 51,700 | May 10 | 136,000 | Dec. 5, 1982 | | 06934500 Missouri River at Hermann | 348,000 | May 14 | 750,000 | July 31, 1993 | | 07010000 Mississippi River at St. Louis | 682,000 | May 17 | 1,080,000 | Aug. 1, 1993 | | 07019000 Meramec River near Eureka | 56,600 | May 11 | 145,000 | Dec. 6, 1982 | | 07022000 Mississippi River at Thebes, Ill. | 838,000 | May 18 | 996,000 | Aug. 7, 1993 | | 07057500 North Fork River near Tecumseh | 55,700 | May 8 | 133,000 | Nov. 19, 1985 | | 07068000 Current River at Doniphan | 70,400 | May 10 | 122,000 | Dec. 3, 1982 | | 07186000 Spring River near Waco | 35,900 | May 9 | 151,000 | Sept. 26, 1993 | Figure 2. Major drainage basins, physiographic areas, and areas of greater than long-term mean discharge during 2002. Figure 3. Comparison of 2002 water-year mean discharge to long-term mean discharge. Table 2.--Comparisons of 2002 7-day low flows to 7-day, 2-year low flows and minimum flows for the period of record at selected stations | [Flows in cubic feet per second] | | | | | | |--|----------------------------|---------------------
---|---------------------|--| | Station identification
and period of record used
(water years) | Average 7-day
low flows | | Minimum flows for period of record used | | | | | 2002 | 2-year ¹ | Discharge | Years of occurrence | | | 05495000 Fox River at Wayland (1922-97) | 2.0 | 1.3 | 0 | Several years | | | 06820500 Platte River near Agency (1933-97) | 18 | 17 | 0 | Several years | | | 06921070 Pomme de Terre River near Polk (1969-97) | 6.1 | 3.0 | 0.3 | 1980 | | | 07016500 Bourbeuse River at Union (1921-97) | 31 | 32 | 13 | 1956 | | | 07067000 Current River at Van Buren
(1912-97) | 536 | 700 | 479 | 1956 | | | 07187000Shoal Creek above Joplin
(1942-97) | 84 | 92 | 16 | 1954 | | Skelton, John, 1976, Missouri stream and springflow characteristics--Low-flow frequency and flow duration: Rolla, Missouri Division of Geology and Land Survey Water Resources Report 32, 76 p. #### Water Quality--Streamflow Samples for determining the chemical quality of streamflow were collected at 109 stations in Missouri. Data collected at these stations, in addition to streamflow data, include some or all of the following properties or constituents: water temperature, specific conductance, dissolved oxygen, pH, carbonate, bicarbonate, alkalinity, inorganic constituents, nutrients, trace elements, indicator bacteria, sediment, and pesticides. Missouri streams generally are not contaminated by industrial wastes. Localized contamination may occur near urban areas, industrialized centers, agricultural-chemicaluse areas, and waste-dump sites. Table 3.--Range of dissolved-solids concentrations in selected streams during the water year. | | Dissolved-solids concentration (milligrams per liter) | | | |--------------------------------|---|---------|--| | Station identification | Minimum | Maximum | | | Cuivre River near Troy | 188 | 230 | | | Missouri River at St. Joseph | 440 | 548 | | | Grand River near Sumner | 262 | 401 | | | Osage River below St. Thomas | 140 | 148 | | | Gasconade River above Jerome | 125 | 206 | | | Missouri River at Hermann | 176 | 497 | | | Meramec River at Paulina Hills | 172 | 260 | | Daily suspended-sediment samples and data on the particle size of suspended sediment were collected at four stations in Missouri. At three Missouri River stations, point suspendedsediment samples and particle-size data were collected periodically. The following table lists two selected stations on the Mississippi River at Grafton and Thebes, Ill. and their minimum and maximum daily mean suspended-sediment concentrations during water year. Table 4.--Minimum and maximum daily mean suspended-sediment concentrations at two selected stations. | | Daily mean suspended-sediment concent:
(milligrams per liter) | | | |----------------------------------|--|---------|---------| | Station identification | | Minimum | Maximum | | Mississippi River at Grafton, IL | | 40 | 737 | | Mississippi River at Thebes, IL | | 72 | 987 | #### SPECIAL NETWORKS AND PROGRAMS Hydrologic Benchmark Network is a network of 50 sites in small drainage basins around the country whose purpose is to provide consistent data on the streamflow representative undeveloped watersheds nationwide, and to provide analyses on a continuing basis to compare and contrast conditions observed in basins more obviously affected by human activities. At 10 of these sites, water-quality information is being gathered on major ions and nutrients, primarily to assess the affects of acid deposition on stream chemistry. Additional information on the Hydrologic Benchmark Program can be found at: http://water.usgs.gov/hbn/. National Stream-Quality Accounting Network (NASQAN) monitors the water quality of large rivers within the Nation's largest river basins. From 1995 through 1999, a network of approximately 40 stations were operated in the Mississippi, Columbia, Colorado, and Rio Grande. From 2000 through 2004, sampling was reduced to a few index stations on the Colorado and Columbia so that a network of 5 stations could be implemented on the Yukon River. Samples are collected with sufficient frequency that the flux of a wide range of constituents can be estimated. The objective of NASQAN is to characterize the water quality of these large rivers by measuring concentration and mass transport of a wide range of dissolved and suspended constituents, including nutrients, major ions, dissolved and sediment-bound heavy metals, common pesticides, and inorganic and organic forms of carbon. This information will be used (1) to describe the long-term trends and changes in concentration and transport of these constituents; (2) to test findings of the National Water-Quality Assessment Program (NAWQA); (3) to characterize processes unique to large-river systems such as storage and remobilization of sediments and associated contaminants; and (4) to refine existing estimates of off-continent transport of water, sediment, and chemicals for assessing human effects on the world's oceans and for determining global cycles of carbon, nutrients, and other chemicals. Additional information about the NASQAN Program can be found at: http://water.usgs.gov/nasqan/. The Ambient Water-Quality Network (AWQN) is a statewide data-collection network designed by both the U.S. Geological Survey and the Missouri Department of Natural Resources to meet many of the information needs of State agencies and other groups involved in Statewide water-quality planning and management. There are currently 65 member stations within this network. station has been assigned a U.S. Geological Survey downstream station number under which all data are stored in NWIS (the U.S. Geological Survey national water-quality data base). The objectives of AWQN are (1) to obtain information on the quality and quantity of water moving within the State; (2) provide for a historical data base of water-quality information that can be used by State planning and management agencies to make informed decisions about cultural impacts on the State's surface waters; and (3) provide for consistent methodology in data collection, laboratory analysis, and data reporting. Additional information about the AWQN Program is available through the World Wide Web at: http://missouri.usgs.gov The National Atmospheric Deposition Program/National Trends Network (NADP/NTN) provides continuous measurement and assessment of the chemical constituents in precipitation throughout the United States. As the lead federal agency, the USGS works together with over 100 organizations to provide a long-term, spatial and temporal record of atmospheric deposition generated from a network of 225 precipitation chemistry monitoring sites. This long-term, nationally consistent monitoring program, coupled with ecosystem research, provides critical information toward a national scorecard to evaluate the effectiveness of ongoing and future regulations intended to reduce atmospheric emissions and subsequent impacts to the Nation's land and water resources. Reports and other information on the NADP/NTN Program, as well as all data from the individual sites, can be found http://bqs.usgs.gov/acidrain/. The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is a long-term program with goals to describe the status and trends of water-quality conditions for a large, representative part of the Nation's ground- and surface-water resources; provide an improved understanding of the primary natural and human factors affecting these observed conditions and trends; and provide information that supports development and evaluation of management, regulatory, and monitoring decisions by other agencies. Assessment activities are being conducted in 59 study units (major watersheds and aquifer systems) that represent a wide range of environmental settings nationwide and that account for a large percentage of the Nation's water use. A wide array of chemical constituents will be measured in ground water, surface water, streambed sediments, and fish tissues. The coordinated application of comparative hydrologic studies at a wide range of spatial and temporal scales will provide information for decision making by water-resources managers and a foundation for aggregation and comparison of findings to address water-quality issues of regional and national interest. Communication and coordination between USGS personnel and other local, State, and federal interests are critical components of the NAWQA Program. Each study unit has a local liaison committee consisting of representatives from key federal, State, and local water resources agencies, Indian nations, and universities in the study unit. Liaison committees typically meet semiannually to discuss their information needs, monitoring plans and progress, desired information products, and opportunities to collaborate efforts among the agencies. Additional information about the NAWQA Program can be found at: http://water.usgs.gov/nawqa/nawqa_home.html Radiochemical Programs is a network of regularly sampled water-quality stations where samples are collected to be analyzed for radioisotopes. The streams that are sampled represent major drainage basins in the conterminous United States. #### EXPLANATION OF THE RECORDS The surface- and ground-water records published in this report are for the water year that began October 1, 2001, and ended September 30, 2002. A calendar of the water year is provided on the inside of the front cover. The records contain streamflow data, stage and content data for lakes and reservoirs, and water-quality data for the surface water. The following sections of the introductory text are presented to provide users with a more detailed explanation of how the hydrologic data published in this report were collected, analyzed, computed, and arranged for presentation.
Station Identification Numbers Each data station, whether stream site or well, in this report is assigned a unique identification number. This number is unique in that it applies specifically to a given station and to no other. The number usually is assigned when a station is first established and is retained for that station indefinitely. The system used by the U.S. Geological Survey to assign identification numbers for surface-water stations and for ground-water sites will differ, but both are based on geographic location. The "downstream order" system is used for regular surface-water stations and the "latitudelongitude" system is used for wells and, in Missouri, for surface-water stations where only miscellaneous measurements are made. #### Downstream Order and Station Number Since October 1, 1950, the order of listing hydrologic-station records in U.S. Geological Survey reports is in a downstream direction along the mainstream. All stations on a tributary entering upstream from a mainstream station are listed before that station. station on a tributary that enters between two mainstream stations is listed between them. A similar order is followed in listing stations on first rank, second rank, and other ranks of tributaries. The rank of any tributary on which a station is situated is indicated by an indention in a list of stations in the front of the report. Each indention represents one rank. The downstream order and system of indention show which stations are on tributaries between any two stations and the rank of the tributary on which each station is situated. As an added means of identification, each hydrologic station and partial-record station has been assigned a station number. These are in the same downstream order used in this report. In assigning station numbers, no distinction is made between partial-record stations and other stations; therefore, the station number for a partial-record station indicates downstream-order position in a list made up of both types of stations. Gaps are left in the series of numbers to allow for new stations that may be established; hence, the numbers are not consecutive. The complete 8digit number for each station such as 06909000, which appears just to the left of the station name, includes the 2-digit part number "06" plus the 6-digit downstream-order number "909000". Numbering System for Wells and Miscellaneous $\hspace{1.5cm} \text{Sites} \\$ The 8-digit downstream-order station numbers are not assigned to miscellaneous sites where only random water-quality samples or discharge measurements are taken. The miscellaneous site numbering system of the U.S. Geological Survey is based on the grid system of latitude and longitude. The system provides the geographic location of the miscellaneous sites and a unique number for each site. The number consists of 15 digits. The first 6 digits denote the degrees, minutes, and seconds of latitude, and the next 7 digits denote degrees, minutes, and seconds of longitude, and the last 2 digits (assigned sequentially) identify the sites within a 1-second grid (Figure 4). Figure 4. System for numbering miscellaneous sites (latitude and longitude). ## Records of Stage and Water Discharge Records of stage and water discharge may be complete or partial. Complete records of discharge are those obtained using a continuous stage-recording device through which either instantaneous or mean daily discharge may be computed for any time, or any period of time, during the period of record. Complete records of lake or reservoir content, similarly, are those for which stage or content may be computed or estimated with reasonable accuracy for any time, or any period of time. They may be obtained using a continuous stage-recording device, but need not be. Locations of surfacewater stations are shown in Figures 5 and 7-13. By contrast, partial records are obtained through discrete measurements without using a continuous stage-recording device and pertain only to a few flow characteristics, or perhaps only one. Records of miscellaneous discharge measurements or of measurements from special studies, such as low-flow seepage studies, may be considered as partial records, but they are presented separately in this report. Data Collection and Computation The data collected at gaging stations consist of records of stage and measurements of discharge of streams or canals, and stage, surface area, and contents of lakes or reservoirs. In addition, observations of factors affecting the stage-discharge relation or the stage-capacity relation, weather records, and other information are used to supplement base data in determining the daily flow or volume of water in storage. Records of stage are obtained from electronic retrieval of data via satellite from a data-collection platform at the gaging station, direct readings on a non-recording gage, or from a water-stage recorder that gives either an electronically stored value, a continuous graph of the fluctuations, or a tape punched selected time intervals. at Measurements of discharge are made with a current meter, using the general methods adopted by the U.S. Geological Survey. These methods are described in standard textbooks, U.S. Geological Survey Water-Supply Paper 2175, and the U.S. Geological Survey Techniques of Water-Resources Investigations (TWRI's) Book 3, Chapter Al through Al9 and Book 8, Chapters A2 and B2. The methods are consistent with the American Society for Testing and Materials (ASTM) standards and generally follow the standards of the International Organization for Standards (ISO). For stream-gaging stations, rating tables giving the discharge for any stage are prepared stage-discharge-relation extensions to the rating curves are necessary to express discharge greater than measured, they are made on the basis of indirect measurements of peak discharge (such as slope-area or contracted-opening measurements; computation of flow over dams or weirs), step-backwater techniques, velocity-area studies, logarithmic plotting. The daily mean discharge is computed from gage heights and rating tables, then the monthly and yearly mean discharges are computed from the daily figures. If the stagedischarge relation is subject to change because of frequent or continual change in the physical features that form the control, the daily mean discharge is computed by the shifting-control method, in which correction factors based on individual discharge measurements and notes by engineers and observers are used in applying the gage heights to the rating tables. If the stagedischarge relation for a station is temporarily changed by the presence of aquatic growth or debris on the control, the daily mean discharge is computed by what is basically the shiftingcontrol method. At some gaging stations, acoustic velocity meter (AVM) systems are used to compute discharge. The AVM system measures the stream's velocity at one or more paths in the cross section. Coefficients are developed to relate this path velocity to the mean velocity in the cross section. Because the AVM sensors are fixed in position, the adjustment coefficients generally vary with stage. Cross-sectional area curves are developed to relate stage, recorded as noted above, to cross-section area. Discharge is computed by multiplying path velocity by the appropriate stage related coefficient and area. At some stream-gaging stations, the stage-discharge relation is affected by the backwater from reservoirs, tributary streams, or other sources. This necessitates the use of the slope method in which the slope or fall in a reach of the stream is a factor in computing discharge. The slope or fall is obtained by means of an auxiliary gage set at some distance from the base gage. At some stations the stage-discharge relation is affected by changing stage; at these stations the rate of change in stage is used as a factor in computing discharge. At some stream-gaging stations, the stage-discharge relation is affected by ice in the winter and it becomes impossible to compute the discharge in the usual manner. Discharge for period of ice effect is computed on the basis of gage-height record and occasional winter discharge measurements. Consideration is given to the available information on temperature and precipitation, notes by gage observers and hydrologists, and comparable records of discharge for other stations in the same or nearby basins. For a lake or reservoir, capacity tables giving the contents for any stage are prepared from stage-area relation curves defined by surveys. The application of the stage to the capacity table gives the contents, from which the daily, monthly, or yearly change in contents is computed. If the stage-capacity curve is subject to changes because of deposition of sediment in the reservoir, periodic resurveys of the reservoir are necessary to define new stage-capacity curves. During the period between reservoir surveys, the computed contents may be increasingly in error due to the gradual accumulation of sediment. For some gaging stations there are periods when no gage-height record is obtained or the recorded gage height is so faulty that it cannot be used to compute daily discharge or contents. This happens when the recorder stops or otherwise fails to operate properly, intakes are plugged, the float is frozen in the well, or for various other reasons. For such periods the daily discharges are estimated on the basis of recorded range in stage, prior and subsequent records, discharge measurements, weather records, and comparison with records for other stations in the same or nearby basins. Likewise daily contents may be estimated on the basis of operator's log, prior and subsequent records, inflow-outflow studies, and other information. #### Data Presentation Streamflow data in this report are presented in a new format that is considerably different from the format in data reports prior to the 1991 water year. The major changes
are that statistical characteristics of discharge now appear in tabular summaries following the water-year data table and less information is provided in the text or station manuscript above the table. These changes represent the results of a pilot program to reformat the annual water-data report to meet current user needs and data preferences. The records published for each continuous-record surface-water discharge station (gaging station) now consist of four parts: the manuscript or station description; the data table of daily mean values of discharge for the current water year with summary data; a tabular statistical summary of monthly mean flow data for a designated period, by water year; and a summary statistics table that includes statistical data of annual, daily, and instantaneous flows as well as data pertaining to annual runoff, 7-day low-flow minimums, and flow duration. #### Station manuscript The manuscript provides, under various headings, descriptive information, such as station location; period of record; historical extremes outside the period of record; record accuracy; and other remarks pertinent to station operation and regulation. The following information, as appropriate, is provided with each continuous record of discharge or lake content. Comments to follow clarify information presented under the various headings of the station description. LOCATION.--Information on locations is obtained from the most accurate maps available. The location of the gaging station with respect to the cultural and physical features in the vicinity and with respect to the reference place mentioned in the station name is given. River mileages, given for only a few stations, were determined by methods given in "River Mileage Measurement," Bulletin 14, Revision of October 1968, prepared by the Water Resources Council or were provided by the U.S. Army Corps of Engineers. DRAINAGE AREA.--Drainage areas are measured using the most accurate maps available. Because the type of maps available varies from one drainage basin to another, the accuracy of drainage areas likewise varies. Drainage areas are updated as better maps become available. PERIOD OF RECORD. -- This indicates the period for which records have been published for the station or for an equivalent station. An equivalent station is one that was in operation at a time that the present station was not and whose location was such that flow at it can reasonably be considered equivalent to flow at the present station. REVISED RECORDS. -- Because of new information, published records occasionally are found to be incorrect, and revisions are printed in later reports. Listed under this heading are all the reports in which revisions have been published for the station and the water years to which the revisions apply. If a revision did not include daily, monthly, or annual figures of discharge, that fact is noted after the year dates as follows: "(M)" means that only the instantaneous maximum discharge was revised; "(m)" that only the instantaneous minimum was revised; and "(P)" that only peak discharges were revised. If the drainage area has been revised, the report in which the most recently revised figure was first published is given. GAGE.--The type of gage in current use, the datum of the current gage referred to National Geodetic Vertical Datum of 1929 (see "DEFINITION OF TERMS" section), and a condensed history of the types, locations, and datums of previous gages are given under this heading. REMARKS.--All periods of estimated daily discharge will either be identified by date in this paragraph of the station description for water-discharge stations or flagged in the daily discharge table. (See next section, "IDENTIFYING ESTIMATED DAILY DISCHARGE.") If a "REMARKS" paragraph is used to identify estimated record, the paragraph will begin with this information presented as the first entry. The paragraph also is used to present information relative to the accuracy of the records, to special methods of computation, and to conditions that affect natural flow at the station. In addition, information may be presented pertaining to average discharge data for the period of record; to extremes data for the period of record and the current year; and, possibly, to other pertinent items. reservoir stations, information is given on the dam forming the reservoir, the capacity, outlet works and spillway, and purpose and use of the reservoir. COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. EXTREMES OUTSIDE PERIOD OF RECORD.—Included here is information concerning major floods or unusually low flows that occurred outside the stated period of record. The information may or may not have been obtained by the U.S. Geological Survey. REVISIONS.--If a critical error in published records is discovered, a revision is included in the first report published following discovery of the error. Although rare, occasionally the records of a discontinued gaging station may need revision. Because, for these stations, there would be no current or, possibly, future station manuscript published to document the revision in a "REVISED RECORDS" entry, users of data for these stations who obtained the record from previously published data reports may wish to contact the District Office (address given on the back of the title page of this report) to determine if the published records were ever revised after the station was discontinued. Of course, if the data for a discontinued station were obtained by computer retrieval, the data would be current and there would be no need to check because any published revision of data is always accompanied by revision of the corresponding data in computer storage. Manuscript information for lake or reservoir stations differs from that for stream stations in the nature of the "REMARKS" and in the inclusion of a skeleton stage-capacity table when daily contents are given. Headings for "AVERAGE DISCHARGE", "EXTREMES FOR PERIOD OF RECORD", and "EXTREMES FOR CURRENT YEAR" have been deleted and the information contained in these paragraphs, except for the listing of secondary instantaneous peak discharges in the "EXTREMES FOR CURRENT YEAR" paragraph, is now presented in the tabular summaries following the discharge table or in the "REMARKS" paragraph, as appropriate. No changes have been made to the data presentation of lake contents. ### Data table of daily mean values The daily table of discharge records for stream-gaging stations gives mean discharge for each day of the water year. In the monthly summary for the table, the line headed "MEAN" gives the average flow in cubic feet per second for the month; and the lines headed "MAX" and "MIN" give the maximum and minimum daily mean discharges, respectively, for each month. Discharge for the month also is usually expressed in cubic feet per second per square mile (line headed "CFSM"); or in inches (line headed "IN."). The figure for cubic feet per second per square mile and runoff in inches may be omitted if there is extensive regulation or diversion or if the drainage area includes large noncontributing areas. At some stations monthly and (or) yearly observed discharges are adjusted for reservoir storage or diversion, or diversion data or reservoir contents are given. These figures are identified by a symbol corresponding footnote. #### Statistics of monthly mean data A tabular summary of the mean (line headed "MEAN"), maximum (line headed "MAX"), and minimum (line headed "MIN") of monthly mean flows for each month for a designated period is provided below the mean values table. The water years of the first occurrence of the maximum and minimum monthly flows are provided immediately below those figures. The designated period will be expressed as "FOR PERIOD OF RECORD, BY WATER YEAR (WY)," and will list the first and last water years of the range of years selected from the "PERIOD OF RECORD" paragraph in the station manuscript. It will consist of all of the station record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. #### Summary statistics A table titled "SUMMARY STATISTICS" follows the statistics of monthly mean data tabulation. This table consists of four columns, with the first column containing the line headings of the statistics being reported. The table provides a statistical summary of yearly, daily, and instantaneous flows, not only for the current water year but also for the previous calendar year and for a designated period, as appropriate. The designated period selected, "FOR PERIOD OF RECORD," will consist of all of the stations record within the specified water years, inclusive, including complete months of record for partial water years, if any, and may coincide with the period of record for the station. The water years for which the statistics are computed will be consecutive, unless a break in the station record is indicated in the manuscript. All of the calculations for the statistical characteristics designated "ANNUAL" (see line headings below), except for the "ANNUAL 7-DAY MINIMUM" statistic, are calculated for the designated period using complete water years. The other statistical characteristics may be calculated using partial water years. The date or water year, as appropriate, of the first occurrence of each statistic reporting extreme values of discharge is provided adjacent to the statistic. Repeated occurrences may be noted in the "REMARKS" paragraph of the manuscript or in footnotes. Because the designated period may not be the same as the station period of record published in the manuscript, occasionally the dates of
occurrence listed for the daily and instantaneous extremes in the designated-period column may not be within the selected water years listed in the heading. When this occurs, it will be noted in the "REMARKS" paragraph or in footnotes. Selected streamflow duration curve statistics and runoff data are also given. Runoff data may be omitted if there is extensive regulation or diversion of flow in the drainage basin. The following summary statistics data, as appropriate, are provided with each continuous record of discharge. Comments that follow clarify information presented under the various line headings of the summary statistics table. ANNUAL MEAN.--The arithmetic mean of the individual daily mean discharges for the year noted or for the designated period. HIGHEST ANNUAL MEAN.--The maximum annual mean discharge occurring for the designated period. LOWEST ANNUAL MEAN. -- The minimum annual mean discharge occurring for the designated period. HIGHEST DAILY MEAN.--The maximum daily mean discharge for the year or for the designated period. LOWEST DAILY MEAN. -- The minimum daily mean discharge for the year or for the designated period. ANNUAL 7-DAY MINIMUM.--The lowest mean discharge for 7 consecutive days for a calendar year or a water year. Note that most low-flow frequency analyses of annual 7-day minimum flows use a climatic year (April 1 - March 31). The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day 10-year low-flow statistic.) MAXIMUM PEAK FLOW.--The maximum instantaneous discharge occurring for the water year or for the designated period. Occasionally the maximum flow for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak flow is given in the table and the maximum flow may be reported in a footnote or in the REMARKS paragraph in the manuscript. MAXIMUM PEAK STAGE.--The maximum instantaneous stage occurring for the water year or for the designated period. Occasionally the maximum stage for a year may occur at midnight at the beginning or end of the year, on a recession from or rise toward a higher peak in the adjoining year. In this case, the maximum peak stage is given in the table and the maximum stage may be reported in a footnote or in the REMARKS paragraph in the manuscript. If the dates of occurrence for the instantaneous peak flow and instantaneous peak stage differ, the REMARKS paragraph in the manuscript or a footnote may be used to provide further information. INSTANTANEOUS LOW FLOW.--The minimum instantaneous discharge occurring for the water year or for the designated period. ANNUAL RUNOFF.--Indicates the total quanity of water in runoff for a drainage area for the year. Inches (INCHES) indicates the depth to which the drainage area would be covered if all the runoff for a given time period were uniformly distributed on it. - 10 PERCENT EXCEEDS.--The discharge that has been exceeded 10 percent of the time for the designated period. - 50 PERCENT EXCEEDS.--The discharge that has been exceeded 50 percent of the time for the designated period. - 90 PERCENT EXCEEDS.--The discharge that has been exceeded 90 percent of the time for the designated period. Data collected at partial-record stations follow the information for continuous-record sites. Data for partial-record discharge stations are presented in two tables. The first is a table of annual maximum stage and discharge at crest-stage stations, and the second is a table of discharge measurements at low-flow partial-record stations. The tables of partialrecord stations are followed by a listing of discharge measurements made at sites other than continuous-record or partial-record stations. These measurements generally are made in times of drought or flood to give better areal coverage to those events. Those measurements and others collected for some special reason are called measurements at miscellaneous sites. #### Identifying Estimated Daily Discharge Estimated daily-discharge values published in the water-discharge tables of annual State data reports are identified either by flagging individual daily value with the letter symbol "e" and printing a table footnote, "e Estimated", or by listing the dates of the estimated record in the "REMARKS" paragraph of the station description. Accuracy of Data and Computed Results The accuracy of streamflow data depends primarily on (1) the stability of the stage- discharge relation or, if the control is unstable, the frequency of discharge measurements, and (2) the accuracy of observations of stage, measurements of discharge, and interpretations of records. The station description under "REMARKS" states the degree of accuracy of the records. "Excellent" means that about 95 percent of the daily discharges are within 5 percent; "good", within 10 percent; and "fair", within 15 percent. "Poor" means that daily discharges have less than "fair" accuracy. Figures of daily mean discharge in this report are shown to the nearest hundredth of a cubic foot per second for discharge of less than 1.0 cubic foot per second; to tenths between 1.0 and 10 cubic feet per second; to whole numbers between 10 and 1,000 cubic feet per second; and to three significant figures above 1,000 cubic feet per second. The number of significant figures used is based solely on the magnitude of the figure. The same rounding rules apply to discharge figures listed for partial-record stations. Discharge at many stations, as indicated by the monthly mean, may not reflect natural runoff due to the effects of diversion, consumption, regulation by storage, increase or decrease in evaporation due to artificial causes, or to other factors. For such stations, figures of runoff in inches are not published unless satisfactory adjustments can be made for diversions, for changes in contents of reservoirs, or for other changes incident to use and control. Evaporation from a reservoir is not included in the adjustments for changes in reservoir contents, unless it is so stated. Even at those stations where adjustments are made, large errors in computed runoff may occur if adjustments or losses are large in comparison with the observed discharge. #### Other Data Available Information of a more detailed nature than that published for most of the gaging stations, such as observations of water temperatures, discharge measurements, gage-height records, and rating tables, is on file in the District Office. Also most gaging-station records are available in computer-usable form and many statistical analyses have been made. Information on the availability of unpublished data or statistical analyses may be obtained from the District Office. The National Water Data Exchange, Water Resources Division, U.S. Geological Survey, National Center, Reston, VA 22092, maintains an index of all discharge measurement sites in the State as well as an index of records of discharge collected by other agencies but not published by the U.S. Geological Survey. Information on records available at specific sites can be obtained upon request. #### Records of Surface-Water Quality Records of surface-water quality ordinarily are obtained at or near stream-gaging stations because interpretation of records of surface-water quality nearly always require corresponding discharge data. Records of surface-water quality in this report may involve a variety of types of data and measurement frequencies. #### Classification of Records Water-quality data for surface-water sites are grouped into one of three classifications. A continuing-record station is a site where data are collected on a regularly scheduled basis. Frequency may be one or more times daily, weekly, monthly, or quarterly. A partial-record station is a site where limited water-quality data are collected systematically over a period of years. Frequency of sampling is usually less than quarterly. A miscellaneous sampling site is a location other than a continuing or partial-record station, where random samples are collected to give better areal coverage to define water-quality conditions in the river basin. A careful distinction needs to be made between "continuing records" as used in this report and "continuous recordings," which refers to a continuous graph or a series of discrete values punched at short intervals on a paper tape. Some records of water quality, such as temperature and specific conductance, may be obtained through continuous recordings; however, because of costs, most data are obtained only monthly or less frequently. Locations of surface-water-quality stations are shown in Figures 6-13. # Arrangement of Records Water-quality records collected at surface-water daily record station are published immediately following that record, regardless of the frequency or sample collection. Station number and name are the same for both records. Where a surface-water daily record station is not available or where the water quality differs significantly from that at the nearby surfacewater station, the continuing water-quality records are published with its own station number and name in the regular downstream-order sequence. Water-quality data for partialrecords stations and for miscellaneous sampling sites appear in separate tables following the table of discharge measurements at miscellaneous sites. On-site Measurements and Sample Collection In obtaining water-quality data, a major concern is ensuring that the data obtained represents the in-situ quality of water. To ensure this, certain measurements, such as water temperature, pH, and dissolved oxygen, need to be made onsite when the samples are taken. To ensure that measurements made in the laboratory also represent the in-situ water, carefully prescribed procedures need to be followed in collecting the samples, in treating the samples to prevent changes in quality pending
analysis, and in shipping the samples to the laboratory. Procedures for onsite measurements and for collecting, treating, and shipping samples are given in publications on "Techniques of Water-Resources Investigations, " Book 1, Chapter D2; Book 3, Chapter A1, A3, and A4; Book 9, Chapter A1-A9. These references are listed in the "PUBLICATIONS ON TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY" section of this report. These methods are consistent with the ASTM standards and generally follow ISO standards. One sample can define adequately the water quality at a given time if the mixture of solutes throughout the stream cross section homogenous. However, the concentration solutes at different locations in the cross section may vary widely with different rates of water discharge, depending on the source of material and the turbulence and mixing of the stream. Some streams must be sampled through several vertical sections to obtain a representative sample needed for an accurate mean concentration and for use in calculating load. Chemical-quality data published in this report are considered to be the representative values available for the stations listed. The values reported represent waterquality conditions at the time of sampling as much as possible, consistent with available sampling techniques and methods of analysis. For chemical-quality stations equipped with digital monitors, the records consist of daily maximum, minimum, and mean values for each constituent measured and are based upon bihourly readings beginning at 0100 hours and ending at 2400 hours for the day of record. More detailed records (hourly values) may be obtained from the District Office. #### Water Temperature Water temperatures are measured at most of the water-quality stations. In addition, water temperatures are taken at time of discharge measurements for water-discharge stations. For stations where water temperatures are taken manually once daily, the water temperatures are taken at about the same time each day. Large streams have a small daily temperature change; shallow streams may have a daily range of several degrees and may follow closely the changes in air temperature. Some streams may be affected by waste-heat discharges. At stations where recording instruments are used, maximum, minimum, and mean temperatures for each day are published. #### Sediment Suspended-sediment concentrations are determined from samples collected by using depth-integrating samplers. Samples usually are obtained at several verticals in the cross section, or a single sample may be obtained at a fixed point and a coefficient applied to determine the mean concentration in the cross sections. During periods of rapidly changing flow or rapidly changing concentration, samples may have been collected more frequently (twice daily or, in some instances, hourly). The published sediment discharges for days of rapidly changing flow or concentration were computed by the subdivided day method (time-discharge weighted average). Therefore, for those days when the published sediment discharge value differs from the value computed as the product of discharge times mean concentration times 0.0027, the reader can assume that the sediment discharge for that day was computed by the subdivided day method. For periods when no samples were collected, daily loads of suspended sediment were estimated on the basis of water discharge, sediment concentrations measured immediately before and after the periods, and suspendedsediment loads for other periods of similar discharge. Methods used in the computation of sediment records are described in the TWRI Book 3, Chapters C1 and C3. These methods are consistent with ASTM standards and generally follow ISO standards. The daily suspended-sediment concentrations for the Mississippi River at St. Louis are derived from turbidity readings from the Chain of Rocks Water-Treatment Plant and the Chouteau Island Water-Treatment Plant. Approximately once a week, two depth-integrated verticals are taken to adjust the relation between suspended sediment and turbidity. #### Laboratory Measurements Samples for indicator bacteria, specific conductance, pH, temperature, dissolved oxygen, and alkalinity are analyzed locally. All other samples are analyzed in the U.S. Geological Survey laboratories in Arvada, CO, Ocala, FL, and Rolla, MO. Methods used to analyze sediment samples and to compute sediment records are described in the TWRI Book 5, Chapter C1. Methods used by the U.S. Geological Survey laboratories are given in TWRI Book 1, Chapter D2; Book 3, Chapter C2; and Book 5, Chapters A1, A3, A4, and A5. These methods are consistent with ASTM standards and generally follow ISO standards. Quality Assurance of Water-Quality Data Quality assurance is a system of activities whose purpose is to produce a product with the assurance that it meets defined standards of quality with a stated level of confidence. A quality assurance program became an integral part of the ambient water-quality monitoring network in fiscal year 1993. The program involved collecting additional samples to measure sampling repeatability, container cleanliness, and equipment cleanliness during regular site visits when environmental samples were being collected. The results of these additional samples are used by the District Water-Quality Specialist to define problem areas and eliminate further contamination of samples and/or improper sampling procedures. A data base of quality-assurance data has been created and contains all quality-assurance data collected within the District. These data can be retrieved by written request through the District Water-Quality Specialist. #### Data Presentation For continuing-record stations, information pertinent to the history of station operation is provided in descriptive headings preceding the tabular data. These descriptive headings give details regarding location, drainage area, period of record, type of data available, instrumentation, general remarks, cooperation, and extremes for parameters currently measured daily. Tables of chemical, physical, and biological data obtained at a frequency less than daily are presented first. Tables of "daily values" of specific conductance, pH, water temperature, dissolved, and suspended sediment then follow in sequence. In the descriptive headings, if the location is identical to that of the discharge gaging station, neither "LOCATION" nor the "DRAINAGE AREA" statements are repeated. The following information, when appropriate, is provided with each continuous-record station. Comments that follow clarify information presented under the various headings of the station description. LOCATION.--See Data Presentation under "Records of Stage and Water Discharge"; same comments apply. DRAINAGE AREA.--See Data Presentation under "RECORDS OF STAGE AND WATER DISCHARGE"; same comments apply. PERIOD OF RECORD.--This indicates the periods for which there are published water-quality records for the station. The periods shown separately for records of parameters measured daily or continuously and those measured less than daily. For those measured daily or continuously, periods of record are given for the parameters individually. INSTRUMENTATION.--Information on instrumentation is given only if a water-quality monitor, temperature recorder, sediment pumping sampler, or other sampling device is in operation at a station. REMARKS.--Remarks provide added information pertinent to the collection, analysis, or computation of the records. COOPERATION.--Records provided by a cooperating organization or obtained for the U.S. Geological Survey by a cooperating organization are identified here. EXTREMES.—-Maximums and minimums are given only for parameters measured daily or more frequently. None are given for parameters measured weekly or less frequently, because the true maximums or minimums may not have been sampled. Extremes, when given, are provided for both the period of record and for the current water year. REVISIONS.--If errors in published waterquality records are discovered after publication, appropriate updates are made in the U.S. Geological Survey's distributed data system, NWIS, and subsequesntly to its web-based National data system, NWISWeb [http:// water.usgs.gov/nwis/nwis]. Because the usual volume of updates makes it impractical to document individual changes in the State datareport series or elsewhere, potential users of U.S. Geological Survey water-quality data are encouraged to obtain all required data from NWIS or NWISWeb to ensure the most recent updates. Updates to NWISWEB are currently made on an annual basis. ### Remark Codes The following remark codes may appear with the water-quality data in this report. | PRINTED OUTPUT | REMARK | |----------------|--| | < | Numeric result is less than the value shown. | | К | Results based on colony count outside the acceptable range (non-ideal colony count). | | E | Laboratory estimated value. | | LA | Laboratory accident. | | М | Presence of material verified, but not quantified. | | е | Estimated discharge value. | | L | Laboratory value. | *NOTE.--The National Water Quality Laboratory uses the E remark code in two cases. First, the code is used for reporting values less than the method detection limit (MDL) when the analyte has been conclusively identified. Second, the code is used for reporting values greater than the MDL when the value is substantially more uncertain than for other analytes. #### Dissolved Trace-Element Concentrations Traditionally, dissolved trace-element concentrations have been reported at the microgram per liter ($\mu g/L$) level. Recent evidence, mostly from large rivers, indicates that actual dissolved-phase concentrations for a number of trace elements are within the range of 10's to 100's of nanograms per liter (ng/L). Data above the
mg/L level should be viewed with caution. Such data may actually represent elevated environmental concentrations from natural or human causes; however, these data could reflect contamination introduced during sampling, processing, or analysis. To confidently produce dissolved trace-element data with insignificant contamination, the U.S. Geological Survey began using new trace-element protocols at most stations in water year 1994. # Water Quality-Control Data Data generated from quality-control (QC) samples are a requisite for evaluating the quality of the sampling and processing techniques as well as data from the actual samples themselves. Without QC data, environmental sample data cannot be adequately interpreted because the errors associated with the sample data are unknown. The various types of QC samples collected by this district are described in the following section. Procedures have been established for the storage of waterquality-control data within the USGS. These procedures allow for storage of all derived QC data and are identified so that they can be related to corresponding environmental samples. ### Blank Samples Blank samples are collected and analyzed to ensure that environmental samples have not been contaminated by the overall data-collection process. The blank solution used to develop specific types of blank samples is a solution that is free of the analytes of interest. Any measured value signal in a blank sample for an analyte (a specific component measured in a chemical analysis) that was absent in the blank solution is believed to be due to contamination. There are many types of blank samples possible, each designed to segregate a different part of the overall data-collection process. The types of blank samples collected in this district are: Field blank - a blank solution that is subjected to all aspects of sample collection, field processing preservation, transportation, and laboratory handling as an environmental sample. Trip blank - a blank solution that is put in the same type of bottle used for an environmental sample and kept with the set of sample bottles before and after sample collection. Equipment blank - a blank solution that is processed through all equipment used for collecting and processing an environmental sample (similar to a field blank but normally done in the more controlled conditions of the office). Sampler blank - a blank solution that is poured or pumped through the same field sampler used for collecting an environmental sample. Filter blank - a blank solution that is filtered in the same manner and through the same filter apparatus used for an environmental sample. Splitter blank - a blank solution that is mixed and separated using a field splitter in the same manner and through the same apparatus used for an environmental sample. Preservation blank - a blank solution that is treated with the sampler preservatives used for an environmental sample. ### Reference Samples Reference material is a solution or material prepared by a laboratory whose composition is certified for one or more properties so that it can be used to assess a measurement method. Samples of reference material are submitted for analysis to ensure that an analytical method is accurate for the known properties of the reference material. Generally, the selected reference material properties are similar to the environmental sample properties. #### Replicate Samples Replicate samples are a set of environmental samples collected in a manner such that the samples are thought to be essentially identical in composition. Replicate is the general case for which duplicate is the special case consisting of two samples. Replicate samples are collected and analyzed to establish the amount of variability in the data contributed by some part of the collection and analytical process. There are many types of replicate samples possible, each of which may yield slightly different results in a dynamic hydrologic setting, such as a flowing stream. The types of replicate samples collected in this district are: Sequential samples - a type of replicate sample in which the samples are collected one after the other, typically over a short time. Split sample - a type of replicate sample in which a sample is split into subsamples contemporaneous in time and space. #### Spike Samples Spike samples are samples to which known quantities of a solution with one or more well-established analyte concentrations have been added. These samples are analyzed to determine the extent of matrix interference or degradation on the analyte concentration during sample processing and analysis. ### ACCESS TO USGS WATER DATA The USGS provides near real-time stage and discharge data for many of the gaging stations equipped with the necessary telemetry and historic daily-mean and peak-flow discharge data for most current or discontinued gaging stations through the world wide web (WWW). These data may be accessed at: http://waterdata.usgs.gov Some water-quality and ground-water data also are available through the WWW at the above address. In addition, data can be provided on 3-1/2 inch floppy disk. Information about the availability of specific types of data or products, and user charges, can be obtained locally from each of the Water Resources Division District Offices (See address on the back of the title page.) #### DEFINITION OF TERMS Specialized technical terms related to streamflow, water-quality, and other hydrologic data, as used in this report, are defined below. Definitions of common terms such as algae, water level, and precipitation are given in standard dictionaries. Not all terms defined in this alphabetical list apply to every State. See also table for converting inch/pound units to International System (SI) units on the inside of the back cover. Acid neutralizing capacity (ANC) is the equivalent sum of all bases or base-producing materials, solutes plus particulates, in an aqueous system that can be titrated with acid to an equivalence point. This term designates titration of an "unfiltered" sample (formerly reported as alkalinity). Acre-foot (AC-FT, acre-ft) is a unit of volume, commonly used to measure quantities of water used or stored, equivalent to the volume of water required to cover 1 acre to a depth of 1 foot and equivalent to 43,560 cubic feet, 325,851 gallons, or 1,233 cubic meters. (See also "Annual runoff") Adenosine triphosphate (ATP) is an organic, phosphate-rich compound important in the transfer of energy in organisms. Its central role in living cells makes ATP an excellent indicator of the presence of living material in water. A measurement of ATP therefore provides a sensitive and rapid estimate of biomass. ATP is reported in micrograms per liter. Algal growth potential (AGP) is the maximum algal dry weight biomass that can be produced in a natural water sample under standardized laboratory conditions. The growth potential is the algal biomass present at stationary phase and is expressed as milligrams dry weight of algae produced per liter of sample. (See also "Biomass" and "Dry weight") **Alkalinity** is the capacity of solutes in an aqueous system to neutralize acid. This term designates titration of a "filtered" sample. Annual runoff is the total quantity of water that is discharged ("runs off") from a drainage basin in a year. Data reports may present annual runoff data as volumes in acre-feet, as discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. Annual 7-day minimum is the lowest mean value for any 7-consecutive-day period in a year. Annual 7-day minimum values are reported herein for the calendar year and the water year (October 1 through September 30). Most low-flow frequency analyses use a climatic year (April 1-March 31), which tends to prevent the low-flow period from being artificially split between adjacent years. The date shown in the summary statistics table is the initial date of the 7-day period. (This value should not be confused with the 7-day, 10-year low-flow statistic.) Aroclor is the registered trademark for a group of poly-chlorinated biphenyls that were manufactured by the Monsanto Company prior to 1976. Aroclors are assigned specific 4-digit reference numbers dependent upon molecular type and degree of substitution of the biphenyl ring hydrogen atoms by chlorine atoms. The first two digits of a numbered aroclor represent the molecular type, and the last two digits represent the percentage weight of the hydrogen-substituted chlorine. Artificial substrate is a device that is purposely placed in a stream or lake for colonization of organisms. The artificial substrate simplifies the community structure by standardizing the substrate from which each sample is collected. Examples of artificial substrates are basket samplers (made of wire cages filled with clean streamside rocks) and multiplate samplers (made of hardboard) for benthic organism collection, and plexiglass strips for periphyton collection. (See also "Substrate") **Ash mass** is the mass or amount of residue present after the residue from the dry mass determination has been ashed in a muffle furnace at a temperature of 500 °C for 1 hour. Ash mass of zooplankton and phytoplankton is expressed in grams per cubic meter (g/m^3) , and periphyton and benthic organisms in grams per square meter (g/m^2) . (See also "Biomass" and "Dry mass") Aspect is the direction toward which a slope faces with respect to the compass. Bacteria are microscopic unicellular organisms, typically spherical, rodlike, or spiral and threadlike in shape, often clumped into colonies. Some bacteria cause disease, whereas others perform an essential role in nature in the recycling of materials; for example, by decomposing organic matter into a form available for reuse by plants. Bankfull stage, as used in this report, is the stage at which a stream first overflows its natural
banks formed by floods with 1- to 3-year recurrence intervals. Base discharge (for peak discharge) is a discharge value, determined for selected stations, above which peak discharge data are published. The base discharge at each station is selected so that an average of about three peak flows per year will be published. (See also "Peak flow") Base flow is sustained flow of a stream in the absence of direct runoff. It includes natural and human-induced streamflows. Natural base flow is sustained largely by ground-water discharge. Bedload is material in transport that is supported primarily by the streambed. In this report, bedload is considered to consist of particles in transit from the bed to an elevation equal to the top of the bedload sampler nozzle (ranging from 0.25 to 0.5 foot) that are retained in the bedload sampler. A sample collected with a pressure-differential bedload sampler also may contain a component of the suspended load. Bedload discharge (tons per day) is the rate of sediment moving as bedload, reported as dry weight, that passes through a cross section in a given time. NOTE: Bedload discharge values in this report may include a component of the suspended-sediment discharge. A correction may be necessary when computing the total sediment discharge by summing the bedload discharge and the suspended-sediment discharge. (See also "Bedload," "Dry weight," "Sediment," and "Suspended-sediment discharge") Bed material is the sediment mixture of which a stream-bed, lake, pond, reservoir, or estuary bottom is composed. (See also "Bedload" and "Sediment") Benthic organisms are the group of organisms inhabiting the bottom of an aquatic environment. They include a number of types of organisms, such as bacteria, fungi, insect larvae and nymphs, snails, clams, and crayfish. They are useful as indicators of water quality. Biochemical oxygen demand (BOD) is a measure of the quantity of dissolved oxygen, in milligrams per liter, necessary for the decomposition of organic matter by microorganisms, such as bacteria. Biomass is the amount of living matter present at any given time, expressed as mass per unit area or volume of habitat. Biomass pigment ratio is an indicator of the total proportion of periphyton that are autotrophic (plants). This is also called the Autotrophic Index. Blue-green algae (Cyanophyta) are a group of phytoplankton organisms having a blue pigment, in addition to the green pigment called chlorophyll. Blue-green algae often cause nuisance conditions in water. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Bottom material (See "Bed material") Bulk electrical conductivity is the combined electrical conductivity of all material within a doughnut-shaped volume surrounding an induction probe. Bulk conductivity is affected by different physical and chemical properties of the material including the dissolved solids content of the pore water and lithology and porosity of the rock. Cells/volume refers to the number of cells of any organism that is counted by using a microscope and grid or counting cell. Many planktonic organisms are multicelled and are counted according to the number of contained cells per sample volume, and are generally reported as cells or units per milliliter (mL) or liter (L). Cells volume (biovolume) determination is one of several common methods used to estimate biomass of algae in aquatic systems. Cell members of algae are frequently used in aquatic surveys as an indicator of algal production. However, cell numbers alone cannot represent true biomass because of considerable cellsize variation among the algal species. Cell volume (µm3) is determined by obtaining critical cell measurements or cell dimensions (for example, length, width, height, or radius) for 20 to 50 cells of each important species to obtain an average biovolume per cell. Cells are categorized according to the correspondence of their cellular shape to the nearest geometric solid or combinations of simple solids (for example, spheres, cones, or cylinders). Representative formulae used to compute biovolume are as follows: sphere $4/3 \pi r^3$ cone $1/3 \pi r^2 h$ cylinder $\pi r^2 h$. pi (π) is the ratio of the circumference to the diameter of a circle; pi = 3.14159.... From cell volume, total algal biomass expressed as biovolume $(\mu m^3/mL)$ is thus determined by multiplying the number of cells of a given species by its average cell volume and then summing these volumes for all species. Cfs-day (See "Cubic foot per second-day") Channel bars, as used in this report, are the lowest prominent geomorphic features higher than the channel bed. Chemical oxygen demand (COD) is a measure of the chemically oxidizable material in the water and furnishes an approximation of the amount of organic and reducing material present. The determined value may correlate with BOD or with carbonaceous organic pollution from sewage or industrial wastes. [See also "Biochemical oxygen demand (BOD)"] Clostridium perfringens (C. perfringens) is a spore-forming bacterium that is common in the feces of human and other warmblooded animals. Clostridial spores are being used experimentally as an indicator of past fecal contamination and presence of microorganisms that are resistant to disinfection and environmental stresses. (See also "Bacteria") Coliphages are viruses that infect and replicate in coliform bacteria. They are indicative of sewage contamination of water and of the survival and transport of viruses in the environment. Color unit is produced by 1 milligram per liter of platinum in the form of the chloroplatinate ion. Color is expressed in units of the platinum-cobalt scale. Confined aquifer is a term used to describe an aquifer containing water between two relatively impermeable bound-aries. The water level in a well tapping a confined aquifer stands above the top of the confined aquifer and can be higher or lower than the water table that may be present in the material above it. In some cases, the water level can rise above the ground surface, yielding a flowing well. Contents is the volume of water in a reservoir or lake. Unless otherwise indicated, volume is computed on the basis of a level pool and does not include bank storage. Continuous-record station is a site where data are collected with sufficient frequency to define daily mean values and variations within a day. Control designates a feature in the channel that physically affects the water-surface elevation and thereby determines the stage-discharge relation at the gage. This feature may be a constriction of the channel, a bedrock outcrop, a gravel bar, an artificial structure, or a uniform cross section over a long reach of the channel. Control structure, as used in this report, is a structure on a stream or canal that is used to regulate the flow or stage of the stream or to prevent the intrusion of saltwater. Cubic foot per second (CFS, ft³/s) is the rate of discharge representing a volume of 1 cubic foot passing a given point in 1 second. It is equivalent to approximately 7.48 gallons per second or approximately 449 gallons per minute, or 0.02832 cubic meters per second. The term "second-foot" sometimes is used synonymously with "cubic foot per second" but is now obsolete. Cubic foot per second-day (CFS-DAY, Cfs-day, [(ft³/s)/d]) is the volume of water represented by a flow of 1 cubic foot per second for 24 hours. It is equivalent to 86,400 cubic feet, 1.98347 acre-feet, 646,317 gallons, or 2,446.6 cubic meters. The daily mean discharges reported in the daily value data tables are numerically equal to the daily volumes in cfs-days, and the totals also represent volumes in cfs-days. Cubic foot per second per square mile [CFSM, $(ft^3/s)/mi^2$] is the average number of cubic feet of water flowing per second from each square mile of area drained, assuming the runoff is distributed uniformly in time and area. (See also "Annual runoff") Daily mean suspended-sediment concentration is the time-weighted concentration of suspended sediment passing a stream cross section during a 24-hour day. (See also "Sediment" and "Suspended-sediment concentration") Daily-record station is a site where data are collected with sufficient frequency to develop a record of one or more data values per day. The frequency of data collection can range from continuous recording to periodic sample or data collection on a daily or near-daily basis. Data collection platform (DCP) is an electronic instrument that collects, processes, and stores data from various sensors, and transmits the data by satellite data relay, line-of-sight radio, and/or landline telemetry. Data logger is a microprocessor-based data acquisition system designed specifically to acquire, process, and store data. Data are usually downloaded from onsite data loggers for entry into office data systems. Datum is a surface or point relative to which measurements of height and/or horizontal position are reported. A vertical datum is a horizontal surface used as the zero point for measurements of gage height, stage, or elevation; a horizontal datum is a reference for positions given in terms of latitude-longitude, State Plane coordinates, or UTM coordinates. (See also "Gage datum," "Land-surface datum," "National Geodetic Vertical Datum of 1929," and "North American Vertical Datum of 1988") Diatoms are the unicellular or colonial algae having a siliceous shell. Their concentra tions are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Diel is of or pertaining to a 24-hour period of time; a regular daily cycle. Discharge, or flow, is the rate that matter passes through a cross section of a stream channel or other water body per unit of time. The term commonly refers to the volume of water (including, unless otherwise stated, any sediment or other constituents suspended or dissolved in the water) that passes a cross
section in a stream channel, canal, pipeline, etc., within a given period of time (cubic feet per second). Discharge also can apply to the rate at which constituents, such as suspended sediment, bedload, and dissolved or suspended chemicals, pass through a cross section, in which cases the quantity is expressed as the mass of constituent that passes the cross section in a given period of time (tons per day). Dissolved refers to that material in a representative water sample that passes through a 0.45-micrometer membrane filter. This is a convenient operational definition used by Federal and State agencies that collect water-quality data. Determinations of "dissolved" constituent concentrations are made on sample water that has been filtered. Dissolved oxygen (DO) is the molecular oxygen (oxygen gas) dissolved in water. The concentration in water is a function of atmospheric pressure, temperature, and dissolved-solids concentration of the water. The ability of water to retain oxygen decreases with increasing temperature or dissolved-solids concentration. Photosynthesis and respiration by plants commonly cause diurnal variations in dissolved-oxygen concentration in water from some streams. Dissolved-solids concentration in water is the quantity of dissolved material in a sample of water. It is determined either analytically by the "residue-on-evaporation" method, or mathematically by totaling the concentrations of individual constituents reported in a comprehensive chemical analysis. During the analytical determination, the bicarbonate (generally a major dissolved component of water) is converted to carbonate. In the mathematical calculation, the bicarbonate value, in milligrams per liter, is multiplied by 0.4926 to convert it to carbonate. Alternatively, alkalinity concentration (as mg/L CaCO3) can be converted to carbonate concentration by multiplying by 0.60. Diversity index (H) (Shannon index) is a numerical expression of evenness of distribution of aquatic organisms. The formula for diversity index is: $$\overline{d} = -\sum_{i=1}^{s} \frac{n_i}{n} \log_2 \frac{n_i}{n}$$ where n_i is the number of individuals per taxon, n is the total number of individuals, and s is the total number of taxa in the sample of the community. Index values range from zero, when all the organisms in the sample are the same, to some positive number, when some or all of the organisms in the sample are different. Drainage area of a stream at a specific location is that area upstream from the location, measured in a horizontal plane, that has a common outlet at the site for its surface runoff from precipitation that normally drains by gravity into a stream. Drainage areas given herein include all closed basins, or noncontributing areas, within the area unless otherwise specified. Drainage basin is a part of the Earth's surface that contains a drainage system with a common outlet for its surface runoff. (See "Drainage area") Dry mass refers to the mass of residue present after drying in an oven at 105 °C, until the mass remains unchanged. This mass represents the total organic matter, ash and sediment, in the sample. Dry-mass values are expressed in the same units as ash mass. (See also "Ash mass," "Biomass," and "Wet mass") Dry weight refers to the weight of animal tissue after it has been dried in an oven at 65 °C until a constant weight is achieved. Dry weight represents total organic and inorganic matter in the tissue. (See also "Wet weight") Embeddedness is the degree to which gravelsized and larger particles are surrounded or enclosed by finer-sized particles. (See also "Substrate embeddedness class") Enterococcus bacteria are commonly found in the feces of humans and other warmblooded animals. Although some strains are ubiquitous and not related to fecal pollution, the presence of enterococci in water is an indication of fecal pollution and the possible presence of enteric pathogens. Enterococcus bacteria are those bacteria that produce pink to red colonies with black or reddish-brown precipitate after incubation at 41 °C on m-E agar (nutrient medium for bacterial growth) and subsequent transfer to EIA medium. Enterococci include Streptococcus feacalis, Streptococcus feacium, Streptococcus avium, and their variants. (See also "Bacteria") EPT Index is the total number of distinct taxa within the insect orders Ephemeroptera, Plecoptera, and Trichoptera. This index summarizes the taxa richness within the aquatic insects that are generally considered pollution sensitive; the index usually decreases with pollution. Escherichia coli (E. coli) are bacteria present in the intestine and feces of warmblooded animals. E. coli are a member species of the fecal coliform group of indicator bacteria. In the laboratory, they are defined as those bacteria that produce yellow or yellow-brown colonies on a filter pad saturated with urea substrate broth after primary culturing for 22 to 24 hours at 44.5 °C on m-TEC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Estimated (E) concentration value is reported when an analyte is detected and all criteria for a positive result are met. If the concentration is less than the method detection limit (MDL), an "E" code will be reported with the value. If the analyte is qualitatively identified as present, but the quantitative determination is substantially more uncertain, the National Water Quality Laboratory will identify the result with an "E" code even though the measured value is greater than the MDL. A value reported with an "E" code should be used with caution. When no analyte is detected in a sample, the default reporting value is the MDL preceded by a less than sign (<). Euglenoids (Euglenophyta) are a group of algae that are usually free-swimming and rarely creeping. They have the ability to grow either photosynthetically in the light or het erotrophically in the dark. (See also "Phy toplankton") Extractable organic halides (EOX) are organic compounds that contain halogen atoms such as chlorine. These organic compounds are semivolatile and extractable by ethyl acetate from air-dried streambed sediment. The ethyl acetate extract is combusted, and the concentration is determined by microcoulometric determination of the halides formed. The concentration is reported as micrograms of chlorine per gram of the dry weight of the streambed sediment. Fecal coliform bacteria are present in the intestines or feces of warmblooded animals. They often are used as indicators of the sanitary quality of the water. In the laboratory, they are defined as all organisms that produce blue colonies within 24 hours when incubated at 44.5 °C plus or minus 0.2 °C on m-FC medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Fecal streptococcal bacteria are present in the intestines of warmblooded animals and are ubiquitous in the environment. They are characterized as gram-positive, cocci bacteria that are capable of growth in brain-heart infusion broth. In the laboratory, they are defined as all the organisms that produce red or pink colonies within 48 hours at 35 °C plus or minus 1.0 °C on KF-streptococcus medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 mL of sample. (See also "Bacteria") Fire algae (Pyrrhophyta) are free-swimming unicells characterized by a red pigment spot. (See also "Phytoplankton") Flow-duration percentiles are values on a scale of 100 that indicate the percentage of time for which a flow is not exceeded. For example, the 90th percentile of river flow is greater than or equal to 90 percent of all recorded flow rates. Gage datum is a horizontal surface used as a zero point for measurement of stage or gage height. This surface usually is located slightly below the lowest point of the stream bottom such that the gage height is usually slightly greater than the maximum depth of water. Because the gage datum itself is not an actual physical object, the datum usually is defined by specifying the elevations of permanent reference marks such as bridge abutments and survey monuments, and the gage is set to agree with the reference marks. Gage datum is a local datum that is maintained independently of any national geodetic datum. However, if the elevation of the gage datum relative to the national datum (North American Vertical Datum of 1988 or National Geodetic Vertical Datum of 1929) has been determined, then the gage readings can be converted to elevations above the national datum by adding the elevation of the gage datum to the gage reading. Gage height (G.H.) is the water-surface elevation, in feet above the gage datum. If the water surface is below the gage datum, the gage height is negative. Gage height often is used interchangeably with the more general term "stage," although gage height is more appropriate when used in reference to a reading on a gage. Gage values are values that are recorded, transmitted, and/or computed from a gaging station. Gage values typically are collected at 5-, 15-, 30- or 60-minute intervals. Gaging station is a site on a stream, canal, lake, or reservoir where systematic observations of stage, discharge, or other hydrologic data are obtained. Gas chromatography/flame ionization detector (GC/FID) is a laboratory analytical method used as a screening technique for semivolatile organic compounds that are extractable from water in methylene chloride. Geomorphic channel units, as used in this report, are fluvial geomorphic descriptors of channel shape and stream velocity. Pools, riffles, and runs are types of geomorphic channel units considered for National Water-Quality Assessment (NAWQA) Program habitat sampling. Green algae have chlorophyll pigments similar in color to those of higher green plants. Some forms produce
algae mats or floating "moss" in lakes. Their concentrations are expressed as number of cells per milliliter (cells/mL) of sample. (See also "Phytoplankton") Habitat, as used in this report, includes all nonliving (physical) aspects of the aquatic ecosystem, although living components like aquatic macrophytes and riparian vegetation also are usually included. Measurements of habitat are typically made over a wider geographic scale than are measurements of species distribution. Habitat quality index is the qualitative description (level 1) of instream habitat and riparian conditions surrounding the reach sampled. Scores range from 0 to 100 percent with higher scores indicative of desirable habitat conditions for aquatic life. Index only applicable to wadable streams. Hardness of water is a physical-chemical characteristic that commonly is recognized by the increased quantity of soap required to produce lather. It is computed as the sum of equivalents of polyvalent cations (primarily calcium and magnesium) and is expressed as the equivalent concentration of calcium carbonate (CaCO₃). High tide is the maximum height reached by each rising tide. The high-high and low-high tides are the higher and lower of the two high tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html Hilsenhoff's Biotic Index (HBI) is an indicator of organic pollution that uses tolerance val ues to weight taxa abundances; usually increases with pollution. It is calculated as follows: $$IBI = sum \frac{(n)(a)}{N}$$ where n is the number of individuals of each taxon, a is the tolerance value of each taxon, and N is the total number of organisms in the sample. Horizontal datum (See "Datum") Hydrologic index stations referred to in this report are continuous-record gaging stations that have been selected as representative of streamflow patterns for their respective regions. Station locations are shown on index maps. Hydrologic unit is a geographic area representing part or all of a surface drainage basin or distinct hydrologic feature as defined by the former Office of Water Data Coordination and delineated on the State Hydrologic Unit Maps by the USGS. Each hydrologic unit is identified by an 8-digit number. Inch (IN., in.), as used in this report, refers to the depth to which the drainage area would be covered with water if all of the runoff for a given time period were uniformly distributed on it. (See also "Annual runoff") Instantaneous discharge is the discharge at a particular instant of time. (See also "Dis charge") Island, as used in this report, is a mid-channel bar that has permanent woody vegetation, is flooded once a year on average, and remains stable except during large flood events. Laboratory reporting level (LRL) is generally equal to twice the yearly determined longterm method detection level (LT-MDL). The LRL controls false negative error. The probability of falsely reporting a nondetection for a sample that contained an analyte at a concentration equal to or greater than the LRL is predicted to be less than or equal to 1 percent. The value of the LRL will be reported with a "less than" (<) remark code for samples in which the analyte was not detected. The National Water Quality Laboratory (NWQL) collects quality-control data from selected analytical methods on a continuing basis to determine LT-MDLs and to establish LRLs. These values are reevaluated annually on the basis of the most current quality-control data and, therefore, may change. [Note: In several previous NWQL documents (NWQL Technical Memorandum 98.07, 1998), the LRL was called the nondetection value or NDV-a term that is no longer used.] Land-surface datum (lsd) is a datum plane that is approximately at land surface at each ground-water observation well. Latent heat flux (often used interchangeably with latent heat-flux density) is the amount of heat energy that converts water from liquid to vapor (evaporation) or from vapor to liquid (condensation) across a specified cross-sectional area per unit time. Usually expressed in watts per square meter. Light-attenuation coefficient, also known as the extinction coefficient, is a measure of water clarity. Light is attenuated according to the Lambert-Beer equation: $$I = I_{o}e^{-\lambda L}$$ where ${\it I_o}$ is the source light intensity, ${\it I}$ is the light intensity at length ${\it L}$ (in meters) from the source, 1 is the light-attenuation coefficient, and e is the base of the natural logarithm. The light-attenuation coefficient is defined as: $$\lambda = -\frac{1}{L}\log_e$$ Lipid is any one of a family of compounds that are insoluble in water and that make up one of the principal components of living cells. Lipids include fats, oils, waxes, and steroids. Many environmental contaminants such as organochlorine pesticides are lipophilic. Long-term method detection level (LT-MDL) is a detection level derived by determining the standard deviation of a minimum of 24 method detection limit (MDL) spike sample measurements over an extended period of time. LT-MDL data are collected on a continuous basis to assess year-to-year variations in the LT-MDL. The LT-MDL controls false positive error. The chance of falsely reporting a concentration at or greater than the LT-MDL for a sample that did not contain the analyte is predicted to be less than or equal to 1 percent. Low tide is the minimum height reached by each falling tide. The high-low and low-low tides are the higher and lower of the two low tides, respectively, of each tidal day. See NOAA web site: http://www.co-ops.nos.noaa.gov/tideglos.html Macrophytes are the macroscopic plants in the aquatic environment. The most common macrophytes are the rooted vascular plants that usually are arranged in zones in aquatic ecosystems and restricted in the area by the extent of illumination through the water and sediment deposition along the shoreline. Mean concentration of suspended sediment (Daily mean suspended-sediment concentration) is the time-weighted concentration of suspended sediment passing a stream cross section during a given time period. (See also "Daily mean suspended-sediment concentration" and "Suspended-sediment concentration") Mean discharge (MEAN) is the arithmetic mean of individual daily mean discharges during a spe-cific period. (See also "Discharge") Mean high or low tide is the average of all high or low tides, respectively, over a specific period. Mean sea level is a local tidal datum. It is the arithmetic mean of hourly heights observed over the National Tidal Datum Epoch. Shorter series are specified in the name; for example, monthly mean sea level and yearly mean sea level. In order that they may be recovered when needed, such datums are referenced to fixed points known as benchmarks. (See also "Datum") Measuring point (MP) is an arbitrary permanent reference point from which the distance to water surface in a well is measured to obtain water level. Membrane filter is a thin microporous material of specific pore size used to filter bacteria, algae, and other very small particles from water. Metamorphic stage refers to the stage of development that an organism exhibits during its transformation from an immature form to an adult form. This developmental process exists for most insects, and the degree of difference from the immature stage to the adult form varies from relatively slight to pronounced, with many intermediates. Examples of metamorphic stages of insects are egg-larva-adult or egg-nymphadult. Method detection limit (MDL) is the minimum concentration of a substance that can be measured and reported with 99-percent confidence that the analyte concentration is greater than zero. It is determined from the analysis of a sample in a given matrix containing the analyte. At the MDL concentration, the risk of a false positive is predicted to be less than or equal to 1 percent. Methylene blue active substances (MBAS) are apparent detergents. The determination depends on the formation of a blue color when methylene blue dye reacts with synthetic anionic detergent compounds. Micrograms per gram (UG/G, μ g/g) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the element per unit mass (gram) of material analyzed. Micrograms per kilogram (UG/KG, μ g/kg) is a unit expressing the concentration of a chemical constituent as the mass (micrograms) of the constituent per unit mass (kilogram) of the material analyzed. One microgram per kilogram is equivalent to 1 part per billion. Micrograms per liter (UG/L, μ g/L) is a unit expressing the concentration of chemical constituents in water as mass (micrograms) of con- stituent per unit volume (liter) of water. One thousand micrograms per liter is equivalent to 1 milligram per liter. One microgram per liter is equivalent to 1 part per billion. Microsiemens per centimeter (US/CM, μ S/cm) is a unit expressing the amount of electrical conductivity of a solution as measured between opposite faces of a centimeter cube of solution at a specified temperature. Siemens is the International System of Units nomenclature. It is synonymous with mhos and is the reciprocal of resistance in ohms. Milligrams per liter (MG/L, mg/L) is a unit for expressing the concentration of chemical constituents in water as the mass (milligrams) of constituent per unit volume (liter) of water. Concentration of suspended sediment also is expressed in milligrams per liter and is based on the mass of dry sediment per liter of water-sediment mixture. Minimum reporting level (MRL) is the smallest measured concentration of a constituent that may be reliably reported by using a given analytical method. Miscellaneous site, miscellaneous station, or miscellaneous sampling site is a site where streamflow, sediment, and/or water-quality data or water-quality or sediment samples are collected once, or more often on a random or discontinuous basis to
provide better areal coverage for defining hydrologic and water-quality conditions over a broad area in a river basin. Most probable number (MPN) is an index of the number of coliform bacteria that, more probably than any other number, would give the results shown by the laboratory examination; it is not an actual enumeration. MPN is determined from the distribution of gas-positive cultures among multiple inoculated tubes. Multiple-plate samplers are artificial substrates of known surface area used for obtaining benthic invertebrate samples. They consist of a series of spaced, hardboard plates on an eyebolt. Nanograms per liter (NG/L, ng/L) is a unit expressing the concentration of chemical constituents in solution as mass (nanograms) of solute per unit volume (liter) of water. One million nanograms per liter is equivalent to 1 milligram per liter. National Geodetic Vertical Datum of 1929 (NGVD of 1929) is a fixed reference adopted as a standard geodetic datum for elevations determined by leveling. It was formerly called "Sea Level Datum of 1929" or "mean sea level". Although the datum was derived from the mean sea level at 26 tide stations, it does not necessarily represent local mean sea level at any particular place. See NOAA web site: http://www.ngs.noaa.gov/faq.shtml#WhatVD29VD88 (See "North American Vertical Datum of 1988") Natural substrate refers to any naturally occurring immersed or submersed solid surface, such as a rock or tree, upon which an organism lives. (See also "Substrate") Nekton are the consumers in the aquatic environment and consist of large free-swimming organisms that are capable of sustained, directed mobility. Nephelometric turbidity unit (NTU) is the measurement for reporting turbidity that is based on use of a standard suspension of formazin. Turbidity measured in NTU uses nephelometric methods that depend on passing specific light of a specific wavelength through the sample. North American Vertical Datum of 1988 (NAVD 1988) is a fixed reference adopted as the official civilian vertical datum for elevations determined by Federal surveying and mapping activities in the United States. This datum was established in 1991 by minimum-constraint adjustment of the Canadian, Mexican, and United States first-order terrestrial leveling networks. Open or screened interval is the length of unscreened opening or of well screen through which water enters a well, in feet below land surface. Organic carbon (OC) is a measure of organic matter present in aqueous solution, suspension, or bottom sediment. May be reported as dissolved organic carbon (DOC), particulate organic carbon (POC), or total organic carbon (TOC) Organic mass or volatile mass of a living substance is the difference between the dry mass and ash mass and represents the actual mass of the living matter. Organic mass is expressed in the same units as for ash mass and dry mass. (See also "Ash mass", "Biomass", and "Dry mass") Organism count/area refers to the number of organisms collected and enumerated in a sample and adjusted to the number per area habitat, usually square meter (m²), acre, or hectare. Periphyton, benthic organisms, and macrophytes are expressed in these terms. Organism count/volume refers to the number of organisms collected and enumerated in a sample and adjusted to the number per sample volume, usually milliliter (mL) or liter (L). Numbers of planktonic organisms can be expressed in these terms. Organochlorine compounds are any chemicals that contain carbon and chlorine. Organochlorine compounds that are important in investigations of water, sediment, and biological quality include certain pesticides and industrial compounds. Parameter code is a 5-digit number used in the USGS computerized data system, National Water Information System (NWIS), to uniquely identify a specific constituent or property. Partial-record station is a site where discrete measurements of one or more hydrologic parameters are obtained over a period of time without continuous data being recorded or computed. A common example is a crest-stage gage partial-record station at which only peak stages and flows are recorded. Particle size is the diameter, in millimeters (mm), of a particle determined by sieve or sedimentation methods. The sedimentation method utilizes the principle of Stokes law to calculate sediment particle sizes. Sedimentation methods (pipet, bottom-withdrawal tube, visual-accumulation tube, sedigraph) determine fall diameter of particles in either distilled water (chemically dispersed) or in native water (the river water at the time and point of sampling). Particle-size classification, as used in this report, agrees with the recommendation made by the American Geophysical Union Subcommittee on Sediment Terminology. The classification is as follows: ### Classification Size (mm) Method of analysis | Clay | >0.00024 - 0.004 | Sedimentation | |---------|------------------|---------------------| | Silt | >0.004 - 0.062 | Sedimentation | | Sand | >0.062 - 2.0 | Sedimentation/sieve | | Gravel | >2.0 - 64.0 | Sieve | | Cobble | >64 - 256 | Manual measurement | | Boulder | >256 | Manual measurement | The particle-size distributions given in this report are not necessarily representative of all particles in transport in the stream. For the sedimentation method, most of the organic matter is removed, and the sample is subjected to mechanical and chemical dispersion before analysis in distilled water. Chemical dispersion is not used for native water analysis. Peak flow (peak stage) is an instantaneous local maximum value in the continuous time series of streamflows or stages, preceded by a period of increasing values and followed by a period of decreasing values. Several peak values ordinarily occur in a year. The maximum peak value in a year is called the annual peak; peaks lower than the annual peak are called secondary peaks. Occasionally, the annual peak may not be the maximum value for the year; in such cases, the maximum value occurs at midnight at the beginning or end of the year, on the recession from or rise toward a higher peak in the adjoining year. If values are recorded at a discrete series of times, the peak recorded value may be taken as an approximation of the true peak, which may occur between the recording instants. If the values are recorded with finite precision, a sequence of equal recorded values may occur at the peak; in this case, the first value is taken as the peak. Percent composition or percent of total is a unit for expressing the ratio of a particular part of a sample or population to the total sample or population, in terms of types, numbers, weight, mass, or volume. Percent shading is a measure of the amount of sunlight potentially reaching the stream. A clinometer is used to measure left and right bank canopy angles. These values are added together, divided by 180, and multiplied by 100 to compute percentage of shade. Periodic-record station is a site where stage, discharge, sediment, chemical, physical, or other hydrologic measurements are made one or more times during a year but at a frequency insufficient to develop a daily record. Periphyton is the assemblage of microorganisms attached to and living upon submerged solid surfaces. Although primarily consisting of algae, they also include bacteria, fungi, protozoa, rotifers, and other small organisms. Periphyton are useful indicators of water quality. Pesticides are chemical compounds used to control undesirable organisms. Major categories of pesticides include insecticides, miticides, fungicides, herbicides, and rodenticides. pH of water is the negative logarithm of the hydrogen-ion activity. Solutions with pH less than 7.0 standard units are termed "acidic," and solutions with a pH greater than 7.0 are termed "basic." Solutions with a pH of 7.0 are neutral. The presence and concentration of many dissolved chemical constituents found in water are affected, in part, by the hydrogenion activity of water. Biological processes including growth, distribution of organisms, and toxicity of the water to organisms also are affected, in part, by the hydrogen-ion activity of water. Phytoplankton is the plant part of the plankton. They are usually microscopic, and their movement is subject to the water currents. Phytoplankton growth is dependent upon solar radiation and nutrient substances. Because they are able to incorporate as well as release materials to the surrounding water, the phytoplankton have a profound effect upon the quality of the water. They are the primary food producers in the aquatic environment and commonly are known as algae. (See also "Plankton") Picocurie (PC, pCi) is one trillionth (1x10⁻¹²) of the amount of radioactive nuclide represented by a curie (Ci). A curie is the quantity of radioactive nuclide that yields 3.7 x 10¹⁰ radioactive disintegrations per second (dps). A picocurie yields 0.037 dps, or 2.22 dpm (disintegrations per minute). Plankton is the community of suspended, floating, or weakly swimming organisms that live in the open water of lakes and rivers. Concentrations are expressed as a number of cells per milliliter (cells/mL) of sample. Polychlorinated biphenyls (PCBs) are industrial chemicals that are mixtures of chlorinated biphenyl compounds having various percentages of chlorine. They are similar in structure to organochlorine insecticides. Polychlorinated naphthalenes (PCNs) are industrial chemicals that are mixtures of chlorinated naphthalene compounds. They have properties and applications similar to polychlorinated biphenyls (PCBs) and have been identified in commercial PCB preparations. Pool, as used in this report, is a small part of a stream reach with little velocity, commonly with water deeper than surrounding areas. Primary productivity is a measure of the rate at which new organic matter is formed and accumulated through photo-synthetic and chemosynthetic activity of producer organisms (chiefly, green plants).
The rate of primary production is estimated by measuring the amount of oxygen released (oxygen method) or the amount of carbon assimilated (carbon method) by the plants. Primary productivity (carbon method) is expressed as milligrams of carbon per area per unit time [mg $C/(m^2/\text{time})$] for periphyton and macrophytes or per volume [mg $C/(m^3/\text{time})$] for phytoplankton. The carbon method defines the amount of carbon dioxide consumed as measured by radioactive carbon (carbon-14). The carbon-14 method is of greater sensitivity than the oxygen light and dark bottle method and is preferred for use with unenriched water samples. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Primary productivity (oxygen method) is expressed as milligrams of oxygen per area per unit time [mg $O/(m^2/\text{time})$] for periphyton and macrophytes or per volume [mg $O/(m^3/\text{time})$] for phytoplankton. The oxygen method defines production and respiration rates as estimated from changes in the measured dissolved-oxygen concentration. The oxygen light and dark bottle method is preferred if the rate of primary production is sufficient for accurate measurements to be made within 24 hours. Unit time may be either the hour or day, depending on the incubation period. (See also "Primary productivity") Radioisotopes are isotopic forms of elements that exhibit radioactivity. Isotopes are varieties of a chemical element that differ in atomic weight but are very nearly alike in chemical properties. The difference arises because the atoms of the isotopic forms of an element differ in the number of neutrons in the nucleus; for example, ordinary chlorine is a mixture of isotopes having atomic weights of 35 and 37, and the natural mixture has an atomic weight of about 35.453. Many of the elements similarly exist as mixtures of isotopes, and a great many new isotopes have been produced in the operation of nuclear devices such as the cyclotron. There are 275 isotopes of the 81 stable elements, in addition to more than 800 radioactive isotopes. Reach, as used in this report, is a length of stream that is chosen to represent a uniform set of physical, chemical, and biological conditions within a segment. It is the principal sampling unit for collecting physical, chemical, and biological data. Recoverable from bed (bottom) material is the amount of a given constituent that is in solution after a representative sample of bottom material has been digested by a method (usually using an acid or mixture of acids) that results in dissolution of readily soluble substances. Complete dissolution of all bottom material is not achieved by the digestion treatment and thus the determination represents less than the total amount (that is, less than 95 percent) of the constituent in the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. (See also "Bed material") Recurrence interval, also referred to as return period, is the average time, usually expressed in years, between occurrences of hydrologic events of a specified type (such as exceedances of a specified high flow or nonexceedance of a specified low flow). The terms "return period" and "recurrence interval" do not imply regular cyclic occurrence. The actual times between occurrences vary randomly, with most of the times being less than the average and a few being substantially greater than the average. For example, the 100-year flood is the flow rate that is exceeded by the annual maximum peak flow at intervals whose average length is 100 years (that is, once in 100 years, on average); almost two-thirds of all exceedances of the 100-year flood occur less than 100 years after the previous exceedance, half occur less than 70 years after the previous exceedance, and about one-eighth occur more than 200 years after the previous exceedance. Similarly, the 7-day, 10-year low flow $(7Q_{10})$ is the flow rate below which the annual minimum 7-daymean flow dips at intervals whose average length is 10 years (that is, once in 10 years, on average); almost two-thirds of the nonexceedances of the $7Q_{10}$ occur less than 10 years after the previous nonexceedance, half occur less than 7 years after, and about one-eighth occur more than 20 years after the previous nonexceedance. The recurrence interval for annual events is the reciprocal of the annual probability of occurrence. Thus, the 100-year flood has a 1-percent chance of being exceeded by the maximum peak flow in any year, and there is a 10-percent chance in any year that the annual minimum 7-day-mean flow will be less than the $7Q_{10}$. Replicate samples are a group of samples collected in a manner such that the samples are thought to be essentially identical in composition. Return period (See "Recurrence interval") Riffle, as used in this report, is a shallow part of the stream where water flows swiftly over completely or partially submerged obstructions to produce surface agitation. River mileage is the curvilinear distance, in miles, measured upstream from the mouth along the meandering path of a stream channel in accordance with Bulletin No. 14 (October 1968) of the Water Resources Council and typically is used to denote location along a river. Run, as used in this report, is a relatively shallow part of a stream with moderate velocity and little or no surface turbulence. Runoff is the quantity of water that is discharged ("runs off") from a drainage basin during a given time period. Runoff data may be presented as volumes in acre-feet, as mean discharges per unit of drainage area in cubic feet per second per square mile, or as depths of water on the drainage basin in inches. (See also "Annual runoff") Sea level, as used in this report, refers to one of the two commonly used national vertical datums (NGVD 1929 or NAVD 1988). See separate entries for definitions of these datums. Sediment is solid material that originates mostly from disintegrated rocks; when transported by, suspended in, or deposited from water, it is referred to as "fluvial sediment." Sediment includes chemical and biochemical precipitates and decomposed organic material, such as humus. The quantity, characteristics, and cause of the occurrence of sediment in streams are affected by environmental and land-use factors. Some major factors are topography, soil characteristics, land cover, and depth and intensity of precipitation. Sensible heat flux (often used interchangeably with latent sensible heat-flux density) is the amount of heat energy that moves by turbulent transport through the air across a specified cross-sectional area per unit time and goes to heating (cooling) the air. Usually expressed in watts per square meter. Seven-day, 10-year low flow $(7Q_{10})$ is the discharge below which the annual 7-day minimum flow falls in 1 year out of 10 on the long-term average. The recurrence interval of the $7Q_{10}$ is 10 years; the chance that the annual 7-day minimum flow will be less than the $7Q_{10}$ is 10 percent in any given year. (See also "Annual 7-day minimum" and "Recurrence interval") Shelves, as used in this report, are streambank features extending nearly horizontally from the flood plain to the lower limit of persistent woody vegetation. Sodium adsorption ratio (SAR) is the expression of relative activity of sodium ions in exchange reactions within soil and is an index of sodium or alkali hazard to the soil. Sodium hazard in water is an index that can be used to evaluate the suitability of water for irrigating crops. Soil heat flux (often used interchangeably with soil heat-flux density) is the amount of heat energy that moves by conduction across a specified cross-sectional area of soil per unit time and goes to heating (or cooling) the soil. Usually expressed in watts per square meter. Soil-water content is the water lost from the soil upon drying to constant mass at 105 °C; expressed either as mass of water per unit mass of dry soil or as the volume of water per unit bulk volume of soil. Specific electrical conductance (conductivity) is a measure of the capacity of water (or other media) to conduct an electrical current. It is expressed in microsiemens per centimeter at 25 °C. Specific electrical conductance is a function of the types and quantity of dissolved substances in water and can be used for approximating the dissolved-solids content of the water. Commonly, the concentration of dissolved solids (in milligrams per liter) is from 55 to 75percent of the specific conductance (in microsiemens). This relation is not constant from stream to stream, and it may vary in the same source with changes in the composition of the water. Stable isotope ratio (per MIL) is a unit expressing the ratio of the abundance of two radioactive isotopes. Isotope ratios are used in hydrologic studies to determine the age or source of specific water, to evaluate mixing of different water, as an aid in determining reaction rates, and other chemical or hydrologic processes. Stage (See "Gage height") Stage-discharge relation is the relation between the water-surface elevation, termed stage (gage height), and the volume of water flowing in a channel per unit time. Streamflow is the discharge that occurs in a natural channel. Although the term "discharge" can be applied to the flow of a canal, the word "streamflow" uniquely describes the discharge in a surface stream course. The term "streamflow" is more general than "runoff" as streamflow may be applied to discharge whether or not it is affected by diversion or regulation. Substrate is the physical surface upon which an organism lives. Substrate embeddedness class is a visual estimate of riffle streambed substrate larger than gravel that is surrounded or covered by fine sediment (<2mm, sand
or finer). Below are the class categories expressed as the percentage covered by fine sediment: 0 no gravel or larger substrate 1 > 75 percent 4 5-25 percent 2 51-75 percent 5 < 5 percent 3 26-50 percent Surface area of a lake is that area (acres) encompassed by the boundary of the lake as shown on USGS topographic maps, or other available maps or photographs. Because surface area changes with lake stage, surface areas listed in this report represent those determined for the stage at the time the maps or photographs were obtained. Surficial bed material is the upper surface (0.1 to 0.2 foot) of the bed material that is sampled using U.S. Series Bed-Material Samplers. Suspended (as used in tables of chemical analyses) refers to the amount (concentration) of undissolved material in a water-sediment mixture. It is defined operationally as the material retained on a 0.45-micrometer filter. Suspended, recoverable is the amount of a given constituent that is in solution after the part of a representative suspended water-sediment sample that is retained on a 0.45-micrometer membrane filter has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all the particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the sample. To achieve comparability of analytical data, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures are likely to produce different analytical results. Determinations of "suspended, recoverable" constituents are made either by directly analyzing the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total recoverable concentrations of the constituent. (See also "Suspended") Suspended sediment is the sediment maintained in suspension by the upward components of turbulent currents or that exists in suspension as a colloid. (See also "Sediment") Suspended-sediment concentration is the velocity-weighted concentration of suspended sediment in the sampled zone (from the water surface to a point approximately 0.3 foot above the bed) expressed as milligrams of dry sediment per liter of water-sediment mixture (mg/L). The analytical technique uses the mass of all of the sediment and the net weight of the water-sediment mixture in a sample to compute the suspended-sediment concentration. (See also "Sediment" and "Suspended sediment") Suspended-sediment discharge (tons/d) is the rate of sediment transport, as measured by dry mass or volume, that passes a cross section in a given time. It is calculated in units of tons per day as follows: concentration (mg/L) x discharge (ft³/s) x 0.0027. (See also "Sediment," "Suspended sediment," and "Suspended sediment concentration") Suspended-sediment load is a general term that refers to a given characteristic of the material in suspension that passes a point during a specified period of time. The term needs to be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It is not synonymous with either suspended-sediment discharge or concentration. (See also "Sediment") Suspended, total is the total amount of a given constituent in the part of a water-sediment sample that is retained on a 0.45-micrometer membrane filter. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. Knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to determine when the results should be reported as "suspended, total." Determinations of "suspended, total" constituents are made either by directly analyzing portions of the suspended material collected on the filter or, more commonly, by difference, on the basis of determinations of (1) dissolved and (2) total concentrations of the constituent. (See also "Suspended") Suspended solids, total residue at 105 °C concentration is the concentration of inorganic and organic material retained on a filter, expressed as milligrams of dry material per liter of water (mg/L). An aliquot of the sample is used for this analysis. Synoptic studies are short-term investigations of specific water-quality conditions during selected seasonal or hydrologic periods to provide improved spatial resolution for critical water-quality conditions. For the period and conditions sampled, they assess the spatial distribution of selected water-quality conditions in relation to causative factors, such as land use and contaminant sources. Taxa (Species) richness is the number of species (taxa) present in a defined area or sampling unit. Taxonomy is the division of biology concerned with the classification and naming of organisms. The classification of organisms is based upon a hierarchial scheme beginning with Kingdom and ending with Species at the base. The higher the classification level, the fewer features the organisms have in common. For example, the taxonomy of a particular mayfly, Hexagenia limbata, is the following: Kingdom: Animal Phylum: Arthropoda Class: Insecta Order: Ephemeroptera Family: Ephemeridae Genus: Hexagenia Species: Hexagenia limbata Thalweg is the line formed by connecting points of minimum streambed elevation (deepest part of the channel). Thermograph is an instrument that continuously records variations of temperature on a chart. The more general term "temperature recorder" is used in the table descriptions and refers to any instrument that records temperature whether on a chart, a tape, or any other medium. Time-weighted average is computed by multiplying the number of days in the sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the total number of days. A time-weighted average represents the composition of water resulting from the mixing of flow proportionally to the duration of the concentration. Tons per acre-foot (T/acre-ft) is the dry mass (tons) of a constituent per unit volume (acre-foot) of water. It is computed by multiplying the concentration of the constituent, in milligrams per liter, by 0.00136. Tons per day (T/DAY, tons/d) is a common chemical or sediment discharge unit. It is the quantity of a substance in solution, in suspension, or as bedload that passes a stream section during a 24-hour period. It is equivalent to 2,000 pounds per day, or 0.9072 metric tons per day. Total is the amount of a given constituent in a representative whole-water (unfiltered) sample, regardless of the constituent's physical or chemical form. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and suspended phases of the sample. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total." (Note that the word "total" does double duty here, indicating both that the sample consists of a watersuspended sediment mixture and that the analytical method determined at least 95 percent of the constituent in the sample.) Total coliform bacteria are a particular group of bacteria that are used as indicators of possible sewage pollution. This group includes coliforms that inhabit the intestine of warmblooded animals and those that inhabit soils. They are characterized as aerobic or facultative anaerobic, gram-negative, nonspore-forming, rod-shaped bacteria that ferment lactose with gas formation within 48 hours at 35 °C. In the laboratory, these bac- teria are defined as all the organisms that produce colonies with a golden-green metallic sheen within 24 hours when incubated at 35 °C plus or minus 1.0 °C on m-Endo medium (nutrient medium for bacterial growth). Their concentrations are expressed as number of colonies per 100 milliliters of sample. (See also "Bacteria") Total discharge is the quantity of a given constituent, measured as dry mass or volume, that passes a stream cross section per unit of time. When referring to constituents other than water, this term needs to be qualified, such as "total sediment discharge," "total chloride discharge," and so on. Total in bottom material is the amount of a given constituent in a representative sample of bottom material. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent determined. A knowledge of the expected form of the constituent in the sample, as well as the analytical methodology used, is required to judge when the results should be reported as "total in bottom material." Total length (fish) is the straight-line distance from the anterior point of a fish specimen's snout, with the mouth closed, to the posterior end of the caudal (tail) fin, with the lobes of the caudal fin squeezed together. Total load refers to all of a constituent in transport. When referring to sediment, it includes suspended load plus bed load. Total organism count is the number of organisms collected and enumerated in any particular sample. (See also "Organism count/volume") Total recoverable is the amount of a given constituent in a whole-water sample after a sample has been digested by a method (usually using a dilute acid solution) that results in dissolution of only readily soluble substances. Complete dissolution of all particulate matter is not achieved by the digestion treatment, and thus the determination represents something less than the "total" amount (that is, less than 95 percent) of the constituent present in the dissolved and suspended phases of the sample. To achieve comparability of analytical data for
wholewater samples, equivalent digestion procedures are required of all laboratories performing such analyses because different digestion procedures may produce different analytical results. Total sediment discharge is the mass of suspended-sediment plus bed-load transport, measured as dry weight, that passes a cross section in a given time. It is a rate and is reported as tons per day. (See also "Bedload," "Bedload discharge," "Sediment," "Suspended sediment," and "Suspended-sediment concentration") Total sediment load or total load is the sediment in transport as bedload and suspended-sediment load. The term may be qualified, such as "annual suspended-sediment load" or "sand-size suspended-sediment load," and so on. It differs from total sediment discharge in that load refers to the material, whereas discharge refers to the quantity of material, expressed in units of mass per unit time. (See also "Sediment," "Suspended-sediment load," and "Total load") Transect, as used in this report, is a line across a stream perpendicular to the flow and along which measurements are taken, so that morphological and flow characteristics along the line are described from bank to bank. Unlike a cross section, no attempt is made to determine known elevation points along the line. Turbidity is the reduction in the transparency of a solution due to the presence of suspended and some dissolved substances. The measurement technique records the collective optical properties of the solution that cause light to be scattered and attenuated rather than transmitted in straight lines; the higher the intensity of scattered or attenuated light, the higher the value of the turbidity. Turbidity is expressed in nephelometric turbidity units (NTU). Depending on the method used, the turbidity units as NTU can be defined as the intensity of light of a specified wavelength scattered or attenuated by suspended particles or absorbed at a method specified angle, usually 90 degrees, from the path of the incident light. Currently approved methods for the measurement of turbidity in the USGS include those that conform to U.S. EPA Method 180.1, ASTM D1889-00, and ISO 7027. Measurements of turbidity by these different methods and different instruments are unlikely to yield equivalent values. Ultraviolet (UV) absorbance (absorption) at 254 or 280 nanometers is a measure of the aggregate concentration of the mixture of UV absorbing organic materials dissolved in the analyzed water, such as lignin, tannin, humic substances, and various aromatic compounds. UV absorbance (absorption) at 254 or 280 nanometers is measured in UV absorption units per centimeter of pathlength of UV light through a sample. Unconfined aquifer is an aquifer whose upper surface is a water table free to fluctuate under atmospheric pressure. (See "Water-table aquifer") Vertical datum (See "Datum") Volatile organic compounds (VOCs) are organic compounds that can be isolated from the water phase of a sample by purging the water sample with inert gas, such as helium, and subsequently analyzed by gas chromatography. Many VOCs are human-made chemicals that are used and produced in the manufacture of paints, adhesives, petroleum products, pharmaceuticals, and refrigerants. They are often components of fuels, solvents, hydraulic fluids, paint thinners, and dry cleaning agents commonly used in urban settings. VOC contamination of drinking-water supplies is a human health concern because many are toxic and are known or suspected human carcinogens. Water table is that surface in a ground-water body at which the water pressure is equal to the atmospheric pressure. Water-table aquifer is an unconfined aquifer within which the water table is found. Water year in USGS reports dealing with surface-water supply is the 12-month period October 1 through September 30. The water year is designated by the calendar year in which it ends and which includes 9 of the 12 months. Thus, the year ending September 30, 2002, is called the "2002 water year." WDR is used as an abbreviation for "Water-Data Report" in the REVISED RECORDS paragraph to refer to State annual hydrologic-data reports. (WRD was used as an abbreviation for "Water-Resources Data" in reports published prior to 1976.) Weighted average is used in this report to indicate discharge-weighted average. It is computed by multiplying the discharge for a sampling period by the concentrations of individual constituents for the corresponding period and dividing the sum of the products by the sum of the discharges. A discharge-weighted average approximates the composition of water that would be found in a reservoir containing all the water passing a given location during the water year after thorough mixing in the reservoir. Wet mass is the mass of living matter plus contained water. (See also "Biomass" and "Dry mass") Wet weight refers to the weight of animal tissue or other substance including its contained water. (See also "Dry weight") WSP is used as an acronym for "Water-Supply Paper" in reference to previously published reports. Zooplankton is the animal part of the plankton. Zooplankton are capable of extensive movements within the water column and often are large enough to be seen with the unaided eye. Zooplankton are secondary consumers feeding upon bacteria, phytoplankton, and detritus. Because they are the grazers in the aquatic environment, the zooplankton are a vital part of the aquatic food web. The zooplankton community is dominated by small crustaceans and rotifers. (See also "Plankton") ## TECHNIQUES OF WATER-RESOURCES INVESTIGATIONS OF THE U.S. GEOLOGICAL SURVEY The U.S.G.S. publishes a series of manuals describing procedures for planning and conducting specialized work in water-resources investigations. The material is grouped under major subject headings called books and is further divided into sections and chapters. For example, section A of book 3 (Applications of Hydraulics) pertains to surface water. The chapter, the unit of publication, is limited to a narrow field of subject matter. This format permits flexibility in revision and publication as the need arises. Manuals in the Techniques of Water-Resources Investigations series, which are listed below, are available online at: http://water.usgs.gov/pubs/twri/ Printed copies are available for sale from the USGS, Information Services, Box 25286, Federal Center, Denver, Colorado 80225 (an authorized agent of the Superintendent of Documents, Government Printing Office). Please telephone "1-888-ASK-USGS" for current prices, and refer to the title, book number, section number, chapter number, and mention the "U.S. Geological Survey Techniques of Water-Resources Investigations." Other products can be viewed online at: http://www.usgs.gov/sales.html, or ordered by telephone or by FAX to (303)236-4693. Order forms for FAX requests are available online at http://mac.usgs.gov/isb/pubs/forms/. Prepayment by major credit card or by a check or money order payable to the "U.S. Geological Survey" is required. Book 1. Collection of Water Data by Direct Measurement Section D. Water Quality 1-D1. Water temperature-influential factors, field measurement, and data presentation, by H. H. Stevens, Jr., - J.F. Ficke, and G. F. Smoot: USGS-TWRI book 1, chap. D1. 1975. 65 p. - 1-D2. Guidelines for collection and field analysis of ground-water samples for selected unstable constituents, by W.W. Wood: USGS-TWRI book 1, chap. D2. 1976. 24 p. ### Book 2. Collection of Environmental Data Section D. Surface Geophysical Methods # 2-D1. Application of surface geophysics to ground-water investigations, by A.A. R. Zohdy, G.P. Eaton, and D.R. Mabey: USGS-TWRI book 2, chap. D1. 1974. 116 p. 2-D2. Application of seismic-refraction techniques to hydrologic studies, by F.P. Haeni: USGS-TWRI book 2, chap. D2. 1988. 86 p. ### Section E. Subsurface Geophysical Methods - 2-E1. Application of borehole geophysics to water-resources investigations, by W.S. Keys and L.M. MacCary: USGS-TWRI book 2, chap. E1. 1971. 126 p. - 2-E2. Borehole geophysics applied to groundwater investigations, by W.S. Keys: USGS-TWRI book 2, chap. E2. 1990. 150 p. #### Section F. Drilling and Sampling Methods 2-F1. Application of drilling, coring, and sampling techniques to test holes and wells, by Eugene Shuter and W.E. Teasdale: USGS-TWRI book 2, chap. F1. 1989. 97 p. ### Book 3. Applications of Hydraulics ### Section A. Surface-Water Techniques - 3-A1. General field and office procedures for indirect discharge measurements, by M.A. Benson and Tate Dalrymple: USGS-TWRI book 3, chap. A1. 1967. 30 p. - 3-A2. Measurement of peak discharge by the slope-area method, by Tate Dalrymple and M.A. Benson: USGS-TWRI book 3, chap. A2. 1967. 12 p. - 3-A3. Measurement of peak discharge at culverts by indirect methods, by G.L. Bodhaine: USGS-TWRI book 3, chap. A3. 1968. 60 p. - 3-A4. Measurement of peak discharge at width contractions by indirect methods, by H.F. Matthai: USGS-TWRI book 3, chap. A4. 1967. 44 p. - 3-A5. Measurement of peak discharge at dams by indirect methods, by Harry Hulsing: USGS-TWRI book 3. chap. A5. 1967. 29 p. - 3-A6. General procedure for gaging streams, by R.W. Carter and Jacob Davidian: USGS-TWRI book 3, chap. A6. 1968. 13 p. - 3-A7. Stage measurement at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI book 3, chap. A7. 1968. 28 p. - 3-A8. Discharge measurements at gaging stations, by T.J. Buchanan and W.P. Somers: USGS-TWRI book 3, chap. A8. 1969. 65 p. - 3-A9. Measurement of time of travel in streams by dye tracing, by F.A. Kilpatrick and J.F. Wilson, Jr.: USGS-TWRI book 3, chap. A9. 1989. 27 p. - 3-Al0. Discharge ratings at gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. Al0. 1984. 59 p. - 3-All. Measurement of discharge by the movingboat method, by G.F. Smoot and C.E. Novak: USGS-TWRI book 3, chap. All. 1969. 22 p. - 3-A12. Fluorometric procedures for dye tracing, Revised, by J.F. Wilson, Jr., E.D. Cobb, and F.A.
Kilpatrick: USGS-TWRI book 3, chap. A12. 1986. 34 p. - 3-A13. Computation of continuous records of streamflow, by E.J. Kennedy: USGS-TWRI book 3, chap. A13. 1983. 53 p. - 3-A14. Use of flumes in measuring discharge, by F.A. Kilpatrick and V.R. Schneider: USGS-TWRI book 3, chap. A14. 1983. 46 p. - 3-A15. Computation of water-surface profiles in open channels, by Jacob Davidian: USGS-TWRI book 3, chap. A15. 1984. 48 p. - 3-A16. Measurement of discharge using tracers, by F.A. Kilpatrick and E.D. Cobb: USGS-TWRI book 3, chap. A16. 1985. 52 p. - 3-A17. Acoustic velocity meter systems, by Antonius Laenen: USGS-TWRI book 3, chap. A17. 1985. 38 p. - 3-A18. Determination of stream reaeration coefficients by use of tracers, by F.A. Kilpatrick, R.E. Rathbun, Nobuhiro Yotsukura, G.W. Parker, and L.L. DeLong: USGS-TWRI book 3, chap. A18. 1989. 52 p. - 3-A19. Levels at streamflow gaging stations, by E.J. Kennedy: USGS-TWRI book 3, chap. A19. 1990. 31 p. - 3-A20. Simulation of soluble waste transport and buildup in surface waters using tracers, by F.A. Kilpatrick: USGS-TWRI book 3, chap. A20. 1993. 38 p. - 3-A21 Stream-gaging cableways, by C. Russell Wagner: USGS-TWRI book 3, chap. A21. 1995. 56 p. ### Section B. Ground-Water Techniques 3-B1. Aquifer-test design, observation, and data analysis, by R.W. Stallman: USGS-TWRI book 3, chap. B1. 1971. 26 p. - 3-B2. Introduction to ground-water hydraulics, a programed text for self-instruction, by G.D. Bennett: USGS-TWRI book 3, chap. B2. 1976. 172 p. - 3-B3. Type curves for selected problems of flow to wells in confined aquifers, by J.E. Reed: USGS-TWRI book 3, chap. B3. 1980. 106 p. - 3-B4. Regression modeling of ground-water flow, by R.L. Cooley and R.L. Naff: USGS-TWRI book 3, chap. B4. 1990. 232 p. - 3-B4. Supplement 1. Regression modeling of ground-water flow --Modifications to the computer code for nonlinear regression solution of steady-state ground-water flow problems, by R.L. Cooley: USGS-TWRI book 3, chap. B4. 1993. 8 p. - 3-B5. Definition of boundary and initial conditions in the analysis of saturated ground-water flow systems-An introduction, by O.L. Franke, T.E. Reilly, and G.D. Bennett: USGS-TWRI book 3, chap. B5. 1987. 15 p. - 3-B6. The principle of superposition and its application in ground-water hydraulics, by T.E. Reilly, O.L. Franke, and G.D. Bennett: USGS-TWRI book 3, chap. B6. 1987. 28 p. - 3-B7. Analytical solutions for one-, two-, and three-dimensional solute transport in ground-water systems with uniform flow, by E.J. Wexler: USGS-TWRI book 3, chap. B7. 1992. 190 p. - 3-B8. System and boundary conceptualization in ground-water flow simulation, by T.E. Reilly: USGS-TWRI book 3, chap. B8. 2001. 29 p. ### Section C. Sedimentation and Erosion Techniques - 3-C1. Fluvial sediment concepts, by H.P. Guy: USGS-TWRI book 3, chap. C1. 1970. 55 p. - 3-C2. Field methods for measurement of fluvial sediment, by T.K. Edwards and G.D. Glysson: USGS-TWRI book 3, chap. C2. 1999. 89 p. - 3-C3. Computation of fluvial-sediment discharge, by George Porterfield: USGS-TWRI book 3, chap. C3. 1972. 66 p. # Book 4. Hydrologic Analysis and Interpretation Section A. Statistical Analysis - 4-A1. Some statistical tools in hydrology, by H.C. Riggs: USGS-TWRI book 4, chap. A1. 1968. 39 p. - 4-A2. Frequency curves, by H.C. Riggs: USGS-TWRI book 4, chap. A2. 1968. 15 p. ### Section B. Surface Water 4-B1. Low-flow investigations, by H.C. Riggs: USGS-TWRI book 4, chap. B1. 1972. 18 p. - 4-B2. Storage analyses for water supply, by H.C. Riggs and C.H. Hardison: USGS-TWRI book 4, chap. B2. 1973. 20 p. - 4-B3. Regional analyses of streamflow characteristics, by H.C. Riggs: USGS-TWRI book 4, chap. B3. 1973. 15 p. ### Section D. Interrelated Phases of the Hydrologic Cycle 4-D1. Computation of rate and volume of stream depletion by wells, by C.T. Jenkins: USGS-TWRI book 4, chap. D1. 1970. 17 p. #### Book 5. Laboratory Analysis #### Section A. Water Analysis - 5-Al. Methods for determination of inorganic substances in water and fluvial sediments, by M.J. Fishman and L.C. Friedman, editors: USGS-TWRI book 5, chap. Al. 1989. 545 p. - 5-A2. Determination of minor elements in water by emission spectroscopy, by P.R. Barnett and E.C. Mallory, Jr.: USGS-TWRI book 5, chap. A2. 1971. 31 p. - 5-A3. Methods for the determination of organic substances in water and fluvial sediments, edited by R.L. Wershaw, M.J. Fishman, R.R. Grabbe, and L.E. Lowe: USGS-TWRI book 5, chap. A3. 1987. 80 p. - 5-A4. Methods for collection and analysis of aquatic biological and microbiological samples, by L.J. Britton and P.E. Greeson, editors: USGS-TWRI book 5, chap. A4. 1989. 363 p. - 5-A5. Methods for determination of radioactive substances in water and fluvial sediments, by L.L. Thatcher, V.J. Janzer, and K.W. Edwards: USGS-TWRI book 5, chap. A5. 1977. 95 p. - 5-A6. Quality assurance practices for the chemical and biological analyses of water and fluvial sediments, by L.C. Friedman and D.E. Erdmann: USGS-TWRI book 5, chap. A6. 1982. 181 p. ### Section C. Sediment Analysis 5-C1. Laboratory theory and methods for sediment analysis, by H.P. Guy: USGS-TWRI book 5, chap. C1. 1969. 58 p. ### Book 6. Modeling Techniques ### Section A. Ground Water - 6-Al. A modular three-dimensional finitedifference ground-water flow model, by M.G. McDonald and A.W. Harbaugh: USGS-TWRI book 6, chap. Al. 1988. 586 p. - 6-A2. Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model, by S.A. Leake and D.E. Prudic: USGS-TWRI book 6, chap. A2. 1991. 68 p. - 6-A3. A modular finite-element model (MODFE) for areal and axisymmetric groundwater-flow problems, Part 1: Model Description and User's Manual, by L.J. Torak: USGS-TWRI book 6, chap. A3. 1993. 136 p. - 6-A4. A modular finite-element model (MODFE) for areal and axisymmetric groundwater-flow problems, Part 2: Derivation of finite-element equations and comparisons with analytical solutions, by R.L. Cooley: USGS-TWRI book 6, chap. A4. 1992. 108 p. - 6-A5. A modular finite-element model (MODFE) for areal and axisymmetric ground-water-flow problems, Part 3: Design philosophy and programming details, by L.J. Torak: USGS-TWRI book 6, chap. A5, 1993. 243 p. - 6-A6. A coupled surface-water and ground-water flow model (MODBRANCH) for simulation of stream-aquifer interaction, by Eric D. Swain and Eliezer J. Wexler: USGS-TWRI book 6, chap. A5,1996. 125 p. ### Book 7. Automated Data Processing and Computations #### Section C. Computer Programs - 7-C1. Finite difference model for aquifer simulation in two dimensions with results of numerical experiments, by P.C. Trescott, G.F. Pinder, and S.P. Larson: USGS-TWRI book 7, chap. C1. 1976. 116 p. - 7-C2. Computer model of two-dimensional solute transport and dispersion in ground water, by L.F. Konikow and J.D. Bredehoeft: USGS-TWRI book 7, chap. C2. 1978. 90 p. - 7-C3. A model for simulation of flow in singular and interconnected channels, by R.W. Schaffranek, R.A. Baltzer, and D.E. Goldberg: USGS-TWRI book 7, chap. C3. 1981. 110 p. ### Book 8. Instrumentation ### Section A. Instruments for Measurement of Water Level - 8-Al. Methods of measuring water levels in deep wells, by M.S. Garber and F.C. Koopman: USGS-TWRI book 8, chap. Al. 1968. 23 p. - 8-A2. Installation and service manual for U.S. Geological Survey manometers, by J.D. Craig: USGS-TWRI book 8, chap. A2. 1983. 57 p. ### Section B. Instruments for Measurement of Discharge 8-B2. Calibration and maintenance of vertical-axis type current meters, by G.F. Smoot and C.E. Novak: USGS-TWRI book 8, chap. B2. 1968. 15 p. ### Book 9. Handbooks for Water-Resources Investigations ### Section A. National Field Manual for the Collection of Water-Quality Data - 9-Al. National Field Manual for the Collection of Water-Quality Data: Preparations for Water Sampling, by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. Al. 1998. 47 p. - 9-A2. National Field Manual for the Collection of Water-Quality Data: Selection of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A2. 1998. 94 p. - 9-A3. National Field Manual for the Collection of Water-Quality Data: Cleaning of Equipment for Water Sampling, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A3. 1998. 75 p. - 9-A4. National Field Manual for the Collection of Water-Quality Data: Collection of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A4. 1999. 156 p. - 9-A5. National Field Manual for the Collection of Water-Quality Data: Processing of Water Samples, edited by F.D. Wilde, D.B. Radtke, Jacob Gibs, and R.T. Iwatsubo: USGS-TWRI book 9, chap. A5. 1999, 149 p. - 9-A6. National Field Manual for the Collection of Water-Quality Data: Field Measurements, edited by F.D. Wilde and D.B. Radtke: USGS-TWRI book 9, chap. A6. 1998. Variously paginated. - 9-A7. National Field Manual for the Collection of Water-Quality Data: Biological Indicators, edited by D.N. Myers and F.D. Wilde: USGS-TWRI book 9, chap. A7. 1997 and 1999. Variously paginated. - 9-A8. National Field Manual for the Collection of Water-Quality Data: Bottom-material samples, by D.B. Radtke: USGS-TWRI book 9, chap. A8. 1998. 48 p. - 9-A9. National Field Manual for the Collection of Water-Quality Data: Safety in Field Activities, by S.L. Lane and R.G. Fay: USGS-TWRI book 9, chap. A9. 1998. 60 p. Figure 5. Location of surface-water stations. Figure 6. Location of water-quality stations. Figure 7. Location of Metropolitan St. Louis Sewer District stations. Figure 8. Location of stations in the Northwest Prairie. Figure 9. Location of stations in the Northeast Prairie. ### **EXPLANATION** Figure 10. Location of stations in the West Central Plains. Figure 11. Location of stations in the West Ozarks. ### **EXPLANATION** Figure 12. Location of stations in the East
Ozarks. Figure 13. Location of stations in the Bootheel. AND NUMBER 46 FOX RIVER BASIN #### 05495000 FOX RIVER AT WAYLAND, MO LOCATION.--Lat $40^{\circ}23'33"$, long $91^{\circ}35'50"$, in NW $^{1}/_{4}$ sec.31, T.65 N., R.6 W., Clark County, Hydrologic Unit 07110001, on left bank 30 ft downstream from bridge on U.S. Highway 136, 0.8 mi west of Wayland, 5.0 mi downstream from Brush Creek, and at mile 15.2. DRAINAGE AREA. -- 400 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- February 1922 to current year. REVISED RECORDS.--WSP 785: 1934. Revised daily mean discharges for the period Aug. 9, 1977, to Sept. 30, 1977, and the annual maximum peak for the 1977 water year published in WDR-MO-79-1: 1977. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 501.52 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1929, nonrecording gage at bridge 2.8 mi upstream at different datum; Oct. 1, 1929, to June 11, 1936, nonrecording gage at bridge 90 ft upstream; June 1936 to August 1988 at site 300 ft upstream, at present datum. REMARKS.--Water-discharge records poor. U.S. Army Corps of Engineers satellite telemeter at station. | | _ | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|---|-------------------------------------|--|---|--------------------------------------|------------------------------------|--|--|--------------------------------------|---|-----------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 24
21
19
19
34 | 44
42
41
38
35 | 25
23
23
23
25 | e23
e20
e19
e18
e17 | e180
e150
e120
e80
e60 | e45
e45
e50
e50
e48 | 128
91
75
63
52 | 327
240
188
150
124 | 162
e116
92
72
86 | 33
30
29
26
25 | 21
14
11
11 | 6.8
6.7
5.8
5.1
4.8 | | 6
7
8
9
10 | 34
32
32
26
24 | 30
29
27
28
25 | 24
23
23
21
20 | e20
e17
e17
e17
e18 | e50
e45
e45
e67
e264 | 57
119
154
e800
e700 | 50
55
501
1250
1210 | 156
230
207
825
817 | 63
51
44
39
35 | 24
23
22
93
57 | 19
20
12
11
8.7 | 4.4
4.1
3.6
3.2
3.1 | | 11
12
13
14
15 | 32
26
28
53
38 | 24
23
23
23
23 | 20
20
25
59
77 | e19
e18
e26
e23
23 | e314
e324
e282
e209
e170 | e380
e224
e158
125
102 | 437
248
305
329
195 | 3170
9530
9270
2380
881 | 1140
2990
3220
2230
1460 | 564
627
224
120
74 | 7.8
7.4
6.7
6.6
6.6 | 2.8
2.4
2.3
2.1
2.0 | | 16
17
18
19
20 | 94
42
32
29
27 | 23
23
23
25
26 | 49
41
35
34
32 | e22
e29
e33
e35
e33 | e137
e104
e89
84
222 | 82
68
66
62
60 | 149
127
112
96
84 | 572
449
374
301
249 | 622
384
260
215
150 | 52
39
33
29
24 | 17
38
18
127
47 | 1.7
1.6
1.9
2.4
3.5 | | 21
22
23
24
25 | 58
2240
1380
1070
448 | 24
22
21
26
33 | 28
e46
e139
e96
e68 | e30
e28
e30
e29
e27 | 501
292
156
112
88 | 58
50
45
45
51 | 213
432
218
244
320 | 207
177
169
1160
2320 | 116
92
79
66
58 | 25
23
19
17
16 | 30
22
177
71
26 | 5.7
5.2
4.0
3.6
4.9 | | 26
27
28
29
30
31 | 204
124
78
58
49
46 | 31
29
26
24
25 | e53
e44
e39
e34
e29
e25 | e26
e24
e25
e25
e45
e200 | 69
e55
e50

 | 52
58
61
66
76
159 | 256
765
3250
1410
532 | 1740
749
470
297
464
254 | 51
47
41
36
34 | 14
13
12
16
20
41 | 18
13
12
10
11
8.4 | 5.8
4.6
4.3
3.4
3.1 | | MEAN
MAX
MIN
IN. | 207
2240
19
0.60 | 27.9
44
21
0.08 | 39.4
139
20
0.11 | 30.2
200
17
0.09 | 154
501
45
0.40 | 133
800
45
0.38 | 440
3250
50
1.23 | 1240
9530
124
3.58 | 468
3220
34
1.31 | 76.3
627
12
0.22 | 26.4
177
6.6
0.08 | 3.83
6.8
1.6
0.01 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | OR WATER Y | YEARS 1922
336 | - 2002,
438 | BY WATER 1 | YEAR (WY) | 397 | 242 | 115 | 171 | | MAX
(WY)
MIN
(WY) | 1313
1987
0.00
1957 | 1375
1929
0.01
1957 | 1330
1983
0.02
1957 | 1133
1969
0.19
1957 | 1433
1982
0.42
1957 | 2264
1979
8.56
1956 | 2750
1973
2.35
1956 | 2795
1996
1.39
1956 | 2223
1947
0.06
1956 | 3387
1993
0.21
1936 | 1509
1970
0.02
1936 | 1999
1970
0.17
1937 | | SUMMARY | STATISTI | CS | FOR 2 | 2001 CALEN | DAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YE | ARS 1922 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME DAILY ME PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS | | 464 6990 7.3 7.5 15.74 1290 69 19 | Mar 16
Jan 5
Jan 1 | | 238
9530
1.6
2.0
10900
18.35
1.2
8.08
448
42
8.6 | May 12
Sep 17
Sep 12
May 13
May 13
Sep 16 | | 266
927
17.6
19900
0.00
0.00
26400
21.71
0.00
9.05
549
38
2.4 | Several
Several
Apr 2 | l Years
22 1973
22 1973 | e Estimated ### 05495000 FOX RIVER AT WAYLAND, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1967 to September 1972, November 1999 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
13 | 1325 | ENVIRONM | ENTAL | 23 | 12.7 | 118 | 8.2 | 537 | 10.9 | 260 | 75.1 | 16.4 | 4.63 | | JAN
14 | 1400 | ENVIRONM | ENTAL | e23 | 15.4 | 110 | 7.7 | 378 | . 4 | | | | | | MAR
11
11 | 1415
1416 | ENVIRONM
REPLICAT | | 374
 | 12.4 | 97
 | 7.8 | 327 | 4.2 | | | | | | MAY
14 | 0920 | ENVIRONM | ENTAL | 2020 | 7.5 | 73 | 7.6 | 230 | 14.0 | 99 | 29.3 | 6.21 | 2.20 | | JUL
09 | 0910 | ENVIRONM | ENTAL | 120 | 5.7 | 76 | 8.0 | 538 | 29.4 | | | | | | SEP
03 | 1520 | ENVIRONM | ENTAL | 5.5 | 8.3 | 112 | 8.2 | 407 | 29.8 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
13 | 15.6 | 194 | 194 | 237 | 0 | 14.0 | . 2 | 72.9 | <10 | 342 | <.04 | .47 | <.05 | | JAN
14 | | 223 | 225 | 274 | 0 | | | | <10 | | <.04 | .34 | .20 | | MAR
11 | | 79 | 77 | 93 | 0 | | | | 788 | | .12 | 3.0 | 2.33 | | 11
MAY | | | | | | | | | 896 | | .16 | 3.1 |
2.60 | | 14 | 7.39 | 72 | 72 | 88 | 0 | 5.21 | .2 | 22.6 | 810 | 185 | <.04 | 2.2 | 2.29 | | 09
SEP | | 192 | 193 | 235 | 0 | | | | 84 | | <.04 | .74 | <.05 | | 03 | | 189 | 188 | 229 | 0 | | | | 20 | | <.04 | .54 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
13 | <.008 | <.06 | <.02 | E.05 | 25 | 46 | K17 | 15 | 45 | .8 | E.02 | <.1 | <6 | | JAN
14
MAR | E.004 | <.06 | <.02 | <.06 | 58 | K21 | 39 | | | | | | | | 11
11 | .163
.143 | .09
.10 | .03 | .90
.91 | 1360 | K1400
 | K4440
 | | | | | | | | MAY
14 | .061 | .12 | .05 | .86 | 3200 | 5800 | 6800 | 558 | 8880 | 1.1 | E.03 | .3 | E4 | | JUL
09
SEP | <.008 | E.03 | .02 | .09 | K520 | K865 | К765 | | | | | | | | 03 | <.008 | <.06 | E.01 | .07 | 21 | 66 | 200 | | | | | | | 48 FOX RIVER BASIN ### 05495000 FOX RIVER AT WAYLAND, MO--Continued (Ambient Water-Quality Monitoring Network) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(μg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |-----------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 13 | 87 | E.04 | <1 | 256 | <.01 | . 4 | | 5 | | JAN
14 | | | | | | | | | | MAR | | | | | | | | | | 11 | | | | | | | | | | 11 | | | | | | | | | | MAY | | | | | | | | | | 14 | 520 | 1.23 | 18 | 33.4 | .06 | .5 | | 57 | | JUL | | | | | | | | | | 09 | | | | | | | | | | SEP | | | | | | | | | | 03 | | | | | | | | | e--Estimated discharge value. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### WYACONDA RIVER BASIN 49 ### 05496000 WYACONDA RIVER ABOVE CANTON, MO LOCATION.--Lat $40^{\circ}08'32"$, long $91^{\circ}33'55"$, in SW $\frac{1}{4}$ SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.28, T.62 N., R.6 W., Lewis County, Hydrologic Unit 07110001, on left bank on downstream side of bridge on State Highway 16, 1.9 mi upstream from Sugar Creek, 2.5 mi west of Canton, and at mile 16.7. DRAINAGE AREA.--393 mi². PERIOD OF RECORD.--October 1932 to September 1972, October 1979 to current year. REVISED RECORDS. -- WDR MO-92-1: (M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 517.41 ft above National Geodetic Vertical Datum of 1929. Prior to May 1, 1939, nonrecording gage 500 ft downstream at datum 2.00 ft lower; Sept. 25, 1975, to Sept. 17, 1979, nonrecording gage at present site and at datum 2.00 ft lower. REMARKS.--Records fair except for estimated daily discharges and those below 50 ${\rm ft}^3/{\rm s}$, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHARG | E, CUBIC | FEET PER | | ATER Y | EAR OCTOBER | 2001 TO | SEPTEMBER | 2002 | | | |--|--|---------------------------------------|---|--|-------------------------------------|-------------------------------------|--|--|-------------------------------------|---|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 25
23
21
21
40 | 47
42
37
33
31 | 21
20
20
20
20 | 17
16
16
16
16 | 108
102
76
60
56 | 52
51
50
50
51 | 109
93
80
68
61 | 444
337
258
190
143 | 137
109
75
82
82 | 25
23
22
21
20 | 27
18
14
13
12 | 7.4
6.2
6.4
5.4
3.8 | | 6
7
8
9
10 | 38
37
37
36
34 | 29
28
28
26
25 | 20
20
20
19
18 | 17
17
17
17
18 | 49
40
37
124
438 | 60
179
190
856
1530 | 55
55
336
1570
1100 | 1490
1720
514
1340
1590 | 56
34
36
33
31 | 19
18
18
45
49 | 11
8.7
8.5
8.1
7.2 | 4.1
4.1
3.8
2.9
3.9 | | 11
12
13
14
15 | 30
36
31
87
79 | 24
22
22
22
22
22 | 18
19
23
32
78 | 19
20
22
23
24 | 498
397
312
256
188 | 527
299
215
169
124 | 443
256
196
191
143 | 3130
8720
12400
9950
3740 | 216
2570
3090
3680
1770 | 527
582
210
86
52 | 6.8
7.2
8.1
7.0
6.0 | 3.4
3.2
2.7
2.5
3.0 | | 16
17
18
19
20 | 603
169
76
53
47 | 22
22
21
21
21 | 49
40
34
33
31 | 22
19
17
18
17 | 156
113
81
68
193 | 108
100
84
79
75 | 122
118
103
110
149 | 1200
738
568
436
341 | 545
220
163
106
63 | 38
31
29
28
23 | 6.3
14
13
49
195 | 2.7
2.8
3.3
3.3
6.7 | | 21
22
23
24
25 | 38
1430
1810
1600
603 | 20
20
21
23
25 | 28
30
33
29
25 | 16
18
21
22
21 | 613
326
170
102
88 | 70
68
67
66
65 | 915
1260
432
341
842 | 269
215
185
818
1940 | 61
53
45
38
36 | 20
18
18
16
19 | 42
35
174
174
47 | 7.5
8.4
5.1
4.1
3.1 | | 26
27
28
29
30
31 | 336
172
108
77
70
62 | 30
30
28
24
22 | 25
25
21
20
19
18 | 22
24
23
23
31
164 | 62
54
53
 | 67
70
78
105
108
146 | 428
998
4020
2730
870 | 2680
879
602
370
560
241 | 40
41
31
27
26 | 17
16
14
16
17
42 | 26
19
15
12
10
9.0 | 2.7
2.4
2.7
3.0
2.8 | | MEAN
MAX
MIN
IN. | 252
1810
21
0.74 | 26.3
47
20
0.07 | 26.7
78
18
0.08 | 24.3
164
16
0.07 | 172
613
37
0.46 | 186
1530
50
0.55 | 606
4020
55
1.72 | 1871
12400
143
5.49 | 450
3680
26
1.28 | 67.1
582
14
0.20 | 32.4
195
6.0
0.09 | 4.11
8.4
2.4
0.01 | | MEAN
MAX
(WY)
MIN
(WY) | 139
1677
1987
0.00
1954 | 164
1463
1986
0.00
1954 | DATA FOI
151
1399
1983
0.47
1954 | 161
946
1946
0.10
1954 | 362
1529
2001
2.05
1989 | 410
1346
1985
7.53
1957 | 438
1809
1983
3.38
1956 | 471
3196
1996
1.69
1934 | 376
2594
1947
0.66
1956 | 281
2792
1993
0.02
1934 | 128
2242
1970
0.00
1934 | 156
2510
1986
0.02
1953 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEAR | 2 | FOR 2002 V | VATER YE | AR | FOR F | PERIOD OF | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME, ANNUAL ME, DAILY MEA DAILY MEA SEVEN-DAY I PEAK STAG ANEOUS LOI RUNOFF (II ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 7390
3.1 Ji
3.1 Ji
3.1
16.17
1170
75 | May 16
an 1-3,5-8
Jan 1 | 3 | 312
12400
2.4
2.9
12900
27.51
2.4
10.76
602
37
8.1 | May
Sep
Sep
May
May
Sep 26, | 27
12
13 | 269
861
14.2
16500
0.00
0.00
17700
31.33
0.00
9.30
560
31
2.2 | Many
Many
Jun
Sep | 1993
1989
22 1986
Y Years
30 1933
22 1986
Y Years | ### 05497000 NORTH FABIUS RIVER AT MONTICELLO, MO LOCATION.--Lat $40^{\circ}06^{\circ}30^{\circ}$, long $91^{\circ}42^{\circ}51^{\circ}$, in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.6, T.61 N., R.7 W., Lewis County, Hydrologic Unit 07110002, on right bank upstream from bridge on State Highway 16, 1.0 mi south of Monticello, and 19.0 mi upstream from Middle Fabius River. DRAINAGE AREA. -- 452 mi². PERIOD OF RECORD.--February 1922 to current year. Monthly discharge
only for some periods, published in WSP 1308. REVISED RECORDS.--WSP 925: 1937-39(M). WSP 1308: 1922(M), 1924-26(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 540.73 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 22, 1930, nonrecording gage at site 400 ft downstream at datum 0.03 ft lower; Nov. 22, 1930, to Nov. 28, 1967, nonrecording gage at present site and datum. REMARKS.--Records fair except for Oct. 1 to April 15, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |--|--|---------------------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------|--|---|-------------------------------------|---|--|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 32
36
27
28
56 | 64
64
56
50
45 | 25
25
23
23
23 | 17
17
17
17
18 | 183
e120
e100
e80
e65 | e40
39
51
61
54 | 151
113
98
84
70 | 440
344
257
199
156 | 248
196
169
157
139 | 37
34
33
31
29 | 24
18
17
16
15 | 11
11
10
9.2
8.8 | | 6
7
8
9
10 | 67
49
32
23
22 | 42
40
39
35
34 | 22
22
20
19
18 | 19
19
19
19 | e60
58
67
183
417 | 53
93
85
910
1420 | 62
55
217
914
1210 | 1300
1830
615
1740
2020 | 114
100
91
84
79 | 30
71
32
77
69 | 15
14
13
13 | 8.5
8.4
8.1
7.9
7.3 | | 11
12
13
14
15 | 22
24
38
100
127 | 32
32
30
30
30 | 18
19
25
45
63 | 16
18
21
24
27 | 443
287
218
143
94 | 451
269
199
162
137 | 444
261
267
266
184 | 4010
12100
15600
6050
1920 | 106
726
2160
2860
662 | 629
302
144
94
67 | 12
11
11
12
13 | 7.0
6.6
6.6
6.8
7.1 | | 16
17
18
19
20 | 609
182
86
56
47 | 29
27
28
29
27 | 44
36
30
29
25 | 28
24
23
24
24 | 82
64
50
47
157 | 108
84
70
68
72 | 151
126
105
435
185 | 1210
879
690
549
431 | 305
193
141
112
93 | 54
45
43
43
39 | 14
15
14
54
84 | 7.1
7.2
7.4
7.9 | | 21
22
23
24
25 | 40
1030
1540
1360
477 | 27
25
24
31
e40 | 21
22
23
24
22 | 23
23
22
20
18 | 475
266
130
89
68 | 90
72
67
66
66 | 1180
1160
420
522
918 | 365
321
289
771
2290 | 80
71
64
58
71 | 32
27
25
26
23 | 46
42
48
51
33 | 12
11
11
11
9.3 | | 26
27
28
29
30
31 | 258
152
110
90
77
69 | e36
32
28
27
27 | 22
21
20
19
18
18 | 19
20
28
20
28
65 | 52
e45
e40
 | 70
79
85
96
98
227 | 698
1120
5110
1930
706 | 2000
849
622
980
777
362 | 67
51
46
43
40 | 23
21
19
24
30
32 | 22
18
16
15
13 | 8.1
7.2
6.6
6.4
6.3 | | MEAN
MAX
MIN
IN. | 222
1540
22
0.57 | 35.3
64
24
0.09 | 25.3
63
18
0.06 | 22.4
65
16
0.06 | 146
475
40
0.34 | 176
1420
39
0.45 | 639
5110
55
1.58 | 1999
15600
156
5.10 | 311
2860
40
0.77 | 70.5
629
19
0.18 | 23.0
84
11
0.06 | 8.53
13
6.3
0.02 | | MEAN
MAX
(WY)
MIN
(WY) | 183
1496
1987
0.01
1957 | 193
1347
1929
1.06
1957 | 169
1521
1983
0.73
1957 | 193
1679
1974
0.14
1940 | 359
1346
1937
2.43
1989 | 456
2336
1979
7.91
1956 | 527
3171
1973
7.15
1956 | 474
2941
1996
1.71
1934 | 422
3148
1947
0.07
1934 | 295
3320
1993
0.00
1934 | 129
2149
1970
0.00
1934 | 179
1966
1970
0.51
1953 | | SUMMARY | STATISTI | CS | FOR 2 | 2001 CALEN | IDAR YEAR | F | OR 2002 W | MATER YEAR | | WATER YEA | RS 1922 - | 2002 | | LOWEST ANIGHEST LOWEST IN ANNUAL SENSEMBLY AND SENSE | MEAN ANNUAL M ANNUAL M DAILY MEA DAILY MEA SEVEN-DAY PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 9970
5.4
5.6

13.85
948
86 | May 15
Jan 7,9
Jan 1 | | 308
15600
6.3
6.9
17400
29.83
6.2
9.26
673
46
13 | May 13
Sep 30
Sep 11
May 13
May 13
Sep 28-30 | | 298
923
18.0
17900
0.00
0.00
20700
33.03
0.00
8.96
574
46
4.2 | Apr 23
Many
Many
Apr 22
Apr 22
Many | Years
Years
1973
1973 | e Estimated ### 05498000 MIDDLE FABIUS RIVER NEAR MONTICELLO, MO LOCATION.--Lat $40^{\circ}05'37"$, long $91^{\circ}44'08"$, in SE $\frac{1}{4}$ sec.12, T.61 N., R.8 W., Lewis County, Hydrologic Unit 07110002, on left bank on downstream end of bridge pier on State Highway 16, 2.5 mi southwest of Monticello, 8.0 mi downstream from Radish Branch, and 17 mi upstream from mouth. DRAINAGE AREA. -- 393 mi². PERIOD OF RECORD. -- July 1945 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 540.46 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 4, 1967, nonrecording gage at present site and datum. REMARKS.--Records fair. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 17, 1945, reached a stage of 23.3 ft, from floodmarks. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |--|--|--|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|---|---|-------------------------------------|---|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 13
11
9.8
9.7
45 | 29
26
25
25
23 | 17
17
16
16
15 | 11
11
11
11 | 222
e85
e60
e101
e65 | 48
e45
e45
e48
50 | 153
104
88
77
64 | 412
343
234
171
131 | 170
120
92
84
68 | 20
18
16
16
15 | 13
11
9.1
7.8
7.1 | 5.4
4.7
3.5
3.0
2.5 | | 6
7
8
9
10 | 32
26
22
16
14 | 21
19
18
16
16 | 15
15
15
14
14 | 12
11
11
12
13 | e45
e40
e45
109
241 | 75
125
208
536
1510 | 54
54
211
690
850 |
1280
2650
2120
1520
1760 | 59
51
46
42
38 | 17
28
312
335
132 | 6.4
5.8
5.5
5.1
4.7 | 2.3
2.4
2.3
2.1
2.1 | | 11
12
13
14
15 | 12
13
40
61
141 | 16
16
15
15 | 14
15
19
19
39 | 13
14
14
15
16 | 526
450
338
248
212 | 563
286
219
176
147 | 423
234
161
185
144 | 3560
9310
16500
13600
5630 | 68
239
1010
2630
730 | 307
421
223
121
72 | 4.7
4.6
4.5
4.2
4.0 | 2.0
1.8
1.8
1.7 | | 16
17
18
19
20 | 461
203
91
50
33 | 15
15
15
16
15 | 57
41
32
29
26 | 16
15
15
16
14 | 186
161
128
108
203 | 122
101
85
78
78 | 109
86
69
195
246 | 822
485
423
329
239 | 270
168
124
100
82 | 46
33
28
26
19 | 4.1
4.0
4.3
8.6 | 1.7
1.8
1.9
1.8
3.9 | | 21
22
23
24
25 | 25
20
394
915
365 | 15
15
16
20
21 | 24
24
23
19
18 | 15
15
16
16
15 | 639
445
240
168
132 | 70
63
56
52
53 | 1020
1710
677
931
1470 | 181
146
125
337
2300 | 68
58
50
43
47 | 17
18
14
12
11 | 21
20
51
23
34 | 3.4
4.6
3.7
3.2
2.7 | | 26
27
28
29
30
31 | 177
105
68
49
38
32 | 20
18
19
19
18 | 18
18
17
15
13 | 16
18
17
17
29
195 | 102
77
63
 | 56
58
67
82
98
166 | 567
1300
4110
3210
708 | 2460
881
559
379
574
292 | 55
33
28
25
22 | 11
11
9.6
13
12 | 30
16
11
8.8
7.1
6.0 | 2.4
2.0
1.8
1.7 | | MEAN
MAX
MIN
IN. | 113
915
9.7
0.33 | 18.4
29
15
0.05 | 20.9
57
13
0.06 | 20.4
195
11
0.06 | 194
639
40
0.51 | 173
1510
45
0.51 | 663
4110
54
1.88 | 2250
16500
125
6.60
YEAR (WY) | 221
2630
22
0.63 | 75.7
421
9.6
0.22 | 11.8
51
4.0
0.03 | 2.59
5.4
1.7
0.01 | | MEAN
MAX
(WY)
MIN
(WY) | 160
1368
1987
0.00
1954 | 174
1481
1986
0.00
1954 | 157
1418
1983
0.11
1957 | 201
1179
1969
0.31
1957 | 338
1359
1969
1.23
1957 | 451
1521
1979
6.32
1957 | 502
2719
1973
3.83
1956 | 496
2776
1996
1.48
1989 | 316
2582
1947
1.04
1956 | 301
3038
1993
0.78
1988 | 114
1758
1970
0.56
1988 | 150
1815
1970
0.09
1953 | | SUMMAR | Y STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YEA | R | WATER YE | EARS 1946 | - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
ANNUAL
10 PER
50 PER | MEAN T ANNUAL M ANNUAL M T DAILY MEA DAILY MEA SEVEN-DAY M PEAK FIL M PEAK STA TANEOUS LO RUNOFF (1) CENT EXCER CENT EXCER | EAN EAN AN MINIMUM AGE DW FLOW ENCHES) EDS | | 375 6950 3.2 3.5 12.94 757 47 9.8 | May I
Jan I
Jan | 11 | 316 16500 1.7 S 1.8 17600 26.16 1.2 10.90 530 32 4.7 | May 1
ep 14-16,3
Sep 1
May 1
May 1
Sep 1 | 0
2
3
3 | 279
837
18.7
16500
0.00
0.00
17700
27.14
0.00
9.66
581
39
2.8 | Several
Several
Apr 2 | l Years
23 1973
23 1973 | e Estimated ### 05499900 TROUBLESOME CREEK NEAR EWING, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 36°59'52", long 91°50'37", in NE $\frac{1}{4}$ NE $\frac{1}{4}$ Sec.13, T.60 N., R.9 W., Lewis County, Hydrologic Unit 07110003, located approximately 2.0 mi west of Ewing on U.S. Highway 156. DRAINAGE AREA.--2.88 mi². PERIOD OF RECORD.--November 1999 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
13 | 1530 | ENVIRONM | ENTAL | .96 | 3.9 | 35 | 7.1 | 321 | 9.5 | 130 | 38.7 | 9.19 | 8.29 | | JAN
14 | 1550 | ENVIRONM | ENTAL | e.10 | 10.2 | 74 | 6.9 | 233 | 1.1 | | | | | | MAR
11 | 1725 | ENVIRONM | ENTAL | 1.0 | 12.1 | 97 | 7.4 | 290 | 4.8 | | | | | | MAY
14 | 1350 | ENVIRONM | ENTAL | 1090 | 7.0 | 72 | 7.1 | 124 | 15.7 | 49 | 14.8 | 2.85 | 4.25 | | JUL
09 | 1115 | ENVIRONM | ENTAL | 7.0 | 4.2 | 53 | 7.4 | 383 | 26.1 | | | | | | SEP
03 | 1320 | ENVIRONM | ENTAL | .12 | 4.9 | 59 | 7.2 | 1160 | 24.1 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV | | | | | | | _ | | | | | | | | 13
JAN | 11.3 | 118 | 120 | 146 | 0 | 16.3 | .3 | 19.8 | 24 | 208 | <.04 | .94 | <.05 | | 14
MAR | | 120 | 120 | 147 | 0 | | | | 16 | | .07 | .99 | <.05 | | 11
MAY | | 69 | 69 | 84 | 0 | | | | 52 | | .06 | 1.6 | 1.75 | | 14
JUL | 3.65 | 41 | 39 | 48 | 0 | 5.46 | .2 | 9.0 | 197 | 139 | <.04 | 1.6 | 1.75 | | 09
SEP | | 145 | 144 | 176 | 0 | | | | 45 | | <.04 | .73 | .08 | | 03 | | 100 | 98 | 120 | 0 | | | | 15 | | .06 | 1.8 | 45.4 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | . 000 | 0.0 | 0.2 | 1.4 | 100 | 100 | 0.0 | 66 | 0.07 | 2.0 | . 04 | . 1 | .6 | | 13
JAN | <.008 | .06 | .03 | .14 | 100 | 180 | 92 | 66 | 227 | 2.0 | <.04 | <.1 | <6 | | 14
MAR | <.008 | E.03 | <.02 | E.05 | 49 | K4 | 33 | | | | | | | | 11
MAY | .030 | .08 | .05 | . 25 | 860 | K1360 | 860 | | | | | | | | JUL | .075 | .22 | .16 | .42 | K1300 | 2300 | 2300 | 729 | 3720 | 1.2 | E.02 | <.1 | <6 | | 09
SEP | E.005 | <.06 | E.01 | .07 | 750 | K1380 | 1300 | | | | | | | | 03 | .263 | E.03 | <.02 | .06 | 100 | 104 | 288 | | | | | | | ### 05499900 TROUBLESOME CREEK NEAR EWING, MO--Continued (Ambient Water-Quality Monitoring Network) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | Date | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--
--|---|--| | NOV | | | | | | | | | | 13 | 571 | .17 | <1 | 318 | E.01 | E.2 | | 10 | | JAN | | | | | | | | | | 14 | | | | | | | | | | MAR | | | | | | | | | | 11 | | | | | | | | | | MAY | | | | | | | | | | 14 | 412 | 1.24 | 6 | 54.8 | .02 | E.3 | | 17 | | JUL | | | | | | | | | | 09 | | | | | | | | | | SEP | | | | | | | | | | 03 | | | | | | | | | e--Estimated discharge value. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than value shown. #### 05500000 SOUTH FABIUS RIVER NEAR TAYLOR, MO LOCATION.--Lat 39°53'49", long 91°34'49", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.21, T.59 N., R.6 W., Marion County, Hydrologic Unit 07110003, on right bank at downstream side of county highway bridge, 4.5 mi southwest of Taylor, 5.0 mi downstream from Grassy Creek, and 5.3 mi upstream from confluence with North Fabius River. DRAINAGE AREA.--620 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1934 to current year. Prior to December 1934 monthly discharge only published in WSP 1308. REVISED RECORDS. -- WSP 825: 1936. GAGE.--Water-stage recorder. Datum of gage is 482.91 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). Prior to May 14, 1936, nonrecording gage at bridge 4.0 mi downstream at datum 21.94 ft lower; May 14, 1936, to Dec. 2, 1940, nonrecording gage at present site and datum. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 REMARKS.--Water-discharge records fair except for the period Dec. 25 to Jan. 1, which is poor. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1928 reached a stage of 18.49 ft, from floodmarks, at present site and datum. | | | DISCHAR | GE, COBIC | , reel fer | | MEAN VA | | .K 2001 10 i | JEF LEMDE | K 2002 | | | |---|-------------------------------------|---|--|-------------------------------------|-------------------------------------|--|---|---|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 11 | 23 | 15 | e11 | 1210 | 67 | 56 | 849 | 332 | 23 | 8.6 | 9.0 | | 2 | 8.6 | 20 | 14 | 10 | 578 | 70 | 55 | 702 | 236 | 21 | 7.7 | 7.4 | | 3 | 6.5 | 17 | 14 | 10 | 340 | 64 | 51 | 527 | 186 | 20 | 7.2 | 6.4 | | 4 | 6.2 | 15 | 14 | 11 | 262 | 56 | 47 | 347 | 151 | 20 | 7.7 | 5.8 | | 5 | 21 | 15 | 14 | 12 | 172 | 59 | 45 | 262 | 127 | 18 | 8.8 | 5.1 | | 6 | 110 | 14 | 14 | 12 | 188 | 70 | 44 | 2290 | 127 | 20 | 7.8 | 4.7 | | 7 | 99 | 15 | 13 | 12 | 147 | 138 | 45 | 5430 | 96 | 233 | 7.5 | 4.3 | | 8 | 49 | 14 | 12 | 12 | 98 | 174 | 136 | 4310 | 80 | 58 | 6.6 | 3.8 | | 9 | 32 | 14 | 12 | 12 | 78 | 331 | 800 | 7080 | 70 | 31 | 5.7 | 3.2 | | 10 | 35 | 12 | 12 | 12 | 76 | 620 | 722 | 4620 | 71 | 135 | 5.0 | 2.7 | | 11 | 35 | 12 | 13 | 13 | 139 | 814 | 553 | 6720 | 138 | 80 | 4.5 | 2.0 | | 12 | 34 | 12 | 14 | 13 | 398 | 414 | 348 | 9440 | 296 | 56 | 4.2 | 2.0 | | 13 | 31 | 12 | 17 | 14 | 304 | 239 | 230 | 9800 | 1050 | 45 | 4.1 | 3.1 | | 14 | 31 | 12 | 16 | 14 | 223 | 178 | 171 | 13900 | 1950 | 64 | 4.1 | 4.4 | | 15 | 149 | 12 | 15 | 13 | 147 | 144 | 138 | 15400 | 1170 | 47 | 3.8 | 4.1 | | 16 | 344 | 12 | 18 | 12 | 116 | 118 | 116 | 9080 | 466 | 38 | 4.1 | 3.6 | | 17 | 450 | 12 | 18 | 11 | 104 | 99 | 101 | 2270 | 249 | 31 | 5.0 | 3.4 | | 18 | 267 | 11 | 17 | 11 | 90 | 87 | 91 | 1270 | 165 | 40 | 4.7 | 3.2 | | 19 | 144 | 11 | 16 | 11 | 84 | 79 | 88 | 1010 | 126 | 26 | 7.1 | 3.0 | | 20 | 84 | 12 | 15 | 11 | 176 | 73 | 78 | 753 | 99 | 28 | 8.8 | 2.9 | | 21 | 56 | 11 | 16 | 11 | 313 | 68 | 349 | 538 | 80 | 20 | 7.4 | 3.1 | | 22 | 43 | 11 | 23 | 11 | 378 | 64 | 969 | 404 | 64 | 17 | 6.4 | 3.1 | | 23 | 34 | 12 | 21 | 11 | 330 | 58 | 1030 | 309 | 54 | 17 | 39 | 2.5 | | 24 | 28 | 24 | 19 | 11 | 207 | 55 | 1960 | 263 | 47 | 15 | 54 | 2.2 | | 25 | 22 | 20 | e18 | 12 | 143 | 54 | 4040 | 1290 | 40 | 12 | 67 | 2.2 | | 26
27
28
29
30
31 | 18
15
16
39
32
27 | 18
20
18
16
17 | e16
e15
e14
e13
e12
e11 | 12
11
11
11
51
1270 | 110
87
71
 | 51
49
48
49
50
51 | 2460
2720
4990
4600
2630 | 3430
1930
1110
1360
1610
587 | 34
32
28
26
23 | 13
12
10
11
10
9.0 | 34
21
16
12
11 | 2.2
2.5
2.7
3.2
3.1 | | MEAN | 73.5 | 14.8 | 15.2 | 53.5 | 235 | 145 | 989 | 3513 | 254 | 38.1 | | 3.70 | | MAX | 450 | 24 | 23 | 1270 | 1210 | 814 | 4990 | 15400 | 1950 | 233 | | 9.0 | | MIN | 6.2 | 11 | 11 | 10 | 71 | 48 | 44 | 262 | 23 | 9.0 | | 2.0 | | IN. | 0.14 | 0.03 | 0.03 | 0.10 | 0.39 | 0.27 | 1.78 | 6.53 | 0.46 | 0.07 | | 0.01 | | MEAN
MAX
(WY)
MIN
(WY) | 261
2690
1987
0.00
1957 | 290
3103
1986
0.00
1957 | 250
2137
1983
1.52
1964 | 298
2000
1965
2.12
1954 | 537
2340
1982
4.78
1989 | - 2002,
700
2659
1973
15.0
1956 | 774
3989
1973
13.4
1989 | 786
4078
1995
7.56
1989 | 500
3891
1947
5.68
1977 | 379
3647
1993
0.71
1988 | 167
2335
1970
0.00
1936 | 191
2841
1970
0.39
1953 | | SUMMARY | STATISTI | CS | FOR 2 | 2001 CALEN | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1935 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANTI
ANNUAL
10 PERC
50 PERC | CANNUAL ME
ANNUAL ME | CAN CAN LN MINIMUM OW LGE OW FLOW CNCHES) CDS | | | May 15
Jan 13
Jan 7 | | 449
15400
2.0
2.5
17600
17.39
1.9 Sep
9.83
806
31
5.8 | May 15
Sep 11,12
Sep 22
May 14
May 14
11-13,26 | | 420
1147
27.4
18800
0.00
0.00
19700
0.00
9.21
975
60
4.3 | Jun
Several
Several
Jun
Jun
Several | 1993
1989
8 1947
1 Years
1 Years
8 1947
8 1947
1 Years | e Estimated # FABIUS RIVER BASIN 55 # 05500000 SOUTH FABIUS RIVER NEAR TAYLOR, MO--Continued (Ambient Water-Quality Monitoring Network) # WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1972 to August 1973, October 1979 to October 1989, November 1992 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|---
---|---|--|---|---|--|---|---|--|---|---| | OCT
15 | 1220 | ENVIRONMENT | ral. | 132 | 8.4 | 80 | 7.7 | 358 | 12.4 | | | | | | NOV
14 | 0820 | ENVIRONMENT | ral. | 12 | 9.4 | 87 | 8.1 | 436 | 10.6 | 200 | 59.1 | 11.6 | 6.94 | | DEC
06 | 1150 | ENVIRONMENT | ral. | 14 | 10.9 | 99 | 8.0 | 454 | 10.2 | | | | | | JAN
15
15 | 0845
0850 | ENVIRONMENT
BLANK | PAL | 13 | 14.9 | 105 | 8.1 | 316
 | .5 | 260 | 75.1
.10 | 16.6
.021 | 3.55
.18 | | FEB
11 | 1300 | ENVIRONMENT | TAL. | 101 | 13.3 | 100 | 7.9 | 387 | 3.1 | | | | | | MAR
12 | 0840 | ENVIRONMENT | PAL . | 449 | 12.4 | 98 | 7.7 | 327 | 4.6 | | | | | | APR 03 | 0820 | ENVIRONMENT | PAL . | 51 | 11.9 | 98 | 8.7 | 462 | 6.9 | | | | | | MAY
14 | 1630 | ENVIRONMENT | TAL | 15300 | 7.1 | 75 | 7.4 | 100 | 17.1 | 43 | 13.5 | 2.24 | 1.53 | | JUN
03 | 1259 | BLANK | | | | | | . == | | | | | | | 03
JUL | 1300 | ENVIRONMENT | TAL | 131 | 7.4 | 96 | 8.0 | 281 | 27.7 | | | | | | 09
AUG | 1325 | ENVIRONMENT | PAL . | 24 | 8.2 | 113 | 8.1 | 316 | 31.0 | 130 | 40.9 | 7.75 | 4.59 | | 14
SEP | 0815 | ENVIRONMENT | PAL . | 4 | 5.0 | 59 | 7.8 | 399 | 22.7 | | | | | | 04 | 0900 | ENVIRONMENT | PAL . | 5.8 | 5.3 | 62 | 7.8 | 392 | 22.9 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER W UNFLTRD UN FET FIELD F (mg/L as (m CaCO ₃) | ANC
NATER
NFLTRD
IT
FIELD
ng/L as
CaCO ₃) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
15 | DIS-
SOLVED
(mg/L
as Na) | WATER W UNFLTRD UN FET FIELD F (mg/L as (m CaCO ₃) (000410) (0 | NATER NFLTRD IT FIELD ng/L as CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
15
NOV
14 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER W UNFITRD UN FET FIELD F (mg/L as (m CaCO ₃) (00410) (0 | WATER WELTRD IT FIELD mg/L as CaCO ₃) 00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
15
NOV
14
DEC
06 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER W UNFITRD UN FET FIELD F (mg/L as (m CaCO ₃) (00410) (0 119 164 | WATER WFLTRD IT FIELD ag/L as CaCO ₃) 00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO_2+NO_3 DIS-SOLVED (mg/L as N) (00631) | | OCT
15
NOV
14
DEC
06
JAN
15 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER WINFITRD UNFETF FIELD F (mg/L as (m CaCO ₃) (00410) (0 | WATER WIFLTRD IT PIELD RIG/L as CaCO ₃) 00419) | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 13 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .61 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .35 | | OCT
15
NOV
14
DEC
06
JAN
15
15 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER W UNFITRD UN FET FIELD F (mg/L as (m CaCO ₃) (00410) (0 119 164 169 185 | WATER UFLITED IT FIELD USG/L as CaCO ₃) 00419) 120 165 170 186 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 147 202 207 227 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

17.9 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) 43.6 72.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 13 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.61
.60
.36 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .35 <.05 <.05 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR | DIS-
SOLVED (mg/L as Na) (00930) | WATER W UNFITRD UN FET FIELD F (mg/L as (m CaCO ₃) (00410) (0 119 164 169 185 | WATER UPLITED | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 147 202 207 227 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

17.9

16.1 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.3

.2
<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

43.6

72.2
2.6 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 13 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

270

318
<10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTTAL (mg/L as N) (00625) .61 .60 .36 .35 <.10 | GEN,
NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .35 <.05 <.05 <.05 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12
APR
03 | DIS-
SOLVED (mg/L as Na) (00930) | WATER W UNFLTRD UN FET FIELD F (mg/L as (m CaCO ₃) (00410) (0 119 164 169 185 105 76 | WATER WFLITRD IT FIELD MG/L as CaCO ₃) 00419) 120 165 170 186 104 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
147
202
207
227

127 | CAR-BONATE IT FIELD (mg/L as CO ₃)(00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

17.9

16.1 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.3

.2
<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

43.6

72.2
2.6 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 13 <10 <10 <10 <10 10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

270

318
<10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 E.14 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .61 .60 .36 .35 <.10 .90 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .35 <.05 <.05 <.05 <.05 E3.44 | | OCT
15
NOV
14
DEC
06
JAN
15
15
15
45
MAR
12
APR
03
MAY
14
JUN | DIS-
SOLVED (mg/L
as Na) (00930) 15.4 18.2 .29 4.07 | WATER W UNFITRD UN FET FIELD F (mg/L as (m CaCO ₃) (00410) (0 119 164 169 185 105 76 136 37 | WATER WATER FILTRD IT FIELD MS/L as CaCO ₃) 10419) 120 165 170 186 104 73 135 35 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 147 202 207 227 127 89 152 42 | CAR-BONATE IT FIELD (mg/L as CO ₃)(00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

17.9

16.1

2.38 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950)

.3

.2
<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

43.6

72.2
2.6

4.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 13 <10 <10 <10 <10 10 260 12 316 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

270

318
<10
 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .61 .60 .36 .35 <.10 .90 2.0 .63 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .35 <.05 <.05 <.05 <.05 <.05 <.81 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12
APR
03
MAY
14
JUN
03 | DIS-
SOLVED (mg/L as Na) (00930) | WATER WINFITRD UNFITTED UNFITTED FROM CACO3) (00410) (0 119 164 169 185 105 76 136 | WATER WELLTRD IT TELLD 11 SCACO3 100419 120 165 170 186 104 73 135 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 147 202 207 227 127 89 152 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0
0
0
0
0
0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

17.9

16.1
 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950)

.3

.2
<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

43.6

72.2
2.6 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 13 <10 <10 <10 <10 10 260 12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

270

318
<10
 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .61 .60 .36 .35 <.10 .90 2.0 .63 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .35 <.05 <.05 <.05 <.05 1.24 <.05 | | OCT
15
NOV
14
DEC
06
JAN
15
FEB
11
MAR
12
APR
03
MAY
14
JUN
03
03
03
03
03
099 | DIS-
SOLVED (mg/L as Na) (00930) 15.4 18.2 .29 4.07 | WATER W UNFITRD UN FET FIELD F (mg/L as (m CaCO ₃) (00410) (0 119 164 169 185 105 76 136 37 101 | WATER WATER WELLTRD IT TPIELD MG/L as CaCO ₃) 100419) 120 165 170 186 104 73 135 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 147 202 207 227 127 89 152 42 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0
0
0
0
0
0
0 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940)

17.9
16.1

2.38 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950)

.3

.2
<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

43.6

72.2
2.6

4.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 13 <10 <10 <10 <10 <10 <10 10 260 12 316 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

270

318
<10
 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .61 .60 .36 .35 <.10 .90 2.0 .63 2.2 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .35 <.05 <.05 <.05 <.05 <.05 <.05 .81 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12
APR
03
MAY
14
JUN
03 | DIS-
SOLVED (mg/L
as Na) (00930) 15.4 18.2 .29 4.07 | WATER W UNFLTRD UN FET FIELD F (mg/L as (m CaCO ₃) (00410) (0 119 164 169 185 105 76 136 37 101 118 | WATER WATER FILTRO IT FIELD MS/L as CaCO3) 100419) 120 165 170 186 104 73 135 35 99 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 147 202 207 227 127 89 152 42 121 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

17.9

16.1

2.38 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950)

.3

.2
<.1

.2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

43.6

72.2
2.6

4.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 13 <10 <10 <10 <10 10 260 12 316 42 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

270

318
<10

 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .61 .60 .36 .35 <.10 .90 2.0 .63 2.280 | GEN, NO2+NO3 DIS-SOLVED (mg/L as N) (00631) .35 <.05 <.05 <.05 <.05 <.05 <.05 .05 .05 | 56 FABIUS RIVER BASIN # 05500000 SOUTH FABIUS RIVER NEAR TAYLOR, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |---|--|--|--|--|--|--|--|--|---|--|---|---|--| | OCT
15 | .010 | .08 | .05 | .10 | 450 | K830 | 530 | | | | | | | | NOV
14 | <.008 | <.06 | <.02 | E.04 | K11 | K17 | K26 | 46 | 51 | 1.0 | <.04 | <.1 | <6 | | DEC
06 | <.008 | <.06 | <.02 | <.06 | K11 | 21 | 44 | | | | | | | | JAN
15
15 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | <1
 | K1
 | K22
 | 5
7 | 15
9 | .7 | <.04
<.04 | <.1
<.1 | <6
<6 | | FEB 11 | E.036 | E.05 | E.03 | .08 | К6 | K15 | 58 | | | | | | | | MAR
12
APR | .095 | .09 | .02 | .43 | 450 | 620 | 700 | | | | | | | | 03
MAY | <.008 | <.06 | <.02 | E.05 | К4 | К9 | 36 | | | | | | | | 14
JUN | .085 | .20 | .14 | .70 | 1400 | 2800 | 2600 | 951 | 6330 | 1.3 | .04 | .2 | E4 | | 03
03 | .071 | .08 |
E.01 |
.16 |
K49 | 200 |
170 | | | | | | | | JUL
09 | .015 | E.04 | .03 | .14 | K520 | K780 | 110 | 6 | 721 | 1.8 | <.04 | <.1 | <6 | | AUG
14 | <.008 | <.06 | <.02 | .06 | 41 | 52 | 125 | | | | | | | | SEP
04 | <.008 | E.03 | <.02 | E.04 | 41 | 38 | 67 | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) |
ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | | OCT
15
NOV | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | ОСТ
15 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT 15 NOV 14 DEC 06 JAN 15 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

116

102 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

36.4

62.4 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | ETHYL ANTILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
15
NOV
14
DEC
06
JAN
15
15 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

116

102
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

36.4

62.4
<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.3

.6
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 | ETHYL ANTLINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260)

<.004
 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.002
 | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.160 | | OCT 15 NOV 14 DEC 06 JAN 15 15 FEB 11 MAR | DIS-
SOLVED
(µg/L
as Fe)
(01046)

116

102
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

36.4

62.4 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 2 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260)

<.004

 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.002
 | BHC DIS-
SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.160 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

116

102
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

36.4

62.4
<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.3

.6
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 2 | ETHYL ANILINE 0.7 µ GF, REC (µg/L) (82660) <.002 <.006 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260)

<.004

<.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.160

.136 | | OCT | DIS-
SOLVED
(µg/L
as Fe)
(01046)

116

102
<10
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

<.08
E.07 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

36.4

62.4
<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.3

.6
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 2 | ETHYL ANTLINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.002 | CHLOR, WATER FLTRD REC (µg/L) (49260) <.004 <.006 <.004 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.160

.136 | | OCT 15 NOV 14 DEC 06 JAN 15 15 15 45 MAR 12 APR 03 MAY 14 JUN | DIS-
SOLVED (µg/L as Fe) (01046) 116 102 <10 699 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

<.08
E.07

2.12 | TOTAL RECOV- REABLE (µg/L as Pb) (01051) <1 <1 <1 <1 13 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

36.4

62.4
<2.0 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.010101 | NIUM,
DIS-
SOLVED (µg/L
as Se) (01145)

E.3

.6
<.3

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 6 2 33 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.002 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 <.004 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 <.002 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.160

.136
.177
3.93 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12
APR
03
MAY
14
JUN
03 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

116

102
<10
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

<.08
E.07 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

36.4

62.4
<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.3

.6
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 2 | ETHYL ANTLINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.002 | CHLOR, WATER FLTRD REC (µg/L) (49260) <.004 <.006 <.004 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.160

.136 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12
APR
03
MAY
14
JUN
03
03 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

116

102
<10

699 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

<.08
E.07

2.12 | TOTAL RECOV- REABLE (µg/L as Pb) (01051) <1 <1 <11 3 13 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

36.4

62.4
<2.0 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.010101 | NIUM,
DIS-
SOLVED (µg/L
as Se) (01145)

E.3

.6
<.3

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 6 2 333 | ETHYL ANTLINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.002 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 <.004 .150 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 <.002 .041 <.004 | BHC DTS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632)160136 .177 3.93 <.007 | | OCT 15 NOV 14 DEC 06 JAN 15 15 FEB 11 MAR 12 APR 03 APR 14 JUN 03 03 JUL | DIS-
SOLVED (µg/L as Fe) (01046) 116 102 <10 699 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

<.08
E.07

2.12 | TOTAL RECOV- REABLE (µg/L as Pb) (01051) <1 <11 13 13 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

36.4

62.4
<2.0

55.8 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.010101 | NIUM,
DIS-
SOLVED
(µg/L
as
Se)
(01145)

E.3

.6
<.3

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 2 33 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.002 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 <.004 .150 <.006 .308 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 <.002 .041 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 160136 .177 3.93 <.007 | # 05500000 SOUTH FABIUS RIVER NEAR TAYLOR, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | |---|--|--|---|--|---|---|--|--|---|---|--|---|---| | OCT
15 | | | | | | | | | | | | | | | NOV
14 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.068 | <.005 | <.005 | <.02 | <.002 | <.009 | | DEC
06 | | | | | | | | E.000 | | | | | | | JAN
15 | | | | | | | | | | | | | | | 15
FEB | | | | | | | | | | | | | | | 11
MAR | | | | | | | | | | | | | | | 12
APR | <.010 | <.002 | <.041 | <.020 | <.005 | E.015 | <.003 | E.048 | <.005 | <.005 | <.02 | <.002 | <.009 | | 03
MAY | <.010 | <.002 | <.041 | <.020 | <.005 | E.016 | <.003 | E.066 | <.005 | <.005 | <.02 | <.002 | <.009 | | 14
JUN | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.392 | E.003 | <.005 | <.02 | <.002 | <.009 | | 03
03 | <.010
<.010 | <.002
<.002 | <.041
<.041 | <.020
<.020 | <.005
<.005 | <.018
<.018 | <.003
<.003 | <.006
E.449 | <.005
<.005 | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | | JUL
09 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.536 | <.005 | <.005 | <.02 | <.002 | <.009 | | AUG
14 | | | | | | | | | | | | | | | SEP
04 | DATE | ETHO-
PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
15 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER DISS REC (µg/L) (04095) | DIS-
SOLVED
(µg/L)
(39341) | URON
WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82671) | AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
15
NOV
14
DEC | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
15
NOV
14
DEC
06
JAN | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLITRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415)032 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82671) | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT 15 NOV 14 DEC 06 JAN 15 | PROP
WATER
FLITD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684)

<.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT
15
NOV
14
DEC
06
JAN
15
15 | PROP
WATER
FLITED
0.7 µ
GF, REC
(µg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L) (39341)
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) 032 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLITRD 0.7 µ GF, REC (µg/L) (82684) | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12 | PROP WATER FLITRD 0.7 μ GF, REC (μg/L) (82672) | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L) (39341) <.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA- THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 032 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684)

<.007 |
DDE
DISSOLV
(µg/L)
(34653)

<.003
 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007
 | | OCT 15 NOV 14 DEC 06 JAN 15 15 15 FEB 11 MAR 12 APR 03 | PROP
WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 032 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12
APR
03
MAY | PROP WATER FLITED 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)

<.050

<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006

<.100 | LACHLOR WATER DISSOLV (µg/L) (39415) 032035 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 | AMIDE WATER FLITRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12
APR
03
MAY
14
JUN
03 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <-005 <-005 <-005 <-005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.100
<.100 | LACHLOR WATER DISSOLV (µg/L) (39415) 032035 .018 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.007 | | OCT 15 NOV 14 DEC 06 JAN 15 15 FEB 11 MAR 12 APR 03 MAY 14 JUN 03 03 03 JUL 09 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.100
<.100
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 032035 .018 1.13 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
.011 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.007 <.010 <.010 | | OCT
15
NOV
14
DEC
06
JAN
15
15
FEB
11
MAR
12
APR
03
MAY
14
JUN
03 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 <-005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004
<.004
<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006

<.100
<.100
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 032035 .018 1.13 <.013 2.03 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
.011
<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.007 <.010 <.010 <.010 | 58 FABIUS RIVER BASIN # 05500000 SOUTH FABIUS RIVER NEAR TAYLOR, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82675) | |-----------|---|---|--|--|---|---|---|--|--|---|---|--|--| | OCT
15 | | | | | | | | | | | | | | | NOV | | | | | | | | | | | | | | | 14
DEC | <.002 | <.010 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .038 | <.02 | <.034 | <.02 | | 06 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | FEB
11 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 12
APR | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .037 | E.01 | <.034 | <.02 | | 03 | <.002 | <.010 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .026 | E.01 | <.034 | <.02 | | MAY | | | | | | | | | | | | | | | 14 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | 1.15 | <.02 | <.034 | <.02 | | JUN | | | | | | | | | | | | | | | 03 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | 03 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | 2.07 | E.01 | <.034 | <.02 | | JUL | . 004 | . 000 | . 006 | . 011 | ., | . 004 | . 010 | . 011 | . 00 | 1.45 | . 00 | . 024 | . 00 | | 09
AUG | <.004 | <.022 | <.006 | <.011 | M | <.004 | <.010 | <.011 | <.02 | .145 | <.02 | <.034 | <.02 | | 14 | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | DATE | $(\mu g/L)$ | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | 0.7 μ
GF, REC
(μg/L) | |-----------|----------------|---|----------------------------| | OCT | | | | | 15
NOV | | | | | 14 | <.005 | <.002 | <.009 | | DEC
06 | | | | | JAN | | | | | 15
15 | | | | | FEB | | | | | 11
MAR | | | | | 12 | <.005 | <.002 | E.004 | | APR | | | | | 03
MAY | <.005 | <.002 | <.009 | | 14 | <.005 | <.002 | <.009 | | JUN | . 005 | . 000 | . 000 | | 03
03 | <.005
<.005 | <.002
<.002 | <.009
<.009 | | JUL | <.005 | <.002 | <.009 | | 09 | <.005 | <.002 | <.009 | | AUG | | | | | 14 | | | | | SEP | | | | | 04 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. # NORTH RIVER BASIN 59 # 05501000 NORTH RIVER AT PALMYRA, MO LOCATION.--Lat 39°49'06", long 91°31'13", in SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.13, T.58 N., R.6 W., Marion County, Hydrologic Unit 07110004, on right bank 100 ft upstream from City Waterworks Dam, 1,000 ft
upstream from upstream bridge on dual U.S. Highways 24 and 61, 0.5 mi north of Palmyra, and 7.0 mi upstream from mouth. DRAINAGE AREA.--373 mi². PERIOD OF RECORD. -- December 1934 to current year. GAGE.--Water-stage recorder. Datum of gage is 464.81 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). Prior to Oct. 1, 1945, nonrecording gage at bridge 1,000 ft downstream; Oct. 1, 1945, to June 22, 1951, nonrecording gage at present site and datum. REMARKS.--Records poor. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage prior to 1934, about 28.0 ft, from floodmarks, date unknown, at site 1,000 ft downstream, present datum. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE
MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |--|--|--|--|--|-------------------------------------|-------------------------------------|--|--|-------------------------------------|---|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.0
4.5
3.9
3.5
157 | 14
41
44
38
e28 | 18
17
16
14
12 | e12
e12
9.2
13
21 | 1420
590
374
255
172 | e60
e58
e56
e49
e51 | 45
43
39
34
33 | 324
241
180
166
123 | 174
133
110
93
82 | 21
18
19
20
17 | 8.1
7.5
6.6
6.0
5.4 | 5.1
4.5
3.7
3.1
2.8 | | 6
7
8
9
10 | e209
e184
e76
e48
e43 | e21
e19
e18
e17
e15 | 11
10
10
9.8
9.2 | 28
15
10
11 | 158
145
109
92
87 | 100
201
159
536
441 | 33
37
184
1000
475 | 2890
6340
2360
16000
3040 | 74
68
61
54
54 | 15
25
65
56
37 | 4.8
4.3
3.9
3.7
3.7 | 2.5
2.2
2.2
2.1
9.5 | | 11
12
13
14
15 | e36
33
53
142
97 | e15
e16
e16
e16
e16 | 8.8
10
17
26
27 | 11
10
11
13
17 | 79
71
87
81
67 | 293
196
146
121
107 | 263
256
192
142
119 | 10400
12900
5490
2440
1030 | 86
246
530
545
245 | 31
25
23
20
21 | 3.8
3.7
3.7
3.7
3.7 | 7.7
3.1
2.4
2.0
2.0 | | 16
17
18
19
20 | 159
180
95
54
36 | e16
e16
e15
e15
e16 | 28
25
22
21
19 | 16
15
14
15 | 58
51
46
48
188 | 94
84
76
75
75 | 102
88
77
70
67 | 635
572
619
443
357 | 171
124
100
180
92 | 17
16
15
15
14 | 4.4
4.7
3.9
6.3
5.8 | 2.0
1.9
1.9
1.7
1.5 | | 21
22
23
24
25 | 25
19
14
13
12 | e15
e14
31
110
70 | 18
19
e25
e22
e20 | 14
13
13
13
13 | 360
194
135
104
84 | 69
60
55
53 | 1050
757
437
748
1750 | 302
266
238
258
1100 | 66
53
45
39
37 | 14
86
143
48
23 | 6.0
7.2
10
236
96 | 1.6
1.5
1.4
1.3
1.2 | | 26
27
28
29
30
31 | 11
9.6
8.7
7.5
6.6
6.4 | 43
29
19
16
16 | e18
e17
e16
e14
e14
e12 | 13
14
14
14
276
3890 | 72
64
e62
 | 55
51
51
51
52
49 | 601
3600
4050
1320
673 | 1060
879
489
294
271
279 | 36
32
26
23
22 | 19
14
11
12
11
8.5 | 44
24
15
11
8.2
6.5 | 1.2
1.2
1.1
0.93
0.82 | | MEAN
MAX
MIN
IN. | 56.5
209
3.5
0.17 | 25.8
110
14
0.08 | 17.0
28
8.8
0.05 | 147
3890
9.2
0.46 | 188
1420
46
0.52 | 115
536
49
0.36 | 610
4050
33
1.82 | 2322
16000
123
7.18 | 120
545
22
0.36 | 28.4
143
8.5
0.09 | 18.1
236
3.7
0.06 | 2.54
9.5
0.82
0.01 | | | TICS OF MO | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 148
1742
1987
0.00
1957 | 176
2639
1986
0.00
1957 | 166
1832
1983
0.23
1957 | 184
991
1969
0.66
1954 | 322
1720
1982
0.92
1954 | 440
2783
1973
6.54
1956 | 488
2691
1973
24.8
2000 | 502
2322
2002
15.5
1989 | 312
2296
1947
4.77
1936 | 241
2100
1993
0.52
1936 | 104
1357
1970
0.00
1936 | 121
1351
1970
0.17
1940 | | SUMMAR | Y STATISTI | CS | FO | R 2001 CAL | ENDAR YEA | AR. | FOR 2002 | WATER YEA | R | WATER YE | EARS 1935 | - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
ANNUAL
10 PER
50 PER | MEAN T ANNUAL ME T ANNUAL ME T DAILY ME DAILY MEA SEVEN-DAY M PEAK STA ITANEOUS LO RUNOFF (I CENT EXCEE CENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS DS | | 5520
1.2
1.8

7.81
383
28
4.1 | Jun
Aug 1
Aug 1 | 15 | 306 16000 0.82 1.1 23000 25.00 0.71 11.2 439 29 3.9 | May
Sep 3
Sep 2
May
May
Sep 3 | 0
4
9
9 | 263
748
22.1
32600
0.00
57400
29.70
0.00
9.60
466
39
3.5 | Several
Several
Apr 2 | Years
21 1973
21 1973 | e Estimated 60 BEAR CREEK BASIN # 05502000 BEAR CREEK AT HANNIBAL, MO LOCATION.--Lat 39°40'43", long 91°24'41", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.1, T.56 N., R.5 W., Ralls County, Hydrologic Unit 07110004, at bridge on Industrial Drive, on right downstream bank, and 4.65 mi upstream from mouth. DRAINAGE AREA. -- 31.0 mi². PERIOD OF RECORD.--October 1938 to September 1942, October 1947 to current year in reports of the U.S. Geological Survey. Monthly discharge only for some periods published in WSP 1308. October 1936 to November 1938 (gage-height and discharge measurements only) in reports of the Missouri Department of Natural Resources. REVISED RECORDS.--WSP 1115: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 508.91 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 26, 1948, nonrecording gage; Mar. 26, 1948, to Sept. 30, 1953, water-stage recorder at datum 2.00 ft higher; Oct. 1, 1953, to Oct. 30, 1961, at present datum; Oct. 31, 1961, to Sept. 5, 1972, water-stage recorder 400 ft downstream at present datum; Sept. 6, 1972, to July 2, 1986, water-stage recorder 525 ft upstream at present datum. REMARKS.--Records poor. Flow partially regulated by Bear Creek flood control reservoir, 1.0 mi upstream, since Aug. 7, 1961. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 6,500 ft³/s, Aug. 3, 1957; gage height, 14.05 ft. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE | CAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|--|--|---|-------------------------------------|-------------------------------------|---|--|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.81
0.76
0.62
0.67
26 | 2.3
2.3
2.3
2.2
2.1 | 5.5
4.7
4.0
3.8
4.6 | 2.6
2.7
2.6
2.7
3.2 | 12
8.0
6.8
160
279 | 7.1
10
12
9.1 | 4.7
4.6
3.9
3.7
4.1 | 131
122
226
259
170 | 7.6
7.0
7.0
5.6
6.3 | 3.3
3.0
3.1
3.0
3.0 | 1.9
1.8
1.7
1.7 | 1.2
1.3
1.1
0.85
1.1 | | 6
7
8
9
10 | 30
7.8
2.6
1.9
2.4 | 2.1
2.3
2.2
2.0
2.1 | 3.5
3.1
3.0
2.8
2.7 | 3.8
3.4
3.2
4.6
3.1 | 254
115
14
11
10 | 29
25
15
38
20 | 4.3
5.2
56
63
110 | 104
174
178
225
407 | 8.4
7.9
7.8
7.3
8.8 | 3.0
3.1
3.0
3.1
3.2 | 1.6
1.3
1.2
1.1 | 1.1
1.0
0.94
0.75
0.68 | | 11
12
13
14
15 | 4.4
15
11
21 | 2.1
2.1
2.1
2.1
2.1 | 2.8
3.9
6.4
6.7
6.1 | 3.5
2.9
2.8
2.9
2.7 | 9.5
9.6
8.7
8.1 | 13
11
9.6
9.0
8.7 | | | | 4.8
3.8
3.0
2.3
2.3 | | 0.61
0.58
0.58
0.66
0.97 | | 16
17
18
19
20 | 15
8.3
4.9
3.7
3.1 | 2.1
2.0
2.1
2.2
2.0 | 5.1
4.7
4.1
3.7
3.2 | 2.6
2.6
2.5
2.7
2.8 | 7.3
5.3
4.8
6.3 | 8.0
7.6
7.2
7.3
8.4 | 7.8
7.2
6.1
5.4
4.9 | 113
123
117
115
269 | 12
10
8.9
7.4
6.7 | 2.4
2.1
2.2
2.1
2.2 | 2.0
2.9
1.7
17
4.3 | 1.1
1.0
0.96
0.96
0.97 | | 21
22
23
24
25 | 2.8
2.7
2.7
2.9
2.4 | 2.0
2.3
2.2
31
32 | 3.1
8.4
8.2
5.5
4.2 | 2.6
2.6
2.7
2.7
2.5 | 22
14
11
9.3
8.2 |
6.9
6.2
6.6
7.0
6.9 | 58
14
95
134
148 | 521
501
215
18
31 | 6.2
6.1
6.2
5.5
5.7 | 1.9
4.7
14
5.3
2.7 | 2.3
1.8
40
11
2.7 | 0.92
0.66
0.69
0.53
0.40 | | 26
27
28
29
30
31 | 2.2
2.2
2.2
2.2
2.2
2.2 | 10
6.8
5.1
5.2
5.7 | 3.6
3.6
3.6
3.1
2.7
2.7 | 2.7
2.5
2.4
2.4
41
80 | 7.7
6.8
6.5
 | 6.5
5.6
5.3
6.4
5.8 | 37
151
52
114
132 | 16
41
63
15
16
9.0 | 5.9
5.4
4.3
4.1
3.7 | 2.3
2.1
1.9
6.4
7.5
2.6 | 1.8
1.6
1.4
1.2
1.2 | 0.63
0.56
0.83
0.56
0.47 | | MEAN
MAX
MIN
IN. | 6.44
30
0.62
0.24 | 4.84
32
2.0
0.17 | 4.29
8.4
2.7
0.16 | 6.58
80
2.4
0.24 | 38.4
279
4.8
1.29 | 10.8
38
5.0
0.40 | 43.7
151
3.7
1.57 | 183
521
9.0
6.81 | 15.1
130
3.7
0.54 | 3.53
14
1.9
0.13 | 3.82
40
1.1
0.14 | 0.82
1.3
0.40
0.03 | | STATIS | TICS OF MC | | | R WATER Y | EARS 1962 | 2 - 2002 ^a | , BY WATER | YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.9
116
1970
0.02
1964 | 19.6
225
1986
0.15
1964 | 18.1
155
1983
0.11
1964 | 15.7
84.0
1969
0.27
1977 | 32.2
136
1997
0.85
1964 | 37.7
125
1973
2.86
1981 | 38.7
193
1973
2.94
2000 | 40.5
183
2002
2.25
2000 | 22.0
76.5
1982
0.58
1963 | 19.0
193
1981
0.03
1977 | 14.4
141
1993
0.15
1962 | 13.8
190
1970
0.01
1988 | | SUMMAR | Y STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | AR. | FOR 2002 | WATER YE | AR | WATER YE | ARS 1962 | - 2002 ^a | | LOWEST HIGHES' LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL 10 PER 50 PER | MEAN T ANNUAL M ANNUAL M T DAILY MEA SEVEN-DAY M PEAK FLC M PEAK STT TANEOUS LC RUNOFF (I CENT EXCER CENT EXCER | CAN CAN AN MINIMUM OW AGE OW FLOW CINCHES) COS | | 21.5
325
0.54
0.72

9.41
66
3.8
1.1 | Jan 3
Sep 1
Sep 1 | 4 | 26.8
521
0.40
0.57
792
6.06
0.14
11.74
76
4.6
1.2 | May
Sep
Sep
Apr
Apr
Sep | 21
25
24
27
27
30 | 23.7
57.9
5.33
1470
0.00
0.00
3120
9.24
0.00
10.40
52
4.6
0.58 | Sep 2
Several
Several
Sep 2
May 1
Several | 1993
1989
5 1970
Years
Years
3 1970
4 1970
Years | a Post-regulation period. ## 05502300 NORTH FORK SALT RIVER AT HAGERS GROVE, MO LOCATION.--Lat 39°49'48", long 92°13'47", in NE $\frac{1}{4}$ Sec.15, T.58 N., R.12 W., Shelby County, Hydrologic Unit 07110005, at bridge on State Highway 151, 200 ft downstream from old channel carrying Bear Creek, 0.25 mi west of Hagers Grove, 2.5 mi upstream from Ten Mile Creek, and at mile 143.8. DRAINAGE AREA.--365 mi². PERIOD OF RECORD.--September 1974 to current year. Prior to October 1983 published as "Salt River at Hagers Grove, Mo.". September 1939 to August 1974, gage-height and miscellaneous measurements published by the U.S. Army Corps of Engineers. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 702.30 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records poor. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1947 reached a stage of 19.7 ft, discharge $26,900 \text{ ft}^3/\text{s}$, according to information furnished by the U.S. Army Corps of Engineers. | | | DISCHA | RGE, CUBI | C FEET PER | | WATER YE | | R 2001 TO 8 | SEPTEMBE | ER 2002 | | | |---|---|--|---------------------------------------|--|---------------------------------------|---------------------------------------|---|---|--|---|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
17
17
21
114 | 17
14
13
12
11 | 11
10
9.5
8.9 | e5.4
e4.8
e4.4
e4.1
e5.1 | 307
189
e161
e121
e96 | 61
58
58
79
66 | 45
43
41
39
37 | e292
130
92
63
47 | 112
62
38
32
28 | 13
12
11
9.4
8.6 | 6.9
7.6
6.7
6.7 | 3.8
3.7
3.4
3.2
3.1 | | 6
7
8
9
10 | 95
59
34
20
18 | 13
13
22
17
16 | 16
14
14
15
13 | e6.0
e5.8
e4.9
e6.5
e8.4 | e77
e68
62
140
464 | | 35
36
59
230
215 | 3380
4400
788
5020
1110 | 25
20
20
20
18 | 10
10
31
35
29 | 6.2
6.8
6.1
5.7 | 3.0
3.0
2.9
3.0
2.8 | | 11
12
13
14
15 | 18
15
26
27
87 | 17
18
16
15 | 13
14
15
36
55 | e9.0
e9.6
e11
e11 | 463
232
164
e120
e97 | 190
126
106
95
81 | 113
75
60
53
50 | 6130
16600
25000
4950
1270 | 20
489
954
744
249 | 209
141
210
72
45 | 5.3
5.2
6.1
7.9
5.6 | 3.0
3.0
3.1
3.3
3.0 | | 16
17
18
19
20 | 639
159
71
48
37 | 15
15
14
14
13 | 38
e29
e23
e18
e16 | e10
e7.8
e7.7
e9.0
e7.9 | e79
e71
63
62
562 | 68
59
54
51
51 | 45
41
38
91
111 | 577
223
208
158
110 | 167
100
65
43
37 | 25
23
18
12
11 | 5.2
5.1
6.1
17 | 3.1
3.2
3.8
3.2
5.6 | | 21
22
23
24
25 | 30
28
23
58
48 | 13
12
10
6.8
7.5 | e14
e12
e11
e10
e9.6 | e13
10
12
11 | 614
208
129
108
96 | | 1390
1030
252
418
1430 | 91
94
87
500
4020 | 34
30
27
24
22 | 8.1
6.3
5.8
6.6
7.6 | 6.8
29
62
36
17 | 4.7
4.1
4.0
4.2
3.9 | | 26
27
28
29
30
31 | 42
36
30
25
21
19 | 7.7
5.9
9.1
6.3
7.7 | e8.1
e6.5
e6.3 | 12
15
13
13
28
347 | 81
64
60
 | 40
40
45
50
49
48 | 353
1460
e2980
e1360
e374 | 1850
415
640
1410
382
186 | 20
18
16
15 | 13
8.4
5.5
41
10
7.8 | 15
9.2
5.6
4.9
4.7
4.2 | 3.7
3.5
3.4
3.3
3.1 | | MEAN
MAX
MIN
IN. | 61.1
639
12
0.19 | 12.9
22
5.9
0.04 | 15.8
55
6.3
0.05 | 0.06 | 177
614
60
0.51 | 120
927
39
0.38 | 417
2980
35
1.27 | 47
8.18 | 115
954
14
0.35 | 34.0
210
5.5
0.11 | 10.8
62
4.2
0.03 | 3.47
5.6
2.8
0.01 | | STATIST MEAN MAX (WY) MIN (WY) | 176.8
1201
1987
2.02
1989 | 276.0
1426
1986
4.40 | 192.4
1319
1983
2.20
1977 | 126.8 | 350.1
1599
1982
5.18
1989 | 416.7
1177
1979
22.5
1989 | 464
2036
1983
8.20
1989 | YEAR (WY)
642
2631
1995
10.4
1980 | 281
1074
1984
3.55
1988 | 372
3033
1993
4.01
1988 | 87.9
441
1982
3.90
1984 | 105
937
1993
3.41
1988 | | SUMMARY | STATISTI | CS | FO | R 2001 CAI | ENDAR YEA | AR. | FOR 2002 | WATER YEAR | ? | WATER YE | ARS 1974 - | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME SEVEN-DAY I PEAK FLC RUNOFF (I ENT EXCEE ENT EXCEE | CAN CAN AN MINIMUM OW AGE OW FLOW CINCHES) COS | | 9530
3.4
4.5

9.70
430
33
8.1 | Feb
Sep 1
Jan | .5 | 301
25000
2.8
3.0
42000 ⁶
20.91
2.5
11.19
361
22
5.0 | May 1:
Sep 1(
Sep (
May 1:
May 1:
Sep 7-1: | 3
3
5
5
5
2
2
2
2
3 | 291
767
30.1
25000
0.18
0.44
42000 ^a
20.91
0.17
10.82
518
31
4.2 | May 1:
Aug
Oct 2:
May 1:
May 1:
Oct 2: | 7 1988
0 1991
2 2002
2 2002 | e Estimated From rating extended above 25,000 ft³/s, by indirect measurement. ## 05502500 NORTH FORK SALT RIVER NEAR SHELBINA, MO LOCATION.--Lat 39°44'29", long 92°02'26", in SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.17, T.57 N., R.10 W., Shelby County, Hydrologic Unit 07110005, on right bank near downstream end of bridge on State Highway 15, 3.0 mi north of Shelbina, 15.0 mi upstream from Black Creek, and at mile 122.3. DRAINAGE AREA. -- 481 mi². PERIOD OF RECORD.--April 1930 to February 1934, March 1934 to September 1972. March 1988 to current year. Prior to March 1988 published as "Salt River near Shelbina, Mo.". Fragmentary record prior to October 1933. Monthly discharge only for period October 1933 to February 1934 published in WSP 1308. GAGE.--Water-stage recorder and crest-stage gage with concrete control since Mar. 25, 1988. Datum of gage is 664.58 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 1, 1934, nonrecording gage at site 100 ft downstream at present datum; Mar. 1, 1934, to Nov. 2, 1962, water-stage recorder at site 175 ft downstream at present datum; Nov. 3, 1962, to Sept. 30, 1972, water-stage recorder at site 100 ft upstream at present datum; Oct. 1, 1972, to Sept. 30, 1979, gage-height records collected by U.S. Army Corps of Engineers, St. Louis District, at site 100 ft downstream; Oct. 1, 1979, to Sept.
1981, gage-height data collected by the U.S. Geological Survey at site 100 ft downstream. REMARKS.--Records good except for discharges below $50~{\rm ft}^3/{\rm s}$, which are poor. Water is pumped from river at the gage by the city of Shelbina. U. S. Army Corps of Engineers satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1928 reached a stage of 23.54 ft, from floodmarks, discharge 18,000 ft³/s. | | | DISCIAN | .GE, CODI | C PEET PER | | Y MEAN VA | | R 2001 10 | OBF TEMBE | 11. 2002 | | | |---|---|-------------------------------------|-------------------------------------|--|-------------------------------------|-------------------------------------|---|---|-------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 19
22
28
36
252 | 21
21
21
23
23 | 13
13
12
11 | 7.0
6.1
5.6
5.6
6.5 | 1000
489
e254
e201
e165 | 57
55
e53
e90
61 | 43
40
35
33
31 | 419
327
232
156
116 | 148
102
77
61
54 | 17
16
16
15
15 | e9.5
e7.8
e6.8
e6.0
e5.4 | 5.0
4.8
4.7
4.4
4.1 | | 6
7
8
9
10 | 290
82
46
30
28 | 21
24
28
27
28 | 12
13
13
13 | 7.3
7.0
7.6
8.6 | e126
e99
e85
117
357 | 96
251
245
802
1400 | 30
31
119
446
463 | 1840
6660
6030
6640
7000 | 45
40
35
32
29 | 15
17
14
40
66 | e4.8
4.3
4.9
4.6
4.6 | 4.3
4.6
e4.1
e3.6
e3.2 | | 11
12
13
14
15 | 54
30
59
123
60 | 28
25
21
22
24 | 13
17
18
19
50 | 11
12
12
13
13 | 700
386
252
e185
e135 | 441
246
174
132
106 | 275
155
110
89
80 | 4820
9530
17900
20500
9040 | 31
670
938
1540
397 | 50
254
137
76
36 | 4.4
4.2
4.9
9.0
6.5 | e2.8
3.9
4.0
5.2
8.6 | | 16
17
18
19
20 | 959
421
153
76
48 | 22
19
22
22
20 | 46
33
25
21
18 | 13
10
10
12
9.9 | 99
85
70
68
471 | 83
67
57
55
55 | 69
60
53
57
210 | 2800
1140
803
602
398 | 184
112
78
61
48 | 23
18
43
16
12 | 8.1
7.3
7.1
9.4
14 | 8.3
9.0
10
9.6
12 | | 21
22
23
24
25 | 36
30
28
28
96 | 22
25
25
21
14 | 16
15
14
13
12 | 14
12
15
15
13 | 965
426
225
152
114 | 51
42
39
38
40 | 1040
2210
606
313
1760 | 194
136
121
362
2980 | 40
34
30
28
26 | 9.9
11
10
6.9
6.3 | 13
13
95
85
26 | 13
9.8
8.0
6.3
7.1 | | 26
27
28
29
30
31 | 53
44
32
29
24
22 | 14
15
12
17
14 | 12
14
14
9.8
8.8
8.1 | 14
14
16
15
115 | 83
e65
54
 | 41
40
43
52
54
48 | 695
1420
5540
5410
1130 | 4840
1460
498
1840
689
262 | 24
22
20
19
18 | 8.9
9.5
7.8
11
27 | 16
14
11
7.6
6.4
6.1 | 6.0
5.4
5.6
6.7
8.7 | | MEAN
MAX
MIN
IN. | 104
959
19
0.25 | 21.4
28
12
0.05 | 16.8
50
8.1
0.04 | 48.1
1060
5.6
0.12 | 265
1000
54
0.57 | 162
1400
38
0.39 | 752
5540
30
1.74 | 3559
20500
116
8.53 | 165
1540
18
0.38 | 32.8
254
6.3
0.08 | 13.8
95
4.2
0.03 | 6.43
13
2.8
0.01 | | STATIST | CICS OF MO | NTHLY MEA | N DATA F | FOR PERIOD | OF RECOR | D, BY WAT | TER YEAR (| WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 143
1208
1999
0.00
1953 | 173
1327
1993
0.00
1954 | 146
835
1972
0.00
1954 | 214
1319
1965
0.01
1954 | 382
1475
1997
1.80
1934 | 452
1417
1948
6.41
1956 | 542
1944
1944
7.24
1989 | 565
3559
2002
12.2
2000 | 438
4171
1947
2.93
1988 | 334
4119
1993
0.00
1934 | 119
1214
1970
0.00
1936 | 156
1831
1970
0.00
1953 | | SUMMARY | STATISTI | CS | FC | OR 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | FOR I | PERIOD OF | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANTI
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY 1 PEAK FLO 1 PEAK STA CANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS | | 9530
5.9
6.3

11.42
773
49 | Jun
Jan
Jan | 4 | 20500
2.8
3.7
24600
27.29
2.7
12.20
632
28
6.6 | May
Sep
Sep
May
May
Sep | 11
7
13
13 | 308
1037
36.2
205500
0.00
24600
27.40
0.00
8.69
677
32 | May
Man
Man
May
Jun | 1993
1989
14 2002
Y Years
Y Years
13 2002
7 1947
Y Years | e Estimated # 05503800 CROOKED CREEK NEAR PARIS, MO LOCATION.--Lat 39°35'06", long 91°59'36", near NW corner S $\frac{1}{2}$ sec.2, T.55 N., R.10 W., Monroe County, Hydrologic Unit 07110005, on right bank downstream from county road bridge, 7.0 mi north of Paris, 1.4 mi north of State Route 15, and at mile 8.9. DRAINAGE AREA.--80.0 mi². PERIOD OF RECORD.--October 1979 to current year. March 1966 to October 1979 published by the U.S. Army Corps of Engineers. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 650.00 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 8, 1967, wire-weight gage and Nov. 9, 1967, to Sept. 30, 1979, recording gage at datum 50 ft lower. REMARKS.--Records fair. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of April 1973 reached a stage of 15.53 ft; discharge, 12,100 $\rm ft^3/s$, according to information furnished by the U.S. Army Corps of Engineers. | | | DISCHAR | GE, CUBI | C FEET PER | | WATER YE | | ER 2001 TO |) SEPTEMBE | R 2002 | | | |--|--|--------------------------------------|--|---|-------------------------------------|--|---|--------------------------------------|-------------------------------------|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.50
0.41
0.32
0.27 | 0.77
0.97
0.88
0.85
0.75 | 0.94
0.85
0.74
0.68
e0.68 | 0.58
0.61
0.56
0.53
0.59 | 567
136
47
31
22 | 8.6
9.6
9.8
9.2
9.8 | 7.2
6.8
6.4
6.0
5.8 | 29
23
18
14
12 | 4.9
4.0
3.2
2.6
2.2 | 0.58
0.49
0.43
0.39
0.34 | 0.64
0.40
0.26
0.19
0.13 | 0.24
0.15
0.10
0.06
0.03 | | 6
7
8
9
10 | 230
31
9.8
4.7
4.5 | 0.66
0.75
0.81
0.76
0.80 | 0.66
0.64
0.59
0.53
0.46 | 0.70
0.70
0.75
0.81
0.82 | 18
14
12
12
12 | 26
63
54
183
167 | 5.6
5.8
22
156
90 | 1100
1850
1250
3280
1070 | 2.0
1.7
1.4
1.4 | 0.30
0.27
0.24
0.23
4.9 | 0.08
0.05
0.02
0.02
0.01 | 0.01
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 11
16
19
50
33 | 0.83
0.77
0.73
0.74
0.74 | 0.45
0.52
0.52
0.51
0.49 | 0.84
0.83
0.75
0.82
0.76 | 12
13
14
11 | 45
27
21
17
15 | 34
20
14
11 | 1310
2130
885
86
37 | 2.7
40
254
195
30 | 9.5
8.3
9.7
3.8
2.1 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 97
51
15
7.3
4.2 | 0.71
0.65
0.60
0.60
0.53 | 0.57
0.89
1.5
1.2
0.98 | 0.60
0.50
0.47
0.56
0.58 | 9.1
8.5
8.1
8.6
88 | 13
11
10
9.6
10 | 8.6
7.6
6.5
5.9
6.9 | 24
24
34
19
13 | 12
7.5
5.6
4.6
3.6 | 1.4
0.90
1.8
1.5
0.76 | 0.00
0.00
0.07
0.12
0.19 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 3.1
2.2
1.7
1.8
1.7 | 0.47
0.43
0.39
0.77
1.4 | 1.1
1.3
1.2
0.99 | 0.66
0.64
0.61
0.70
0.65 | 171
51
28
20
16 | 10
9.3
8.7
8.3
8.2 | 409
207
56
31
27 | 9.5
7.6
6.5
7.7
134 | 2.9
2.3
1.9
1.5 | 0.44
0.50
66
16
5.3 | 0.36
0.39
37
13
5.0 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 1.2
0.72
0.53
0.73
0.80
0.66 |
1.4
1.2
0.95
0.89
0.94 | 0.63
0.61
0.66
0.57
0.41
0.45 | 0.58
0.54
0.49
0.46
48
700 | 13
11
9.2
 | 8.1
7.9
7.6
7.5
7.6
7.4 | 18
659
663
156
45 | 206
33
16
11
8.1
6.2 | 1.1
1.5
1.4
0.90
0.72 | 5.0
7.2
2.7
1.8
1.5 | 5.4
2.7
1.5
0.95
0.58
0.37 | 0.00
0.00
0.00
0.00
e0.00 | | MEAN
MAX
MIN
IN. | 25.8
230
0.27
0.37 | 0.79
1.4
0.39
0.01 | 0.74
1.5
0.41
0.01 | 24.7
700
0.46
0.36 | 49.0
567
8.1
0.64 | 26.1
183
7.4
0.38 | 90.2
663
5.6
1.26 | 440
3280
6.2
6.35 | 19.8
254
0.72
0.28 | 5.02
66
0.23
0.07 | 2.24
37
0.00
0.03 | 0.02
0.24
0.00
0.00 | | | TICS OF MON | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 25.6
321
1987
0.00
1980 | 58.8
550
1986
0.00
1981 | 51.0
247
1983
0.00
1989 | 33.4
162
1999
0.00
1989 | 81.7
359
1985
0.00
1989 | 81.4
244
1998
0.07
1989 | 90.7
319
1983
0.16
1989 | 150
669
1995
1.53
1988 | 72.9
250
1998
0.03
1988 | 75.8
554
1993
0.00
1988 | 23.0
223
1993
0.00
1988 | 35.8
510
1993
0.00
1983 | | SUMMAR | Y STATISTIC | CS | FO | R 2001 CAL | ENDAR YEA | R | FOR 2002 | WATER YE | EAR | WATER YE | EARS 1980 | - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
ANNUAL
10 PER
50 PER | MEAN T ANNUAL ME ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY M PEAK FLOW M PEAK STA TANEOUS LOW RUNOFF (IN CENT EXCEET CENT EXCEET | AN AN I MINIMUM SE V FLOW ICHES) OS | | 2130
0.03
0.06

10.8
92
4.6
0.50 | Jan 3
Aug 1
Aug 1 | 0 3 4 0 4 0 5 10 0 5 | 3280
0.00 Aug 1
0.00
8850
0.35
0.00 Aug 1
0.75
50
1.5 | l1-17,Sep
Au
Ma
Ma | ıg 11
ay 9
ay 9 | 64.9
179
7.38
7150
0.00
9460
13.62
0.00
11.02
89
3.2
0.00 | Man
Man
May
May | 1993
1989
7 1996
y Years
y Years
7 1996
7 1996
y Years | e Estimated ## 05504800 SOUTH FORK SALT RIVER ABOVE SANTA FE, MO LOCATION.--Lat 39°19'34", long 91°50'02", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ Sec.31, T.53 N., R.8 W., Audrain County, Hydrologic Unit 07110006, on left bank near downstream side of bridge on county road, 4.0 mi southwest of Santa Fe, 1.0 mi upstream from Littleby Creek, and at mile 104.2 above mouth of Salt River. DRAINAGE AREA. -- 233 mi². PERIOD OF RECORD.--February 1940 to current year. Published as "near Santa Fe" (05504900) October 1968 to September 1975 and as "at Santa Fe" (05505000) February 1940 to September 1968 and October 1975 to September 1986. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 644.87 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 5, 1940, nonrecording gage; Feb. 5, 1940, to Sept. 30, 1968, and Oct. 1, 1975 to Sept. 30, 1986, water-stage recorder 8.0 mi downstream at datum 613.05; Oct. 1, 1968, to Sept. 30, 1975, water-stage recorder, 1.0 mi downstream at datum 5.78 ft lower. REMARKS.--Records fair. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | E, CUBI | C FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---------------------------------------|-------------------------------------|---|-------------------------------------|-------------------------------------|--|---|-------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.4
6.4
6.7 | 10
12
13
21
14 | 46
53
34
28
24 | 7.2
6.4
5.5
5.5
6.3 | 2420
409
184
120
82 | 19
24
48
67
65 | 38
35
31
28
26 | 161
126
104
78
63 | 67
50
42
37
35 | 11
9.1
8.6
8.4 | 4.7
5.6
4.1
2.5
5.1 | 4.1
3.9
3.5
3.0
1.8 | | 6
7
8
9
10 | 30
26
23
15
17 | 13
13
12
11
11 | 20
16
14
12
11 | 6.7
6.6
6.8
7.3
7.5 | 61
51
49
41
38 | 171
214
141
110
135 | 24
23
40
152
155 | 1680
5060
5190
4300
1670 | 35
34
33
31
32 | 6.8
14
35
18 | 3.9
1.7
0.75
3.6
2.9 | 1.0
0.82
3.2
3.4
3.1 | | 11
12
13
14
15 | 29
93
219
229
152 | 11
10
11
11
11 | 10
11
15
69
66 | 7.8
7.8
8.1
8.1 | 36
34
32
29
26 | 94
65
54
49
44 | 93
64
50
41
37 | 1250
1580
2940
989
293 | 216
1230
1560
219
96 | 195
360
84
34
22 | 2.3
2.4
2.3
2.0
3.6 | 3.2
2.3
2.2
3.8
4.9 | | 16
17
18
19
20 | 147
166
81
42
27 | 12
12
11
12
12 | 55
41
68
51
33 | 8.0
7.8
7.4
7.8
7.8 | 24
22
21
21
37 | 41
36
32
32
47 | 33
30
32
33
403 | 195
805
2820
701
233 | 59
43
34
28
24 | 16
14
17
13
11 | 5.3
3.5
4.9
11 | 16
9.3
6.7
5.6
4.9 | | 21
22
23
24
25 | 21
17
17
17
40 | 15
14
12
23
67 | 26
23
25
28
23 | 8.2
8.0
8.6
9.1 | 60
53
39
32
27 | 48
45
37
33
41 | 1980
1550
302
163
109 | 149
110
90
77
70 | 22
20
18
16
16 | 9.9
8.5
8.0
43
21 | 15
12
33
26
15 | 4.2
3.8
9.2
4.1
2.8 | | 26
27
28
29
30
31 | 35
28
21
17
15 | 73
42
30
24
30 | 17
14
13
11
9.6
8.3 | 10
9.6
9.1
8.5
83
3290 | 25
23
20

 | 83
82
71
56
48
43 | 79
2010
3920
1150
252 | 67
62
55
50
248
137 | 15
16
14
13
12 | 12
10
9.3
7.7
5.0
3.8 | 11
7.9
6.8
5.7
5.0
4.6 | 2.3
2.4
2.8
3.1
3.2 | | MEAN
MAX
MIN
IN. | 50.8
229
6.4
0.25 | 19.1
73
10
0.09 | 28.2
69
8.3
0.14 | 116
3290
5.5
0.57 | 143
2420
20
0.64 | 66.9
214
19
0.33 | 429
3920
23
2.06 | 1011
5190
50
5.01 | 136
1560
12
0.65 | 33.5
360
3.8
0.17 | 7.46
33
0.75
0.04 | 4.15
16
0.82
0.02 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 123
1646
1942
0.01
1954 | 127
1378
1986
0.36
1954 | 127
1447
1983
0.58
1964 | 139
792
1974
1.18
1963 | 227
1031
1985
1.91
1954 | 300
1715
1973
2.74
1954 | 334
1734
1944
3.42
2000 | 312
2238
1943
5.92
1980 | 244
1307
1942
3.28
1988 | 201
2415
1969
1.31
1944 | 56.2
544
1982
0.46
1964 | 128
1830
1993
0.22
1960 | | SUMMARY | STATISTI | CS | FO | R 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YEA | R | WATER Y | EARS 1940 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY 1 PEAK FLO M PEAK STA CANEOUS LO RUNOFF (II CENT EXCEE CENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 5370
3.9
4.2

12.55
342
26
7.6 | Feb :
Aug 11,
Jan | 12 | 5190
0.75
2.3
5930
17.33
0.56
9.96
188
23
4.2 | May
Aug
Aug
May
May
Aug 8, | 8
7
7
7 | 193
509
10.7
24000
0.00
0.00
31800
28.66
0.00
11.24
317
16 | Oct
Man
Man
Sep
Sep
Man | 1969
1954
13 1969
y Years
y Years
23 1993
23 1993
y Years | # 05506100 LONG BRANCH NEAR SANTA FE, MO LOCATION.--Lat 39°21'21", long 91°50'03", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec. 19, T.53 N., R.8 W., Monroe County, Hydrologic Unit 07110006, on left bank on west side of concrete ford on County Road 614, 2 mi southwest of Santa Fe. DRAINAGE AREA.--180 mi². PERIOD OF RECORD.--December 1994 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 625.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair except for estimated daily discharges and those below 10 $\mathrm{ft^3/s}$, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUB | IC FEET PER | | VATER YE
MEAN V | | R 2001 TO | SEPTEMB | ER 2002 | | | |--
--|---|--------------------------------------|---|-------------------------------------|------------------------------------|------------------------------------|---|------------------------------------|---|---------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.2
1.1
0.94
0.76
4.7 | 3.0
2.6
2.6
2.2
2.1 | 13
8.2
5.4
6.0
5.1 | 1.3
0.53
0.82
0.65
0.67 | 1350
553
120
70
49 | 15
19
21
19
23 | 14
12
11
11
9.8 | 82
74
50
38
31 | 16
14
12
9.9
8.3 | 2.1
1.8
1.6
1.4 | 0.02
0.00
0.25
0.10
0.00 | 0.67
0.50
0.26
0.20
0.15 | | 6
7
8
9
10 | 15
38
31
21
16 | 2.1
2.2
1.9
1.6
1.4 | 3.7
3.2
2.6
2.1
1.6 | 0.70
0.68
0.73
0.93
0.94 | 39
34
31
27
27 | 69
102
87
107
133 | 9.1
10
33
136
103 | 2560
2870
1990
3670
1440 | 7.8
6.9
6.1
5.4
6.9 | 1.0
4.1
5.6
3.3
2.7 | 0.00
0.00
0.00
0.00
0.00 | 0.12
0.10
0.08
0.04
0.02 | | 11
12
13
14
15 | 13
50
73
81
64 | 1.3
1.2
0.75
0.67 | 1.5
1.9
3.7
12
11 | 1.1
1.3
1.4
1.6 | 25
22
20
19
18 | 99
65
47
37
32 | 69
44
31
23
18 | 2670
3030
3670
e1110
e113 | 260
882
683
144
71 | 20
39
11
5.0
2.7 | 0.00
0.00
0.03
0.01
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 90
88
59
38
25 | 0.67
0.81
0.99
0.94
0.83 | 8.1
9.9
11
8.5
6.7 | 1.6
1.5
1.5
1.6 | 17
15
15
15
19 | 29
25
22
22
25 | 15
13
12
13
35 | e64
e192
e500
e111
e42 | 39
25
18
14
11 | 1.9
23
2.6
0.43
0.20 | 0.00
0.25
0.47
0.07
0.03 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 17
11
6.8
5.0
5.0 | 0.71
0.67
0.72
42
23 | 6.0
6.3
5.1
4.0
3.4 | 1.6
1.6
2.0
2.1
2.1 | 26
28
25
22
21 | 25
22
20
20
21 | 1490
1100
464
102
59 | e27
e24
e24
e23
e107 | 8.8
7.0
6.0
5.1
4.6 | 0.13
0.08
0.06
0.03
0.03 | 0.03
0.02
5.5
5.9 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 3.7
2.3
2.1
2.1
2.0
3.5 | 9.5
15
9.9
6.7
9.0 | 3.5
3.2
2.6
2.3
1.7 | 2.1
2.1
2.1
2.1
120
3320 | 20
18
16
 | 21
21
22
20
16
15 | 42
2210
2870
1140
232 | e117
e29
e23
e22
20
19 | 3.9
3.2
2.9
2.6
2.4 | 0.03
0.03
0.03
0.03
0.03
0.03 | 16
11
4.9
2.2
1.3
0.92 | 0.00
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN | 24.9
90
0.76 | 4.92
42
0.67 | 5.32
13
1.5 | 112
3320
0.53 | 95.0
1350
15 | 39.4
133
15 | 344
2870
9.1 | 798
3670
19 | 76.2
882
2.4 | 4.23
39
0.02 | 2.61
32
0.00 | 0.07
0.67
0.00 | | STATIST | rics of M | ONTHLY MEA | N DATA I | FOR WATER Y | TEARS 1994 | - 2002, | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 45.6
266
1999
0.01
2000 | 42.6
246
1999
0.00
2000 | 11.0
32.0
1999
0.61
2000 | 182
534
1999
0.11
2000 | 322
1053
1997
17.6
1996 | 144
487
1998
13.1
2000 | 249
636
1999
1.25
2000 | 379
1062
1995
16.4
2000 | 201
514
1998
23.2
1996 | 155
943
1998
4.23
2002 | 65.0
254
2000
0.04
1999 | 8.49
38.6
1998
0.00
1999 | | SUMMARY | STATIST | ICS | FOR | 2001 CALEN | DAR YEAR | F | FOR 2002 W | ATER YEAR | | WATER Y | EARS 1994 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUN
MAXIMUN
INSTANT
10 PERC
50 PERC | CANNUAL MANNUAL MEDAILY MEDAIL | EAN EAN AN Y MINIMUM OW AGE OW FLOW EDS EDS | | 4410
0.00
0.15

213
11
0.76 | Jan 30
Aug 22
Aug 16 | | 5740
12.72 | May 9
Many Days
At Times
Apr 27
Apr 27
Many Days | | 142
237
35.8
12400
0.00 Many
0.00
16700
22.43
0.00 Many
206
9.9
0.13 | y Days 199
At
Jul
Jul | t Times
4 1998
4 1998 | e Estimated # 05506350 MIDDLE FORK SALT RIVER NEAR HOLLIDAY, MO LOCATION.--Lat 39°31'32", long 92°07'40", in NE $\frac{1}{4}$ SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 27, T. 55 N., R. 11 W., Monroe County, Hydrologic Unit 07110006, on right bank, downstream side of Highway A bridge, approximately 2.1 mi north of Holliday. DRAINAGE AREA. -- 313 mi². PERIOD OF RECORD.--Dec. 17, 1998 to current year. GAGE.--Water-stage recorder. Datum of gage is 651.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHARG | E, CUBIC | C FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBER | 2002 | | | |--|--|--------------------------------------|--------------------------------------|--|-------------------------------------|------------------------------------|---|--|------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.1
4.7
4.2
7.9
527 | 20
17
11
10
9.8 | 10
9.3
8.4
7.5 | 7.6
6.7
6.3
6.1
6.2 | 2060
936
333
222
e182 | 35
37
e41
e44
e47 | 23
22
20
18
17 | 405
193
122
92
72 | 77
62
51
42
36 | 11
10
10
9.7
9.3 | 19
14
8.9
5.9
4.1 | 3.4
3.2
2.7
2.4
2.4 | | 6
7
8
9
10 | 778
152
89
52
38 | 9.6
9.7
9.8
10
9.6 | 11
12
12
11
10 | 6.3
6.5
6.3
6.5 | e149
121
84
61
58 | 145
186
143
773
806 | 16
16
102
339
244 | 3270
4700
5370
8730
7380 | 34
30
26
23
21 | 9.5
14
13
9.2 | 3.4
3.2
2.5
2.7
2.6 | 2.4
2.3
2.0
1.7 | | 11
12
13
14
15 | 30
45
55
63
48 | 9.5
9.2
9.4
9.2
9.6 | 10
12
12
19 | 7.5
7.8
7.7
8.2
7.8 | 62
91
110
72
52 | 476
222
120
92
78 | 154
108
69
52
44 | 5450
5770
6330
4740
3140 | 24
212
406
736
362 | 23
245
243
189
55 | 2.5
2.4
2.7
3.0
3.0 | 2.3
1.6
2.1
2.0
3.5 | | 16
17
18
19
20 | 200
291
157
73
48 | 9.6
9.6
9.7
10 | 20
20
20
22
21 | 7.5
7.3
6.7
6.6
6.3 | 43
37
33
36
334 | 64
54
47
44
44 | 38
33
29
27
28 | 623
247
286
193
138 | 130
61
39
32
27 | 23
14
11
8.7
7.5 | 4.0
5.0
7.0
15 | 2.6
2.4
2.5
2.5
5.0 | | 21
22
23
24
25 | 37
29
26
23
19 |
10
9.7
10
15
15 | 17
16
14
13 | 6.3
5.7
6.7
8.0
7.9 | 514
286
180
106
75 | 41
35
32
30
31 | 1780
1760
807
351
139 | 108
91
80
83
584 | 22
19
16
14
14 | 6.3
5.6
24
13 | 10
7.3
10
13
13 | 2.6
3.4
2.2
5.1
5.2 | | 26
27
28
29
30
31 | 15
14
15
15
10
16 | 16
14
13
13
12 | 11
10
9.9
9.4
8.8
8.2 | 6.9
6.8
6.7
6.6
148
2440 | 57
45
38

 | 29
27
27
27
27
25 | 107
1950
2950
2090
1570 | 1720
1550
795
170
108
99 | 13
11
10
11
11 | 9.8
30
29
15
9.3
6.9 | 26
14
9.6
6.5
5.0
4.0 | 3.8
3.1
2.9
2.7
3.3 | | MEAN
MAX
MIN | 93.2
778
4.2 | 11.3
20
9.2 | 13.1
22
7.5 | 90.0
2440
5.7 | 228
2060
33 | 124
806
25 | 497
2950
16 | 2021
8730
72 | 85.7
736
10 | 35.0
245
5.6 | 7.88
26
2.4 | 2.82
5.2
1.2 | | STATIST | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 38.7
93.2
2002
6.42
2000 | 30.4
78.8
2001
1.12
2000 | 8.16
13.1
2002
5.24
2001 | 291
611
1999
2.12
2000 | 448
1136
2001
29.7
2000 | 260
490
1999
35.0
2000 | 380
771
1999
3.89
2000 | 731
2021
2002
21.9
2000 | 350
978
2001
72.3
1999 | 103
237
1999
35.0
2002 | 31.2
99.9
2000
2.64
1999 | 16.0
35.2
2001
2.82
2002 | | SUMMARY | Y STATISTI | CS | FOF | R 2001 CAL | ENDAR YE | AR | FOR 2002 1 | WATER YEA | R | WATER YE | ARS 1999 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
10 PERC
50 PERC | MEAN F ANNUAL ME ANNUAL ME T DAILY ME DAILY MEA SEVEN-DAY PEAK FLO PEANEOUS LO TENTE EXCEE CENT EXCEE | AN AN N MINIMUM W GE W FLOW DS | | 5480
2.7
3.3

621
45
8.3 | Jun
Jan
Jan | 4 | 269 8730 1.2 1.8 9360 21.53 1.2 344 17 3.7 | May
Sep 1
Sep
May
May
Sep 1 | 0
8
9
9 | 203
296
44.5
8730
0.22
0.46
9360
21.53
0.18
252
14 | Oct 1
Oct 1
May
May | 2001
2000
9 2002
19 1999
17 1999
9 2002
9 2002
18 1999 | e Estimated ## 05506800 ELK FORK SALT RIVER NEAR MADISON, MO LOCATION.--Lat 39°26'05", long 92°10'04", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.29, T.54 N., R.11 W., Monroe County, Hydrologic Unit 07110006, on downstream side and 25 ft to the left of bridge on State Highway AA, 500 ft downstream from Allen Creek, 3.5 mi southeast of Madison, and at mile 29.8. DRAINAGE AREA. -- 200 mi². PERIOD OF RECORD. -- October 1968 to current year. REVISED RECORDS.--WRD MO 1973: 1970(M). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 690.16 ft above National Geodetic Vertical Datum of 1929 (Missouri State Highway and Transportation Commission bench mark). $\textit{REMARKS.--Records fair except discharges below 10 ft}^3/\text{s, which are poor. U.S. Army Corps of Engineers satellite telemeter at station.} \\$ EXTREMES OUTSIDE PERIOD OF RECORD.—-Flood of July 9, 1967, reached a stage of 31.25 ft, from floodmark, discharge 33,300 ft³/s, by contracted-opening method. Flood in 1871 reached nearly the same stage, from information by local resident. | | | DISCHARO | E, CUBIC | C FEET PER | | WATER YE. | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|---|---------------------------------------|--|--|------------------------------------|-------------------------------------|--|--|-------------------------------------|---|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.0
3.7
4.0
4.5 | 5.6
6.4
6.0
5.3
5.0 | 7.3
8.4
7.8
7.5
6.8 | 3.7
3.3
3.0
3.0
3.4 | 1620
261
129
82
56 | 16
21
21
24
26 | 16
16
14
13
12 | 236
253
123
79
58 | 21
17
15
13
12 | 5.3
4.8
4.3
4.5 | 11
7.9
5.5
4.4
3.8 | 1.7
1.5
1.2
1.0
0.96 | | 6
7
8
9
10 | 374
94
38
16
12 | 5.3
5.3
5.2
4.9
5.0 | 6.8
6.9
7.8
7.0
6.0 | 3.9
4.1
4.1
4.5
4.9 | 44
38
32
29
29 | 141
197
128
665
505 | 11
12
77
249
183 | 3180
4460
1770
4890
2990 | 13
13
11
8.8
7.9 | 4.1
3.7
5.0
7.8
5.9 | 3.4
3.0
2.8
2.5
2.3 | 0.97
1.1
1.3
1.4 | | 11
12
13
14
15 | 13
17
23
35
53 | 4.7
4.4
4.6
4.6
4.7 | 5.4
5.9
7.0
14
17 | 5.0
5.1
5.2
5.4
5.0 | 36
36
28
23
20 | 145
91
68
55
46 | 87
59
44
36
30 | 2240
2620
1910
486
166 | 87
878
424
151
54 | 6.9
12
22
11
6.8 | 2.1
2.2
2.7
2.6
2.8 | 1.0
0.64
0.96
1.6
2.1 | | 16
17
18
19
20 | 249
147
59
31
18 | 5.0
4.6
4.7
5.9
5.7 | 12
11
11
11
9.6 | 4.8
4.8
4.6
4.6
4.7 | 18
16
14
17
98 | 39
33
30
28
29 | 26
22
19
18
18 | 118
282
720
197
96 | 31
21
16
13
11 | 5.1
4.2
3.7
3.9
4.0 | 3.6
2.8
4.9
8.1
20 | 2.1
2.4
2.3
1.4
1.0 | | 21
22
23
24
25 | 12
9.3
8.7
8.0 | 6.5
6.3
5.5
9.1 | 8.6
8.6
7.9
7.2
6.4 | 4.8
5.2
5.9
6.0
5.6 | 180
91
56
42
32 | 27
24
23
22
23 | 1800
1440
231
124
82 | 64
49
41
39
130 | 9.7
8.6
7.7
7.1
6.9 | 3.6
4.0
76
32
8.6 | 16
8.6
91
90
44 | 1.8
1.9
1.5
1.4 | | 26
27
28
29
30
31 | 8.2
7.6
6.2
5.8
5.7
5.5 | 15
13
9.9
8.8
9.0 | 5.7
5.4
5.2
5.0
4.7
4.1 | 5.5
5.2
5.2
5.0
102
2580 | 25
19
17
 | 23
21
20
19
21
18 | 57
1720
3800
572
175 | 158
62
45
42
28
25 | 6.9
6.3
6.1
5.7
5.4 | 9.7
358
60
24
55
24 | 12
4.9
2.7
1.8
1.4 | 2.4
2.1
1.8
3.0
2.9 | | MEAN
MAX
MIN
IN. | 55.6
440
3.7
0.32 | 6.53
15
4.4
0.04 | 7.90
17
4.1
0.05 | 90.9
2580
3.0
0.52 | 110
1620
14
0.57 | 82.2
665
16
0.47 | 365
3800
11
2.04
BY WATER | 889
4890
25
5.13 | 62.9
878
5.4
0.35 | 25.3
358
3.6
0.15 | 12.0
91
1.4
0.07 | 1.61
3.0
0.64
0.01 | | MEAN
MAX
(WY)
MIN
(WY) | 100
1077
1987
0.25
1981 | 127
1248
1986
1.24
1981 | 128
750
1983
0.94
1989 | 124
533
1974
0.95
1977 | 210
935
1985
2.07
1989 | 262
1154
1973
3.02
1981 | 333
1651
1973
4.76
2000 | 279
1554
1995
10.0
1992 | 198
1005
1969
1.61
1988 | 158
1409
1981
1.06
1988 | 48.2
268
2000
0.82
1980 | 105
1381
1993
0.63
1988 | | SUMMARY | STATISTIC | CS | FOR | R 2001 CAL | ENDAR YEA | AR. | FOR 2002 | WATER YE | AR | WATER YE | ARS 1969 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY I PEAK FLOI I PEAK STA ANEOUS LOI RUNOFF (II ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 201
6540
2.6
3.1

13.66
271
19
4.7 | Jan 3
Aug 2
Aug | 22 | 4890
0.64
1.1
6050
18.71
0.44
9.71
170
10
2.7 | May
Sep
Sep
May
May
Sep 12, | 12
7
9
9 | 172
380
23.6
24100
0.00
0.00
42300
33.40
0.00
11.70
274
14 | Aug 4-1
Aug
Apr 2 | 4 1976
1 1973
1 1973 | # 05507600 LICK CREEK AT PERRY, MO LOCATION.--Lat 39°25'53", long 91°40'34", near center of NW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.27, T.54 N., R.7 W., Ralls County, Hydrologic Unit 07110007, on right bank and downstream side of State Highway 154 bridge, 0.1 mi west of Perry, and at mile 11.9. DRAINAGE AREA.--104 mi². PERIOD OF RECORD.--October 1979 to current year. Prior to October 1979 gages were maintained and operated by the U.S. Army Corps of Engineers. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 625.00 ft above National Geodetic Vertical Datum of 1929. Prior to November 1967, nonrecording gage at same site and datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Oct. 12, 1969, reached a stage of 26.24 ft, as determined by the U.S. Army Corps of Engineers. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | |--|---|---------------------------------------|--|--|------------------------------------|-------------------------------------
--|---|--|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.36
0.27
0.23
0.13
6.3 | 3.8
4.8
5.4
5.8
6.2 | 13
13
9.0
6.2
4.8 | 1.4
1.2
1.0
0.99
1.0 | 558
94
42
28
19 | 5.2
8.6
15
13
16 | 6.9
6.5
5.9
5.2
4.7 | 85
44
19
13
9.9 | 6.2
4.8
3.8
3.1
2.8 | 0.55
0.42
0.31
0.23
0.21 | 0.01
0.00
0.00
0.00
0.00 | 0.03
0.02
0.00
0.00
0.00 | | 6
7
8
9
10 | 9.4
3.1
1.9
1.2
1.9 | 5.7
5.4
5.1
4.5
4.8 | 4.2
3.2
2.6
2.2
2.0 | 1.2
1.2
1.1
1.2
1.4 | 14
11
9.3
8.6
8.4 | 81
69
39
47
41 | 4.5
4.6
52
83
35 | 2840
3580
1030
2330
210 | 2.5
2.2
1.8
1.5 | 0.22
49
7.9
2.5
1.6 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 6.1
47
59
51
22 | 5.0
4.9
4.8
4.8
4.9 | 1.7
2.1
3.1
16
28 | 1.4
1.4
1.2
1.3 | 7.5
7.0
6.3
5.7
5.3 | 23
16
13
11
10 | 19
13
10
8.8
7.8 | 1910
1450
1610
534
e24 | 102
1290
1530
199
49 | 1.2
0.89
2.1
1.2
0.67 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.03 | | 16
17
18
19
20 | 42
26
13
7.8
5.0 | 4.9
4.5
4.3
4.6
4.5 | 18
13
21
17
9.5 | 1.5
1.5
1.5
1.4 | 5.1
4.8
4.5
5.0
45 | 9.4
8.4
7.6
7.8
10 | 6.7
5.5
5.0
5.5 | e69
e110
e274
e44
e19 | 26
15
9.2
6.6
4.9 | 0.40
2.7
1.7
0.82
0.61 | 0.00
0.00
0.05
0.02
0.03 | 0.00
0.00
0.00
0.00
0.02 | | 21
22
23
24
25 | 3.4
2.7
3.8
5.2
5.7 | 4.7
4.3
3.9
29 | 6.4
9.9
17
16
8.8 | 1.4
1.3
1.9
1.8
1.7 | 45
22
14
10
8.3 | 12
10
8.5
7.9
8.9 | 1290
262
52
27
16 | e14
e13
e12
e16
15 | 3.7
2.8
2.2
1.8
1.8 | 0.51
0.41
0.31
0.20
0.12 | 0.04
0.04
19
31
5.9 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 5.5
4.7
4.4
3.9
3.8
3.8 | 21
12
7.7
6.0
9.2 | 5.5
3.9
3.2
2.6
2.0
1.7 2 | 1.6
1.5
1.1
1.6
34
970 | 7.6
6.1
5.4
 | 9.5
11
10
10
9.0
7.8 | 11
2490
2080
113
45 | 11
9.1
141
36
15
8.8 | 1.5
1.2
0.93
0.79
0.60 | 0.08
0.05
0.05
0.03
0.02 | 1.8
0.76
0.35
0.16
0.08
0.05 | 0.00
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN
IN. | 11.3
59
0.13
0.13 | 7.88
40
3.8
0.08 | 8.60
28
1.7
0.10 | 98.2
2970
0.99
1.09 | 36.0
558
4.5
0.36 | 17.9
81
5.2
0.20 | 226
2490
4.5
2.42 | 532
3580
8.8
5.90 | 109
1530
0.60
1.17 | 2.48
49
0.02
0.03 | 1.91
31
0.00
0.02 | 0.00
0.03
0.00
0.00 | | | | NTHLY MEAN | | | | • | | - | • | | | | | MEAN
MAX
(WY)
MIN
(WY) | 14.1
95.9
1987
0.00
1989 | 79.3
652
1986
0.00
2000 | 68.0
442
1983
0.05
1980 | 52.9
190
2001
0.00
1980 | 116
441
1997
1.67
1981 | 86.1
340
1984
0.41
1981 | 117
541
1994
2.15
2000 | 134
532
2002
1.27
1988 | 73.7
300
1998
0.04
1988 | 82.0
482
1981
0.03
1994 | 28.2
143
1982
0.00
1994 | 41.6
748
1993
0.00
1999 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 | 2 WATER Y | EAR | WATER YE | EARS 1980 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANTI
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME DAILY ME ASEVEN-DAY 1 PEAK FLO RUNOFF (I CENT EXCEE ZENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 98.5
4090
0.00 A
0.01

12.86
79
5.4
0.24 | Apr 1
ug 7,20,2
Aug 1 | 1 3
1 0
6 0
5 | 88.1
580
.00 Aug 2
.00 800
800
.99
.00 Aug 1
.50
48
4.8 | Ma;
2-17,Sep
Au
Ap
Ap
1-19,Sep | y 7
3-30
g 2
r 27
r 27
3-30 | 74.0
188
15.1
7880
0.00
0.00
11800
22.25
0.00
9.67
85
3.8 | Sep 2
Many
Many
May
May
Many | 1993
1980
23 1993
7 Years
7 Years
7 1996
7 1996
7 Years | e Estimated ## 05507700 MARK TWAIN LAKE NEAR CENTER, MO LOCATION.--Lat 39°31'29", long 91°38'37", sec.26, T.55 N., R.7 W., Ralls County, Hydrologic Unit 07110007, inside dam structure at mile 63.0 on Salt River. DRAINAGE AREA. -- 2,318 mi². PERIOD OF RECORD.--1984 to current year. 1984 to Sept. 30, 1991, available in files at the U.S. Army Corps of Engineers. GAGE.--Water stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,360,000 ac-ft, May 28-30, 1995, elevation, 636.22 ft, May 29; minimum, 386,000 ac-ft, Oct. 10, 1984, elevation, 596.60 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,290,000 ac-ft, May 16, elevation, 633.97 ft; minimum, 461,000 ac-ft, Sept. 28-30, elevation, 601.26 ft. ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 0800 | | | | | | OBSE | KVALION A | 11 0000 | | | | | | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 602.45
602.45
602.37
602.34
602.49 | 602.14
601.95
601.95
601.96
601.95 | 602.08
602.08
602.10
602.11
602.11 | 601.84
601.83
601.83
601.85
601.80 | 606.05
606.81
606.93
606.86
606.79 | 606.54
606.52
606.26
605.87
605.69 | 607.02
607.04
607.05
607.02
607.02 | 615.20
615.31
615.03
614.67
614.29 | 626.88
626.17
625.44
624.69
623.96 | 616.13
615.32
614.52
613.68
613.00 | 607.63
607.45
607.14
606.78
606.77 | 603.28
603.28
603.02
602.77
602.46 | | 6
7
8
9 | 602.77
603.02
603.07
603.09
603.15 | 601.94
601.95
601.97
601.84
601.85 | 602.11
602.12
602.10
602.11
602.10 | 601.81
601.82
601.82
601.81
601.82 | 606.63
606.49
606.26
606.22
606.37 | 605.76
605.88
606.05
606.38
606.51 | 607.02
607.06
607.14
607.38
607.58 | 615.03
618.14
620.58
623.61
626.25 | 623.23
622.92
622.79
622.62
622.47 | 612.67
612.22
611.87
611.50
611.27 | 606.40
606.29
606.03
605.65
605.41 | 602.14
601.94
601.93
601.92
601.80 | | 11
12
13
14
15 | 603.17
603.27
603.29
603.48
603.54 | 601.82
601.82
601.84
601.83 | 602.10
602.12
602.16
602.18
602.17 | 601.82
601.78
601.75
601.82
601.78 | 606.36
606.48
606.52
606.59
606.64 | 606.86
607.05
606.94
606.93
606.90 | 607.77
607.90
607.97
608.02
608.07 | 627.68
629.54
631.34
632.69
633.68 | 622.39
622.66
623.16
623.57
623.51 | 611.10
610.97
610.94
610.98
611.01 | 605.41
605.38
605.09
604.52
604.45 | 601.52
601.51
601.50
601.48
601.58 | | 16
17
18
19
20 | 603.63
603.67
603.68
603.73
603.75 | 601.83
601.83
601.84
601.88 | 602.21
602.22
602.05
601.97
601.96 | 601.77
601.77
601.75
601.75
601.75 | 606.64
606.62
606.58
606.50
606.61 | 606.90
606.95
606.99
606.94
606.80 | 607.85
607.83
607.62
607.42
607.49 | 633.97
633.60
633.42
633.02
632.35 | 623.44
623.40
623.16
622.81
622.28 | 610.64
610.51
610.37
610.07
609.79 | 604.14
604.18
604.18
604.25
604.22 | 601.56
601.56
601.57
601.50
601.50 | | 21
22
23
24
25 | 603.77
603.75
603.77
603.38
603.45 | 601.87
601.83
601.81
601.97
602.05 | 601.94
601.88
601.95
601.94
601.93 | 601.77
601.75
601.77
601.78
601.75 | 606.76
606.99
607.07
607.14
607.22 | 606.78
606.82
606.86
606.84
606.86 | 608.08
609.66
609.98
609.72
609.19 | 631.63
631.31
631.01
630.34
629.82 | 621.77
621.49
621.20
620.76
620.21 | 609.60
609.42
609.23
608.98
608.71 | 604.03
603.85
603.80
603.59
603.64 | 601.48
601.48
601.46
601.38
601.36 | | 26
27
28
29
30
31 | 603.17
603.03
602.98
602.81
602.35
602.32 | 602.05
602.12
602.07
602.08
602.13 | 601.94
601.91
601.94
601.86
601.85
601.85 | 601.75
601.74
601.74
601.75
601.82
603.74 | 607.26
607.01
606.69
 |
606.91
606.89
606.92
606.90
606.98
607.01 | 609.27
609.25
612.59
614.30
615.07 | 629.30
628.95
628.50
627.86
627.68
627.56 | 619.56
618.94
618.22
617.47
616.81 | 608.34
608.16
608.16
608.17
608.18
607.90 | 603.66
603.60
603.30
603.30
603.29 | 601.35
601.35
601.26
601.26
601.26 | | MEAN
MAX
MIN | 603.14
603.77
602.32 | 601.93
602.14
601.81 | 602.04
602.22
601.85 | 601.85
603.74
601.74 | 606.68
607.26
606.05 | 606.66
607.05
605.69 | 608.55
615.07
607.02 | 626.56
633.97
614.29 | 622.27
626.88
616.81 | 610.76
616.13
607.90 | 604.86
607.63
603.29 | 601.78
603.28
601.26 | # 05507700 MARK TWAIN LAKE NEAR CENTER, MO--Continued # RESERVOIR STORAGE, (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT $0800\,$ | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1 | 481000 | 476000 | 475000 | 471000 | 546000 | 555000 | 564000 | 742000 | 1050000 | 764000 | 576000 | 496000 | | 2 | 481000 | 473000 | 475000 | 471000 | 560000 | 554000 | 565000 | 744000 | 1030000 | 745000 | 572000 | 496000 | | 3 | 480000 | 473000 | 475000 | 471000 | 563000 | 550000 | 565000 | 738000 | 1010000 | 726000 | 567000 | 491000 | | 4 | 480000 | 473000 | 476000 | 471000 | 561000 | 542000 | 564000 | 729000 | 991000 | 706000 | 560000 | 487000 | | 5 | 482000 | 473000 | 476000 | 470000 | 560000 | 539000 | 564000 | 720000 | 970000 | 690000 | 559000 | 482000 | | 6 | 487000 | 473000 | 476000 | 470000 | 557000 | 540000 | 564000 | 738000 | 949000 | 682000 | 552000 | 476000 | | 7 | 491000 | 473000 | 475000 | 471000 | 554000 | 543000 | 565000 | 811000 | 940000 | 672000 | 550000 | 473000 | | 8 | 492000 | 473000 | 476000 | 471000 | 550000 | 546000 | 567000 | 872000 | 936000 | 663000 | 546000 | 473000 | | 9 | 492000 | 471000 | 475000 | 470000 | 549000 | 552000 | 571000 | 960000 | 931000 | 655000 | 538000 | 472000 | | 10 | 493000 | 471000 | 476000 | 471000 | 551000 | 554000 | 575000 | 1040000 | 927000 | 651000 | 534000 | 470000 | | 11 | 494000 | 471000 | 475000 | 471000 | 551000 | 561000 | 578000 | 1080000 | 924000 | 647000 | 534000 | 465000 | | 12 | 495000 | 471000 | 476000 | 470000 | 554000 | 565000 | 581000 | 1130000 | 932000 | 644000 | 533000 | 465000 | | 13 | 496000 | 471000 | 476000 | 469000 | 554000 | 563000 | 582000 | 1190000 | 947000 | 643000 | 528000 | 465000 | | 14 | 499000 | 471000 | 477000 | 471000 | 556000 | 563000 | 583000 | 1240000 | 959000 | 644000 | 518000 | 465000 | | 15 | 500000 | 471000 | 477000 | 470000 | 557000 | 562000 | 584000 | 1280000 | 957000 | 645000 | 516000 | 466000 | | 16
17
18
19
20 | 502000
502000
503000
504000
504000 | 471000
471000
471000
472000
471000 | 477000
477000
475000
473000
473000 | 470000
470000
469000
469000
469000 | 557000
556000
556000
554000
556000 | 562000
563000
564000
563000
560000 | 580000
580000
575000
572000
573000 | 1290000
1280000
1270000
1260000
1230000 | 955000
954000
947000
936000
921000 | 637000
634000
631000
625000
619000 | 510000
511000
511000
513000
512000 | 466000
466000
466000
465000 | | 21 | 504000 | 471000 | 473000 | 470000 | 559000 | 560000 | 585000 | 1200000 | 906000 | 615000 | 508000 | 465000 | | 22 | 504000 | 471000 | 472000 | 469000 | 564000 | 560000 | 617000 | 1190000 | 898000 | 611000 | 506000 | 465000 | | 23 | 504000 | 470000 | 473000 | 470000 | 565000 | 561000 | 624000 | 1180000 | 890000 | 608000 | 505000 | 464000 | | 24 | 498000 | 473000 | 473000 | 470000 | 567000 | 561000 | 618000 | 1160000 | 877000 | 603000 | 501000 | 463000 | | 25 | 498000 | 475000 | 473000 | 469000 | 568000 | 561000 | 607000 | 1140000 | 861000 | 597000 | 502000 | 463000 | | 26
27
28
29
30
31 | 494000
491000
491000
488000
480000
479000 | 475000
476000
475000
475000
476000 | 473000
472000
473000
471000
471000
471000 | 469000
469000
469000
469000
471000
504000 | 569000
564000
558000
 | 562000
562000
562000
562000
564000
564000 | 609000
608000
680000
721000
739000 | 1120000
1110000
1100000
1080000
1080000
1070000 | 845000
830000
813000
795000
780000 | 590000
586000
586000
586000
587000
581000 | 502000
501000
496000
496000
496000 | 463000
463000
461000
461000
 | | MEAN | 493000 | 473000 | 474000 | 471000 | 558000 | 557000 | 595000 | 1060000 | 922000 | 641000 | 524000 | 470000 | | MAX | 504000 | 476000 | 477000 | 504000 | 569000 | 565000 | 739000 | 1290000 | 1050000 | 764000 | 576000 | 496000 | | MIN | 479000 | 470000 | 471000 | 469000 | 546000 | 539000 | 564000 | 720000 | 780000 | 581000 | 496000 | 461000 | ## 05507800 SALT RIVER NEAR CENTER, MO LOCATION.--Lat 39°34'26", long 91°34'15", near SE corner sec.4, T.55 N., R.6 W., Ralls County, Hydrologic Unit 07110007, on left bank at left downstream end of bridge on Highway A, 0.5 mi downstream from Clarence Cannon Dam, 5.0 mi northwest of Center, and at mile 53.1. DRAINAGE AREA.--2,350 mi², approximately. PERIOD OF RECORD.--October 1979 to current year. Prior to October 1979, gage height records only by the U.S. Army Corps of Engineers. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 500.00 ft above National Geodetic Vertical Datum of 1929. Prior to October 1979 nonrecording gage at same site and datum. REMARKS.--Records fair except for those below 30 ft^3/s , which are poor. U.S. Army Corps of Engineers satellite telemeter at station. Flow regulated by Clarence Cannon Dam, 0.5 mi upstream. EXTREME OUTSIDE PERIOD OF RECORD.--Maximum gage height, 33.00 ft, Apr. 22, 1973, by U.S. Army Corps of Engineers. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|---------------------------------------|------------------------------------|--|---------------------------|----------------------------------|---|---|--------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 50 | 2120 | 62 | 52 | 1130 | 1060 | 56 | 2350 | 9620 | 7240 | 1640 | 59 | | 2 | 56 | 577 | 61 | 51 | 3700 | 1700 | 54 | 3570 | 9740 | 8450 | 2160 | 1370 | | 3 | 64 | 54 | 59 | 50 | 1990 | 2890 | 53 | 3810 | 9890 | 8540 | 2850 | 1870 | | 4 | 67 | 52 | 56 | 50 | 1880 | 3190 | 59 | 4600 | 9690 | 8680 | 1370 | 2200 | | 5 | 72 | 50 | 177 | 56 | 2100 | 768 | 54 | 4640 | 9190 | 6350 | 2050 | 2540 | | 6 | 65 | 47 | | 55 | 1690 | 60 | 54 | 6430 | 7970 | 3780 | 1950 | 1830 | | 7 | 64 | 45 | | 53 | 2370 | 60 | 53 | 5480 | 914 | 4080 | 1810 | 413 | | 8 | 62 | 49 | | 50 | 1200 | 255 | 367 | 4850 | 1840 | 3440 | 2410 | 56 | | 9 | 61 | 62 | | 49 | 37 | 415 | 892 | 5360 | 2280 | 3240 | 2820 | 610 | | 10 | 61 | 62 | | 48 | 37 | 1250 | 59 | 6480 | 1890 | 2270 | 218 | 1780 | | 11 | 63 | 62 | 47 | 259 | 34 | 60 | 50 | 8470 | 1300 | 1680 | 59 | 337 | | 12 | 64 | 61 | 47 | 95 | 34 | 969 | 51 | 7740 | 3400 | 1110 | 1720 | 57 | | 13 | 64 | 60 | 46 | 47 | 34 | 1330 | 49 | 7730 | 1830 | 438 | 1910 | 56 | | 14 | 63 | 59 | 47 | 46 | 32 | 1270 | 47 | 9560 | 1430 | 61 | 4060 | 56 | | 15 | 70 | 58 | 51 | 46 | 193 | 417 | 1880 | 11300 | 2840 | 2100 | 1810 | 137 | | 16 | 963 | 59 | 51 | 47 | 110 | 1330 | 729 | 10300 | 2160 | 2750 | 650 | 296 | | 17 | 497 | 59 | 290 | 48 | 64 | | 1870 | 11100 | 2040 | 2140 | 68 | 35 | | 18 | 1750 | 58 | 2070 | 48 | 1180 | | 2080 | 12000 | 4680 | 2160 | 67 | 19 | | 19 | 682 | 58 | 624 | 52 | 688 | | 112 | 11900 | 5030 | 2870 | 68 | 58 | | 20 | 59 | 56 | 46 | 50 | 64 | | 54 | 11800 | 6580 | 2630 | 1510 | 58 | | 21 | 57 | 53 | 448 | 48 | 63 | 62 | 97 | 9960 | 6090 | 1840 | 1370 | 57 | | 22 | 354 | 51 | 83 | 46 | 273 | 58 | 3540 | 3910 | 2210 | 1910 | 2200 | 58 | | 23 | 1340 | 50 | 53 | 45 | 77 | 56 | 5920 | 7450 | 4720 | 2770 | 1900 | 183 | | 24 | 2820 | 54 | 51 | 49 | 59 | 58 | 5740 | 10400 | 5970 | 2500 | 873 | 60 | | 25 | 202 | 51 | 50 | 60 | 62 | 59 | 3510 | 10300 | 7280 | 2970 | 64 | 58 | | 26
27
28
29
30
31 | 2120
448
328
2660
2600
639 | 50
48
49
49
49 | 48
47
105
181
56
54 | 57
55
59
55
66
1580 | 1170
2330
2960
 | 56
61
60
62
61
61 | 1570
3280
2270
1410
2380 | 11300
10500
10400
9210
2230
6160 | 7040
7180
8300
8360
7420 | 2800
333
59
59
1630
3090 | 547
1820
687
62
61
60 | 57
335
70
57
1100 | |
MEAN
MAX
MIN
IN. | 596
2820
50
0.29 | 140
2120
45
0.07 | 167
2070
46
0.08 | 109
1580
45
0.05 | 913
3700
32
0.40 | 624
3190
56
0.31 | 1278
5920
47
0.61
BY WATER | 7784
12000
2230
3.82 | 5296
9890
914
2.52 | 3031
8680
59
1.49 | 1318
4060
59
0.65 | 529
2540
19
0.25 | | MEAN | 1039 | 1340 | 1760 | 994 | 1780 | 2751 | 2302 | 2742 | 2713 | 2900 | 1475 | 1002 | | MAX | 9085 | 6038 | 10360 | 3703 | 8098 | 10530 | 10310 | 7784 | 10560 | 10810 | 7895 | 7902 | | (WY) | 1994 | 1987 | 1983 | 1986 | 1982 | 1985 | 1983 | 2002 | 1995 | 1981 | 1993 | 1993 | | MIN | 4.62 | 14.8 | 31.4 | 30.5 | 81.6 | 87.0 | 99.4 | 67.5 | 126 | 75.2 | 13.9 | 25.3 | | (WY) | 1980 | 1981 | 1980 | 1980 | 1989 | 1989 | 2000 | 1989 | 1988 | 1983 | 1980 | 1983 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1980 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANTI
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY I PEAK FLO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 9510
36
48

11.26
5940
990
53 | Feb
Sep
Dec | 12 | 1823
12000
19
48
13600
15.99
13
10.53
6450
328
49 | May
Sep
Jan
May
May
Sep | 18
18
13
15
15 | 1901
3462
283
65600
0.44
0.65
72800
32.62
0.44
10.99
5730
440 | our . | 1993
1989
29 1981
11 1979
11 1979
29 1981
29 1981
14 1979 | # 05508000 SALT RIVER NEAR NEW LONDON, MO LOCATION.--Lat 39°36'44", long 91°24'30", in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.36, T.56 N., R.5 W., Ralls County, Hydrologic Unit 07110007, on left bank near downstream end of bridge on north bound side of dual U.S. Highway 61, 9.9 mi downstream from Clarence Cannon Dam, 2.0 mi north of New London, 8.0 mi upstream from Spencer Creek, and at mile 35.5. DRAINAGE AREA. -- 2,480 mi², approximately. PERIOD OF RECORD. -- February 1922 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 477.03 ft above National Geodetic Vertical Datum of 1929. Prior to Apr. 7, 1931, nonrecording gage 400 ft upstream at datum 0.03 ft higher; Apr. 7, 1931 to Jan. 17, 1935, nonrecording gage at site 180 ft upstream at datum 0.04 ft lower; Jan. 17, 1935 to April 1985, water-stage recorder 400 ft upstream same datum REMARKS.--Records good. U.S. Army Corps of Engineers satellite telemeter at station. Flow mostly regulated by Clarence Cannon Dam, 9.9 mi upstream, since September 1979. Five percent of the drainage area, 130 mi², is natural drainage not regulated. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 107,000 ft³/s, Apr. 22, 1973; gage height, 31.8 ft. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 14, 1858, reached a stage of 27.6 ft, present site and datum, based on comparison of June 1928 flood crest at stone marker, 1.0 mi downstream of gage. | | | DISCHA | RGE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER | R 2001 TC |) SEPTEMBE | R 2002 | | | |---|---|---|------------------------------------|---|-----------------------------|--|---|--|--------------------------------------|---|---------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 66 | 1740 | 63 | 64 | 1320 | 1490 | 102 | 2530 | 10600 | 7740 | 2110 | 87 | | 2 | 57 | 1520 | 75 | 61 | 4000 | 1180 | 99 | 3210 | 10800 | 9080 | 1860 | 274 | | 3 | 64 | 112 | 73 | 58 | 2540 | 2810 | 90 | 4320 | 10900 | 9170 | 2820 | 1670 | | 4 | 74 | 71 | 71 | 58 | 2030 | 3630 | 88 | 4720 | 11000 | 9420 | 2830 | 2120 | | 5 | 218 | 65 | 68 | 61 | 2000 | 1650 | 96 | 4760 | 10200 | 7400 | 682 | 2630 | | 6 | 160 | 60 | 190 | 69 | 2000 | 306 | 97 | 10700 | 9540 | 3750 | 2770 | 2430 | | 7 | 94 | 56 | 70 | 63 | 1990 | 166 | 102 | 9880 | 1810 | 4220 | 1260 | 1370 | | 8 | 83 | 51 | 62 | 64 | 1870 | 142 | 261 | 5480 | 1840 | 3760 | 2080 | 148 | | 9 | 78 | 53 | 57 | 62 | 356 | 427 | 1140 | 8070 | 2350 | 3570 | 3390 | 89 | | 10 | 87 | 71 | 55 | 61 | 101 | 1500 | 767 | 6370 | 1980 | 2380 | 1610 | 965 | | 11 | 89 | 70 | 52 | 57 | 83 | 347 | 166 | 11500 | 1610 | 2120 | 118 | 1770 | | 12 | 225 | 70 | 56 | 302 | 77 | 143 | 138 | 9270 | 3270 | 1410 | 391 | 114 | | 13 | 152 | 70 | 61 | 83 | 69 | 2160 | 122 | 8770 | 2800 | 1400 | 2140 | 85 | | 14 | 239 | 68 | 61 | 64 | 66 | 852 | 113 | 10100 | 1640 | 134 | 4770 | 80 | | 15 | 124 | 66 | 61 | 59 | 141 | 1140 | 776 | 12000 | 2850 | 798 | 1090 | 88 | | 16 | 819 | 66 | 65 | 59 | 168 | 145 | 1530 | 12200 | 2300 | 3000 | 2090 | 319 | | 17 | 328 | 65 | 183 | 63 | 151 | 121 | 1020 | 12300 | 1850 | 2110 | 186 | 165 | | 18 | 1660 | 65 | 1320 | 63 | 528 | 115 | 2400 | 13800 | 4300 | 2120 | 116 | 59 | | 19 | 973 | 68 | 1280 | 64 | 1230 | 740 | 1360 | 13500 | 5230 | 2910 | 120 | 23 | | 20 | 323 | 60 | 295 | 67 | 424 | 2000 | 146 | 13400 | 6990 | 2790 | 270 | 71 | | 21 | 94 | 59 | 75 | 65 | 185 | 296 | 1420 | 12600 | 6570 | 2010 | 1650 | 75 | | 22 | 244 | 56 | 511 | 61 | 141 | 115 | 2230 | 4280 | 2900 | 1770 | 1910 | 73 | | 23 | 416 | 53 | 119 | 60 | 347 | 109 | 6040 | 6790 | 4380 | 2400 | 2440 | 71 | | 24 | 3300 | 235 | 86 | 55 | 130 | 109 | 6000 | 11900 | 5830 | 2580 | 2470 | 201 | | 25 | 657 | 134 | 76 | 59 | 117 | 110 | 5550 | 11000 | 7730 | 2920 | 154 | 81 | | 26
27
28
29
30
31 | 1380
1320
280
1530
3450
435 | 87
73
62
62
62 | 71
68
65
231
104
70 | 75
72
70
73
276
3650 | 464
2200
2970

 | 105
101
107
108
106
104 | 798
6030
3880
1380
2660 | 12600
12200
11400
11800
3150
4490 | 7530
7530
8940
9000
7930 | 2960
2030
126
101
413
2840 | 105
861
2190
167
98
90 | 75
72
353
88
106 | | MEAN | 614 | 178 | 184 | 194 | 989 | 724 | 1553 | 9003 | 5740 | 3207 | 1446 | 525 | | MAX | 3450 | 1740 | 1320 | 3650 | 4000 | 3630 | 6040 | 13800 | 11000 | 9420 | 4770 | 2630 | | MIN | 57 | 51 | 52 | 55 | 66 | 101 | 88 | 2530 | 1610 | 101 | 90 | 23 | | IN. | 0.29 | 0.08 | 0.09 | 0.09 | 0.42 | 0.34 | 0.70 | 4.19 | 2.58 | 1.49 | 0.67 | 0.24 | | | | | | | | | , BY WATER | | | | | | | MEAN | 1066 | 1458 | 1879 | 1081 | 1927 | 2940 | 2465 | 2936 | 2807 | 3010 | 1554 | 1053 | | MAX | 9165 | 6406 | 11100 | 4001 | 8787 | 10810 | 10660 | 9003 | 10950 | 11900 | 7961 | 8300 | | (WY) | 1994 | 1986 | 1983 | 1985 | 1982 | 1985 | 1983 | 2002 | 1995 | 1981 | 1993 | 1993 | | MIN | 16.9 | 18.4 | 48.6 | 37.1 | 84.9 | 90.2 | 114 | 93.4 | 128 | 88.4 | 42.8 | 28.5 | | (WY) | 1980 | 1981 | 1980 | 1981 | 1989 | 1989 | 2000 | 1989 | 1988 | 1983 | 1983 | 1983 | | SUMMAR | Y STATISTI | ICS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | EARS 1980 | - 2002 ^a | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERO 50 PERO | MEAN I ANNUAL ME ANNUAL ME DAILY ME DAILY ME SEVEN-DAY M PEAK FLC M PEAK STI TANEOUS LC RUNOFF (1) CENT EXCEE CENT EXCEE CENT EXCEE | EAN EAN AN MINIMUM OW AGE DW FLOW INCHES) EDS | | 9900
49
58

11.10
5830
1130
66 | Feb
Sep
Dec | 5 | 2039
13800
23
58
15800
15.14
17
11.16
7450
323
63 | May
Sep
Dec
May
May
Sep | 19
9
6
6 | 2016
3577
307
62100
9.5
9.6
74200
31.09
9.5
11.05
5910
522
58 | Nov :
Nov :
Jul :
Jul : | 1993
1989
30 1981
20 1980
20 1980
29 1981
29 1981
21 1980 | $^{^{\}mathrm{a}}$ Post-regulation period. # 05508805 SPENCER CREEK BELOW PLUM CREEK NEAR FRANKFORD, MO LOCATION.--Lat 39°31'13", long 91°20'32", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.27, T.55 N., R.4 W., Ralls County, Hydrologic Unit 07110007, on left bank 25 ft downstream from bridge on dual U.S. Highway 61, 0.75 mi downstream from Plum Creek, 2.5 mi northwest of Frankford, and at mile 4.5. DRAINAGE AREA.--206 mi². PERIOD OF RECORD.--Oct. 1, 1979 to current year. Mar. 27, 1930 to September 1978, fragmentary record. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 485.00 ft above National Geodetic Vertical Datum of 1929. Mar. 24, 1930, to Sept. 30, 1936, nonrecording gage at site 0.75 mi upstream at datum 3.63 ft higher; Oct. 7, 1961, to July 15, 1974, fragmentary record, at present site, datum unknown; July 26, 1974, to Apr. 15, 1975, from nonrecording gage present site and datum. REMARKS.--Records fair. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBI | C FEET PER | | WATER YE
Y MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---|------------------------------------|--|------------------------------------|------------------------------------|--|--|------------------------------------
--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.8
7.7
7.6
7.5
46 | 18
18
18
17 | 22
23
23
20
18 | 14
13
12
11 | 1060
293
179
127
96 | 23
38
54
50
57 | 24
22
18
16
15 | 629
439
229
167
139 | 79
61
51
45
41 | 16
14
14
14
13 | 2.4
2.1
1.9
1.9
2.1 | 2.7
2.5
1.9
1.4
1.2 | | 6
7
8
9
10 | 77
37
23
18
16 | 16
16
16
15
15 | 16
14
14
13
12 | 11
11
11
11
12 | 79
68
59
54
49 | 191
176
123
144
132 | 14
14
326
386
167 | 8010
4920
1190
3440
594 | 39
35
32
30
28 | 11
9.9
9.4
10
55 | 1.6
1.3
1.3
1.5 | 0.93
0.55
0.45
0.52
0.51 | | 11
12
13
14
15 | 19
182
131
187
104 | 14
14
15
14 | 12
13
31
57
50 | 12
11
11
11
10 | 42
38
32
29
26 | 90
72
62
54
50 | 108
81
66
58
52 | 2940
1790
2400
429
254 | 186
567
2230
396
149 | 98
30
19
13
11 | 1.3
1.2
1.1
1.4 | 0.42
0.44
0.42
0.41
0.76 | | 16
17
18
19
20 | 129
89
57
36
31 | 14
13
13
14
13 | 42
48
73
51
35 | 9.8
9.8
10
12 | 23
20
19
22
114 | 43
38
34
34
41 | 45
38
33
62
437 | 303
989
871
276
183 | 90
66
55
47
41 | 9.3
8.4
8.3
9.0
7.9 | 0.91
1.0
1.7
9.3 | 0.98
0.94
0.98
1.6
1.8 | | 21
22
23
24
25 | 26
22
23
23
26 | 13
13
13
273
152 | 28
48
91
60
37 | 12
11
12
14
14 | 124
76
58
47
38 | 39
32
30
28
31 | 2130
567
211
148
126 | 144
121
104
151
113 | 36
32
29
26
24 | 7.1
16
20
7.6
5.3 | 7.4
4.0
45
62
49 | 2.0
2.0
1.6
1.6 | | 26
27
28
29
30
31 | 23
20
19
19
19 | 69
44
31
26
23 | 31
25
21
19
16
15 | 13
13
13
13
169
5170 | 32
25
24
 | 32
33
34
32
30
26 | 92
4790
3140
453
285 | 94
87
117
103
489
147 | 105
36
29
23
19 | 4.7
4.3
3.7
3.5
3.0
2.7 | 24
14
8.7
6.1
4.5
3.5 | 1.7
1.8
1.6
1.5
1.4 | | MEAN
MAX
MIN
IN. | 46.9
187
7.5
0.26 | 32.0
273
13
0.17 | 31.6
91
12
0.18 | 183
5170
9.8
1.03 | 102
1060
19
0.52 | 59.8
191
23
0.33 | 464
4790
14
2.51 | 1028
8010
87
5.75 | 154
2230
19
0.84 | 14.8
98
2.7
0.08 | 9.12
62
0.91
0.05 | 1.28
2.7
0.41
0.01 | | | | | | OR WATER Y | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 44.6
376
1987
0.22
1989 | 176
1310
1986
0.48
1990 | 162
985
1983
1.67
1990 | 118
453
1999
2.58
1980 | 219
766
1985
3.40
1980 | 202
738
1984
9.23
1981 | 257
919
1994
14.3
2000 | 296
1028
2002
15.1
1988 | 133
451
1982
2.23
1988 | 164
1788
1981
0.84
1988 | 62.4
290
1995
0.96
1994 | 84.9
1402
1993
0.32
1988 | | SUMMAR | Y STATISTI | CS | FO | R 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YEA | R | WATER Y | EARS 1980 | - 2002 | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI INSTAN' ANNUAL 10 PER(50 PER(| MEAN T ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY M PEAK FIC M PEAK STA TANEOUS LC RUNOFF (I CENT EXCER CENT EXCER CENT EXCER | AN
AN
AN
MINIMUM
W
GE
GE
WW FLOW
NCHES) | | 133
4900
0.70
1.0

8.77
130
21
2.7 | Jan :
Aug :
Aug | 22 | 8010
0.41
0.45
13100
15.91
0.32
11.73
189
23 | May
Sep 1
Sep
May
May
Sep 1 | 4
8
6
6 | 160
355
33.1
15600
0.08
0.10
20300
18.54
0.00
10.52
227
23
1.2 | Aug 1
Sep 2
Sep 2 | 1993
2000
8 1981
4 1989
7 1990
2 1993
2 1993
s 1989 | 74 CUIVRE RIVER BASIN #### 05514500 CUIVRE RIVER NEAR TROY, MO LOCATION.--Lat 39°00'59", long 90°59'00", in SE ½ sec.14, T.49 N., R.1 W., Lincoln County, Hydrologic Unit 07110008, on downstream side of right end of downstream bridge on dual U.S. Highway 61, 1.2 mi downstream from confluence of North Fork and West Fork Cuivre Rivers, and 2.0 mi north of Troy. DRAINAGE AREA. -- 903 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- February 1922 to July 1972, May 1979 to current year. REVISED RECORDS.--WSP 855: 1933(m), 1935(m), 1937(m). WSP 895: 1939. WSP 1005: 1942(m). WSP 1308: 1922-25(m). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 450.27 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1930, nonrecording gage at site 3 mi downstream at datum 4.31 ft lower; Oct. 1, 1930, to July 1939, nonrecording gage at present site and datum. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 REMARKS.--Water-discharge records fair. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.—The highest flood since 1888 was the flood of December 1895 which was 5 to 6 ft lower at Frenchmens Bluff, 3.0 mi downstream, than the October 1941 flood, which reached a stage of 33.40 ft. DAILY MEAN VALUES DAY SEP OCT NOV DEC JAN FEB APR MAY AUG 9.6 7 9.0 9.9 8.6 9.0 8.6 8.4 8.3 8.3 7.8 8.7 6.2 31 376 308 8.9 18 5.6 5.4 5.3 6.1 6.6 e170 78 57 8 8 8.2 7.8 7.1 7.2 6.4 MEAN 53.9 12.8 MAX MTN 8 3 5 3 0.46 0.28 0.75 0.66 0.79 7.02 1.20 0.17 0.90 0.07 0.02 1.95 IN. STATISTICS OF MONTHLY MEAN DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) MEAN MAX (WY) MIN 0.10 1.30 1 11 1.63 1 80 2 51 25 8 17 1 11 0 0.44 0.23 0 24 (WY) SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR FOR PERIOD OF RECORD ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 27.3 HIGHEST DAILY MEAN Feb 25 Oct 5 1941 May Sep 14 5.3 5.8 LOWEST DAILY MEAN 13 Aug 23,Oct 4 0.00 Several Years ANNUAL SEVEN-DAY MINIMUM Sep 11 0.00 Aug 17 At Times MAXIMUM PEAK FLOW Oct 5 1941 Oct 5 1941 May MAXIMUM PEAK STAGE ___ 27.47 May 33.40 4.4 INSTANTANEOUS LOW FLOW Sep 14 0.00 Several Years ANNUAL RUNOFF (INCHES) 14.27 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 6.0 e Estimated # CUIVRE RIVER BASIN 75 # 05514500 CUIVRE RIVER NEAR TROY, MO--Continued (Ambient Water-Quality Monitoring Network) # WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1982 to current year. REMARKS.--National Stream-Quality Accounting Network station October 1986 through September 1994. Ambient Water-Quality Monitoring Network station October 1994 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|---|--|---|--|---|---| | NOV
14 | 1300 | ENVIRONM | ENTAL | 31 | 13.2 | 123 | 7.6 | 390 | 11.2 | 180 | 56.6 | 9.44 | 3.43 | | JAN
15 | 1150 | ENVIRONM | ENTAL | 62 | 14.1 | 104 | 7.1 | 273 | 2.5 | | | | | | MAR
12 | 1200 | ENVIRONM | ENTAL | 451 | 8.8 | 77 | 7.7 | 344 | 8.9 | | | | | | MAY
15 | 0900 | ENVIRONM | ENTAL | 2200 | 7.9 | 80 | 7.5 | 257 | 15.3 | 110 | 36.4 | 5.20 | 4.03 | | JUL
10 | 0750 | ENVIRONM | ENTAL | 36 | 5.0 | 67 | 7.4 | 397 | 29.1 | | | | | | SEP
04 | 1140 | ENVIRONM | ENTAL | 12 | 7.4 | 92 | 7.5 | 337 | 26.3 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) |
NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
14
JAN | 11.9 | 150 | 152 | 186 | 0 | 15.9 | .2 | 19.7 | 20 | 230 | <.04 | .47 | <.05 | | 15
MAR | | 176 | 175 | 213 | 0 | | | | <10 | | E.02 | .28 | 1.47 | | 12
MAY | | 102 | 103 | 125 | 0 | | | | 38 | | <.04 | .92 | 1.21 | | JUL | 5.42 | 102 | 102 | 124 | 0 | 6.29 | .2 | 13.8 | 162 | 188 | .05 | .89 | 1.48 | | 10
SEP | | 164 | 168 | 205 | 0 | | | | 42 | | <.04 | .68 | .06 | | 04 | | 134 | 134 | 164 | 0 | | | | 19 | | <.04 | .65 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM WATER UNFLTRD TOTAL (µg/L as Cd) (01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | | | | | | | | | | _ | | _ | | | 14
JAN | <.008 | <.06 | <.02 | E.05 | K16 | K15 | 36 | 19 | 84 | .6 | <.04 | <.1 | <6 | | 15
MAR | E.004 | <.06 | <.02 | E.03 | К6 | 21 | 26 | | | | | | | | 12
MAY | .020 | .10 | .05 | .19 | K24 | K253 | 192 | | | | | | | | JUL | .034 | .18 | .13 | .30 | 680 | K1350 | 980 | 391 | 2360 | 1.2 | E.02 | <.1 | <6 | | 10
SEP | <.008 | <.06 | <.02 | .06 | K100 | 153 | 240 | | | | | | | | 04 | <.008 | <.06 | <.02 | .09 | K50 | K50 | 112 | | | | | | | 76 CUIVRE RIVER BASIN # 05514500 CUIVRE RIVER NEAR TROY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 14 | 146 | E.07 | <1 | 217 | < .01 | E.2 | | 4 | | JAN | | | | | | | | | | 15 | | | | | | | | | | MAR | | | | | | | | | | 12 | | | | | | | | | | MAY | | | | | | | | | | 15 | 282 | .75 | 5 | 76.5 | .02 | .6 | | 12 | | JUL | | | | | | | | | | 10 | | | | | | | | | | SEP | | | | | | | | | | 04 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 05514840 DARDENNE CREEK AT O'FALLON, MO LOCATION.--Lat $38^{\circ}44^{\circ}26^{\circ}$, long $90^{\circ}41^{\circ}42^{\circ}$, in NE $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.16, R.46 N., R.3 E., St. Charles County, Hydrologic Unit 07110009, attached to downstream side of State Highway K bridge, 4.2 mi south of Interstate 70. DRAINAGE AREA.--61.0 mi². PERIOD OF RECORD.--Nov. 18, 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|--------------------------------------|--------------------------------------|--|-------------------------------------|--------------------------------------|---|--|------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.3
2.3
1.1
1.3 | 6.1
7.6
5.8
6.2
6.0 | 90
48
35
30
22 | 12
12
11
11 | 462
185
120
83
63 | 21
419
187
88
72 | 54
54
52
39
30 | 59
55
46
34
29 | 22
19
19
17
60 | 11
16
26
14
12 | 5.0
4.2
4.1
4.1
4.4 | 2.3
1.7
1.7
1.5
1.4 | | 6
7
8
9
10 | 5.7
2.1
1.7
1.6
175 | 4.9
3.9
3.7
e4.5
e5.0 | 17
14
13
12
9.6 | 12
11
11
11
11 | 52
44
37
32
32 | 89
58
48
180
90 | 27
26
204
170
84 | 44
737
756
1040
226 | 33
20
17
16
29 | 10
8.1
8.1
15
90 | 7.5
5.6
4.0
3.8
3.7 | 1.4
1.5
2.0
2.1
1.9 | | 11
12
13
14
15 | 104
62
37
21
58 | e6.1
e5.9
5.7
4.6
3.6 | 8.2
34
130
98
65 | 11
12
11
11
9.2 | 27
26
22
20
21 | 62
54
46
37
63 | 58
48
43
38
35 | 129
1270
1730
280
157 | 83
2330
291
145
88 | 40
45
14
10
9.6 | 4.0
4.7
9.4
23
7.7 | 1.6
1.5
1.5
4.7
5.5 | | 16
17
18
19
20 | 110
30
13
7.2
5.6 | 3.7
3.4
3.4
4.2
8.4 | 567
869
228
118
80 | 8.6
8.3
7.3
8.9
8.7 | 19
17
16
57
128 | 72
52
50
91
145 | 33
33
30
223
940 | 270
537
329
144
91 | 58
51
35
27
23 | 8.9
14
30
22
12 | 5.5
5.0
49
9.0
5.0 | 2.4
62
16
118
54 | | 21
22
23
24
25 | 4.5
6.1
7.2
172
94 | 3.6
3.1
2.9
491
77 | 51
60
52
36
27 | 9.0
7.9
9.2
14
11 | 58
39
31
27
26 | 83
56
45
39
299 | 611
224
125
90
92 | 68
56
48
47
45 | 21
19
17
16
15 | 9.2
13
27
9.7
7.1 | 3.9
2.8
14
5.4
3.6 | 15
9.0
7.1
5.9
5.1 | | 26
27
28
29
30
31 | 28
15
11
9.3
7.6
6.7 | 39
34
70
223
307 | 22
22
22
19
15 | 10
8.9
8.3
20
423
1570 | 28
22
20
 | 311
340
223
123
92
68 | 60
333
218
97
69 | 37
32
30
30
28
24 | 14
13
12
11
11 | 6.1
5.8
5.4
4.7
4.6
4.5 | 3.0
2.6
2.3
1.9
1.7
2.2 | 4.8
4.8
5.8
4.1
4.0 | | MEAN
MAX
MIN | 33.4
175
1.1 | 45.1
491
2.9 | 91.2
869
8.2 | 74.2
1570
7.3 | 61.2
462
16 | 116
419
21 | 138
940
26 | 271
1730
24 | 118
2330
11 | 16.5
90
4.5 | 6.84
49
1.7 | 11.7
118
1.4 | | STATIST | rics of M | ONTHLY MEA | AN DATA FO | R WATER Y | EARS 2000 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 20.2
33.4
2002
6.93
2001 | 27.4
45.1
2002
9.72
2001 | 40.7
91.2
2002
4.14
2001 | 33.3
74.2
2002
3.84
2000 | 74.3
101
2001
61.2
2002 | 57.2
116
2002
22.9
2000 | 74.2
138
2002
20.1
2000 | 135
271
2002
10.5
2001 | 134
220
2000
65.3
2001 | 16.2
23.1
2000
8.97
2001 | 10.4
17.8
2000
6.72
2001 | 6.30
11.7
2002
3.37
2001 | | SUMMARY | MARY STATISTICS FOR 20 | | | | ENDAR YEA | R | FOR 2002 V | VATER YEA | AR. | WATER YE | ARS 2000 | - 2002 | | HIGHEST
LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
10 PERC
50 PERC | SUMMARY STATISTICS ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 39.8
1260
1.1
1.6

71
9.7
2.3 | Feb 2
Oct
Sep 2 | 3 | 2330
1.1
1.6
4100
16.28
0.85
177
21
3.7 | Jun 1
Oct
Sep
Jun 1
Jun 1
Oct | 3
2
12
12 | 54.7
82.2
27.2
4140
0.86
1.3
5770
19.14
0.53
92
11
2.6 | Sep 2
Sep 1
Jun 2
Jun 2 | 2002
2001
24 2000
20 2000
17 2000
24 2000
24 2000
20 2000 | e Estimated # 05514860 DARDENNE CREEK AT OLD TOWN ST. PETERS, MO LOCATION.--Lat 38°48'12", long 90°38'06", in SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.24, R.47 N., R.3 E., St. Charles County, Hydrologic Unit 07110009, on left bank 0.6 mi upstream from State Highway C. DRAINAGE AREA.--102 mi². PERIOD OF RECORD.--Nov. 18, 1999 to current year. GAGE.--Water-stage recorder.
Datum of gage is unknown. REMARKS.--Records fair. U.S.G.S. satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE | EAR OCTOBER | 2001 TO | SEPTEMBE: | R 2002 | | | |--|--|--|-------------------------------------|--|-----------------------------------|---------------------------------------|--|--|-----------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.52
0.57
0.45
0.45
86 | 5.8
9.5
8.7
6.1
5.3 | 101
49
34
29
24 | 17
16
15
15
16 | 1390
211
131
97
77 | 30
710
227
94
84 | 66
60
58
49
39 | 69
65
57
43
38 | 18
16
14
13
317 | 6.0
9.4
21
15
6.5 | 1.4
1.2
0.87
0.84
0.74 | 1.1
1.4
0.92
1.6
0.98 | | 6
7
8
9
10 | 21
4.8
2.4
1.9
501 | 5.4
5.7
6.0
6.8
7.3 | 19
16
14
14 | 16
15
15
15
15 | 65
55
46
41
42 | 94
69
58
244
104 | 36
34
284
199
91 | 85
1690
1600
2050
303 | 46
19
15
11
170 | 6.3
4.9
4.6
5.0
84 | 33
3.6
1.4
0.84
0.64 | 1.6
1.1
1.4
1.0
1.3 | | 11
12
13
14
15 | 262
239
47
37
74 | 9.0
9.0
10
10 | 11
73
170
142
73 | 15
16
16
15
14 | 37
34
31
29
28 | 71
63
55
46
85 | 66
55
51
44
41 | 146
1970
3810
630
300 | 260
3830
1660
219
105 | 56
53
13
5.6
3.7 | 0.53
0.51
12
174
48 | 0.77
0.51
0.63
11
61 | | 16
17
18
19
20 | 242
35
16
11
8.1 | 8.0
7.1
7.3
11
13 | 1080
2180
316
125
80 | 13
14
12
15
17 | 27
25
23
89
133 | 92
62
52
108
154 | 37
40
34
245
2480 | 519
1040
950
241
130 | 60
43
34
23
17 | 3.9
4.3
36
19
8.6 | 24
8.0
207
54
8.4 | 3.3
97
89
967
568 | | 21
22
23
24
25 | 6.6
6.1
7.8
240
165 | 12
8.9
8.2
1170
103 | 53
82
57
39
31 | 15 | 69
47
39
35
33 | 89
63
52
46
466 | 1180
280
135
109
101 | 77
57
50
52
45 | 15
13
11
9.2
8.1 | 4.7
3.5
83
7.4
4.7 | 4.0
2.8
78
30
4.5 | 130
43
15
8.9
4.4 | | 26
27
28
29
30
31 | 29
15
11
8.9
8.6
7.7 | 47
39
134
313
492 | 27
25
25
23
28
20 | 16
14
13
33
744
3410 | 39
32
27
 | 434
549
267
131
100
77 | 72
709
316
109
82 | 36
30
27
29
25
22 | 8.2
7.0
6.6
6.0
6.2 | 2.9
1.9
1.8
1.9
1.5 | 2.9
2.3
1.8
1.7
1.7 | 4.1
3.8
3.5
3.7
3.2 | | MEAN
MAX
MIN | 67.6
501
0.45 | 83.0
1170
5.3 | 160
2180
11 | 150
3410
12 | 105
1390
23 | 154
710
30 | 237
2480
34 | 522
3810
22 | 233
3830
6.0 | 15.5
84
1.5 | 23.0
207
0.51 | 67.7
967
0.51 | | STATIS | TICS OF M | ONTHLY MEA | N DATA FO | R WATER YI | EARS 2000 | - 2002, | BY WATER | YEAR (W) | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 47.3
67.6
2002
27.0
2001 | 57.8
83.0
2002
32.6
2001 | 71.6
160
2002
7.16
2001 | 70.1
149
2002
6.85
2000 | 139
193
2001
105
2002 | 81.9
154
2002
33.2
2000 | 134
237
2002
31.1
2000 | 254
522
2002
30.0
2001 | 269
425
2000
149
2001 | 30.7
52.6
2000
15.5
2002 | 26.6
45.3
2000
11.4
2001 | 31.5
67.7
2002
5.76
2001 | | SUMMAR | Y STATIST | rics | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 1 | WATER YE | EAR | WATER Y | EARS 2000 | 0 - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
10 PER
50 PER | T ANNUAL
'ANNUAL M
T DAILY ME
'DAILY ME | IEAN IEAN IEAN IAN IY MINIMUM IOW IEAGE IOW FLOW IEDS IEDS | | 3050
0.45
0.68

120
18
2.9 | Jun 1
Oct 3,
Sep 2 | 4 | 3830
0.45
0.96
4800
19.44
0.30
272
29 | Jun
Oct 3
Sep
Jun
Jun
Oct | 12
3,4
7
12
12 | 106
152
59.2
4670
0.45
0.68
6370
22.14
0.30
157
17 | Jun
Oct 3
Sep
Jun
Jun
Oct | 2002
2001
24 2000
3,4 2001
28 2001
24 2000
24 2000
3 2001 | # 384304090441801 BURGERMEISTER SPRING NEAR WELDON SPRING, MO LOCATION.--Lat $38^{\circ}43^{\circ}04^{\circ}$, long $90^{\circ}44^{\circ}18^{\circ}$, in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.30, T.46 N., R.03 E., St. Charles County, Hydrologic Unit 07110009, on right bank, 70 ft downstream of spring orifice, 0.1 mi upstream of August A. Busch Wildlife Area Lake 34, and 2.5 mi west of Weldon Spring. RECHARGE AREA. -- 1.0 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1986 to current year. Record from May 1986 to September 1989 published in U.S. Geological Survey Open-File Report 90-552 and record from October 1989 to September 1995 published in U.S. Geological Survey Open-File Report 95-463. GAGE.--Water-stage recorder and V-notch sharp-crested weir. Elevation of gage is 528 ft above sea level, from topographic map. REMARKS.--Water-discharge records good. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER YE | EAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|--------------------------------------|---|---|---|--------------------------------------|--|---|---|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.03
0.05
0.05
0.05
0.16 | 0.07
0.05
0.05
0.05
0.04 | e0.35
e0.30
e0.25
e0.21
e0.18 | e0.14
e0.13
e0.12
e0.15
e0.10 | 0.48
0.42
0.40
0.37
0.36 | 0.17
0.36
0.40
0.38
0.37 | 0.37
0.38
0.36
0.34
0.30 | 0.37
0.37
0.37
0.37
0.37 | e0.28
e0.27
e0.27
e0.28
e0.38 | 0.09
0.08
0.08
0.07
0.06 | 0.06
0.06
0.05
0.05 | 0.04
0.04
0.04
0.04
0.05 | | 6
7
8
9
10 | 0.28
0.07
0.05
0.04
0.23 | 0.04
0.04
e0.04
e0.04
e0.04 | 0.17
0.13
0.11
0.10
0.09 | e0.09
e0.09
e0.08
e0.07
e0.06 | 0.36
0.34
0.34
0.32
0.26 | 0.39
0.37
0.36
0.43
0.45 | 0.28
0.27
0.36
0.40
0.39 | 0.43 | e0.37
0.35
0.29
0.23
0.19 | 0.06
0.06
0.05
0.05
0.14 | 0.06
0.06
0.06
0.06
0.06 | 0.05
0.04
0.05
0.07
0.05 | | 11
12
13
14
15 | 0.35
0.38
0.30
0.32
0.20 | e0.04
e0.05
e0.05
e0.05
e0.04 | 0.08
0.14
0.37
0.37
0.36 | e0.06
0.05
0.05
0.05
0.05 | 0.21
0.21
0.19
0.19
0.18 | 0.37
0.36
0.36
0.36
0.36 | 0.38
0.37
0.36
e0.36
e0.34 | e0.35
e0.39
e0.43
e0.38
e0.36 | 0.21
0.37
0.29
0.29
0.28 | 0.32
0.20
0.11
0.09
0.07 | 0.05
0.05
0.06
0.11
0.15 | 0.06
0.04
0.04
0.05
0.06 | | 16
17
18
19
20 | 0.35
0.27
0.16
0.10
0.08 | e0.04
e0.04
e0.04
e0.04
e0.06 | 0.42
0.45
0.32
0.29
0.28 | 0.04
0.04
0.04
0.04
0.04 | 0.17
0.15
0.14
0.24
0.44 | 0.39
0.38
0.38
0.39
0.39 | e0.33
e0.32
0.30
0.33
0.45 | e0.37
e0.39
e0.36
e0.34
e0.33 | 0.27
0.26
0.24
0.21
0.18 | 0.06
0.06
0.06
0.05 | 0.09
0.08
0.19
0.28
0.16 | 0.04
0.16
0.33
0.29
0.29 | | 21
22
23
24
25 | 0.06
0.06
0.06
0.10
0.30 | e0.38 | | | 0.40
0.37
0.36
0.35
0.32 | 0.38
0.36
0.36
0.34
0.38 | 0.43
0.40
0.39
0.37
0.37 | e0.32
e0.31
e0.31
e0.31
e0.30 | 0.17
0.15
0.15
0.14
0.13 | 0.05
0.06
0.11
0.10
0.06 | 0.10
0.08
0.17
0.30
0.19 | 0.29
0.26
0.16
0.10
0.09 | | | 0.18
0.37
0.26
0.12
0.09 | e0.18
e0.14
e0.17
e0.31
e0.47 | 0.24
0.21
0.21
e0.19
e0.17
e0.16 | 0.08
0.06
0.06
0.08
0.41
0.59 | 0.28
0.25
0.19
 | 0.38
0.40
0.41
0.39
0.38
0.37 | 0.37
0.38
0.38
0.37
0.37 | e0.29 | 0.13
0.12
0.11
0.10
0.09 | 0.06
0.06
0.06
0.06
0.06 | 0.13
0.08
0.05
0.05
0.04
0.04 | 0.08
0.08
0.07
0.05
0.05 | | MEAN
MAX
MIN | 0.17
0.38
0.03 | 0.10
0.47
0.03 | 0.24
0.45
0.08 | 0.10
0.59
0.04 | 0.30
0.48
0.14 | 0.37
0.45
0.17 | 0.36
0.45
0.27 | 0.35
0.43
0.28 | 0.23
0.38
0.09 | 0.08
0.32
0.05 |
0.10
0.30
0.04 | 0.10
0.33
0.04 | | STATIST | rics of M | ONTHLY MEA | AN DATA F | OR WATER Y | EARS 1985 | - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.14
0.33
1994
0.05
1998 | 0.20
0.44
1995
0.03
2000 | 0.25
0.48
1994
0.03
1999 | 0.28
0.42
1994
0.03
2000 | 0.31
0.44
1999
0.10
1996 | 0.35
0.44
1989
0.12
2001 | 0.38
0.58
1994
0.12
2000 | 0.31
0.52
1995
0.11
2001 | 0.25
0.42
1985
0.09
1991 | 0.17
0.39
1997
0.08
2001 | 0.13
0.25
1993
0.06
1996 | 0.10
0.34
1993
0.04
1999 | | SUMMARY | Y STATIST | ICS | FO | R 2001 CAL | ENDAR YEA | ıR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1985 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT 10 PERC | C ANNUAL | EAN EAN AN Y MINIMUM OW AGE OW FLOW EDS EDS | | 0.16
0.52
0.03 Se
0.03
0.37
0.09
0.04 | Jun 1
veral Day
Sep 2 | 5
's
'5 | 0.21
0.59
0.03 Oc
0.04
0.68
2.32
0.02
0.38
0.19
0.05 | Jan
et 1,Nov
Nov
Jun 11,
Jun 11,
Aug | 31
23
5
12
12
12
28 | 0.24
0.33
0.13
0.92
0.02
0.02
0.92
2.70
0.02
0.46
0.19 | Apr 1
Oct
Nov 2
Apr 1
May
Sep 3 | 1994
2000
1 1994
4 1998
29 1998
1 1994
7 2000
30 1999 | e Estimated ## 384304090441801 BURGERMEISTER SPRING NEAR WELDON SPRING, MO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD.-- July 1987 to current year. Record from July 1987 to September 1989 published in U.S. Geological Survey Open-File Report 90-552 and record from October 1989 to September 1995 published in U.S. Geological Survey Open-File Report 95-463. GAGE. -- Specific conductance mini-monitor. REMARKS.--Daily specific conductance records good. During extreme cold when other surface-water bodies are frozen, the pond created behind the weir remains unfrozen because of the warmer spring water. Ducks will visit the pond during these times, stirring up the water and sediments causing specific conductance increases. This was observed in the record between December 26 and January 13. EXTREMES FOR PERIOD OF RECORD.--Maximum daily mean 1,130 microseimens per centimeter, many days in Aug. and Sept. 1991; minimum daily mean, 70 microseimens per centimeter, Jan. 21 and 22, 1997. EXTREMES FOR CURRENT YEAR.--Maximum daily mean, 838 microseimens per centimeter, Nov. 23; minimum daily mean, 198 microseimens per centimeter, May 13. SPECIFIC CONDUCTANCE, in $\mu\text{S/cm}$ @ 25°C , WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|---------------------------------|---------------------------------|---------------------------------|--|--|--|--|--|--| | | | OCTOBER | | NO | OVEMBER | | DE | CEMBER | | | JANUARY | | | 1 | 803 | 778 | 787 | 591 | 533 | 566 | 309 | 300 | 305 | 412 | 374 | 386 | | 2 | 809 | 789 | 800 | 631 | 591 | 612 | 326 | 309 | 317 | 456 | 381 | 398 | | 3 | 820 | 803 | 812 | 664 | 630 | 648 | 346 | 326 | 336 | 524 | 386 | 428 | | 4 | 825 | 809 | 816 | 687 | 661 | 675 | 363 | 346 | 353 | 467 | 429 | 440 | | 5 | 820 | 721 | 790 | 707 | 685 | 697 | 374 | 357 | 364 | 497 | 442 | 462 | | 6 | 815 | 483 | 535 | 727 | 703 | 716 | 406 | 374 | 392 | 499 | 462 | 477 | | 7 | 530 | 495 | 513 | 743 | 727 | 735 | 446 | 406 | 424 | 572 | 466 | 495 | | 8 | 581 | 529 | 555 | 752 | 740 | 746 | 481 | 444 | 463 | 524 | 479 | 499 | | 9 | 619 | 580 | 602 | 763 | 748 | 755 | 498 | 474 | 485 | 530 | 492 | 512 | | 10 | 703 | 428 | 576 | 780 | 758 | 763 | 537 | 483 | 494 | 582 | 514 | 540 | | 11 | 539 | 424 | 465 | 786 | 763 | 773 | 528 | 494 | 511 | 592 | 485 | 556 | | 12 | 556 | 419 | 457 | 785 | 773 | 779 | 538 | 181 | 478 | 602 | 564 | 581 | | 13 | 510 | 439 | 471 | 799 | 777 | 787 | 519 | 310 | 376 | 607 | 580 | 595 | | 14 | 545 | 447 | 489 | 798 | 776 | 792 | 320 | 307 | 312 | 634 | 584 | 609 | | 15 | 499 | 324 | 474 | 802 | 787 | 797 | 321 | 300 | 307 | 655 | 626 | 641 | | 16 | 541 | 252 | 449 | 807 | 792 | 801 | 329 | 271 | 298 | 663 | 635 | 654 | | 17 | 461 | 411 | 429 | 812 | 796 | 805 | 271 | 250 | 257 | 673 | 640 | 661 | | 18 | 497 | 451 | 475 | 815 | 792 | 808 | 273 | 253 | 264 | 686 | 656 | 671 | | 19 | 541 | 492 | 519 | 820 | 805 | 811 | 280 | 269 | 275 | 690 | 655 | 674 | | 20 | 571 | 534 | 558 | 822 | 795 | 811 | 300 | 278 | 287 | 708 | 671 | 692 | | 21 | 603 | 570 | 588 | 824 | 806 | 817 | 307 | 290 | 300 | 713 | 687 | 702 | | 22 | 631 | 602 | 617 | 828 | 792 | 820 | 319 | 299 | 308 | 720 | 690 | 706 | | 23 | 653 | 622 | 641 | 838 | 811 | 824 | 299 | 279 | 284 | 726 | 664 | 708 | | 24 | 674 | 581 | 656 | 811 | 182 | 472 | 305 | 281 | 289 | 719 | 682 | 702 | | 25 | 701 | 441 | 554 | 337 | 322 | 326 | 330 | 305 | 317 | 728 | 690 | 714 | | 26
27
28
29
30
31 | 501
537
383
419
468
535 | 444
321
334
383
417
468 | 474
374
362
404
442
505 | 338
388
401
349
306 | 325
338
349
303
297 | 330
372
381
324
301 | 349
354
358
382
374
395 | 320
329
338
345
355
364 | 328
339
347
359
363
374 | 714
620
623
632
610
257 | 611
585
591
309
181
220 | 668
604
610
571
410
235 | | MONTH | 825 | 252 | 554 | 838 | 182 | 661 | 538 | 181 | 352 | 728 | 181 | 568 | DARDENNE CREEK BASIN # 384304090441801 BURGERMEISTER SPRING NEAR WELDON SPRING, MO--Continued 81 SPECIFIC CONDUCTANCE, in $\mu\text{S/cm}$ @ $25^{\circ}\text{C}\text{,}$ WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|---|--|---|---|--|---|--|--|--|--|--|--| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 236
236
255
264
278 | 220
232
233
247
260 | 228
233
240
255
268 | 420
396
256
261
278 | 362
118
237
245
261 | 392
287
245
253
268 | 369
313
318
373
405 | 297
283
286
318
339 | 347
293
300
335
367 | 366
390
375
393
350 | 322
348
365
339
333 | 335
366
369
370
339 | | 6
7
8
9 | 300
314
325
331
348 | 275
289
295
307
316 | 287
296
307
315
331 | 278
273
288
292
266 | 255
256
273
258
256 | 263
265
281
278
260 | 437
463
440
293
287 | 380
410
131
276
278 | 403
437
353
280
281 | 396
396
274
265
277 | 346
168
250
246
20 | 375
299
261
255
235 | | 11
12
13
14
15 | 391
429
423
456
447 | 344
374
388
399
399 | 368
397
402
418
409 | 280
294
341
342
332 | 266
280
292
305
272 | 274
286
301
320
320 | 297
335
357
358
369 | 284
297
335
354
355 | 288
316
346
356
359 | 234
251
209
244
254 | 216
201
190
209
235 | 224
224
198
223
244 | | 16
17
18
19
20 | 456
445
461
465
332 | 403
416
426
137
244 | 420
429
437
382
258 |
341
300
308
293
297 | 279
279
271
270
282 | 298
288
294
281
288 | 384
411
434
446
401 | 369
384
409
136
247 | 374
399
421
397
269 | 280
273
269
309
343 | 251
244
237
261
267 | 262
260
250
276
297 | | 21
22
23
24
25 | 254
280
315
323
348 | 245
254
280
304
314 | 248
269
297
310
323 | 312
332
356
372
372 | 283
312
332
354
183 | 291
326
347
363
317 | 272
270
279
308
306 | 251
260
270
275
299 | 259
265
275
292
303 | 330
345
384
410
438 | 295
322
340
363
373 | 311
336
359
387
397 | | 26
27
28
29
30
31 | 361
355
363
 | 320
325
329
 | 342
338
350
 | 298
288
272
289
307
335 | 275
266
260
268
277
307 | 286
277
264
275
285
320 | 333
367
294
328
331 | 306
175
284
294
301 | 316
326
288
305
315 | 433
436
451
470
479
485 | 389
397
418
426
442
442 | 408
413
435
445
459
463 | | MONTH | 465 | 137 | 327 | 420 | 118 | 293 | 463 | 131 | 329 | 485 | 20 | 325 | | 11011111 | | | | | 110 | 255 | | | | | | | | PIOIVIII | | | | | | 2,5 | | | | | | | | PIOIVIII | | JUNE | | | JULY | 233 | I | AUGUST | | 5 | SEPTEMBE | R | | 1
2
3
4
5 | 511
507
496
505
508 | | | | | 583
596
606
620
630 | | AUGUST | | | | R
648
670
691
706
719 | | 1
2
3
4 | 511
507
496
505 | JUNE 461 460 474 481 | 479
483
484
495 | 591
606
617
627 | JULY 573 588 563 610 | 583
596
606
620 | 715
726
735
741 | AUGUST
696
708
693
725 | 704
717
724
733 | 660
684
701
719 | 636
655
681
685 | 648
670
691
706 | | 1
2
3
4
5
6
7
8 | 511
507
496
505
508
356
375
406
444 | JUNE 461 460 474 481 342 329 338 374 398 | 479
483
484
495
442
339
358
389
424 | 591
606
617
627
637
650
663
669
682 | JULY 573 588 563 610 622 635 649 586 667 | 583
596
606
620
630
644
656
664
674 | 715
726
735
741
748
752
755
761
762 | AUGUST 696 708 693 725 727 653 736 744 745 | 704
717
724
733
738
739
746
753
754 | 660
684
701
719
728
739
753
755
763 | 636
655
681
685
692
717
724
728
742 | 648
670
691
706
719
729
738
747
754 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 511
507
496
505
508
356
375
406
444
483
504
486
285
292 | JUNE 461 460 474 481 342 329 338 374 398 439 187 129 268 283 | 479
483
484
495
442
339
358
389
424
464
460
296
278
287 | 591
606
617
627
637
650
663
669
682
685
690
423
478
524 | JULY 573 588 563 610 622 635 649 586 667 211 369 371 422 471 | 583
596
606
620
630
644
656
664
674
600
442
397
452
498 | 715
726
735
741
748
752
755
761
762
764
761
757
762
765 | AUGUST 696 708 693 725 727 653 736 744 745 742 725 731 656 705 | 704
717
724
733
738
739
746
753
754
751
746
749
743 | 660
684
701
719
728
739
753
755
763
771
775
776
783
783 | 636
655
681
685
692
717
724
728
742
747
758
755
757
598 | 648
670
691
706
719
729
738
747
754
760
766
771
763 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 511
507
496
505
508
356
375
406
444
483
504
488
292
311
346
375
402
423 | JUNE 461 460 474 481 342 329 338 374 398 439 187 129 268 283 291 311 346 374 401 | 479
483
484
495
442
339
358
389
424
464
460
296
278
287
302
332
362
390
410 | 591
606
617
627
637
650
663
669
682
685
690
423
478
524
566
595
620
638
658 | JULY 573 588 563 610 622 635 649 586 667 211 369 371 422 471 519 564 592 617 635 | 583
596
606
620
630
644
656
664
674
600
442
397
452
498
544
580
607
627
645 | 715
726
735
741
748
752
755
761
762
764
761
757
762
765
763 | AUGUST 696 708 693 725 727 653 736 744 745 742 725 731 656 705 694 569 549 484 365 | 704
717
724
733
738
739
746
753
754
751
746
749
743
749
747
615
563
593
384 | 660
684
701
719
728
739
753
755
763
771
775
776
783
786
788 | 636
655
681
685
692
717
724
742
747
758
755
757
598
759
770
238
359
170 | 648
670
691
706
719
729
738
747
754
760
766
766
771
763
777
781
687
427
427 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 511
507
496
505
508
356
375
404
483
504
486
285
292
311
346
375
402
423
423
433
506
484
493
502
522
529
542
555
577 | JUNE 461 460 474 481 342 329 338 374 398 439 187 129 268 283 291 311 346 374 401 414 433 455 484 492 503 515 526 537 548 559 | 479
483
484
495
442
339
358
389
424
464
460
296
278
287
302
332
362
390
410
423
446
489
500
512
523
533
545
558
569 | 591
606
617
627
637
650
663
669
682
685
690
423
478
524
566
595
620
638
674
691
698
705
718
716 | JULY 573 588 563 610 622 635 649 586 667 211 369 371 422 471 519 564 592 617 635 653 670 681 601 700 604 579 604 634 651 665 | 583
596
606
620
630
644
656
664
674
600
442
397
452
498
544
580
607
627
645
662
679
689
693
709
666
594
621
644
664
664
664
664
665 | 715
726
735
741
748
752
755
761
762
764
761
757
762
765
763
697
575
657
500
424
475
546
627
619
421 | AUGUST 696 708 693 725 727 653 736 744 745 742 725 731 656 704 569 549 484 365 380 424 470 417 351 365 416 455 524 563 591 | 704
717
724
733
738
739
746
753
754
751
746
749
747
615
563
593
384
406
456
510
558
381
393
442
493
549
578
605 | 660
684
701
719
728
739
753
755
763
771
775
776
783
786
788
794
789
758
466
358
350
385
413
445
492
539
567
600
619
641 | 636
655
681
685
692
717
724
742
747
758
755
757
598
759
770
238
359
170
317
317
317
350
379
491
536
567
597
617 | 648
670
691
706
719
729
738
747
754
760
766
766
771
763
777
781
687
427
363
336
410
430
472
523
558
584
609
629 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 511
507
496
505
508
356
375
406
444
483
504
486
285
292
311
346
375
402
423
433
456
484
494
506
522
529
542
555
565 | JUNE 461 460 474 481 342 329 338 374 398 439 187 129 268 283 291 311 346 374 401 414 433 455 484 492 503 515 526 537 548 | 479
483
484
495
442
339
358
389
424
464
460
296
278
287
302
332
362
390
410
423
466
466
489
500
512
523
533
545
558 | 591
606
617
627
637
650
663
669
682
685
690
423
478
524
566
595
620
638
658
674
691
698
705
718
716 | JULY 573 588 563 610 622 635 649 586 667 211 369 371 422 471 519 564 592 617 635 653 670 681 700 604 579 604 651 | 583
596
606
620
630
644
656
664
674
600
442
397
452
498
544
580
607
627
645
662
679
689
693
709
666 | 715
726
735
741
748
752
755
761
762
764
761
757
762
765
763
697
575
657
500
424
475
546
627
619
421
463
526
592 | AUGUST 696 708 693 725 727 653 736 744 745 742 725 731 656 705 694 569 444 365 380 424 470 351 365 416 455 524 416 455 | 704
717
724
733
738
739
746
753
754
751
746
749
743
747
615
563
593
384
406
456
510
558
381
393
442
493
549
578 | 660
684
701
719
728
739
753
755
763
771
775
776
783
786
788
794
789
758
466
358
350
385
413
445
492
539
567
600
619 | 636
655
681
685
692
717
724
742
747
758
755
757
598
759
770
238
359
170
317
317
317
329
408
439
491
536
567
597 | 648
670
691
706
719
738
747
754
760
766
763
777
781
687
427
363
336
333
401
430
472
523
558
580
690 | #### 05587450 MISSISSIPPI RIVER AT GRAFTON, IL LOCATION.--Lat $38^{\circ}58^{\circ}05^{\circ}$, long $90^{\circ}25^{\circ}42^{\circ}$, in NE $\frac{1}{4}$ sec.15, T.6
N., R.12 W., Jersey County, Hydrologic Unit 07110009, on left bank 0.2 mi downstream from the mouth of Illinois River, 15.3 mi above Lock and Dam 26, 23.0 mi above mouth of Missouri River, and at mile 218.6 upstream of the mouth of Ohio River. DRAINAGE AREA. -- 171,300 mi², approximately. #### PERIOD OF RECORD . -- DISCHARGE: Intermittently from 1880 to 1928, computed daily 1928 to 1932 by the National Weather Service and/or the U.S. Army Corps of Engineers. Discharge previously published as "Mississippi River at Alton, IL" (05587500) October 1927 to September 1986. GAGE HEIGHT: August 1879 through September 1892, 1929 to September 1986, October 1986 to current year. Stages also available from reports of the National Weather Service. GAGE.--Water-stage recorder. Datum of gage is 403.79 ft above National Geodetic Vertical Datum of 1929. Auxiliary water-stage recorder 15.3 mi downstream. REMARKS.--Records poor. Natural flow of river affected by many navigation dams in upper Mississippi River Basin. Flood water from Missiouri River overtops or breaches the levees at extremely high stages. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 1844 reached an elevation of 435.89 ft, present datum. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY JUN JUL AUG SEP 7 54700 84700 64200 315000 87200 76300 e250000 95300 150000 310000 90300 e310000 e315000 e315000 90700 e290000 ---MEAN MAX MTN 2.07 0.48 0.52 0.57 0.39 0.56 0.74 1.57 0.83 0.70 0.51 IN. 1.11 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1987 - 2002, BY WATER YEAR (WY) MEAN MAX (WY) MIN (WY) SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1987 - 2002 ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN May 19 HIGHEST DAILY MEAN May 15 Aug Dec 14 1988 LOWEST DAILY MEAN Dec 29 Dec 29 ANNUAL SEVEN-DAY MINIMUM Dec 27 Dec 12 1988 Jan 6 MAXIMUM PEAK FLOW May 15 Aug MAXIMUM PEAK STAGE ___ 431.45 May 15 441.96 Aug 1 1993 INSTANTANEOUS LOW FLOW Dec 29 Dec 14 1988 ANNUAL RUNOFF (INCHES) 11.38 10.06 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS e Estimated # 05587455 MISSISSIPPI RIVER BELOW GRAFTON, IL (National Stream-Quality Accounting Network) (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 38°57'04", long 90°22'16", in sec.24, T.6 N., R.11 W., Jersey County, Hydrologic Unit 07110009, 11.3 mi above Lock and Dam 26, 19.0 mi above mouth of Missouri River, and at mile 214.6 upstream from the mouth of the Ohio River. DRAINAGE AREA.--171,300 \min^2 , approximately. PERIOD OF RECORD.--March 1989 to current year. National Stream-Quality Accounting Network station September 1989 to October 1992. Ambient Water-Quality Monitoring Network and National Stream-Quality Accounting Network station November 1992 to current year. REMARKS. -- Sediment records fair. PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT: October 1989 to current year. SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean, 1,910 mg/L, May 23, 1990; minimum daily mean, 1 mg/L, Sept. 10, 1991. SUSPENDED-SEDIMENT LOAD: Maximum daily, 1,090,000 tons, May 23, 1990; minimum daily, 186 tons, Sept. 10, 1991. EXTREMES FOR CURRENT YEAR.-SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean, 737 mg/L, May 7; minimum daily mean, 40 mg/L, Sept. 30. SUSPENDED-SEDIMENT LOAD: Maximum daily, 599,000 tons, May 8; minimum daily, 5,050 tons, Jan. 22. | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | UV ABSORB- ANCE 254 NM, WTR FLT (units /cm) (50624) | UV ABSORB- ANCE 280 NM, WTR FLT (units /cm) (61726) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | |-----------|-------|-------------------|---|--|---|---|--|---|--|--|---|---| | OCT | | | | | | | | | | | | | | 15
NOV | 1420 | ENVIRONMENTAL | 61300 | 1.1 | .146 | .107 | 10.7 | 109 | 8.2 | 471 | 15.9 | 200 | | 19
DEC | 1325 | ENVIRONMENTAL | 68800 | 20 | .132 | .094 | 12.8 | 120 | 8.7 | 535 | 12.2 | 250 | | 03 | 1325 | ENVIRONMENTAL | 93400 | 31 | .134 | .100 | 11.1 | 96 | 8.3 | 512 | 8.4 | 230 | | 03 | 1333 | BLANK | | | <.004 | <.004 | | | | | | | | JAN | | | | | | | | | | | | | | 16 | 1310 | ENVIRONMENTAL | 63200 | 14 | <.004 | .101 | 18.5 | 133 | 8.3 | 386 | 1.3 | 230 | | FEB | | | | | | | | | | | | | | 11 | 1415 | ENVIRONMENTAL | 88300 | 110 | .126 | .093 | 15.9 | 122 | 8.4 | 512 | 3.2 | 240 | | MAR | 1245 | | 100000 | 70 | 116 | 002 | 10 5 | 1.00 | 0 5 | F 4.6 | 4.0 | 050 | | 12
APR | 1345 | ENVIRONMENTAL | 126000 | 70 | .116 | .083 | 13.7 | 109 | 8.5 | 546 | 4.9 | 250 | | 01 | 1405 | ENVIRONMENTAL | 94200 | 76 | .117 | .087 | 14.4 | 123 | 8.7 | 549 | 7.7 | 230 | | MAY | 1403 | BIVITONIBILIAL | 74200 | 70 | / | .007 | 11.1 | 123 | 0.7 | 345 | /./ | 250 | | 06 | 1405 | ENVIRONMENTAL | 271000 | 84 | .171 | .128 | 9.0 | 92 | 8.1 | 377 | 15.5 | 160 | | 06 | 1440 | BLANK | | | | | | == | | | | | | JUN | | | | | | | | | | | | | | 03 | 1355 | ENVIRONMENTAL | 231000 | 55 | .178 | .131 | 8.1 | 99 | 8.0 | 454 | 24.0 | 190 | | JUL | | | | | | | | | | | | | | 08 | 1410 | ENVIRONMENTAL | 146000 | 36 | .183 | .132 | 5.9 | 80 | 8.1 | 434 | 31.0 | 180 | | AUG | 1.405 | | 05000 | 1.0 | 010 | 1.55 | 0 6 | 100 | 0 5 | 254 | 00 5 | 1.00 | | 12
SEP | 1425 | ENVIRONMENTAL | 86000 | 18 | .218 | .157 | 9.6 | 126 | 8.7 | 374 | 28.7 | 170 | | 09 | 1415 | ENVIRONMENTAL | 74100 | 18 | .205 | .148 | 9.1 | 117 | 8.2 | 392 | 27.7 | 170 | | 09 | 1413 | EN A TUONMEN I AP | /-±100 | Τ0 | . 205 | .140 | ۷.⊥ | TT / | 0.2 | 394 | 41.1 | 1/0 | # MISSISSIPPI RIVER MAIN STEM # 05587455 MISSISSIPPI RIVER BELOW GRAFTON, IL--Continued (National Stream-Quality Accounting Network) (Ambient Water-Quality Monitoring Network) | DATE | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ALKA-
LINITY
WAT DIS
FIX END
FIELD
(mg/L as
CaCO ₃)
(39036) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
(mg/L as
CaCO ₃)
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
(mg/L as
HCO ₃)
(00453) | CAR-BONATE WATER DIS IT FIELD (mg/L as CO ₃) (00452) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as CL)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SILICA,
DIS-
SOLVED
(mg/L
as
SiO ₂)
(00955) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | |--|--|--|--|---|--|---|--|---|---|---|--|--|--| | OCT
15 | 45.8 | 20.5 | 3.95 | 20.5 | 148 | 150 | 183 | 0 | 34.2 | .2 | 6.3 | 35.2 | | | 19 | 56.4 | 25.4 | 3.21 | 16.9 | 181 | 182 | 200 | 11 | 35.2 | .2 | 4.1 | 38.6 | | | DEC
03
03 | 53.6 | 24.3 | 3.12 | 17.9 | 176
 | 178
 | 217 | 4 | 29.5 | .2 | 4.4 | 38.1 | 62
 | | JAN
16 | 54.8 | 23.2 | 2.61 | 18.5 | 175 | 175 | 203 | 5 | 29.7 | .2 | 7.5 | 35.6 | | | FEB
11 | 56.9 | 23.5 | 3.04 | 19.6 | 168 | 168 | 194 | 6 | 35.6 | .2 | 6.4 | 41.1 | | | MAR
12 | 58.9 | 24.1 | 2.69 | 19.6 | 190 | 184 | 218 | 7 | 38.2 | .2 | 5.0 | 41.0 | 480 | | APR
01 | 51.9 | 23.8 | 2.49 | 23.3 | 164 | 160 | 178 | 9 | 40.6 | .2 | 3.0 | 42.3 | | | MAY
06
06 | 39.6
.02 | 15.8
<.008 | 2.86
E.08 | 11.4 | 128 | 126
 | 154
 | 0 | 19.0
<.30 | E.1
<.1 | 7.0
<.2 | 29.0
<.1 | | | JUN
03 |
46.0 | 17.7 | 2.90 | 11.7 | 131 | 132 | 161 | 0 | 24.6 | .2 | 4.7 | 34.8 | | | JUL
08 | 43.7 | 18.0 | 2.79 | 11.1 | 140 | 140 | 170 | 0 | 19.1 | .2 | 8.0 | 31.0 | 43 | | AUG
12 | 38.8 | 17.7 | 2.84 | 12.1 | 137 | 136 | 151 | 7 | 20.0 | .2 | 4.2 | 25.4 | | | SEP
09 | 41.6 | 17.2 | 3.25 | 12.5 | 128 | 128 | 156 | 0 | 18.6 | .2 | 7.7 | 23.1 | | | | | | | | | | | | | | | | | | DATE | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | CARBON,
ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | | OCT
15 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N) | GEN,PAR TICULTE WAT FLT SUSP (mg/L as N) | PHORUS DIS- SOLVED (mg/L as P) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P) | PHORUS
TOTAL
(mg/L
as P) | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C) | ORGANIC
DIS-
SOLVED
(mg/L
as C) | | OCT
15
NOV
19 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | GEN,PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | | OCT
15
NOV | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | GEN,PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS DIS- SOLVED (mg/L as P) (00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | | OCT 15 NOV 19 DEC 03 03 JAN 16 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 | GEN,AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .47 .41 | GEN,AM- MONIA + ORGANIC TOTTAL (mg/L as N) (00625) .82 1.1 .95 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.35 1.92 1.86 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 | GEN,PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.144
.055 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.042 | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 | INOR-GANIC, PARTIC TOTAL (mg/L as C) (00688) <.1 <.1 <.1 | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
5.4
5.2 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623)
.47
.41 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.82
1.1 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.35
1.92
1.86 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 .012 | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570)
.52
.68
.34
<.02 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.144
.055 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.042 | PHORUS
TOTAL
(mg/L
as P)
(00665)
.21
.161
.20 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 <.1 | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688)
<.1
<.1
<.1 | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
5.4
5.2
5.0 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11
MAR
12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372

314 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 E.02 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .47 .41 .4538 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 1.1 .9595 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.35 1.92 1.86 2.82 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 .012014 | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570)
.52
.68
.34
<.02 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.144
.055
.096
 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.042
.079
 | PHORUS TOTAL (mg/L as P) (00665) .21 .161 .20141 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 <.1 2.6 | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688)
<.1
<.1
<.1 | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
5.4
5.2
5.0
.9 | | OCT
15
NOV
19
DEC
03
JAN
16
FEB
11
MAR
12
APR
01 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372

314
316 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 E.02 E.03 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .47 .41 .4538 .40 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 1.1 .9595 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.35 1.92 1.86 2.82 4.51 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 .012014 .025 | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570)
.52
.68
.34
<.02
.30
.76 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.144
.055
.096

.065 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.042
.079

.051 | PHORUS TOTAL (mg/L as P) (00665) .21 .161 .20141 .41 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 <.1 2.6 6.6 | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688)
<.1
<.1
<.1
<.1 | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
5.4
5.2
5.0
.9
5.4 | | OCT
15
NOV
19
DEC
03
JAN
16
FEB
11
MAR
12
APR
01
MAY | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372

314
316
332
326
227 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 E.02 E.03 <.04 <.04 <.04 <.04 | GEN,AM-MONTA + ORGANIC DIS. (mg/L as N) (00623) .47 .41 .4538 .40 .36 .40 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 1.1 .9595 1.8 1.3 1.4 | GEN, NO ₂ +NO ₃ DIS-
SOLVED (mg/L as N) (00631) 1.35 1.92 1.86 2.82 4.51 3.96 3.32 2.67 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 .012014 .025 .016 .018 | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570)
.52
.68
.34
<.02
.30
.76
.67
.98 | PHORUS DIS-
SOLVED (mg/L as P) (00666) .144 .055 .096065 .107 .049 .026 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.042
.079

.051
.089
.030
.014 | PHORUS TOTAL (mg/L as P) (00665) .21 .161 .20141 .26 .26 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 <.1 2.6 6.6 4.8 6.7 5.4 | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688)
<.1
<.1
<.1
<.1
<.1
<.1
<.1
<.1 | ORGANIC DIS- SOLVED (mg/L as C) (00681) 5.4 5.2 5.0 .9 5.4 4.8 4.7 | | OCT 15 NOV 19 DEC 03 03 JAN 16 FEB 11 MAR 12 APR 01 MAY 06 JUN | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372

314
316
332
326
227
<10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 E.02 E.03 <.04 <.04 4.04 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .47 .41 .4538 .40 .36 .40 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 1.1 .9595 1.8 1.3 1.4 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.35 1.92 1.86 2.82 4.51 3.96 3.32 2.67 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 .012014 .025 .016 .018 .022 | GEN, PAR TICULITE WAT FLT SUSP (mg/L as N) (49570) .52 .68 .34 <.02 .30 .76 .67 .98 .51 | PHORUS
DIS-
SOLVED
(mg/L
as
P)
(00666)
.144
.055
.096

.065
.107
.049
.026 | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) .125 .042 .079051 .089 .030 .014 .053 | PHORUS TOTAL (mg/L as P) (00665) .21 .161 .20141 .41 .26 .26 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 <.1 2.6 6.6 4.8 6.7 5.4 | INOR-
GANIC,
PARTIC TOTAL
(mg/L as C) (00688)
<.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | ORGANIC DIS- SOLVED (mg/L as C) (00681) 5.4 5.2 5.0 .9 5.4 4.8 4.7 4.8 5.8 | | OCT 15 NOV 19 DEC 03 UAN 16 FEB 11 MAR 12 APR 01 MAY 06 UIUN 03 JUL | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372

314
316
332
432
227
<10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 E.02 E.03 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .47 .41 .4538 .40 .36 .40 .4654 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 1.1 .9595 1.8 1.3 1.4 1.2 1.1 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) 1.35 1.92 1.86 2.82 4.51 3.96 3.32 2.67 3.93 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 .012014 .025 .016 .018 .022040 | GEN, PAR TICULTE SUSP (mg/L as N) (49570) .52 .68 .34 <.02 .30 .76 .67 .98 .51 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.144
.055
.096

.065
.107
.049
.026 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.042
.079

.051
.089
.030
.014
.053
 | PHORUS TOTAL (mg/L as P) (00665) .21 .161 .20141 .41 .26 .26 .2824 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 <.1 2.6 6.6 4.8 6.7 5.4 3.3 | INOR- GANIC, PARTIC TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
5.4
5.2
5.0
.9
5.4
4.8
4.7
4.8
5.8
 | | OCT 15 NOV 19 DEC 03 03 JAN 16 FEB 11 MAR 01 APR 01 APR 01 MAY 06 06 JUN 03 JUL 08 AUG | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372

314
316
332
326
227
<10
270 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 E.02 E.03 <.04 <.04 <.04 <.04 <.04 <.04 | GEN,AM-MONTA + MONTA + ORGANIC DIS. (mg/L as N) (00623) .47 .41 .4538 .40 .36 .40 .4654 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 1.1 .9595 1.8 1.3 1.4 1.2 1.1 .88 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.35 1.92 1.86 2.82 4.51 3.96 3.32 2.67 3.93 3.08 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 .012014 .025 .016 .018 .022040 .029 | GEN, PAR TICULTE WAT FIT SUSP (mg/L as N) (49570) .52 .68 .34 <.02 .30 .76 .67 .98 .5137 | PHORUS DIS- SOLVED (mg/L as P) (00666) .144 .055 .096065 .107 .049 .026 .069089 | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) .125 .042 .079051 .089 .030 .014 .053066 .114 | PHORUS TOTAL (mg/L as P) (00665) .21 .161 .20141 .41 .26 .26 .2824 .20 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 <.1 2.6 6.6 4.8 6.7 5.4 3.3 2.7 | INOR- GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 5.4 5.2 5.0 .9 5.4 4.8 4.7 4.8 5.8 5.5 5.8 | | OCT 15 NOV 19 DEC 03 03 JAN 16 FEB 11 MAR 12 APR 01 MAY 06 JUN 03 JUN 03 JUL 08 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
284
316
372

314
316
332
432
227
<10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 E.02 E.03 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .47 .41 .4538 .40 .36 .40 .4654 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 1.1 .9595 1.8 1.3 1.4 1.2 1.1 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) 1.35 1.92 1.86 2.82 4.51 3.96 3.32 2.67 3.93 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .017 .008 .012014 .025 .016 .018 .022040 | GEN, PAR TICULTE SUSP (mg/L as N) (49570) .52 .68 .34 <.02 .30 .76 .67 .98 .51 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.144
.055
.096

.065
.107
.049
.026 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.042
.079

.051
.089
.030
.014
.053
 | PHORUS TOTAL (mg/L as P) (00665) .21 .161 .20141 .41 .26 .26 .2824 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.2 4.1 3.5 <.1 2.6 6.6 4.8 6.7 5.4 3.3 | INOR- GANIC, PARTIC TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
5.4
5.2
5.0
.9
5.4
4.8
4.7
4.8
5.8
 | 85 05587455 MISSISSIPPI RIVER BELOW GRAFTON, IL--Continued (National Stream-Quality Accounting Network) (Ambient Water-Quality Monitoring Network) | DATE | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(mg/L
as C)
(00689) | PHEO-
PHYTIN
A,
PHYTO-
PHYTON
(µg/L)
(62360) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µM-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (µg/L) (70953) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | |---|--|--|--|--|--|---|---|--|--|--|---|--|--| | OCT
15 | 3.2 | 39.2 | K87 | 145 | 75 | 31.7 | | | | | | | | | NOV
19 | 4.1 | 46.2 | к7 | к8 | К2 | 49.9 | | | | | | | | | 03
03 | 3.4 | 33.4 | K92 | K98
 | 165
 | 30.0 | M
 | 670
 | <8 | <.1 | <6
 | <10 | .09 | | JAN
16 | 2.5 | 10.8 | K1 | К5 | К4 | 63.0 | | | | | | | | | FEB 11 | 6.6 | 24.1 | <4 | к8 | K67 | 54.5 | | | | | | | | | MAR
12 | 4.5 | 28.4 | К35 | 23 | 46 | 65.3 | <20 | 1060 | <8 | <.1 | <6 | E7 | <.08 | | APR
01
MAY | 6.7 | 41.4 | K11 | LA | 26 | 89.4 | | | | | | | | | 06
06 | 5.3 | 19.3 | K30
 | K36
 | K40
 | 27.4 | <20
<20 | 1300
E20 | <8
<8 | .2
<.1 | <6
<6 | 15
<10 | .11 | | JUN
03 | 3.3 | 25.1 | K8 | K25 | K5 | 31.9 | | | | | | | | | JUL
08
AUG | 2.5 | 18.4 | К4 | к6 | 35 | 20.9 | <20 | 760 | <8 | <.1 | <6 | <10 | E.06 | | 12
SEP | 3.1 | 23.1 | К3 | к8 | K4 | 68.5 | | | | | | | | | 09 | 2.5 | 24.5 | K1 | K8 | K40 | 49.0 | DATE | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82680) | | OCT | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L) | ATE,
WATER,
DISS,
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | | OCT
15
NOV | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) |
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | BARYL
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82680) | | OCT
15 | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | | OCT
15
NOV
19
DEC
03
03 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) < <20 | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260)

<.004
.061 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.002
<.002 | BHC DIS-
SOLVED (µg/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.077 | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673)

<.010
<.010 | ATE,
WATER,
DISS,
REC
(µg/L)
(04028)

<.002
<.002 | BARYL
WATER
FITRD
0.7 µ
GF, REC
(µg/L)
(82680)

<.041
<.041 | | OCT
15
NOV
19
DEC
03
03
JAN
16 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(μg/L
as Mm)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<24
 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) <20 | ETHYL ANTLINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.002 <.006 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260)

<.004
.061
 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.002 <.010 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.077
.134
 | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673)

<.010
<.010

<.010 | ATE,
WATER,
DISS,
REC (µg/L)
(04028)

<.002
<.002

<.002 | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) <.041 <.041 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 2 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056) | TOTAL RECOV-
ERABLE (μg/L as Hg) (71900) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (μg/L as Zn) (01092) <20 | ETHYL ANTLINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 .061085 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.002 <.010 <.004 | BHC DIS- DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.077
.134

.118 | FLUR- ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (µg/L) (04028) <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITRD 0.7 µ GF, REC (µg/L) (82680) <.041 <.041 <.041 <.041 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11
MAR
12 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 2 3 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

18.0

5.4 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 E.01 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<24

<24 | TOTAL RECOV- REABLE (µg/L as Zn) (01092) <20 <20 <20 | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 | CHLOR, WATER FLTRD REC (µg/L) (49260) <.004 .061 .085 .036 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.002 <.010 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC (µg/L)
(39632)

.077
.134

.118
.199 | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673)

<.010
<.010

<.010
<.010 | ATE,
WATER,
DISS,
REC (µg/L) (04028)

<.002
<.002

<.002
<.002
<.002 | BARYL
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82680)

<.041
<.041

<.041
<.041
<.041 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11
MAR
12
APR
01 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) 2 3 3 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

18.0

5.4 | TOTAL RECOV-
ERABLE (μg/L as Hg) (71900) <.01 E.01 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<24

<24 | TOTAL RECOV- REABLE (μg/L as Zn) (01092) < < < < < < < < <- | ETHYL ANTLINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 <.006 | CHLOR, WATER FLTRD REC (µg/L) (49260) <.004 .061085 .036 .028 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.002 <.010 <.004 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.077
.134

.118
.199
.136 | FLUR- ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (µg/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11
MAR
12
APR
01
MAY
06 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 2 3 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

18.0

5.4 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 E.01 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<24

<24 | TOTAL RECOV- REABLE (µg/L as Zn) (01092) <20 <20 <20 | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 | CHLOR, WATER FLTRD REC (µg/L) (49260) <.004 .061 .085 .036 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.002 <.010 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC (µg/L)
(39632)

.077
.134

.118
.199 | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673)

<.010
<.010

<.010
<.010 | ATE,
WATER,
DISS,
REC (µg/L) (04028)

<.002
<.002

<.002
<.002
<.002 | BARYL
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82680)

<.041
<.041

<.041
<.041
<.041 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11
MAR
12
APR
01
MAY
06
06
JUN
03 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 2 3 4 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

18.0

5.4

E2.7 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 E.0101 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<24

<24

<24 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) < < < < < < < < <- | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 <.006 | CHLOR, WATER FLTRD REC (µg/L) (49260) <.004 .061 .085 .036 .028 .011 .503 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.002 <.010 <.004 <.004 | BHC DIS- SOLVED (μg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.077
.134

.118
.199
.136
.116 | FLUR- ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (µg/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITRD 0.7 µ GF, REC (µg/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11
MAR
12
APR
01
MAY
06
JUN | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) 2 3 4 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 18.0 5.4 5.4 E2.7 <2.0 | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) <.01 E.01 E.0101 <.01 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<24

<24

<24

<24 | TOTAL RECOV- REABLE (μg/L as Zn) (01092) <20 <20 <20 <20 <20 <20 | ETHYL ANTLINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER FLTRD REC (µg/L) (49260) <.004 .061085 .036 .028 .011 .503 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.002 <.010 <.004 <.004004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.077
.134

.118
.199
.136
.116 | FLUR- ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (µg/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITRD 0.7 µ GF, REC (µg/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11
MAR
12
APR
01
MAY
06
06
JUN
03 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 18.0 5.4 5.4 E2.7 <2.0 | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) <.01 E.01 E.01 .01 <.01 | DIS-
SOLVED (µg/L
as Zn) (01090) <24 <24 <24 <24 | TOTAL RECOV- REABLE (μg/L as Zn) (01092) < < < < < < < < <- | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 .061085 .036 .028 .011 .503610 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.002 <.010 <.004 <.004004004 | BHC DIS- DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005
<.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.077
.134

.118
.199
.136
.116
3.76

3.64 | FLUR-ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 <.010 | ATE, WATER, DISS, REC (µg/L) (04028) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | BARYL WATER FITRD 0.7 µ GF, REC (µg/L) (82680) <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 <.041 | # MISSISSIPPI RIVER MAIN STEM # 05587455 MISSISSIPPI RIVER BELOW GRAFTON, IL--Continued (National Stream-Quality Accounting Network) (Ambient Water-Quality Monitoring Network) | DATE | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | |---|---|--|--|--|--|---|---|---|---|--|---|---|---| | OCT
15 | | | | | | | | | | | | | | | NOV
19 | <.020 | <.005 | <.018 | <.003 | E.059 | .005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | DEC
03
03 | <.020 | <.005 | <.018 | <.003 | E.025 | E.003 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | JAN
16 | <.020 | <.005 | <.018 | <.003 | E.035 | E.003 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | FEB
11 | <.020 | <.005 | <.018 | <.003 | E.064 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | MAR
12 | <.020 | <.005 | <.018 | <.003 | E.028 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | APR
01 | <.020 | <.005 | <.018 | <.003 | E.034 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | MAY
06
06 | <.020 | <.005 | <.018 | <.003 | E.192 | .005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | JUN
03 | <.020 | <.005 | <.018 | <.003 | E.205 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | JUL
08 | <.020 | <.005 | <.018 | <.003 | E.144 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | AUG
12 | <.020 | <.005 | <.018 | <.003 | E.105 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | SEP
09 | <.020 | <.005 | <.018 | <.003 | E.068 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | | | | | | | | | | | | | | | | DATE | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | | OCT
15 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L) | METHRIN CIS WAT FLT 0.7 μ GF, REC (μg/L) | | OCT
15
NOV
19 | URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | | OCT
15
NOV
19
DEC
03 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) (82669) | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82683) | METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687) | | OCT 15 NOV 19 DEC 03 03 JAN 16 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 023 .033 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER FLTR 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 | AMIDE WATER FLIRD 0.7 μ GF, REC (μg/L) (82684) <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) (82669) <.002 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82683)

<.010 | METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687)

<.006 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027
<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006
 | LACHLOR WATER DISSOLV (µg/L) (39415) 023 .033 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006 | INATE WATER WATER FLIRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003
<.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) (82669) <.002 <.002 | METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683)

<.010
<.010 | METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687)

<.006
<.006 | | OCT
15
NOV
19
DEC
03
03
JAN
16
FEB
11
MAR
12 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 023 .033030 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006

<.006 | INATE WATER WATER 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 | AMIDE WATER FLITRD 0.7 µ GF, REC
(µg/L) (82684) <.007 <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003

<.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) (82669) <.002 <.002 <.004 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82683)

<.010
<.010

<.022 | METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687)

<.006

<.006 | | OCT
15
NOV
19
DEC
03
JAN
16
FEB
11
MAR
12
APR
01 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050
<.050

<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 023 .033030 .103 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) (82669) <.002 <.002 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683)

<.010
<.010

<.022
<.022 | METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687)

<.006

<.006
<.006 | | OCT
15
NOV
19
DEC
03
JAN
16
FEB
11
MAR
12
APR
01
MAY
06 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)

<.050

<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006
<.006

<.006
<.060
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 023 .033030 .103 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006

<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 <.010 | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) (82669) <.002 <.002 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683)

<.010

<.022
<.022
<.022 | METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687)

<.006

<.006
<.006
<.006 | | OCT 15 NOV 19 DEC 03 03 JAN 16 FEB 11 MAR 12 APR 01 MAY 06 06 JUN 03 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (μg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006
<.006

<.006
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 023 .033030 .103 .044 .033 .679 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006
<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) (82669) <.002 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | METH- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687)

<.006
<.006
<.006
<.006
<.006
<.006
<.006 | | OCT 15 NOV 19 DEC 03 03 JAN 16 FEB 11 MAR 12 APR 01 MAY 06 06 JUN 03 JUN 03 JUL 08 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050
<.050
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006
<.006
<.006
<.060
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 023 .033030 .103 .044 .033 .679 | BUZIN SENCOR WATER DISSOLV (µg/L) (82630) <.006 <.006 <.006 <.006 <.006 .006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 | ULATE WATER FILTRD 0.7 µ GF, REC (µg/L) (82669) <.002 <.002 <.004 <.004 <.004 <.004 | METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82683)

<.010
<.010

<.022
<.022
<.022
<.022 | METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687)

<.006
<.006
<.006
<.006
<.006
<.006 | | OCT
15
NOV
19
DEC
03
JAN
16
FEB
11
MAR
12
APR
01
MAY
06
06
JUN
03 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050
<.050
<.050
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006
<.006

<.006
<.060
<.006
006 | LACHLOR WATER DISSOLV (µg/L) (39415) 023 .033030 .103 .044 .033 .679700 | BUZIN SENCOR WATER DISSOLV (µg/L) (82630) <.006 <.006 <.006 <.006 <.006 <.006 <.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 <.010 <.010 | ULATE WATER FILITRD 0.7 µ GF, REC (µg/L) (82669) <.002 <.002 <.004 <.004 <.004 <.004 <.004 | METH-ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82683) <.010 <.010 <.022 <.022 <.022 <.022 <.022 <.022 <.022 | METHRIN CIS WAT FLT 0.7 µ GF, REC (µg/L) (82687) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | # 05587455 MISSISSIPPI RIVER BELOW GRAFTON, IL--Continued (National Stream-Quality Accounting Network) (Ambient Water-Quality Monitoring Network) | DATE | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | THIO-BENCARB WATER FLTRD 0.7 µ GF, REC (µg/L) (82681) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | |-----------|--|---|---|---|--|--|---|---|--|--|---|---|---| | OCT | | | | | | | | | | | | | | | 15
NOV | | | | | | | | | | | | | | | 19 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .040 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | DEC | | | | | | | | | | | | | | | 03
03 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .133 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | JAN | | | | | | | | | | | | | | | 16 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .010 | <.02 | <.034 | <.02 | <.005 | .004 | <.009 | | FEB | | | | | | | | | | | | | | | 11
MAR | <.011 | M | <.004 | <.010 | <.011 | <.02 | .029 | <.02 | <.034 | <.02 | <.005 | .003 | <.009 | | 12 | <.011 | М | <.004 | <.010 | <.011 | <.02 | .025 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | APR | | | | | | | | | | | | | | | 01 | <.011 | M | <.004 | <.010 | <.011 | <.02 | .018 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | MAY
06 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .153 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | 06 | | | | | | | | | | | | | | | JUN | 011 | - 01 | 004 | 010 | 011 | 0.0 | 100 | 0.0 | 004 | 0.0 | 0.05 | 000 | 000 | | 03
JUL | <.011 | E.01
| <.004 | <.010 | <.011 | <.02 | .126 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | 08 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .019 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | AUG | | | | | | | | | | | | | | | 12
SEP | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .016 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | 09 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .013 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | | | | | | | | | | | | | | | | DATE | % FINER | PENDEI
(mg/L) | |-----------|---------|------------------| | OCT | 0.5 | 120 | | 15
NOV | 85 | 132 | | 19
DEC | 98 | 50 | | 03 | 96 | 65 | | 03 | | | | JAN
16 | 73 | 96 | | FEB
11 | 98 | 95 | | MAR | 96 | 93 | | 12 | 97 | 296 | | APR
01 | 99 | 85 | | MAY | | | | 06
06 | 90 | 216 | | JUN | | | | 03 | 80 | 170 | | JUL
08 | 85 | 92 | | AUG | 03 | 22 | | 12 | 94 | 34 | | SEP
09 | 94 | 33 | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. LA--Laboratory accident. # MISSISSIPPI RIVER MAIN STEM 05587455 MISSISSIPPI RIVER BELOW GRAFTON, IL--Continued (National Stream-Quality Accounting Network) (Ambient Water-Quality Monitoring Network) SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | |----------------------------------|---|--|--|---|--------------------------------------|---|---|--|--| | | | OCTOBER | | : | NOVEMBER | | Di | ECEMBER | | | 1 | 56100 | 96 | 14400 | 85900 | 139 | 32300 | 89800 | 114 | 27700 | | 2 | 52700 | 77 | 10900 | 85500 | 101 | 23400 | 90600 | 99 | 24200 | | 3 | 46100 | 74 | 9190 | 89200 | 101 | 24300 | 93400 | 89 | 22500 | | 4 | 44500 | 71 | 8540 | 87600 | 106 | 25100 | 97100 | 86 | 22500 | | 5 | 47900 | 70 | 8990 | 91900 | 142 | 35100 | 95500 | 86 | 22300 | | 6 | 45200 | 73 | 8930 | 91500 | 113 | 27900 | 89600 | 82 | 19700 | | 7 | 51400 | 68 | 9460 | 86900 | 99 | 23300 | 87400 | 87 | 20500 | | 8 | 54700 | 69 | 10200 | 79400 | 103 | 22000 | 84700 | 79 | 18000 | | 9 | 56600 | 61 | 9280 | 84100 | 86 | 19500 | 86000 | 75 | 17500 | | 10 | 51000 | 59 | 8180 | 82100 | 78 | 17200 | 92300 | 89 | 22300 | | 11 | 47200 | 66 | 8420 | 83200 | 74 | 16700 | 98300 | 99 | 26400 | | 12 | 47600 | 78 | 9980 | 82600 | 81 | 18000 | 103000 | 96 | 26500 | | 13 | 56000 | 93 | 14000 | 79400 | 82 | 17700 | 97400 | 77 | 20300 | | 14 | 55900 | 96 | 14500 | 77200 | 75 | 15500 | 99600 | 91 | 24400 | | 15 | 61300 | 95 | 15700 | 76500 | 64 | 13300 | 102000 | 115 | 31700 | | 16 | 61500 | 101 | 16800 | 75900 | 59 | 12200 | 103000 | 127 | 35200 | | 17 | 88300 | 135 | 32100 | 73000 | 52 | 10300 | 111000 | 144 | 43200 | | 18 | 88800 | 148 | 35500 | 74300 | 66 | 13200 | 106000 | 130 | 37200 | | 19 | 85000 | 154 | 35500 | 68800 | 86 | 15900 | 92900 | 133 | 33500 | | 20 | 87900 | 145 | 34400 | 72700 | 78 | 15300 | 92400 | 127 | 31700 | | 21 | 83000 | 111 | 25000 | 74800 | 70 | 14100 | 92600 | 98 | 24600 | | 22 | 80800 | 100 | 21900 | 71800 | 63 | 12100 | 95100 | 121 | 31000 | | 23 | 95000 | 123 | 32100 | 74100 | 71 | 14200 | 90600 | 133 | 32700 | | 24 | 103000 | 191 | 53400 | 80900 | 85 | 18600 | 75100 | 86 | 17500 | | 25 | 108000 | 224 | 65200 | 77700 | 76 | 15900 | 58900 | 81 | 12900 | | 26
27
28
29
30
31 | 96100
92400
102000
93400
92900
94300 | 206
181
154
144
177
170 | 53600
45200
42500
36300
44300
43200 | 79200
74100
79600
85100
91000 | 72
69
73
79
87 | 15400
13900
15700
18100
21400 | 61300
47900
38200
34500
44900
61700 | 81
86
66
56
73
65 | 13400
11200
6780
5210
9240
10900 | | | | JANUARY | | | FEBRUARY | | | MARCH | | | 1 | 54300 | 58 | 8570 | 122000 | 417 | 138000 | 106000 | 129 | 37000 | | 2 | 51300 | 54 | 7510 | 110000 | 278 | 82700 | 101000 | 132 | 36000 | | 3 | 55500 | 50 | 7510 | 95900 | 222 | 57300 | 96200 | 132 | 34300 | | 4 | 61800 | 47 | 7780 | 84200 | 261 | 59200 | 94900 | 132 | 33900 | | 5 | 60500 | 46 | 7470 | 85100 | 258 | 59400 | 86700 | 128 | 30000 | | 6 | 52700 | 47 | 6710 | 83600 | 157 | 35400 | 83900 | 113 | 25600 | | 7 | 49100 | 57 | 7630 | 83700 | 132 | 29700 | 91000 | 111 | 27300 | | 8 | 64200 | 86 | 15100 | 86400 | 146 | 34200 | 94000 | 139 | 35300 | | 9 | 66100 | 93 | 16600 | 89800 | 175 | 42400 | 85100 | 176 | 40500 | | 10 | 59900 | 70 | 11300 | 85900 | 166 | 38600 | 111000 | 181 | 54500 | | 11 | 55700 | 59 | 8800 | 88300 | 163 | 38900 | 130000 | 196 | 68900 | | 12 | 59100 | 50 | 8010 | 91600 | 111 | 27500 | 126000 | 209 | 70800 | | 13 | 66900 | 64 | 11500 | 95300 | 99 | 25600 | 121000 | 292 | 95400 | | 14 | 60400 | 72 | 11700 | 98600 | 135 | 36000 | 119000 | 267 | 86000 | | 15 | 55100 | 73 | 10900 | 92600 | 110 | 27500 | 119000 | 263 | 84700 | | 16 | 63200 | 73 | 12500 | 86400 | 109 | 25700 | 126000 | 223 | 76200 | | 17 | 60400 | 60 | 9770 | 86200 | 93 | 21600 | 125000 | 198 | 67200 | | 18 | 58000 | 59 | 9230 | 90700 | 124 | 30300 | 123000 | 144 | 47900 | | 19 | 61400 | 65 | 10800 | 87300 | 132 | 31200 | 127000 | 150 | 51300 | | 20 | 57800 | 45 | 6970 | 80000 | 102 | 22000 | 122000 | 184 | 60600 | | 21 | 50500 | 46 | 6310 | 82500 | 83 | 18500 | 117000 | 213 | 67300 | | 22 | 39500 | 47 | 5050 | 93500 | 122 | 30900 | 111000 | 191 | 57000 | | 23 | 48000 | 48 | 6230 | 99800 | 179 | 48200 | 105000 | 143 | 40700 | | 24 | 47300 | 49 | 6260 | 102000 | 189 | 52300 | 109000 | 114 | 33600 | | 25 | 45400 | 54 | 6620 | 101000 | 167 | 45700 | 115000 | 140 | 43600 | | 26
27
28
29
30
31 | 51200
52000
53600
59300
64600
104000 | 51
51
47
46
72
264 | 6990
7210
6750
7380
12600
80600 | 92400
95300
103000

 | 137
136
114
 | 34100
34800
31700
 | 113000
111000
109000
109000
105000
99400 | 152
136
144
177
155
148 | 46400
40900
42500
52300
43900
39800 | MISSISSIPPI RIVER MAIN STEM 89 05587455 MISSISSIPPI RIVER BELOW GRAFTON, IL--Continued (National Stream-Quality Accounting Network) (Ambient Water-Quality Monitoring Network) SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | - , | , , , | • | | | | | |----------------------------------|--|--------------------------------------|--|--|--|--|--|--------------------------------------|--| | DAY | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | | | | APRIL | | | MAY | | | JUNE | | | 1 | 94200 | 162 | 41200 | 293000 | 311 | 247000 | 231000 | 199 | 124000 | | 2 | 94600 | 168 | 42800 | 294000 | 319 | 254000 | 228000 | 179 | 110000 | | 3 | 101000 | 169 | 45800 | 290000 | 280 | 219000 | 231000 | 185 | 115000 | | 4 | 104000 | 147 | 41400 | 282000 | 231 | 176000 | 226000 | 165 | 101000 | | 5 | 105000 | 159 | 44800 | 272000 | 222 | 163000 | 214000 | 175 | 101000 | | 6 | 105000 | 189 | 53800 | 271000 | 292 | 214000 | 220000 | 196 | 116000 | | 7 | 110000 | 189 | 56300 | 292000 | 737 | 584000 | 231000 | 176 | 110000 | | 8 | 112000 | 164 | 49400 | 315000 | 706 | 599000 | 240000 | 185 | 119000 | | 9 | 127000 | 184 | 64000 | 306000 | 316 | 261000 | 244000 | 225 | 150000 | | 10 | 162000 | 282 | 124000 | 291000 | 286 | 225000 | 250000 | 287 | 194000 | | 11 | 180000 | 358 | 173000 | 273000 | 290 | 213000 | 261000 | 445 | 315000 | | 12 | 167000 | 311 | 140000 | 273000 | 379 | 280000 | 279000 | 524 | 397000 | | 13 | 150000 | 295 | 119000 | 310000 | 324 | 271000 | 290000 | 323 | 253000 | | 14 | 151000 | 294 | 120000 | 350000 | 270 | 255000 | 310000 | 260 | 218000 | | 15 | 146000 | 267 | 105000 | 374000 | 183 | 185000 | 315000 | 185 | 157000 | | 16 | 146000 | 303 | 120000 | 372000 | 185 | 186000 | 315000 | 331 | 277000 | | 17 | 153000 | 291 | 120000 | 365000 | 179 | 176000 | 307000 | 226 | 187000 | | 18 | 155000 | 250 | 105000 | 358000 | 181 | 174000 | 290000 | 179 | 140000 | | 19 | 162000 | 245 | 107000 | 349000 | 227 | 213000 | 272000 | 201 | 148000 | | 20 | 173000 | 245 | 114000 | 345000 | 295 | 274000 | 253000 | 209 | 143000 | | 21 | 191000 | 266 | 138000 | 338000 | 274 | 250000 | 237000 | 201 | 128000 | | 22 | 218000 | 416 | 245000 | 328000 | 269 | 238000 | 225000 | 172 | 104000 | | 23 | 224000 | 321 | 194000 | 316000 | 307 | 262000 | 216000 | 191 | 111000 | | 24 | 224000 | 380 | 230000 | 302000 | 299 | 244000 | 208000 | 178 | 99800 | | 25 | 232000 | 582 | 365000 | 292000 | 243 | 191000 | 204000 | 151 | 83400 | | 26
27
28
29
30
31 | 241000
245000
267000
283000
290000 | 534
374
482
413
369 | 348000
247000
348000
315000
290000 |
288000
289000
290000
285000
270000
249000 | 223
230
236
214
238
268 | 173000
179000
185000
164000
173000
181000 | 200000
189000
176000
175000
182000 | 135
148
170
190
208 | 72900
75600
80300
89800
102000 | | | | JULY | | | AUGUST | | S | EPTEMBER | | | 1 | 183000 | 209 | 103000 | 94700 | 110 | 28300 | 119000 | 177 | 56600 | | 2 | 182000 | 191 | 93800 | 88600 | 116 | 27700 | 114000 | 165 | 50900 | | 3 | 182000 | 175 | 86200 | 84900 | 106 | 24300 | 109000 | 140 | 41200 | | 4 | 177000 | 164 | 78200 | 84900 | 107 | 24600 | 103000 | 95 | 26600 | | 5 | 172000 | 133 | 62100 | 81000 | 101 | 22000 | 96000 | 94 | 24400 | | 6 | 165000 | 118 | 52500 | 84600 | 105 | 24100 | 85200 | 94 | 21600 | | 7 | 157000 | 119 | 50200 | 86700 | 110 | 25900 | 77800 | 97 | 20400 | | 8 | 146000 | 112 | 44000 | 87200 | 110 | 26000 | 76300 | 91 | 18800 | | 9 | 142000 | 132 | 50500 | 82400 | 94 | 20800 | 74100 | 79 | 15900 | | 10 | 137000 | 117 | 43400 | 85200 | 89 | 20500 | 69300 | 76 | 14200 | | 11 | 137000 | 120 | 44300 | 85200 | 86 | 19800 | 76800 | 86 | 17800 | | 12 | 131000 | 114 | 40300 | 86000 | 80 | 18700 | 77700 | 86 | 18000 | | 13 | 128000 | 116 | 40200 | 90300 | 82 | 20000 | 78200 | 83 | 17500 | | 14 | 121000 | 102 | 33400 | 93200 | 95 | 23900 | 78500 | 85 | 18000 | | 15 | 113000 | 98 | 29900 | 94100 | 114 | 29100 | 78000 | 79 | 16600 | | 16 | 100000 | 96 | 26000 | 92200 | 112 | 28000 | 78800 | 82 | 17500 | | 17 | 96800 | 89 | 23200 | 96400 | 132 | 34400 | 83000 | 76 | 17100 | | 18 | 92500 | 84 | 21000 | 91700 | 143 | 35500 | 79700 | 71 | 15300 | | 19 | 92200 | 77 | 19100 | 96400 | 140 | 36300 | 83100 | 76 | 17000 | | 20 | 96400 | 86 | 22500 | 101000 | 114 | 31000 | 78000 | 85 | 17800 | | 21 | 104000 | 95 | 26600 | 96700 | 109 | 28400 | 72100 | 87 | 16800 | | 22 | 101000 | 105 | 28600 | 96500 | 112 | 29300 | 63500 | 110 | 18800 | | 23 | 103000 | 92 | 25500 | 104000 | 126 | 35400 | 71500 | 85 | 16400 | | 24 | 104000 | 95 | 26800 | 146000 | 259 | 103000 | 68900 | 62 | 11600 | | 25 | 101000 | 91 | 24700 | 168000 | 329 | 150000 | 66500 | 77 | 13900 | | 26
27
28
29
30
31 | 96300
95600
95800
92600
97500
96300 | 89
70
67
64
96
98 | 23200
18000
17200
16200
25300
25400 | 164000
159000
146000
130000
125000
123000 | 303
260
244
237
237
197 | 135000
111000
96300
83500
80100
65200 | 58800
51600
55000
60200
59200 | 72
53
54
52
40 | 11500
7440
8030
8390
6350 | 90 MISSOURI RIVER MAIN STEM ## 06813500 MISSOURI RIVER AT RULO, NE LOCATION.--Lat $40^{\circ}03^{\circ}13^{\circ}$, long $95^{\circ}25^{\circ}19^{\circ}$, in $NW^{\frac{1}{4}}$ $NW^{\frac{1}{4}}$ sec.17, T.1 N., R.18 E., Richardson County, Hydrologic Unit 10240005, on right bank at downstream side of bridge on U.S. Highway 159 at Rulo, 3.2 mi upstream from Big Nemaha River, and at mile 498.0. DRAINAGE AREA.--414,900 mi^2 , approximately. The 3,959 mi^2 in Great Divide basin are not included. PERIOD OF RECORD.--October 1949 to current year in reports of U.S. Geological Survey. Gage-height record collected at site 80 ft upstream January 1886 to December 1899 published in reports of Missouri River Commission; September 1929 to September 1950 in files of Kansas City office of U.S. Army Corps of Engineers. GAGE.--Water-stage recorder. Datum of gage is 837.23 ft above National Geodetic Vertical Datum of 1929. Oct. 1949 to Sept. 12, 1950, nonrecording gage at site 80 ft upstream and Sept. 13, 1950 to Apr. 19, 1983, recording gage on downstream end of middle pier, all at same datum. REMARKS.--Records good. Flow regulated by upstream main-stem reservoirs. Fort Randall Dam was completed in July 1952, with storage beginning in December 1952. Gavins Point Dam was completed in July 1955, with storage beginning in December 1955. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $358,000 \text{ ft}^3/\text{s}$ Apr. 22, 1952, gage height, 25.60 ft; minimum daily discharge, $4,420 \text{ ft}^3/\text{s}$ Jan. 13, 1957; minimum gage height, -0.19 ft Dec. 25, 1990, result of freezeup. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in 1881 reached a stage of 22.9 ft, from floodmark, discharge not determined. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |---|---|---|---|---|---|---|---|---|---|--|---|---| | 1
2
3
4
5 | 35000
35100
35500
35600
35700 | 35700
36000
36200
36400
36500 | 34700
32300
30600
28800
27900 | 21300
21200
21200
21300
21500 | 22100
19800
19200
20000
20200 | 22900
22100
22200
21600
20000 | 35100
35500
36200
36800
36200 | 35000
34300
34100
34500
34200 | 37100
35400
34600
34400
34300 | 31500
31200
30900
30900
30800 | 28000
27800
27600
27600
28000 | 35100
34400
34300
34500
34200 | | 6
7
8
9
10 | 35600
35300
35100
35000
35700 | 36500
36300
36400
36400
36300 | 27900
27900
28100
27700
27100 | 21900
22500
24200
24800
23500 | 20200
20900
21700
23300
24600 | 20900
22600
23600
24000
23400 | 35600
34700
33500
34200
34300 | 36700
36200
34400
33900
33500 | 33800
33400
32900
32200
32600 | 30300
30100
30100
30000
30500 | 29200
31000
32700
30900
29900 | 34000
34000
34200
34100
34000 | | 11
12
13
14
15 | 36800
36200
37400
38500
36900 | 36400
36400
36300
36200
36700 | 26700
26600
26200
25700
25800 | 23600
25100
25900
26400
26900 | 25300
25300
25800
25900
26500 | 23100
23400
23700
25300
30300 | 34500
35200
35600
34700
34500 | 34300
41400
44600
43000
39900 | 33100
35300
47300
49800
43300 | 30300
30900
32400
31500
29800 | 29900
29700
30400
32200
30300 | 33900
34200
34400
34700
34800 | | 16
17
18
19
20 | 36100
35800
35500
35500
35600 | 36500
36600
36800
36800
36600 | 25800
25400
25000
25200
25000 | 26600
25800
24700
24500
24700 | 25800
26100
26700
26600
27000 | 33600
30500
28100
26900
26600 | 34400
34700
34700
34800
35100 | 38600
38100
37100
37100
35900 | 39000
37900
37100
36000
35300 | 29600
29100
28700
28400
28200 | 30200
30600
31800
35300
37600 | 35300
34900
34100
33900
34200 | | 21
22
23
24
25 | 35400
35000
35700
35800
35500 | 36000
36000
36200
36700
38300 | 24800
24800
24100
24200
24300 | 24100
23100
23000
23100
22900 | 27000
26600
26000
25500
25300 | 26800
28100
30500
31800
33400 | 34700
34400
33800
34000
33800 | 35100
34500
34800
35600
36000 | 34600
34300
34500
34000
33300 | 27900
27600
27600
27900
28100 | 38300
36700
44400
51500
42900 | 34600
33900
33200
32600
32100 | | 26
27
28
29
30 | 35500
35300
35300
35400
35100 | 39700
40400
38900
38000
36800 | 23300
21900
21700
21300
21200 | 23200
23700
24700
25000
24000 | 25400
25500
24700
 | 34200
33500
33900
34900
34600 | 33200
33200
34400
34400
34800 | 37700
37900 | 32500
32000
32100
32200
32000 | 28600
29300
30800
29400
28400 | 41100
38400
36600
35600
35300 | 32000
32600
33400
33400
33800 | | MEAN
MAX
MIN
IN. | 35100
35710
38500
35000
0.10 | 36830
40400
35700
0.10 | 21900
25930
34700
21200
0.07 | 22900
23780
26900
21200
0.07 | 24250
27000
19200
0.06 | 34600
27450
34900
20000
0.08 | 34700
36800
33200
0.09 | 37400
36600
44600
33500
0.10 | 35540
49800
32000 | 28300
29650
32400
27600
0.08 | 36100
33790
51500
27600
0.09 | 33960
35300
32000
0.09 | | STATIST | CICS OF M | ONTHLY MEA | AN DATA F | OR WATER Y | EARS 195 | 3 - 2002 ^a | , BY WATER | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 44780
80050
1998
25580
1962 | | 27350
57380
1998
9953
1956 | 22870
42280
1973
10800
1957 | 28600
53140
1997
13220
1957 | 41190
79590
1979
15380
1957 | 1997
21820 | 97280 | 56710
130600
1984
33710
1956 | 50730
164800
1993
29650
2002 | 44890
78730
1996
29820
1955 | 45060
76410
1997
33960
2002 | | SUMMARY | STATIST | ICS | FO | R 2001 CAI | LENDAR YE | AR | FOR 2002 | WATER YE | EAR | WATER YE | EARS 1953 | 3 - 2002 ^a | | | ' ANNUAL I | | | 40580 | | | 31540 | | | 42250
71880
26340 | | 1997
1957 | | HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC | DAILY ME DAILY ME SEVEN-DA PEAK FLO PEAK ST
ANEOUS LO RUNOFF (C | EAN AN Y MINIMUM OW AGE OW FLOW INCHES) EDS EDS EDS | | 103000
20600
21700

1.33
65600 | May
Feb :
Jan : | 6
19
31 | 51500
19200
20300
59500
13.71
18900
1.03
36800
33500
23400 | Aug
Feb
Feb
Aug
Feb | 24
3
2
24
24
3 | 289000
4420
5560
307000
25.37

1.38
66900 | Jul
Jan
Nov
Jul
Jul | 24 1993
13 1957
30 1955
24 1993
24 1993 | | 50 PERC
90 PERC | ENT EXCE: | EDS
EDS | | 36300
22700 | | | 33500
23400 | | | 38700
19000 | | | a Post_regulation period. ### MISSOURI RIVER BASIN 91 ## 06815555 DAVIS CREEK AT MOUND CITY, MO LOCATION.--Lat $40^{\circ}07^{\circ}47^{\circ}$, long $95^{\circ}13^{\circ}50^{\circ}$, in NE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.6, T.61 N., R.38 W., Holt County, Hydrologic Unit 10240005, on left bank at downstream side of Highway E bridge, in Mound City. DRAINAGE AREA.--22.9 mi². PERIOD OF RECORD.--Jan. 20, 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records poor. U.S.G.S. satellite telemeter at station. | | | DISCHAF | RGE, CUBIC | FEET F | PER SECOND,
DAILY | | YEAR OCTOBER
ALUES | 2001 TO |) SEPTEMBE | ER 2002 | | | |--|---|---------------------------------|--|---|--|--|--|--|--------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.9
7.0
6.6
7.4 | 5.9
5.2
5.1
5.8
6.1 | 5.8
5.9
5.5
6.6
7.8 | e2.9
e2.7
e2.7
e2.9
e3.5 | 3.0 | | 2.9
3.2
3.4 | 5.2
5.3
5.1
4.8
4.4 | 4.9
4.7
4.3
5.0
5.0 | 2.1
2.3
2.3 | e1.4
e1.3
e1.3
e1.3
e1.3 | 0.98
0.79
0.86
0.82
0.80 | | 6
7
8
9
10 | 7.4
6.5
6.0
5.8
6.8 | 6.2
5.6
5.7
5.7 | 8.7
8.3
7.3
8.8
6.9 | e3.9
e3.5
e3.2
e4.5
5.1 | 3.3
3.6
4.1
5.2
5.1 | e3.5
3.4
3.7
e3.2
e3.5 | 3.4
3.2
4.3
4.7
4.0 | 28
11
8.5
8.6
6.7 | 5.0
5.0
5.0
5.4
4.7 | 1.8
1.6
1.6
1.4 | e1.1
0.79
0.63
0.64
0.62 | 0.69
0.60
0.71
0.60
0.57 | | 11
12
13
14
15 | 6.1
6.1
12
7.6
14 | 5.7
5.6
5.7
5.8
5.8 | 6.3
7.1
6.7
6.2
5.9 | e5.2
4.9
4.7
4.5
e5.0 | 6.1
4.4
4.1
3.8
3.6 | 3.8
3.7
3.2
3.1
3.0 | 4.5
11
4.9
4.4
4.1 | 16
19
10
9.0
8.0 | 5.7
7.5
6.3
5.9
5.2 | 1.4
7.5
2.8
2.0
1.9 | 0.63
0.60
15
2.7
1.9 | 0.64
0.66
0.63
0.70
0.64 | | 16
17
18
19
20 | 10
7.8
7.4
6.4
5.9 | 5.5
5.5
5.7
6.2
6.4 | 5.6
5.2
5.1
5.3
5.2 | e3.5
e3.4
e3.4
e3.5
e3.7 | | 3.0
3.2
3.3
3.4
3.4 | | 7.2
8.1
8.0
6.8
6.6 | 4.2
3.7
3.9
3.0
2.6 | 1.9
1.7
1.7
1.8
1.4 | 1.9
2.4
1.8
2.5 | 0.63
0.64
0.69
0.63
0.70 | | 21
22
23
24
25 | 5.7
6.4
6.5
6.6
5.6 | 6.5
6.4
6.2
12
8.7 | 5.1
5.4
e4.5
e4.1
e3.9 | e3.5
4.1
4.0
e3.4
e3.4 | 4.2
3.5
3.7
4.0
3.8 | | 4.7
4.4
4.4
4.6
4.2 | | 2.5
3.9
3.8
2.8
2.4 | 1.3
1.2
1.2
1.1 | 5.4
2.7
3.2
1.9 | 0.53
0.45
0.51
0.59
0.62 | | 26
27
28
29
30
31 | 5.6
5.6
6.1
6.2
6.2
6.3 | 6.6
5.8
5.5
5.6
5.7 | e3.9
e4.3
e4.3
e3.7
e3.5
e3.2 | 3.6
3.8
3.5
3.0
2.8
e3.5 | 3.4
e3.4
e3.5
 | 4.0
4.8
5.3
6.2
3.0
2.6 | 4.2
8.0
6.8
5.5
5.0 | 7.9
9.1
8.5
7.8
7.0
6.3 | 2.4
3.6
2.2
2.3
2.2 | 2.9
6.8
2.7
2.5
2.1
1.7 | 1.4
1.2
1.2
1.4
1.1 | 0.63
0.77
e0.75
e0.70
e0.70 | | MEAN
MAX
MIN | 7.14
14
5.6 | 6.13
12
5.1 | 3.2 | 2.7 | 3.0 | 3.62
6.2
2.6 | 2.9 | 8.69
28
4.4 | 2.2 | 2.17
7.5
1.1 | 3.51
47
0.60 | 0.67
0.98
0.45 | | MEAN
MAX
(WY)
MIN
(WY) | 4.22
7.15
2002
1.29
2001 | 4.64
6.13 | 3.90
5.68
2002
2.12
2001 | 4.18
4.63
2001
3.72
2002 | YEARS 2000
16.0
37.3
2001
3.89
2002 | 9.63
20.1
2001
3.62
2002 | 6.75
13.2
2001
2.54
2000 | 9.84
17.7
2001
3.11
2000 | 21.0
52.5
2001
4.17
2002 | 10.0
23.8
2001
2.17
2002 | 4.86
6.65
2001
3.51
2002 | 3.95
10.7
2001
0.45
2000 | | SUMMARY | STATISTI | CS | FOR 20 | 01 CALE | ENDAR YEAR | | FOR 2002 WAT | ER YEAR | | WATER YE | ARS 2000 | - 2002 | | LOWEST ANIUAL ANNUAL ANIUAL ANIUAL ANIUM MAXIMUM INSTANTANTANTANTANTANTANTANTANTANTANTANTANT | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK STA ANNEOUS LO ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW DS | | 423
0.80
0.93

29
9.4
4.4 | Feb 24
Jan 4
Jan 1 | | 4.51
47
0.45
0.58
225
6.81
0.36 ^a S
7.4
4.0
0.99 | Aug 20
Sep 22
Sep 19
Aug 20
Aug 20
Sep 9,10 | | 10.2
15.9
4.51
423
0.09
0.19
633
13.41
0.07
21
5.1 | | 12 2000
24 2001 | e Estimated a Minimum recorded, may have been less during periods of estimated record. 92 MISSOURI RIVER BASIN ## 06815575 SQUAW CREEK NEAR MOUND CITY, MO LOCATION.--Lat $40^\circ09^\circ21^\circ$ long $95^\circ15^\circ52^\circ$, in SE $\frac{1}{4}$ SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.26, T.62 N., R.39 W., Holt County, Hydrologic Unit 10240005, on right bank of downstream side of State Highway 59 bridge, 2.4 mi northwest of Mound City. DRAINAGE AREA.--62.7 mi². PERIOD OF RECORD.--October 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. ${\tt REMARKS.--Records}\ good\ except\ for\ estimated\ daily\ discharges,\ which\ are\ poor.\ U.S.G.S.\ satellite\ telemeter\ at\ station.$ | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES V OCT NOV DEC JAN EER MAD ADD MAY JUN JUL AUG SED | | | | | | | | | | | | | |---|--|---|--|--|--------------------------------------|--|---|--|-------------------------------------|---|--------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 12
12
12
18
44 | 16
16
15
15 | 14
14
14
14
14 | e6.8
e6.5
e6.5
e6.8
e7.5 | e22
e19
e19
e18
e17 | e9.0
e8.0
e7.0
e6.5
e11 | 8.6
8.2
7.9
7.9 | 15
15
14
14
14 | 18
17
16
16 | 9.6
9.3
9.4
12 | 3.9
3.6
3.5
3.6
3.4 | 2.1
2.0
1.6
1.7
1.6 | | | 6
7
8
9
10 | 17
15
15
14
16 | 16
15
15
15 | 13
13
13
13 | e8.0
e7.5
e7.0
e8.5 | e15
11
11
13
13 | 11
9.8
9.9
12
10 | 8.2 | 159
40
29
25
21 | 15
15
15
14
15 | 9.5
9.2
9.1
8.8
8.5 | 3.4
3.5
3.0
3.1
3.1 | 1.5
1.4
1.2
1.2 | | | 11
12
13
14
15 | 14
14
51
23
36 | 14
15
15
15
14 | 13
14
14
13
13 | e12
11
11
11
11 | e12
12
11
11
10 | 9.8
9.5
9.2
9.1
8.7 | 28
25
15
14
14 | 95
201
49
38
33 | 16
19
15
14
14 | 8.7
17
9.3
8.6
8.4 | 3.2
3.4
5.4
3.9
3.5 | 1.6
1.4
1.5
2.0
2.2 | | | 16
17
18
19
20 | 30
23
21
20
19 | 14
14
14
13 | 12
13
12
12 | 10
e9.5
e9.0
10
e9.5 | 9.9
9.7
10
12
12 | 8.5
8.6
8.4
8.8
9.0 | 14
13
13
12
12 | e31
e29
26
25
24 | 14
13
13
13
12 | 8.3
8.1
8.0
7.7
7.6 | 3.7
3.9
3.6
3.6
22 | 1.7
1.4
2.0
2.2
2.4 | | | 21
22
23
24
25 | 18
20
20
18
17 | 14
13
13
27
21 | 12
12
12
e11
e10 | 11
10
10
10
e9.5 | 10
9.7
9.8
9.6
9.2 | | 16
14
14
13 | 22
22
23
23
35 | 12
12
11
11 | 7.4
6.8
6.9
6.8
7.7 | 5.2
4.1
5.2
3.4
2.9 | 1.9
1.4
1.2
1.4 | | | 26
27
28
29
30
31 | 16
16
17
16
17 | 16
14
14
14
14 | e9.0
e9.0
e9.5
e9.8
e8.0
e7.0 | 9.7
9.7
9.4
8.8
e9.0
e15 | e8.5
e8.0
e9.0
 | 8.7
9.1
8.8
9.8
9.4
8.7 | 12
20
19
16
15 | 23
24
21
20
19
18 | 11
11
10
10
9.8 | |
2.7
2.6
2.4
2.3
2.2 | 2.0
1.7
1.8
1.7
1.4 | | | MEAN
MAX
MIN | 20.0
51
12 | 15.1
27
13 | 12.0
14
7.0 | 9.46
15
6.5 | 12.2
22
8.0 | 9.02
12
6.5 | 13.3
28
7.9 | 37.0
201
14 | 13.6
19
9.8 | 8.95
25
4.1 | 4.05
22
2.2 | 1.66
2.4
1.2 | | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | OR WATER Y | EARS 2001 | - 2002, | BY WATER | YEAR (WY) | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 11.5
20.0
2002
3.02
2001 | 10.5
15.1
2002
5.93
2001 | 7.35
12.0
2002
2.68
2001 | 8.76
9.46
2002
8.06
2001 | 46.8
81.4
2001
12.2
2002 | 35.5
62.0
2001
9.02
2002 | 25.5
37.7
2001
13.3
2002 | 37.4
37.8
2001
37.0
2002 | 66.5
119
2001
13.6
2002 | 24.7
40.5
2001
8.95
2002 | 9.80
15.5
2001
4.05
2002 | 12.4
23.1
2001
1.66
2002 | | | SUMMARY | STATISTI | CS | FOR 2 | 2001 CALEN | DAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEA | ARS 2001 | - 2002 | | | LOWEST ANIUAL SMAXIMUM MAXIMUM INSTANTA 10 PERCE 50 PERCE | MEAN ANNUAL MANNUAL MANNUAL ME DAILLY MEA SEVEN-DAY PEAK FLOI PEAK STA ANEOUS LOI ENT EXCEE ENT EXCEE | AN
AN
N
MINIMUM
W
GE
W FLOW
DS | | 781
1.2
2.0

68
24
9.9 | Feb 24
Jan 3
Jan 1 | | 201
1.2 Se
1.4
590
12.96
0.93
21
11
2.8 | May 12
pp 8,9,23
Sep 6
May 12
May 12
Sep 26 | | 24.5
36.0
13.1
781
1.2
1.4
2630
20.06
0.93
46
13
2.7 | Jan
Sep
Jun i
Jun i | 2001
2002
24 2001
3 2001
6 2002
14 2001
14 2001
26 2002 | | e Estimated ## 06817700 NODAWAY RIVER NEAR GRAHAM, MO LOCATION.--Lat $40^{\circ}12^{\circ}08$ ", long $95^{\circ}04^{\circ}07$ ", in NE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.9, T.62 N., R.37 W., Holt County, Hydrologic Unit 10240010, at right downstream end of bridge on Highway A, 0.15 mi east of Maitland, and 1.5 mi west of Graham. DRAINAGE AREA.--1,380 $\mbox{mi}^{\,2},$ approximately. ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1982 to current year. REVISED RECORDS.--WDR MO-94-1: 1993 peak, September monthly and yearly mean discharge. GAGE.--Water-stage recorder. Datum of gage is 852.09 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records poor. U.S. Army Corps of Engineers satellite telemeter at station. | | J J | DISCHAR | GE, CUBIC | FEET PER | R SECOND, W | WATER YEA | | 2001 TO 8 | SEPTEMBE | R 2002 | | | |---|---|---------------------------------------|--|--|--|--|---|---|-----------------------------------|--|-----------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e68 | 99 | 125 | e52 | e58 | e100 | 104 | 368 | 372 | e156 | e105 | 39 | | 2 | e65 | 93 | 125 | e48 | e58 | e90 | 100 | 300 | 328 | e148 | e98 | 34 | | 3 | e62 | 87 | 120 | e48 | e55 | e73 | 88 | 282 | 292 | e137 | e94 | 30 | | 4 | e65 | 84 | 118 | e48 | e57 | e76 | 83 | 257 | 274 | e125 | e90 | 28 | | 5 | 121 | 81 | 115 | e49 | e58 | e90 | 80 | 230 | 261 | e115 | e83 | 26 | | 6 | 120 | 80 | 118 | e50 | e58 | e110 | 79 | 494 | 248 | e108 | e79 | 23 | | 7 | 108 | 78 | 115 | e50 | e70 | 153 | 80 | 794 | 232 | e100 | e74 | 23 | | 8 | 100 | 74 | 105 | e47 | e73 | 161 | 91 | 366 | 211 | e94 | e72 | 30 | | 9 | 82 | 72 | 98 | e50 | e85 | 188 | 109 | 294 | 194 | e85 | e70 | 29 | | 10 | 72 | 77 | 98 | e58 | 127 | 230 | 101 | 256 | 182 | e79 | e72 | 28 | | 11 | 84 | 75 | 98 | e70 | 136 | 217 | 102 | 473 | 186 | e77 | e76 | 27 | | 12 | 90 | 76 | 110 | 100 | 190 | 216 | 112 | 4640 | 347 | e83 | e77 | 27 | | 13 | 140 | 82 | 120 | 122 | 213 | 203 | 132 | 3290 | 1230 | e540 | e96 | 25 | | 14 | 230 | 82 | 125 | 126 | 198 | 188 | 174 | 1660 | 1260 | 363 | e98 | 28 | | 15 | 266 | 81 | 125 | 136 | 209 | 174 | 180 | 1140 | 941 | 261 | e190 | 34 | | 16 | 198 | 83 | 120 | 134 | 231 | 169 | 159 | 961 | 618 | 192 | e151 | 33 | | 17 | 144 | 83 | 115 | 140 | 211 | 152 | 120 | 836 | 446 | 156 | e120 | 32 | | 18 | 115 | 82 | 110 | 154 | 196 | 141 | 105 | 742 | 388 | 133 | e110 | 32 | | 19 | 102 | 80 | 103 | 104 | 209 | 132 | 98 | 663 | 345 | 122 | e112 | 36 | | 20 | 95 | 79 | 98 | 114 | 240 | 124 | 91 | 610 | 321 | 112 | e190 | 69 | | 21 | 91 | 76 | 96 | 129 | 229 | 116 | 110 | 574 | 305 | 111 | 320 | 86 | | 22 | 94 | 76 | 96 | 124 | 202 | 101 | 126 | 525 | 282 | 109 | 168 | 69 | | 23 | 101 | 80 | 92 | 114 | 188 | 96 | 118 | 564 | 286 | 102 | 178 | 61 | | 24 | 96 | 130 | 90 | 87 | 170 | 105 | 114 | 830 | 232 | e77 | 165 | 56 | | 25 | 119 | 211 | e80 | 90 | 149 | 111 | 215 | 747 | 223 | e68 | 150 | 52 | | 26
27
28
29
30
31 | 143
103
93
90
93
101 | 218
194
165
145
135 | e70
e74
e76
e64
e56
e56 | 120
123
134
e84
e65
e48 | 118
e115
e100
 | 100
124
121
134
130
114 | 150
167
282
348
465 | 780
609
512
494
429
408 | 219
204
198
e184
e165 | e68
e79
e87
e100
e145
e115 | 107
84
73
63
52
43 | 46
45
52
55
54 | | MEAN
MAX
MIN
IN. | 111
266
62
0.09 | 102
218
72
0.08 | 100
125
56
0.08
N DATA FO | 90.9
154
47
0.08 | 143
240
55
0.11
YEARS 1983 | 137
230
73
0.11 | 143
465
79
0.12
BY WATER | 811
4640
230
0.68
YEAR (WY) | 366
1260
165
0.30 | 137
540
68
0.11 | 112
320
43
0.09 | 40.3
86
23
0.03 | | MEAN | 395 | 472 | 492 | 342 | 752 | 1068 | 1469 | 1942 | 1743 | 1524 | 537 | 647 | | MAX | 2313 | 1735 | 2026 | 1199 | 1839 | 3155 | 3614 | 4606 | 4936 | 12460 | 2758 | 3364 | | (WY) | 1987 | 1993 | 1993 | 1983 | 1983 | 1998 | 1984 | 1995 | 1984 | 1993 | 1987 | 1993 | | MIN | 46.2 | 77.1 | 63.9 | 57.8 | 82.2 | 128 | 58.8 | 48.6 | 68.5 | 75.1 | 46.2 | 40.3 | | (WY) | 2001 | 1989 | 2001 | 2000 | 1989 | 2000 | 1989 | 1989 | 1988 | 1988 | 1988 | 2002 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALEN | IDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YE | ARS 1983 | - 2002 | | LOWEST ANIUAL SANNUAL SANNUAL SANNUAL SANNUAL SANNUAL SANNUAL SANNUAL SON PERCE | MEAN ANNUAL MANNUAL ME DAILLY ME DAILLY MEA SEVEN-DAY PEAK FLO PEAK STA ANNEOUS LO RUNOFF (II ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 966 11300 50 57 9.50 2660 248 80 | Feb 25
Jan 3,4
Jan 1 | | 191 4640 23 27 5580 8.95 20 1.89 347 111 55 | May 12
Sep 6,7
Sep 5
May 12
May 12
Sep 7 | | 932
2870
186
52000
23
27
78300
26.16
20
9.18
2200
350
69 | Sep
Sep
Jul 2
Jul 2 | 1993
2000
23 1993
6 2002
5 2002
23 1993
23 1993
7 2002 | e Estimated # 06817700 NODAWAY RIVER NEAR GRAHAM, MO--Continued (Ambient Water-Quality Monitoring Network) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--March 1989 to October 1989, November 1992 to current year. REMARKS.--This site replaced Nodaway River near Oregon, Missouri (06817800). | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
14 | 1100 | ENVIRONM | ENTAL | 85 | 10.2 | 103 | 8.4 | 431 | 14.5 | 200 | 56.4 | 14.9 | 3.36 | | MAR
05 | 1330 | ENVIRONM | ENTAL | e90 | 14.4 | 104 | 8.0 | 502 | 1.0 | | | | | | APR
22 | 1330 | ENVIRONM | ENTAL | 127 | 15.4 | 153 | 8.9 | 408 | 14.0 | | | | | | MAY
14 | 1230 | ENVIRONM | ENTAL | 1620 | 10.1 | 104 | 7.8 | 336 | 15.5 | 140 | 40.6 | 9.47 | 5.16 | | JUN
10 | 1250 | ENVIRONM | ENTAL | 184 | 13.2 | 165 | 9.3 | 304 | 24.5 | | | | | | JUL
09 | 1150 | ENVIRONM | ENTAL | 83 | 9.4 | 133 | 8.8 | 345 | 32.0 | 150 | 34.0 | 15.4 | 3.16 | | DATE |
SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLITD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
14
MAR | 11.9 | 178 | 178 | 213 | 2 | 12.0 | .3 | 33.7 | 28 | 246 | <.04 | .38 | .07 | | 05
APR | | 208 | 209 | 255 | 0 | | | | <10 | | .10 | .40 | 1.81 | | 22
MAY | | 174 | 174 | 186 | 13 | | | | 39 | | <.04 | .96 | <.05 | | 14
JUN | 6.60 | 98 | 98 | 119 | 0 | 8.60 | .3 | 19.0 | 1990 | 235 | .32 | 4.8 | 11.3 | | 10
JUL | | 109 | 108 | 95 | 18 | | | | 83 | | <.04 | 2.1 | 1.66 | | 09 | 10.8 | 137 | 137 | 145 | 11 | 11.9 | . 4 | 28.2 | 94 | 207 | <.04 | 1.3 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
14 | E.004 | <.06 | E.01 | .07 | <1 | 53 | 160 | 4 | 235 | 1.3 | E.02 | <.1 | <6 | | MAR | | | | | | | | | 235 | | £.U2 | <.⊥ | <0 | | 05
APR | .019 | E.04 | .04 | .08 | <1 | K3 | K14
93 | | | | | | | | 22
MAY | <.008 | E.05 | | .17 | K40 | 120 | | | | | | | | | 14
JUN | .123 | .10 | .08 | 1.73 | K33000 | K37000 | K16000 | 2 | 14100 | 1.6 | <.04 | 1.2 | <6 | | JUL | .066 | <.06 | <.02 | .24 | K20 | 97 | 100 | | | | |
 | | | 09 | <.008 | .11 | .09 | .38 | <3 | 73 | 180 | 2 | 902 | 5.7 | .05 | E.1 | <6 | # 06817700 NODAWAY RIVER NEAR GRAHAM, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | |------------------|---|---|--|--|--|---|--|--|---|--|---|---|---| | NOV
14 | 21 | E.05 | М | 307 | <.01 | .5 | <1 | 2 | <.002 | <.004 | <.002 | <.005 | .069 | | MAR
05 | | | | | | | | | <.006 | <.006 | <.004 | <.005 | .054 | | APR
22 | | | | | | | | | <.006 | .283 | .011 | <.005 | .827 | | MAY
14 | <10 | <.08 | 30 | E1.7 | .06 | 1.8 | <1 | 94 | <.006 | .784 | .025 | <.005 | 15.1 | | JUN
10 | | | | | | | | | <.006 | .036 | <.004 | <.005 | 1.55 | | JUL
09 | E5 | .10 | 2 | 3.3 | E.01 | 1.1 | 5 | 10 | <.006 | .015 | <.004 | <.005 | .929 | | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | | NOV
14
MAR | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.022 | <.005 | <.005 | <.02 | <.002 | <.009 | | 05
APR | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.019 | <.005 | <.005 | <.02 | .003 | <.009 | | 22
MAY | <.010 | <.002 | <.041 | <.020 | <.005 | E.008 | <.003 | E.047 | <.005 | <.005 | <.02 | <.002 | <.009 | | 14
JUN | <.010 | <.002 | <.041 | E.024 | <.005 | .019 | <.003 | E.476 | <.005 | <.005 | <.02 | <.002 | <.009 | | 10
JUL | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.153 | <.005 | <.005 | <.02 | <.002 | <.009 | | 09 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.111 | <.005 | <.005 | <.02 | <.002 | <.009 | | DATE | ETHO-
PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | NOV | - 005 | <.003 | - 004 | - 02F | <.027 | - 0E0 | - 000 | .022 | - 000 | - 000 | - 007 | - 003 | - 007 | | 14
MAR
05 | <.005
<.005 | <.003 | <.004 | <.035
<.035 | <.027 | <.050
<.050 | <.006 | .022 | <.006
<.006 | <.002 | <.007
<.007 | <.003 | <.007
<.010 | | APR 22 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | .150 | <.006 | <.002 | <.007 | <.003 | <.010 | | MAY
14 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | 3.12 | .054 | <.002 | <.007 | <.003 | <.010 | | JUN
10 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | .126 | <.006 | <.002 | <.007 | <.003 | <.010 | | JUL
09 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | .061 | <.006 | <.002 | <.007 | <.003 | <.010 | # 06817700 NODAWAY RIVER NEAR GRAHAM, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687) | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | |-----------|---|---|--|--|---|---|---
--|--|---|---|--|--| | NOV | | | | | | | | | | | | | | | 14 | <.002 | <.010 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | | MAR | | | | | | | | | | | | | | | 05 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | APR
22 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.010 | <.02 | <.034 | <.02 | | MAY | ~.004 | <.UZZ | <.000 | <.U11 | <.01 | <.004 | <.010 | V.011 | <.02 | <.010 | <.02 | <.U34 | <.02 | | 14 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .039 | <.02 | <.034 | <.02 | | JUN | | | | | | | | | | | | | | | 10 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | JUL | | | | | | | | | | | | | | | 09 | <.004 | <.022 | <.006 | <.011 | .02 | <.004 | <.010 | <.011 | <.02 | .010 | <.02 | <.034 | <.02 | | DATE | THIO-
BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82681) | | 0.7 μ
GF, REC
(μg/L) | |------------------|---|-------|----------------------------| | NOV
14 | <.005 | <.002 | <.009 | | MAR
05 | <.005 | <.002 | <.009 | | APR 22 | <.005 | <.002 | <.009 | | MAY
14
JUN | <.005 | <.002 | E.005 | | 10
JUL | <.005 | <.002 | <.009 | | 09 | <.005 | <.002 | <.009 | e--Estimated discharge value. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 06818000 MISSOURI RIVER AT ST. JOSEPH, MO LOCATION.--Lat 39°45'12", long 94°51'28", in NW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.17, T.57 N., R.35 W., Buchanan County, Hydrologic Unit 10240011, on left bank at left abutment of St. Joseph and Grand Island Railroad Bridge in St. Joseph, and at mile 448.2. DRAINAGE AREA.--420,100 mi^2 . The 3,959 mi^2 in Great Divide basin are not included. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1928 to current year. Gage-height records collected in vicinity 1873-99 are contained in reports of the Missouri River Commission; since 1900 in reports of the National Weather Service. REVISED RECORDS. -- WDR MO-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 788.19 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 21, 1931 nonrecording gage and from Oct. 21, 1931, to Dec. 31, 1933, water-stage recorder, both at same site at datum 5.50 ft higher. REMARKS.--Water-discharge records good. Some regulation from many upstream reservoirs. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 397,000 ${\rm ft^3/s}$, Apr. 22, 1952; maximum gage-height, 32.07 ${\rm ft}$; July 26, 1993; minimum discharge, 2,300 ${\rm ft^3/s}$, Jan. 9, 1937. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Apr. 29, 1881, reached a stage of 27.2 ft, present datum, discharge, about 370,000 ${\rm ft}^3/{\rm s}$, computed by the U.S. Army Corps of Engineers. Flood of June 1844 reached a stage of 24.5 ft, discharge, about 350,000 ${\rm ft}^3/{\rm s}$, computed by the U.S. Army Corps of Engineers. a Post-regulation period. 98 MISSOURI RIVER MAIN STEM ## 06818000 MISSOURI RIVER AT ST. JOSEPH, MO--Continued (Ambient Water-Quality Monitoring Network) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1969 to July 1992, November 1992 to current year. PERIOD OF DAILY RECORD.-WATER TEMPERATURE: May 1984 to December 1984, July 1985 to September 1985, April 1986 to September 1986. DISSOLVED OXYGEN: May 1984 to November 1984, July 1985 to September 1985, April 1986 to September 1986. INSTRUMENTATION.--Water-quality monitor, May 1984 to December 1984, July 1985 to September 1985, April 1986 to September 1986. REMARKS.--National Stream-Quality Accounting Network station October 1974 to September 1986. Ambient Water-Quality Monitoring Network station October 1969 to July 1992, November 1992 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|---|---|---|--|---|--|---|--|--|---|---|---|---| | OCT
18 | 1045 | ENVIRONMENT | TAL | 36800 | 9.4 | 93 | 8.4 | 790 | 13.5 | | | | | | NOV
16
16 | 1030
1035 | ENVIRONMENT
BLANK | TAL | 37000
 | 9.7 | 96
 | 8.4 | 785
 | 14.0 | 260
 | 62.3
E.01 | 24.5 | 6.16
<.10 | | DEC 19 | 1035 | ENVIRONMEN. | TAL | 25300 | 11.3 | 90 | 8.4 | 780 | 5.0 | | | | | | JAN
24
FEB | 1125 | ENVIRONMEN. | TAL | 23900 | 11.7 | 88 | 8.4 | 785 | 2.6 | 290 | 74.3 | 25.5 | 5.94 | | 21
21 | 1050
1051 | ENVIRONMENT
REPLICATE | TAL | 27300
 | 10.7 | 88 | 8.4 | 709
 | 6.0 | | | | | | 07
APR | 1045 | ENVIRONMEN | TAL | 20900 | 12.5 | 95 | 8.3 | 755 | 2.5 | | | | | | 24
MAY | 1040 | ENVIRONMEN | TAL | 34000 | 9.4 | 97 | 8.5 | 752 | 15.5 | | | | | | 16
JUN | 1135 | ENVIRONMENT | TAL | 39900 | 8.4 | 89 | 8.1 | 656 | 16.5 | 240 | 60.7 | 20.8 | 5.97 | | 12
JUL | 1050 | ENVIRONMEN | TAL | 39300 | 5.9 | 74 | 8.3 | 703 | 25.0 | | | | | | 11
AUG | 1100 | ENVIRONMEN | TAL | 31500 | 6.8 | 93 | 8.4 | 803 | 30.0 | 250 | 59.8 | 23.5 | 5.73 | | 14
SEP | 1020 | ENVIRONMEN | TAL | 32000 | 6.7 | 86 | 8.4 | 782 | 26.0 | | | | | | 26 | 1215 | ENVIRONMEN | TAL | 31000 | 9.2 | 105 | 8.6 | 756 | 20.0 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | UNFLTRD UNFLTRD UNFLTRD INFLELD INFLECT INFLEC | ANC WATER NFLTRD IT FIELD mg/L as CaCO ₃) 00419) |
ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
18 | DIS-
SOLVED
(mg/L
as Na) | WATER | WATER NFLTRD IT FIELD mg/L as CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
18
NOV
16 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD UNFLTRD UNFET FIELD I (mg/L as (TCaCO ₃) (00410) (0 | WATER NFLTRD IT FIELD mg/L as CaCO ₃) 00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
18
NOV
16
16
DEC
19 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER IN UNFLIRD UNFLIRD IN FET FIELD IN (mg/L as (r CaCO ₃) (00410) (0 | WATER NFLTRD IT FIELD mg/L as CaCO ₃) 00419) | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT 18 NOV 16 16 DEC 19 JAN 24 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD UNFLTRD UNFLTRD IN (Mg/L as | WATER NFLTRD IT FIELD mg/L as CaCO ₃) 00419) 184 176 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 4 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) 198 <.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .89 .59 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .62 .48 | | OCT
18
NOV
16
16
DEC
19
JAN
24
FEB
21 | DIS-
SOLVED (mg/L
as Na) (00930) 69.4 <.09 63.7 | WATER UNFLTRD UNFLTRD UNFLTRD IN (FET FIELD IN (Mg/L as (TCaCO ₃) (00410) (00410) (00410) (10 | WATER
NFLITRD
IT
FIELD
mg/L as
CaCO ₃)
00419)
184
176

226
214 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
225
207

268
254
228 | CAR-BONATE IT FIELD (mg/L as CO ₂) (00447) 0 4 4 4 3 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.0 <.30 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

198
<.1

170 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 66 38 90 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.03 .09 .10 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .89 .59 .73 .57 | GEN, NO ₂ +NO ₃ DIS-
SOLVED (mg/L as N) (00631) .62 .48 1.81 1.59 1.52 | | OCT 18 NOV 16 16 DEC 19 JAN 24 FEB 21 21 MAR | DIS-
SOLVED (mg/L as Na) (00930)
69.4 <.09
63.7 | WATER UNFLTRD UNFLTRD UNFLTRD (Mg/L as (TacCO ₃) (00410) (00410) (00410) (104 | WATER
NFLITRD
IT
FIELD
mg/L as
CaCO ₃)
000419)
184
176

226
214
191
 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
225
207

268
254
228
 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃) (00447)
0
4

4
4
3
 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.0
<.30

25.9 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

198
<.1

170 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 66 38 90 90 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.03 .09 .10 .09 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .89 .5973 .57 1.0 .96 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .62 .48 1.81 1.59 1.52 1.59 | | OCT 18 NOV 16 16 DEC 19 JAN 24 FEB 21 21 MAR 07 APR | DIS-
SOLVED (mg/L
as Na) (00930) | WATER UNFLTRD UNFLT | WATER NFLITRD IT IT FIELD mg/L as CaCO ₃) 000419) 184 176 226 214 191 203 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
225
207

268
254
228

247 |
CAR-
BONATE
IT
FIELD (mg/L
as CO ₃) (00447)
0
4

4
4
3

0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.0 <.30

25.9
 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

198
<.1

170 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 66 38 90 90 44 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.03 .09 .10 .09 .08 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .89 .5973 .57 1.0 .96 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .62 .48 1.81 1.59 1.52 1.59 1.40 | | OCT 18 NOV 16 16 DEC 19 JAN 24 FEB 21 21 MAR 07 APR 24 MAY | DIS-
SOLVED (mg/L
as Na) (00930) 69.4 <.09 63.7 | WATER UNFLTRD UNFLT | WATER NFLITRD IT IT FIELD mg/L as CaCO ₃) 00419) 184 176 226 214 191 203 187 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 225 207 268 254 228 247 215 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
4

4
4
3

0
7 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.0 <.30

25.9 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

198
<.1

170 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 66 38 90 90 44 252 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.03 .09 .10 .09 .08 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .89 .5973 .57 1.0 .96 .43 1.2 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .62 .48 1.81 1.59 1.52 1.59 1.40 .57 | | OCT 18 NOV 16 16 DEC 19 JAN 24 FEB 21 MAR 07 APR 24 MAY 16 JUN | DIS-
SOLVED (mg/L as Na) (00930) 69.4 <.09 63.7 45.5 | WATER UNFLTRD UNFLT | WATER NFLITRD IT IT FIELD mg/L as CaCO ₃) 000419) 184 176 226 214 191 203 187 176 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 225 207 268 254 228 247 215 215 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃) (00447)
0
4

4
4
3

0
7 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.0 <.30

25.9

15.2 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

198
<.1

170 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 66 38 90 90 44 252 540 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.03 .09 .10 .09 .08 <.04 E.03 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .89 .5973 .57 1.0 .96 .43 1.2 2.4 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .62 .48 1.81 1.59 1.52 1.59 1.40 .57 | | OCT 18 NOV 16 16 19 JAN 24 FEB 21 21 MAR 07 APR 24 MAY 16 JUN 12 JUL | DIS-
SOLVED (mg/L
as Na) (00930) 69.4 <.09 63.7 45.5 | WATER UNFLIRAD UNFLIRAD UNFLIRAD UNFLIRAD IN (MG/L as (MG | WATER NFLITRD IT IT FIELD mg/L as CaCO ₃) 00419) 184 176 226 214 191 203 187 176 171 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 225 207 268 254 228 247 215 215 203 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 44 4 30 7 0 3 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940) 20.0 < .30 25.9 15.2 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS- SOLVED (mg/L as SO ₄) (00945) 198 <.1 170 136 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 66 38 90 90 44 252 540 624 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

548
10

520

440 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.03 .09 .10 .09 .08 <.04 E.03 E.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .89 .5973 .57 1.0 .96 .43 1.2 2.4 2.4 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .62 .48 1.81 1.59 1.52 1.59 1.40 .57 2.77 | | OCT 18 NOV 16 16 DEC 19 JAN 24 FEB 21 21 MAR 07 APR 24 MAY 16 JUN 12 JUL 11 AUG | DIS-
SOLVED (mg/L as Na) (00930) 69.4 <.09 63.7 45.5 | WATER UNFLITRD UNFLED UNFLITRD UNFLED UNFLITRD UNFLED UNFLITRD UNFLITRD UNFLITRD UNFLED UNFLITRD UNFLITRD UNFLITRD UNFLITRD UNFLITRD UNFLED UNFLITRD UNFLED UNFLED UNFLED UNFLED UNFLITRD UNFLED UNF | WATER NFLITRD IT IT FIELD mg/L as CaCO ₃) 00419) 184 176 226 214 191 203 187 176 171 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 225 207 268 254 228 247 215 215 203 202 | CAR-BONATE IT FIELD (mg/L as CO ₂) (00447) 0 4 4 4 3 0 7 0 3 3 3 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.0 <.30

25.9

15.2 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950)

.5<.1

.5 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

198
<.1

170

136 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 66 38 90 90 44 252 540 624 129 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.03 .09 .10 .09 .08 <.04 E.03 E.04 <.04 | GEN, AM- MONTA + ORGANIC TOTAL (mg/L as N) (00625) .89 .5973 .57 1.0 .96 .43 1.2 2.4 2.4 .95 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .62 .48 1.81 1.59 1.52 1.59 1.40 .57 2.77 1.11 | | OCT 18 NOV 16 16 DEC 19 JAN 24 FEB 21 21 MAR 07 APR 24 MAY 16 JUN 12 JUN 11 | DIS-
SOLVED (mg/L
as Na) (00930) 69.4 <.09 63.7 45.5 | WATER UNFLIRAD UNFLIRAD UNFLIRAD UNFLIRAD IN (MG/L as (MG | WATER NFLITRD IT IT FIELD mg/L as CaCO ₃) 00419) 184 176 226 214 191 203 187 176 171 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 225 207 268 254 228 247 215 215 203 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 44 4 30 7 0 3 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940) 20.0 < .30 25.9 15.2 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS- SOLVED (mg/L as SO ₄) (00945) 198 <.1 170 136 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 99 50 66 38 90 90 44 252 540 624 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

548
10

520

440 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.03 .09 .10 .09 .08 <.04 E.03 E.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .89 .5973 .57 1.0 .96 .43 1.2 2.4 2.4 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .62 .48 1.81 1.59 1.52 1.59 1.40 .57 2.77 | #### MISSOURI RIVER MAIN STEM 99 # 06818000 MISSOURI RIVER AT ST. JOSEPH, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |------------------|---|--|--|--|--|---|--|---|--|--|--|--|---| | OCT
18 | E.007 | .07 | .06 | .23 | 760 | K1700 | 280 | | | | | | | | NOV
16
16 | <.008 | E.05 | .04 | .15 | K1300 | K1300 | 58 | 1
<1 | 569
4 | 2.5 | E.02 | <.1
<.1 | <6
<6 | | DEC 19 | .009 | .11 | .08 | .21 | 320 | 310 | 130 | | | | | | | | JAN
24
FEB | .008 | .08 | .08 | .15 | 320 | 170 | 110 | 4 | 462 | 3.2 | <.04 | <.1 | <6 | | 21
21 | .009
.011 | .10
.11 | .07 | .30
.27 | 370 | 350 | 90 | | | | | | | | MAR
07 | .009 | .07 | .07 | .15 | K52 | 100 | 87 | | | | | | | | APR 24 | E.007 | .06 | .05 | .38 | 72 | 1200 | 780 | | | | | | | | MAY
16
JUN | .049 | .10 | .10 | .69 | <10 | 1400 | 600 | 2 | 5780 | 3.0 | E.03 | .3 | <6 | | 12
JUL | .013 | .07 | .06 | .78 | <10 | 770 | K14000 | | | | | | | | 11
AUG | E.007 | E.04 | .04 | .16 | K20 | 97 | 52 | 2 | 612 | 3.2 | E.04 | E.1 | <6 | | 14
SEP | E.004 | E.04 | .04 | .18 | K140 | 120 | 100 | | | | | | | | 26 | E.007 | E.04 | .03 | .16 | K14 | 49 | K21 | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT | | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) |
NESE,
DIS-
SOLVED
(μg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Zn) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | | | | | | OCT
1
NOV
1
1 | 8
6
6 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
1
NOV
1
1
DEC
1 | 8
6
6
9 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | | | | | | OCT
1
NOV
1
1
DEC
1
JAN
2 | 8
6
6
9 | DIS-
SOLVED (µg/L
as Fe) (01046) | DIS-
SOLVED (µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED (µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | | | | | | OCT
1
NOV
1
1
DEC
1
JAN
2
FEB | 8
6
9
4 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10
<10 | DIS-
SOLVED (µg/L
as Pb)
(01049)

<.08
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

E1.4
<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145)

2.2
<.3 | DIS-
SOLVED (µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 1 | | | | | | OCT
1
NOV
1
1
DEC
1
JAN
2
FEB
2
2 | 8
6
9
4
1 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10
<10
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 1 | NESE,
DIS-
SOLVED
(µg/L
as Mm)
(01056)

E1.4
<2.0

7.5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Zn) (01145) 2.2 <.3 3.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

4
2

2 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 1 6 | | | | | | OCT
1
NOV
1
1
1
DEC
1
JAN
2
FEB
2
2
2
MAR
0
APR | 8
6
9
4
1
7 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10
<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

E1.4
<2.0

7.5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Zn) (01145) 2.2 <.3 3.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

4
2

2 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | | | | | | OCT
1
NOV
1
1
DEC
1
JAN
2
FEB
2
2
MAR
0
APR
2
MAY
1 | 8
6
9
4
1
7
4 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10
<
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08
<.08

<.08 | TOTAL RECOV- REABLE (μg/L as Pb) (01051) 1 <1 1 | NESE,
DIS-
SOLVVED
(μg/L
as Mn)
(01056)

E1.4
<2.0

7.5 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Zn)
(01145)

2.2
<.3

3.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

4
2

2 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 6 1 6 | | | | | | OCT
1
NOV
1
1
DEC
1
JAN
2
FEB
2
2
2
MAR
0
APR
2
MAY
1
JUN
1 | 8
6
9
4
1
7
4
6 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10
<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08
<.08

<.08 | TOTAL RECOV- REABLE (µg/L as Pb) (01051) 1 <1 1 1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

E1.4
<2.0

7.5 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Zn) (01145) 2.2 <.3 3.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 6 1 6 | | | | | | OCT
1
NOV
1
1
1
DEC
1
1
JAN
2
2
FEB
2
2
2
2
MAR
0
0
APR
2
1
JUN
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 8
6
9
4
1
7
4
6 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10
<10

<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08
<.08

<.08 | TOTAL RECOV- REABLE (µg/L as Pb) (01051) 1 <1 1 1 1 1 1 1 1 | NESE, DIS- SOLVED (µg/L as Mn) (01056) E1.4 <2.0 7.5 <2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Zn) (01145) 2.2 <.3 3.3 2.9 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 6 1 6 45 | | | | | | OCT
1
NOV
1
1
DEC
1
JANN
2
FEB
2
MAR
0
APR
2
MAY
1
JUN
1
JUN
1
JUN
1
JUN
1
JUN
1
JUN
1
1
JUN
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 8
6
9
4
1
7
4
6
2 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10
<
<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08
<.08

<.08 | TOTAL RECOV- REABLE (μg/L as Pb) (01051) 1 <1 1 1 1 10 | NESE,
DIS-
SOLVVED
(μg/L
as Mn)
(01056)

E1.4
<2.0

7.5

<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Zn) (01145) 2.2 <.3 3.3 2.9 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

4
2

2

2 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 6 1 6 45 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. #### 06819500 ONE HUNDRED AND TWO RIVER AT MARYVILLE, MO LOCATION.--Lat $40^{\circ}20^{\circ}45^{\circ}$, long $94^{\circ}49^{\circ}56^{\circ}$, in SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.15, T.64 N., R.35 W., Nodaway County, Hydrologic Unit 10240013, on right bank 150 ft upstream from bridge on U.S. Highway 136, 0.3 mi downstream from Thill Branch, 1 mi east of Maryville, and at mile 64.0. DRAINAGE AREA.--515 mi². PERIOD OF RECORD.--October 1932 to September 1990, March 22, 2001 to current year. April to June 1934 monthly discharge only published in WSP 1310. June 1934 to September 1971 published as "near Maryville". GAGE.--Water-stage recorder. Datum of gage is 954.65 ft above National Geodetic Vertical Datum of 1929. Nonrecording gage prior to Sept. 15, 1958. Prior to June 20, 1934, at site 20 ft upstream and datum 10 ft higher. June 20, 1934 to July 19, 1971, at site 3 mi upstream at datum 15.68 ft higher. July 20, 1971 to September 1990, at site 20 ft upstream and datum 10 ft higher. REMARKS.--Records good except for discharges above 5,000 ft³/s and estimated daily discharges, which are poor. Some regulation at low flow by City Waterworks. U.S.G.S. satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of September 16, 1926 reached a stage of 25 ft, present datum from floodmark; discharge, 14,500 ft³/s. DAILY MEAN VALUES DAY NOV DEC JAN FEB MAY SEP e7.8 e5.0 e11 3.9 7.1 e7.4 e11 5.8 e5.8 3.5 9 9 e7 0 e5 8 e10 5.6 3 4 e2.9 e7.0 e6.0 e9.0 5.1 e8.0 5.0 e6.6 e12 e2.9 e9.0 e6.6 5.0 e2.8 e7.2 5.5 e2.7 e2.7 e12 e17 e2.6 4.9 e2.7 e2.7 579 2.8 1 0 4.5 9.9 6.6 4 1 e175 5.6 4.3 12 33 4.3 9.8 3.8 5.6 8.7 17 7.4 7.0 7.9 e9.5 7 7 4 7 e9.0 5.3 9.2 7.3 e10 e11 3 5 e10 3.6 e10 2.7 e9.0 8.6 5.9 e8.2 6.2 ---5.1 2.8 22.7 MEAN 21.2 18.8 13.1 27.8 35.7 52.4 47.0 11.3 4.85 16.5 MTN 9.9 8 0 5.0 9 0 6.4 4.5 2.6 0.05 0.74 0.10 0.03 0.05 0.04 0.03 0.06 0.08 0.04 0.01 IN. STATISTICS OF MONTHLY MEAN DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) MEAN 81.0 MAX (WY) MIN 0.05 0.59 1.12 0.11 2.09 3.42 0.74 0.11 5.18 0.50 0.18 0.03 (WY) SUMMARY STATISTICS FOR 2002 WATER YEAR FOR PERIOD OF RECORD ANNUAL MEAN 50.4 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 18.6 HIGHEST DAILY MEAN Oct 12 1973 May 12 2.6 LOWEST DAILY MEAN Sep 0.00 Several Years ANNUAL SEVEN-DAY MINIMUM 1977.1988 Sep 0.00 MAXIMUM PEAK FLOW May 12 19.25a MAXIMUM PEAK STAGE 13.43 May 12 Oct 12 1973 INSTANTANEOUS LOW FLOW 0.00 Several Years 2.5 Sep 30 ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 2.6 e Estimated Former Datum. #### 06820500 PLATTE RIVER NEAR AGENCY, MO LOCATION.--Lat 39°41'20", long 94°42'15", in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.10, T.56 N., R.34 W., Buchanan County, Hydrologic Unit 10240012, on left bank 10 ft downstream from bridge of U.S. Highway 169, 1.5 mi downstream from Third Fork, 3.5 mi northeast of Agency, and at mile 66.8. DRAINAGE AREA. -- 1,760 mi². PERIOD OF RECORD.--May 1924 to August 1930, published as "at Agency"; May 1932 to current year. GAGE.--Water-stage recorder. Datum of gage is 807.38 ft above National Geodetic Vertical Datum of 1929. May 22, 1924, to Aug. 9, 1930, nonrecording gage at site 4 mi downstream at different datum; May 13, 1932, to Nov. 14, 1965, nonrecording
gage at same site and datum; Nov. 15, 1965, to Oct. 25, 1989, water-stage recorder at site 150 ft upstream at present datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. | | | DISCHARGE | C, CUBIC | FEET PER | | WATER Y | | BER 2001 TO | SEPTEMBE | ER 2002 | | | |--|--|---------------------------------------|--|--|--------------------------------------|--|---|---|---------------------------------------|---|-------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 198
176
165
135
143 | 149
151
173
153
163 | 142
132
127
125
123 | e50
e50
e56
e54
e56 | e130
e128
e112
e110
e112 | e160
e140
e140
e155
e175 | e257
e231
e195
e172
e159 | 543
448
398
366
317 | 461
403
357
333
320 | 114
106
96
104
229 | 52
44
39
34
33 | 38
35
31
34
27 | | 6
7
8
9
10 | 153
227
189
170
180 | 147
146
146
141
124 | 120
120
119
113
109 | e58
e58
e60
e75
e82 | e120
e130
156
190
227 | e185
e213
e244
459
472 | e151
e162
e211
378
331 | 2990
3380
1730
995
678 | 304
283
264
247
234 | 118
104
95
90 | 32
32
30
29
30 | 25
23
22
19
19 | | 11
12
13
14
15 | 195
164
161
147
309 | 137
148
140
126
117 | 108
124
142
132
133 | e90
e115
e125
134
141 | 198
213
211
216
226 | e382
e387
e394
e342
e326 | 259
263
439
334
277 | 5810
12300
6970
2160
1320 | 248
2320
802
483
429 | 90
276
151
89
139 | 34
40
40
40
43 | 18
17
17
18
20 | | 16
17
18
19
20 | 625
353
231
195
199 | 109
108
105
108
105 | 138
124
120
114
102 | 147
133
125
186
145 | 229
232
229
e218
e220 | e251
e197
e182
e174
e161 | 257
233
210
203
216 | 987
825
747
738
623 | 295
238
266
223
180 | 121
86
72
64
62 | 43
46
47
49
117 | 19
19
20
34
30 | | 21
22
23
24
25 | 162
146
170
204
267 | 118
117
105
185
194 | 95
99
91
79
e65 | 140
127
133
133
124 | e225
e238
e250
236
221 | e156
e148
e146
e150
e154 | 570
667
387
316
280 | 548
499
477
497
1150 | 165
155
144
135
126 | 76
60
52
47
44 | 174
242
127
115
154 | 26
24
57
62
49 | | 26
27
28
29
30
31 | 229
208
172
154
153
153 | 215
249
197
162
149 | e68
e68
e64
e72
e65
e55 | 130
134
138
135
e130
e130 | 186
e175
e155
 | e165
e174
e185
e197
364
311 | 274
412
1320
736
649 | 864
1000
750
600
712
574 | 124
296
247
174
136 | 57
58
50
59
73
66 | 99
82
69
59
50
42 | 40
33
30
28
27 | | MEAN
MAX
MIN
IN. | 204
625
135
0.13 | 146
249
105
0.09 | 106
142
55
0.07 | 110
186
50
0.07 | 189
250
110
0.11 | 235
472
140
0.15 | 352
1320
151
0.22 | 1677
12300
317
1.10 | 346
2320
124
0.22 | 94.8
276
44
0.06 | 66.7
242
29
0.04 | 28.7
62
17
0.02 | | MEAN
MAX
(WY)
MIN
(WY) | 645
8584
1974
0.02
1957 | 556
4620
1962
6.14 | 375
3248
1983
5.59
1939 | 376
3714
1974
2.72
1940 | 842
4912
1973
14.0
1940 | 1360
6345
1979
12.7
1938 | 1509
6835
1973
9.89
1956 | 1667
10020
1995
26.9
1956 | 2015
13640
1947
41.7
1988 | 1180
21280
1993
10.2
1936 | 446
2935
1987
2.62
1934 | 878
7853
1926
6.76
1955 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALEN | DAR YEAR | | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | RECORD | | LOWEST ANIUAL ANNUAL ANIUAL ANIUAL ANIUAL ANIUAL ANIUAL 10 PERC. | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK FLO PEAK STA ANEOUS LO RENT EXCEE ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 1454 16600 36 39 11.22 3790 460 114 | Feb 25
Jan 2
Jan 1 | | 298 12300 17 18 13000 23.17 17 2.30 474 147 40 | Sep 9
May 12
May 12 | | 987
4108
67.4
57500
0.00
0.00
60800
36.07
0.00
7.62
2130
198
24 | A
A
Jul
Jul | 1993
1934
25 1993
tt Times
tt Times
25 1993
25 1993
tt Times | e Estimated ## 06821080 LITTLE PLATTE RIVER NEAR PLATTSBURG, MO LOCATION.--Lat 39°34'04", long 94°24'24", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.20, T.55 N., R.31 W., Clinton County, Hydrologic Unit 10240012, on U.S. Highway 116 bridge, 0.4 mi east of the junction with U.S. Highway 33, and 2.5 mi east of Osborn. DRAINAGE AREA.--65.4 mi². PERIOD OF RECORD.--Oct. 1, 1999 to Sept. 30, 2000, Oct. 1, 2001 to current year. GAGE.--Water-stage recorder. Datum of gage unknown. REMARKS.--Records fair except for period July 21 to Aug. 31 and estimated daily discharges, which are poor. | | | DISCHAF | RGE, CUBIO | C FEET PER | | WATER YE
MEAN VA | | R 2001 TO | SEPTEMBER | R 2002 | | | |---|---|---------------------------------------|---|---|---|---|--|-------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 6.8
5.9
7.0
7.5
23 | 3.5
3.2
2.9
3.3
3.7 | 4.8
4.7
4.7
4.7
5.3 | e0.40
e0.32
e0.25
e0.25
e0.40 | e1.0
e1.2
e1.4
e1.5
e1.4 | e2.0
e1.0
e0.90
e0.80
e1.3 | 9.9
10
11
10
9.8 | 12
10
8.2
7.1
6.5 | 5.2
4.6
4.0
3.8
4.0 | 0.44
0.42
0.42
0.39
0.35 | 0.54
0.22
0.14
0.12
0.10 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 13
7.5
6.3
6.4
11 | 3.8
3.7
3.5
3.2
3.1 | 5.2
4.9
4.7
4.2
4.1 | e0.45
e0.80
e0.80
e1.2
2.1 | e1.7
2.5
5.0
19 | e3.0
8.8
9.3
20 | 10
11
21
75
23 | 1160
140
37
27
15 | 3.9
3.4
3.0
2.8
2.7 | 0.23
0.15
0.12
0.10
0.12 | 0.06
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 19
10
7.8
8.9
229 | 3.1
3.1
3.1
4.1
4.8 | 4.0
5.0
9.1
7.9
4.6 | 2.1
2.2
2.1
2.1
1.9 | 9.3
6.4
4.2
3.6
3.1 | 9.0
7.4
6.6
6.2
5.7 | 13
9.7
7.8
6.8
6.5 | 733
961
197
51
29 | 3.6
23
11
4.7
2.9 | 0.11
0.10
0.09
0.05
0.05 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 134
16
5.1
2.3
1.5 | 4.8
4.8
5.1
6.2
5.8 | 3.4
2.8
2.6
2.4
2.2 | 1.7
1.5
1.4
1.5 | 2.9
2.6
2.4
4.1 | 5.2
4.8
5.0
5.3
5.7 | 6.1
5.6
5.2
5.0
5.1 | 22
17
14
12
10 | 2.2
1.6
2.4
1.8
1.2 | 0.02
0.02
0.04
0.04
0.01 | 0.00
0.00
0.04
0.05
0.42 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 1.7
2.5
2.6
3.5
4.1 | 5.5
5.4
5.5
7.4
8.6 | 2.0
2.3
2.3
2.1
e1.7 | 1.6
1.8
2.1
2.2
1.9 | 7.9
5.4
4.5
4.1
3.6 | 5.5
5.3
5.5
6.9
9.4 | 126
46
17
11
8.3 | 9.4
8.7
8.7
11
55 | 1.9
1.7
1.3
1.0
0.86 | 0.00
0.00
0.00
0.00
0.00 | 0.31
0.17
0.49
0.38
0.19 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 3.6
2.9
2.8
3.3
3.2
3.4 | 7.8
6.5
5.7
5.2
4.9 | e0.90
e1.0
e1.1
e1.0
e0.50
e0.45 | 1.7
1.7
1.7
1.6
e2.0
e1.7 | 2.9
e2.1
e1.8
 | 9.4
8.7
9.8
11
11 | 7.0
253
130
29
17 | 17
18
15
10
7.3
6.0 | 0.69
0.57
0.49
0.45
0.46 | 0.00
0.00
0.93
4.3
1.8 | 0.14
0.10
0.06
0.02
0.00 | 0.00
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN
IN. | 18.1
229
1.5
0.32 | 4.71
8.6
2.9
0.08 | 3.44
9.1
0.45
0.06 | 1.45
2.2
0.25
0.03 | 4.84
19
1.0
0.08 | 6.89
20
0.80
0.12 | 30.2
253
5.0
0.51 | 117
1160
6.0
2.07 | 3.37
23
0.45
0.06 | 0.37
4.3
0.00
0.01 |
0.12
0.54
0.00
0.00 | 0.00
0.00
0.00
0.00 | | STATIST | CICS OF MOD | NTHLY MEA | AN DATA FO | | OF RECORD | | ER YEAR (| WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 9.50
18.1
2002
0.87
2000 | 3.47
4.71
2002
2.23
2000 | 4.04
4.65
2000
3.44
2002 | 1.54
1.64
2000
1.45
2002 | 4.05
4.84
2002
3.29
2000 | 8.73
10.6
2000
6.89
2002 | 17.4
30.2
2002
4.56
2000 | 65.5
117
2002
13.7
2000 | 70.1
137
2000
3.37
2002 | 4.96
9.55
2000
0.37
2002 | 7.17
14.2
2000
0.12
2002 | 21.4
42.8
2000
0.00
2002 | | SUMMARY | STATISTIC | CS | | | FOR 20 | 02 WATER | YEAR | | | FOR F | PERIOD OF F | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME DAILY MEA DAILY MEA DEVEN-DAY 1 PEAK FLOI 1 PEAK STA ANDOUS LOI RUNOFF (II) ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | | 16. 116 0.0 0.0 0.0 252 15.3 0.0 3.3 1 3.0.0 | 0 M
0 Many
0 Many
0 M
0 M
0 M
0 Many
3 | ay 6
Days
Days
ay 6
ay 6
Days | | | 18.1
20.2
16.1
2180
0.00
0.00
5650
17.05
0.00
3.77
13
2.1 | Many Days
Many Days
Jun 24 | 2002
4 2000
4 2000 | e Estimated #### 06821140 SMITHVILLE RESERVOIR NEAR SMITHVILLE, MO LOCATION.--Lat 39°23'50", long 94°33'25", SW $\frac{1}{4}$ sec.13, T.53 N., R.33 W., Clay County, Hydrologic Unit 10240012, in control tower at outlet works on the Little Platte River, 1.0 mi northeast of Smithville, and 5.0 mi north of Kansas City. DRAINAGE AREA. -- 213 mi². PERIOD OF RECORD.--July 1981 to current year. Records collected at same site since 1976 are available from the U.S. Army Corps of Engineers. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929. REMARKS.--Lake is formed by a rolled earthfill type dam. Storage began on July 13, 1976. An uncontrolled limited service type spillway, 50 ft wide, is located at the right abutment. Capacity of surcharge pool 182,209 ac-ft (elevation 876.2 ft to 891.1 ft); of flood control pool 101,800 ac-ft (elevation 864.2 to 876.2 ft); and of multipurpose pool 144,600 ac-ft (elevation 799.0 ft to 864.2 ft). Lake is used for flood control, water supply, water-quality control, recreation, and fish and wildlife enhancement. U.S. Army Corps of Engineers satellite telemeter at station. COOPERATION. -- Records furnished by U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 225,000 ac-ft, July 28, 1993, maximum elevation 874.31 ft; minimum, 2,360 ac-ft, Jan. 13, 1980, elevation, 819.0 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 160,000 ac-ft, May 17, elevation, 866.74 ft; minimum, 129,000 ac-ft, Feb. 8, elevation, 862.30 ft. | | | | ELEVATI | ON, IN FE | | YEAR OCT | OBER 2001 | TO SEPTE | MBER 2002 | | | | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 865.65
865.61
865.58
865.56
865.56 | 865.12
865.14
865.14
865.14 | 865.01
865.01
865.01
865.03
865.04 | 864.24
864.21
864.17
864.12
864.09 | 862.50
862.48
862.46
862.42
862.39 | 862.51
862.53
862.51
862.49
862.48 | 862.65
862.67
862.63
862.58
862.61 | 863.82
863.81
863.82
863.82 | 866.10
866.03
865.95
865.88
865.84 | 864.67
864.64
864.62
864.66
864.65 | 864.19
864.17
864.12
864.11
864.10 | 863.80
863.79
863.77
863.75
863.73 | | 6
7
8
9
10 | 865.55
865.52
865.49
865.45
865.43 | 865.14
865.14
865.16
865.13
865.10 | 865.07
865.06
865.06
865.05
865.03 | 864.07
864.03
863.99
863.99
863.97 | 862.37
862.34
862.30
862.31
862.36 | 862.51
862.55
862.54
862.59
862.59 | 862.56
862.55
862.57
862.71
862.78 | 864.21
865.13
865.20
865.32
865.33 | 865.74
865.68
865.60
865.53
865.46 | 864.65
864.64
864.63
864.61
864.59 | 864.08
864.05
864.01
863.98
863.96 | 863.71
863.69
863.68
863.67
863.65 | | 11
12
13
14
15 | 865.43
865.41
865.37
865.33
865.29 | 865.10
865.10
865.10
865.10 | 865.03
865.00
865.01
865.00
864.97 | 863.97
863.96
863.96
863.93
863.90 | 862.34
862.33
862.37
862.37
862.38 | 862.60
862.60
862.60
862.64
862.66 | 862.81
862.84
862.86
862.86
862.89 | 865.48
866.06
866.53
866.63 | 865.39
865.37
865.34
865.28
865.22 | 864.57
864.54
864.52
864.50
864.46 | 863.94
863.92
863.90
863.89
863.86 | 863.61
863.59
863.56
863.53
863.52 | | 16
17
18
19
20 | 865.54
865.58
865.56
865.52
865.48 | 865.10
865.10
865.10
865.12
865.10 | 864.92
864.90
864.87
864.84
864.79 | 863.90
863.88
863.85
863.77
863.59 | 862.39
862.40
862.43
862.43
862.51 | 862.66
862.62
862.63
862.63 | 862.91
862.92
862.94
863.00
862.95 | 866.71
866.74
866.66
866.60
866.55 | 865.16
865.10
865.03
864.99
864.94 | 864.45
864.41
864.40
864.39
864.35 | 863.84
863.84
863.91
863.91 | 863.51
863.50
863.47
863.49
863.48 | | 21
22
23
24
25 | 865.44
865.40
865.36
865.34
865.24 | 865.07
865.06
865.06
865.08
865.07 | 864.76
864.71
864.66
864.61
864.56 | 863.47
863.36
863.26
863.16
863.07 | 862.52
862.54
862.54
862.57
862.59 | 862.64
862.61
862.59
862.59
862.64 | 863.15
863.26
863.31
863.35
863.35 | 866.47
866.40
866.34
866.30
866.31 | 865.00
864.96
864.90
864.84
864.78 | 864.34
864.31
864.29
864.24
864.22 | 863.90
863.90
863.92
863.93
863.91 | 863.47
863.45
863.43
863.39
863.36 | | 26
27
28
29
30
31 | 865.18
865.16
865.15
865.13
865.13 | 865.09
865.07
865.06
865.04
865.03 | 864.50
864.47
864.44
864.39
864.34 | 862.93
862.77
862.60
862.50
862.56
862.53 | 862.54
862.50
862.50
 | 862.60
862.60
862.60
862.68
862.65 | 863.35
863.37
863.69
863.74
863.78 | 866.29
866.31
866.32
866.28
866.24 | 864.77
864.76
864.75
864.73
864.70 | 864.19
864.17
864.23
864.22
864.21
864.20 | 863.91
863.91
863.89
863.88
863.84 | 863.34
863.31
863.29
863.28 | | MEAN
MAX
MIN | 865.41
865.65
865.13 | 865.10
865.16
865.03 | 864.82
865.07
864.30 | 863.61
864.24
862.50 | 862.43
862.59
862.30 | 862.59
862.68
862.48 | 862.99
863.78
862.55 | 865.75
866.74
863.81 | 865.26
866.10
864.70 | 864.44
864.67
864.17 | 863.95
864.19
863.82 | 863.54
863.80
863.28 | | (-)
(=) | 148000
-5000 | 148000
0 | 142000
-6000 | 130000
-12000 | 130000
0 | 131000
+1000 | 139000
+8000 | 156000
+17000 | 145000
-11000 | 142000
-3000 | 139000
-3000 | 135000
-4000 | CAL YR 2001...- 9000 WTR YR 2002...-18000 ⁽⁻⁾ Contents, in acre-feet, at the end of the month. ⁽⁼⁾ Change in contents, in acre-feet. #### 06821150 LITTLE PLATTE RIVER AT SMITHVILLE, MO LOCATION.--Lat 39°23'17", long 94°34'44", in NW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.23, T.53 N., R.33 W., Clay County, Hydrologic Unit 10240012, on left bank behind city equipment shelter on old bridge abutment, 500 ft upstream from town bridge in Smithville, 1,500 ft upstream from bridge on U.S. Highway 169, 0.5 mi downstream from Wilkerson Creek, 2.4 mi downstream from Smithville Lake, and at mile 11.1. DRAINAGE AREA. -- 234 mi². PERIOD OF RECORD. -- June 1965 to current year. Occasional measurements 1942, 1943, 1946, 1962-65. REVISED RECORDS. -- WRD MO 1970: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 778.18 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). Prior to Mar. 23, 1966, nonrecording gage at site 1,500 ft downstream at same datum. REMARKS.--Records fair except for October and November and estimated daily discharges, which are poor. Construction of dam for Smithville Lake (06821140) began in June 1974 and partial regulation began Aug. 6, 1977. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1947 reached a stage of 37.4 ft. REVISIONS.--The date of the maximum stage (31.87 ft) of the 2001 water year is Sept. 17, 2001. Date published in WDR MO-01-1 was incorrect. | | | DISCHA | RGE, CUBI | C FEET PER | R SECOND, N
DAILY | WATER YEA
MEAN VAI | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---|--|--|-------------------------------------|------------------------------------
--|---|------------------------------------|---|---|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 202
201
161
115
188 | 15
15
15
16
16 | 9.6
9.7
9.8
9.7
9.6 | 121
121
120
120
120 | 144
143
143
148
142 | 33
34
33
33
33 | 17
17
16
16
16 | 23
21
18
17
e17 | 322
320
318
319
325 | 8.5
8.4
10
21
17 | 7.8
7.8
7.7
7.8
7.9 | 6.7
6.6
6.5
5.7
5.6 | | 6
7
8
9
10 | 134
122
130
130
132 | 15
14
13
13
15 | 9.3
9.3
9.2
9.4
20 | 121
120
98
72
71 | 141
143
153
120
34 | 36
34
34
49
39 | 16
17
23
55
17 | e609
e292
e121
e72
e60 | 318
316
315
314
314 | 10
9.2
8.9
8.4
8.0 | 7.9
7.8
8.0
8.0 | 5.5
4.9
4.9
5.5
5.7 | | 11
12
13
14
15 | 133
130
130
130
305 | 14
14
14
13
12 | 80
130
139
131
127 | 69
67
67
69 | 27
24
22
22
21 | 36
35
34
33
30 | 14
23
17
14
13 | e107
e336
e64
e44
38 | 342
572
225
215
211 | 7.8
7.3
7.3
7.7
7.6 | 8.3
8.6
8.9
8.8
8.7 | 5.5
5.6
5.5
5.5
5.9 | | 16
17
18
19
20 | 235
225
216
214
213 | 12
12
13
13
e12 | 127
127
126
126
125 | 68
68
292
552
547 | 20
20
20
27
84 | 29
30
30
30
31 | 13
12
12
17
33 | 111
260
340
335
333 | 208
206
207
205
204 | 7.3
7.2
7.1
7.0
7.0 | 9.1
9.1
14
9.4
7.9 | 5.8
5.4
6.2
6.4
6.1 | | 21
22
23
24
25 | 214
216
218
218
218 | 12
13
12
15
13 | 125
126
126
125
125 | 544
545
543
542
544 | 34
28
26
24
23 | 30
29
30
30
31 | 786
67
38
29
24 | 329
327
326
327
384 | 203
203
202
133
10 | 7.0
6.9
6.9
7.7
8.1 | 7.4
7.4
9.2
8.5
7.8 | 6.0
5.9
6.3
6.4
6.2 | | 26
27
28
29
30
31 | 114
11
11
11
11
14 | 11
9.8
9.3
9.3
9.6 | 125
124
124
123
123
122 | 546
545
401
198
139
144 | 21
20
26
 | 30
29
31
31
28
18 | 21
203
70
31
26 | 332
558
351
334
328
324 | 9.6
9.4
9.1
9.1
9.0 | 7.9
8.0
8.7
11
8.8
8.0 | 7.5
7.3
7.0
7.0
7.0
6.8 | 5.7
6.2
6.3
5.6
5.2 | | MEAN
MAX
MIN
IN. | 152
305
11
0.75 | 13.0
16
9.3
0.06 | 87.5
139
9.2
0.43 | 246
552
67
1.22 | 64.3
153
20
0.29 | 32.0
49
18
0.16 | 55.8
786
12
0.27 | 230
609
17
1.13 | 219
572
9.0
1.04 | 8.76
21
6.9
0.04 | 8.22
14
6.8
0.04 | 5.84
6.7
4.9
0.03 | | STATIST | rics of M | ONTHLY ME. | AN DATA F | OR WATER | YEARS 1977 | - 2002 ^a | BY WATER | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 179
960
1986
1.01
1977 | 180
1358
1999
2.06
1977 | 99.4
466
1993
0.05
1977 | 90.8
563
1993
0.07
1977 | 89.9
341
2001
10.3
1977 | 170
825
2001
4.73
1981 | 196
640
1978
9.85
1981 | 266
850
1993
11.1
2000 | 252
809
1995
13.3
1988 | 253
879
2001
8.76
2002 | 174
1206
1993
7.65
1980 | 143
1006
1977
5.84
2002 | | SUMMARY | Y STATIST | ICS | FOR | 2001 CALEN | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1977 | - 2002 ^a | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN INSTANT ANNUAL 10 PERC | T ANNUAL M
ANNUAL M
T DAILY M
DAILY ME: | EAN EAN AN Y MINIMUM OW AGE OW FLOW INCHES) EDS EDS | | 299 1720 5.9 7.7 17.36 992 124 9.8 | Jul 15
Sep 12
Aug 16 | | 786
4.9
5.4
1770
27.05
4.8 St
5.46
315
26
7.0 | Apr 21
Sep 7,8
Sep 5
Apr 21
May 6 | b | 175
476
35.4
7810
0.05
0.05
21000
36.44
0.00
10.15
532
21
8.5 | Jul 1
Dec 1-1
Dec
Aug 1
Aug 1
Many | 1 1976
13 1982 | Post-regulation period. Occurred during period of backwater. #### 06821190 PLATTE RIVER AT SHARPS STATION, MO LOCATION.--Lat 39°24'03", long 94°43'36", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.16, T.53 N., R.34 W., Platte County, Hydrologic Unit 10240012, on downstream side of center pier at Sharps Bridge, 0.2 mi upstream from Jowler Creek, 3.3 mi downstream from Little Platte River, 3.6 mi south of Camden Point, and at mile 25.1. DRAINAGE AREA. -- 2,380 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- December 1978 to current year. GAGE.--Water-stage recorder. Datum of gage is 754.23 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 REMARKS.--Water-discharge records fair except for the period Aug. 10 to Sept. 30, and estimated daily discharges, which are poor. Some regulation from Smithville Lake (station 06821140), 17.0 mi upstream. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBI | C REEL PER | | MEAN VA | | R 2001 TO | SEPTEMBE | SR 2002 | | | |---|--|--|--|--|--------------------------------------|--|---|---|---------------------------------------|---|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 487 | 245 | 248 | e170 | 255 | e170 | 374 | 1040 | 1120 | 215 | e105 | 56 | | 2 | 468 | 244 | 230 | e150 | e235 | e175 | 314 | 876 | 970 | 176 | e100 | 51 | | 3 | 443 | 234 | 219 | e150 | e235 | e155 | 269 | 687 | 878 | 155 | e78 | 46 | | 4 | 363 | 252 | 213 | e155 | e230 | e145 | 228 | 567 | 810 | 158 | e65 | 42 | | 5 | 550 | 255 | 214 | e180 | e235 | e165 | 202 | 486 | 816 | 186 | e58 | 39 | | 6 | 568 | 236 | 212 | e170 | e250 | 221 | 188 | 3660 | 771 | 298 | e54 | 40 | | 7 | 442 | 225 | 204 | e175 | e295 | 243 | 182 | 8300 | 721 | 188 | e48 | 37 | | 8 | 461 | 213 | 197 | e160 | 343 | 248 | 204 | 4850 | 683 | 137 | e46 | 30 | | 9 | 442 | 201 | 193 | e150 | 465 | 286 | 651 | 2820 | 643 | 124 | e45 | 27 | | 10 | 445 | 194 | 186 | e175 | 395 | 477 | 773 | 1680 | 611 | 111 | 41 | 25 | | 11 | 447 | 192 | 214 | e195 | 398 | 506 | 559 | 2960 | 632 | 101 | 40 | 24 | | 12 | 457 | 188 | 329 | 226 | 320 | 375 | 420 | 9800 | 1500 | 106 | 40 | 22 | | 13 | 403 | 188 | 436 | 225 | 309 | 371 | 413 | 11200 | 3210 | 245 | 44 | 21 | | 14 | 389 | 184 | 443 | 246 | 279 | 384 | 614 | 9890 | 1400 | 241 | 52 | 22 | | 15 | 598 | 183 | 404 | 237 | 280 | 350 | 464 | 3890 | 992 | 131 | 66 | 25 | | 16 | 1650 | 181 | 382 | 251 | 282 | 293 | 363 | 2130 | 914 | 145 | 75 | 28 | | 17 | 1300 | 177 | 377 | 224 | 280 | 260 | 329 | 1760 | 738 | 160 | 84 | 26 | | 18 | 824 | 174 | 370 | 260 | 279 | 242 | 298 | 1610 | 688 | 123 | 121 | 24 | | 19 | 660 | 170 | 360 | 783 | 299 | 230 | 274 | 1480 | 708 | 99 | 132 | 37 | | 20 | 587 | 166 | 344 | 761 | 502 | 222 | 290 | 1390 | 668 | 86 | 104 | 41 | | 21 | 551 | 167 | 330 | 798 | 400 | 212 | 1570 | 1210 | 560 | 77 | 129 | 45 | | 22 | 534 | 161 | 324 | 805 | 345 | 197 | 1540 | 1110 | 515 | 89 | 340 | 42 | | 23 | 530 | 160 | 320 | 820 | 343 | 187 | 1190 | 1060 | 481 | 83 | 661 | 37 | | 24 | 533 | 192 | 310 | 808 | 327 | 187 | 707 | 1070 | 448 | 71 | 360 | 33 | | 25 | 558 | 338 | 254 | 804 | 295 | 198 | 526 | 1370 | 273 | 63 | 166 | 64 | | 26
27
28
29
30
31 | 605
393
322
291
270
256 | 365
339
371
326
275 | e190
e195
e200
e190
e200
e180 | 782
780
740
439
306
259 | 254
205
176
 | 208
205
212
237
246
404 | 428
666
1670
2040
1230 | 2150
2210
2020
1500
1230
1340 | 227
214
417
397
271 | 59
56
75
80
83
83 | 261
178
103
85
75
64 | 67
55
47
41
37 | | MEAN | 543 | 226 | 273 | 400 | 304 | 258 | 632 | 2818 | 776 | 129 | 123 | 37.7 | | MAX | 1650 | 371 | 443 | 820 | 502 | 506 | 2040 | 11200 | 3210 | 298 | 661 | 67 | | MIN | 256 | 160 | 180 | 150 | 176 | 145 | 182 | 486 | 214 | 56 | 40 | 21 | | IN. | 0.26 | 0.11 | 0.13 | 0.19 | 0.13 | 0.13 | 0.30 | 1.37 | 0.36 | 0.06 | 0.06 | 0.02 | | MEAN
MAX
(WY)
MIN
(WY) | 1210
6847
1986
25.1
1989 | 1002
4932
1999
61.9
1989 | 1051
5005
1993
46.1
1989 | 598
2153
1983
50.1
1989 | 1371
3980
1982
37.6
1989 | - 2002,
2116
8745
1979
110
1989 | 2628
6946
1993
93.0
1989 | 3442
12710
1995
157
1989 | 3059
10790
1984
75.2
1988 | 2853
21600
1993
52.5
1988 | 1003
3535
1987
47.7
1988 | 1309
7206
1993
37.7
2002 | | SUMMARY | STATISTI | CS | FOR : | 2001 CALE |
NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | EARS 1979 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY 1 PEAK FLO 1 PEAK STA CANEOUS LO RUNOFF (I ENT EXCEE CENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS DS | | 2324
17100
51
56

13.26
5820
869
193 | Feb 28
Jan 3
Jan 1 | | 546 11200 21 24 11400 27.39 21a 3.12 1090 255 56 | May 13
Sep 13
Sep 9
May 13,14
May 13,14
Sep 13 | | 1805
5697
386
37300
12 Aug
14
314
316
36.43
12 Aug
10.31
4320
627
72 | Jul 2:
g 7,8,13,1:
Aug '
Jul 2:
Jul 2:
g 7,8,13,1: | 4 1989
7 1989
6 1993
6 1993 | $[\]ensuremath{\mathrm{e}}$ $\ensuremath{\mathrm{Estimated}}$ Occurred during periods of backwater due to bridge construction. # 06821190 PLATTE RIVER AT SHARPS STATION, MO--Continued (Ambient Water-Quality Monitoring Network) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--March 1979 to September 1995, November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|--|--|---|--|---|--|---|--|---|---| | NOV
19 | 1040 | ENVIRONM | ENTAL. | 171 | 10.1 | 96 | 8.1 | 515 | 12.5 | 230 | 72.0 | 13.1 | 3.67 | | JAN
25 | 1100 | | | 807 | 13.6 | 100 | 8.3 | 295 | 2.0 | 140 | 42.4 | 7.72 | 4.51 | | MAR | | ENVIRONM | | | | | | | | | | | | | 06
MAY | 1120 | ENVIRONM | | 224 | 14.6 | 115 | 8.1 | 513 | 4.0 | | | | | | 17
JUL | 1145 | ENVIRONM | ENTAL | 1730 | 8.4 | 92 | 7.9 | 391 | 18.5 | 170 | 50.8 | 9.72 | 4.55 | | 12 | 1125 | ENVIRONM | ENTAL | 109 | 4.5 | 59 | 8.0 | 474 | 27.5 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
19 | 13.7 | 224 | 226 | 276 | 0 | 17.3 | .3 | 30.5 | 10 | 296 | <.04 | .56 | . 24 | | JAN
25 | 9.63 | 126 | 126 | 154 | 0 | 12.8 | . 2 | 17.1 | 126 | 176 | .05 | .72 | .55 | | MAR
06 | | 211 | 212 | 259 | 0 | | | | 12 | | .09 | .40 | .98 | | MAY
17 | 9.42 | 134 | 134 | 164 | 0 | 10.6 | .3 | 24.1 | 945 | 256 | E.04 | 2.0 | 6.25 | | JUL
12 | | 198 | 196 | 240 | 0 | | | | | | <.04 | 1.3 | .41 | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
19 | E.004 | E.03 | .02 | .13 | <2 | 58 | K40 | 3 | 106 | 1.1 | <.04 | <.1 | <6 | | JAN
25 | .013 | <.06 | E.01 | .15 | 100 | 120 | 72 | 4 | 1010 | 1.1 | <.04 | <.1 | E4 | | MAR
06 | .011 | <.06 | .02 | .10 | K44 | K20 | 120 | | | | | | | | MAY
17 | .090 | .08 | .08 | .80 | K840 | 970 | 2200 | 1 | 6830 | 1.8 | <.04 | . 4 | E4 | | JUL
12 | .012 | E.05 | .05 | .31 | K48 | 800 | 420 | | | | | | | | | | DATE NOV 19 JAN 25 MAR 06 MAY 17 JUL | IRO DI SOLL (µg as (010 <1 | N, LEA
S- DI
VED SOL
/L (µg
Fe) as
46) (010
3 E.
0 <. | LEAD, TOT S- REC VED ERA /L (µg Pb) as 49) (010 07 <1 08 2 - 08 14 | D, MAN AL NES OV- DI BLE SOI /L (µg Pb) as 51) (010 | GA- MERCO
E, TOT
S- RECO
VED ERA
/L (µg
Mn) as
56) (719 | CAL NIU COV- DI SIBLE SOI (/L (µg Hg) as 000) (011 01 01 03 1. | M, ZIN (SS- DI (SS- DI (SS- DI (SS- DI (MPG SOL) (1/L (MPG Zn) as (45) (010 4 2 5 <1 3 1 | IC, TOI
S- REC
VVED ERA
/L (µg
Zn) as
90) (010 | COV-
BBLE
/L
Zn)
192) | | | | | | 12 | - | | | | | | | | - | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. #### KANSAS RIVER BASIN 107 #### 06892350 KANSAS RIVER AT DESOTO, KS LOCATION.--Lat 38°59'00", long 94°57'52", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.27, T.12 S., R.22 E., Leavenworth County, Hydrologic Unit 10270104, on left bank at downstream side of bridge on county highway, north edge of DeSoto, 0.4 mi upstream from Kill Creek, and at mile 31.0. DRAINAGE AREA.--59,756 mi², of which a large area is noncontributing. PERIOD OF RECORD.--July 1917 to current year. Monthly discharge only for some periods published in WSP 1310. Prior to October 1973, published as "at Bonner Springs." REVISED RECORDS.--WSP 806: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 753.87 ft above National Geodetic Vertical Datum of 1929. July 9, 1917, to Apr. 23, 1934, nonrecording gage; Apr. 24, 1934, to Nov. 25, 1960, water-stage recorder at site 9.7 mi downstream at datum 11.81 ft lower; Nov. 26, 1960, to Feb. 9, 1961, nonrecording gage; Feb. 10, 1961, to Sept. 30, 1971, water-stage recorder at site 10.2 mi downstream at datum 17.81 ft lower; and Oct. 1, 1971, to Sept. 30, 1973, at site 10.2 mi downstream at datum 22.81 ft lower. Lowered gage datum 5.0 ft Sept. 30, 1996, to 753.87 ft. REMARKS.--Records fair. Natural flow affected by lakes and reservoirs in Colorado, Nebraska, and Kansas, and by numerous diversions upstream from station. Diurnal fluctuations caused by hydroelectric plant 20.8 mi upstream; since storage capacity is small, daily flows are not affected appreciably. Satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES OUTSIDE PERIOD OF RECORD. -- Maximum stage known since at least 1844, that of July 13, 1951. | | | DISCHAR | GE, CUBIC | C REEL PE | | WATER Y
Y MEAN V | EAR OCTOBE
ALUES | R 2001 TO | SEPTEMB | ER 2002 | | | |---|---|---|--|--|--------------------------------------|--|--|--|--------------------------------------|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 15500
15100
9940
7110
6330 | 2050
2360
2410
2440
2450 | 1710
1680
1700
1620
1200 | 2820
2340
2190
1980
1790 | 2070
2160
2300
2310
2180 | 2110
2070
2030
1840
1420 | 1940
1760
1830
1870
1870 | 3240
3080
2890
2460
2310 | 8180
8610
8540
7310
9590 | 3500
3400
3430
3480
3500 | 1440
1130
1110
1130
1170 | 1060
1160
1020
1030
1140 | | 6
7
8
9
10 |
5850
5230
4540
4240
3950 | 2430
2370
2310
2190
2260 | 1560
2030
1220
1650
1770 | 2150
2720
2470
2500
2710 | 2090
2380
1860
2220
2060 | 2390
2480
2170
1840
1980 | 1860
1850
1860
2250
2830 | 4500
10000
10700
8980
5580 | 7160
7180
7100
7110
7080 | 3460
3270
3260
3550
3840 | 1200
1200
1190
1160
1150 | 1090
1110
1100
1090
1130 | | 11
12
13
14
15 | 3910
3630
3700
3560
3790 | 2260
2230
2180
2220
2160 | 1650
1590
1640
1620
1650 | 2530
2530
2390
2250
2150 | 2260
2470
2400
2260
2200 | 1880
1990
1850
1830
1800 | 2420
3060 | 5440
13200
15800
9150
6360 | 7030
7320
5960
3930
3470 | 3500
3240
3210
2950
2920 | 1140
1140
1450
1620
1500 | 993
941
1000
1250
1260 | | 16
17
18
19
20 | 4470
4290
3860
3400
2780 | 2080
2120
2140
2230
2260 | 1690
1710
1670
1670
1770 | 2150
2180
1750
1470
2350 | 1890
1870
2020
2560
3090 | 1790
1780
1760
1630
1550 | 2330
2250
2160
2130
2290 | 5400
5880
10500
9900
7170 | 4250
4630
4910
4830
5320 | 2740
2370
2570
2350
2340 | 1190
1180
1480
2240
1450 | 1230
1030
1160
1200
1120 | | 21
22
23
24
25 | 2640
2570
2640
2570
2490 | 2220
2140
2240
2510
2720 | 3330
4170
4280
4340
4340 | 3100
3100
3150
3100
2960 | 3120
2640
2290
2110
1920 | 1380
1520
1620
2120
2160 | 11400
6710
5230
3810
3020 | 4940
4190
3890
4160
7270 | 5520
5340
5800
5780
5880 | 2320
1840
1420
1320
1200 | 1800
1400
1150
1040
1020 | 1330
1320
1170
981
1020 | | 26
27
28
29
30
31 | | 2510
2380
2020
1840
1740 | 4270
4500
4450
4340
4130
3440 | 2750
2100
2110
2360
2060
2040 | 2020
1830
1480
 | 2190
2200
2150
1970
1870
1990 | 2810
3940
5230
3490
3210 | 5290
5330
7210
7410
7530
7840 | 5620
4890
4260
3870
3650 | 1200
1230
1270
1160
1490
1840 | 996
1070
1230
1080
1000
1020 | 1020
1020
1030
1030
1030 | | MEAN
MAX
MIN | 4581
15500
2200 | 2249
2720
1740 | 2529
4500
1200 | 2395
3150
1470 | 2216
3120
1480 | 1915
2480
1380 | 3112
11400
1760 | 6697
15800
2310 | 6004
9590
3470 | 2554
3840
1160 | 1261
2240
996 | 1102
1330
941 | | STATIST | ICS OF MON | THLY MEAN | DATA FOR | R WATER Y | EARS 1918 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | | 1974 | 3637
21940
1974
465
1957 | 2909
15990
1973
364
1957 | 4525
20800
1949
635
1957 | 1973
632 | 9641
43570
1973
845
1956 | 11140
43270
1993
953
1989 | | 11690
133200
1951
1106
1936 | 6951
66680
1993
455
1934 | 6592
44660
1951
525
1956 | | SUMMAR | Y STATISTI | CS | FOF | R 2001 CA | LENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1918 | 3 - 2002 | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI INSTAN' ANNUAL 10 PERO 50 PERO | MEAN T ANNUAL ME ANNUAL ME T DAILY ME DAILY ME SEVEN-DAY M PEAK FIC RUNOFF (# CENT EXCEE CENT EXCEE | EAN EAN IN MINIMUM AGE DW FLOW AC-FT) EDS | | | Jun 2
Jan
Jan | 21
3
1 | 3057
15800
941
1020
21800
11.65
809
2213000
5880
2260
1160 | May
Sep
Sep
May
May
Sep | 13
12
24
12
12
12 | 7476
30570
1326
486000
160
195
510000
37.30
160
5416000
17800
3390
1100 | Jul
Oct
Oct
Jul
Jul
Oct | 1993
1956
14 1951
11 1956
9 1956
13 1951
13 1951
11 1956 | 108 MISSOURI RIVER MAIN STEM #### 06893000 MISSOURI RIVER AT KANSAS CITY, MO LOCATION.--Lat 39°06'43", long 94°35'16", in sec.32, T.50 N., R.33 W., Jackson County, Hydrologic Unit 10300101, on downstream side of right pier of Chicago, Burlington and Quincy Railroad Bridge at Kansas City, 1.4 mi downstream from Kansas River, and at mile 366.1. DRAINAGE AREA. --484,100 mi². The 3,959 mi² in Great Divide basin are not included. PERIOD OF RECORD.--October 1897 to current year. Prior to August 1928 monthly discharge only, published in WSP 1310. Gage-height records collected at same site 1873-99 are contained in reports of the Missouri River Commission; those since 1900 are contained in reports of the National Weather Service. REVISED RECORDS. -- WDR MO-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 706.40 ft above National Geodetic Vertical Datum of 1929. Prior to May 4, 1931, nonrecording gage; May 4, 1931, to Aug. 23, 1934, water-stage recorder, at present site; Aug. 24, 1934, to May 15, 1947, water-stage recorder at site 200 ft upstream; May 16, 1947, to Feb. 28, 1948, nonrecording gage at present site; all gages prior to Oct. 1, 1989, at datum 10.00 ft higher. REMARKS.--Records good except for estimated daily discharges, which are poor. Some regulation from many upstream reservoirs. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 573,000 ft³/s, July 14, 1951. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 16, 1844, reached a stage of 48.0 ft, present datum; discharge, about 625,000 ${\rm ft}^3/{\rm s}$, computed by the U.S. Army Corps of Engineers. e Estimated a Post-regulation period. ### 06893500 BLUE RIVER AT KANSAS CITY, MO LOCATION.--Lat $38^{\circ}57'26"$, long $94^{\circ}33'31"$, in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.28, T.48 N., R.33 W., Jackson County, Hydrologic Unit 10300101, on downstream side of right pier of bridge on Bannister Road, 0.4 mi downstream from Indian Creek, in Kansas City, and at mile 23.2. DRAINAGE AREA. -- 188 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1939 to current year. REVISED RECORDS. -- WSP 926: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 753.73 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). Prior to July 1, 1939, nonrecording gage at same site and datum. REMARKS.--Water-discharge records good. Low flow regulated by commercial plants above station. National Weather Service gageheight and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Nov. 17, 1928, reached a stage of about 39 ft, from information by the city of Kansas City. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER | R 2001 TO | SEPTEMBE | ER 2002 | | | |---|---|---|-------------------------------------|--|------------------------------------|-------------------------------------|--|--|-------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 32
27
25
27
602 | 31
30
27
31
32 | 33
33
33
32
29 | 42
40
41
41
42 | 277
235
232
196
140 | 51
84
67
59
68 | 24
21
22
21
24 | 139
124
99
88
82 | 107
89
77
130
138 | 20
20
22
58
37 | 25
23
27
27
25 | 21
19
19
20
23 | | 6
7
8
9
10 | 102
66
51
40
86 | 27
30
29
24
30 | 32
31
30
30
30 | 42
44
40
41
39 | 114
102
97
93
87 | 73
65
61
287
102 | 22
24
184
177
75 | 239
448
1160
2270
370 | 75
62
54
143
129 | 26
22
85
21
36 | 24
25
24
22
22 | 23
24
24
26
26 | | 11
12
13
14
15 | 49
37
33
32
659 | 31
31
31
31
28 | 30
123
151
58
48 | 38
36
36
37
36 | 84
73
68
66 | 80
70
64
55
53 | 56
51
44
43
40 | 1150
7970
1040
378
264 | 138
1560
203
122
90 | 60
60
42
21
18 | 35
32
970
87
51 | 25
25
24
109
99 | | 16
17
18
19
20 | 206
102
78
62
52 | 28
29
30
42
31 | 46
44
42
44
42 | 37
36
33
48
57 | 61
58
57
586
480 | 50
46
44
44
48 | 36
37
32
196
482 | 375
396
257
178
146 | 71
59
50
43
37 | 17
15
15
490
166 | 41
69
61
170
57 | 36
26
63
273
74 | | 21
22
23
24
25 | 46
41
37
40
41 | 27
29
28
240
63 | 46
44
42
41
42 | 51
45
43
42
40 | 180
117
94
81
71 | 36
34
35
35
40 | 2840
356
205
150
115 | 124
108
121
248
5320 | 32
29
25
24
27 | 40
26
23
21
17 | 36
29
32
25
25 | 40
29
27
25
23 | | 26
27
28
29
30
31 | 39
34
32
30
29
29 | 50
45
40
36
35 | 42
43
44
44
46
40 | 40
41
40
47
269
772 | 63
56
52

 | 38
34
86
45
30
26 |
114
1750
611
238
174 | 459
407
260
199
158
130 | 123
162
35
25
22 | 16
17
35
270
43
28 | 25
23
22
21
20
21 | 21
21
20
20
20 | | MEAN
MAX
MIN
IN. | 89.2
659
25
0.55 | 39.9
240
24
0.24 | 45.6
151
29
0.28 | 72.1
772
33
0.44 | 138
586
52
0.77 | 61.6
287
26
0.38 | 272
2840
21
1.62 | 797
7970
82
4.89 | 129
1560
22
0.77 | 57.6
490
15
0.35 | 67.6
970
20
0.41 | 40.8
273
19
0.24 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 132
790
1987
0.00
1940 | 111
926
1999
0.00
1940 | 95.8
726
1993
0.00
1940 | 94.4
445
1941
0.00
1940 | 132
740
1985
2.66
1940 | 188
1407
1973
4.36
1957 | 273
1279
1944
6.41
1954 | 268
1457
1990
17.8
1956 | 294
1285
1967
7.44
1953 | 168
1616
1951
1.72
1946 | 83.5
431
1982
0.94
1947 | 168
1395
1986
0.05
1939 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YEA | ıR | WATER YE | ARS 1939 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN INSTANT ANNUAL 10 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY 4 PEAK FLO A PEAK STA CANEOUS LO RUNOFF (I ENT EXCEE CENT EXCEE | AN
AN
AN
MINIMUM
W
GE
GE
WW FLOW
NCHES) | | 9020
24
29

18.64
416
89
31 | | 4
9
3 | 7970
15
20
10400
24.58
13
10.94
239
42 | May 1
Jul 17,1
Aug 2
May 1
May 1
Jul 27,2 | .8
.9
.2
.2 | 167
437
12.8
20000
0.00
0.00
41000
44.46
0.00
12.13
280
46 | Several
At
Sep | 1993
1956
13 1961
1 Years
5 Times
13 1961
13 1961
1 Years | #### 06893500 BLUE RIVER NEAR KANSAS CITY, MO--Continued #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- August 1998 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE.--August 1998 to current year. pH.--August 1998 to current year. SPECIFIC CONDUCTANCE.--August 1998 to current year. DISSOLVED OXYGEN.--August 1998 to current year. TURBIDITY.--August 1998 to current year. INSTRUMENTATION.--Water-quality monitor seasonally since August 1998. Electronic data logger with 15 minute recording interval and 4 hour satellite transmission interval. The monitor is not operated during the winter months. REMARKS.--The number of missing days of record exceeds 20 percent of the year. The monitor was not operated from Dec. 10 to April 4. Unpublished records prior to October 2000 are available in files of the Sub-district office. Interruptions in the record are generally due to malfunction or fouling of the sensors, where possible missing record has been estimated. Daily value estimations were based on partial data, inspection of contiguous data, hydrograph comparison and the best judgment of the hydrographer. Detailed records of the procedures employed for estimating data and/or data shifts for specific periods of record have been included with the station analysis and are kept on file. The manufacturers' specified range for turbidity sensors used is 0 to 1000 NTU. All numbers beyond this limit may be considered as >1000 NTU. Values >1000 NTU are maintained for continuity of the record. Specific Conductance records were rated either good or excellent except for the following period: October 1-3 rated fair. pH records were rated either good or excellent. Water temperature records were rated excellent. Dissolved oxygen records were rated either good or excellent except for the following periods: November 24-December 10 and April 9-18 rated poor; August 11-16 rated poor-estimated. Turbidity records were rated either good or excellent except for the following periods: October 14-19, 22-29 rated poor-estimated EXTREMES FOR PERIOD OF DAILY RECORD.--(more than 20 percent of record missing) WATER TEMPERATURE.--Maximum recorded, 32.9 °C, July 27, 29, 1999. pH.--Maximum recorded, 8.9 standard units, July 12-13, 2000; minimum recorded, 7.0 standard units, May 1, 9, 2000. SPECIFIC CONDUCTANCE.--Maximum recorded, 1,120 microsiemens per centimeter (μS/cm), Nov. 11, 1999; minimum recorded, 109 μS/cm, June 28, 1999. DISSOLVED OXYGEN.--Maximum recorded, 16.1 mg/L, Oct. 9, 1998; minimum recorded, 0.3 mg/L, April 21, 2002. TURBIDITY.--Maximum recorded, 2,700 NTU, May 11-12, 2002; minimum recorded, 0.0 NTU, many days August to November 1998, July to November 1999, and April to September 2000. EXTREMES FOR CURRENT YEAR.--(more than 20 percent of record missing) WATER TEMPERATURE.--Maximum, 32.3 °C, August 1. pH.--Maximum recorded, 8.8 standard units, April 6; minimum recorded, 7.3 standard units, Nov. 15, 17-19, and 24. SPECIFIC CONDUCTANCE.--Maximum recorded, 1,015 µS/cm, Nov. 14; minimum recorded, 185 µS/cm, May 25. DISSOLVED OXYGEN.--Maximum recorded, 13.6 mg/L, April 5; minimum recorded, 0.3 mg/L, April 21. TURBIDITY.--Maximum recorded, 2700 NTU, May 11-12; minimum recorded, 2.0 NTU, Nov. 21. #### WATER TEMPERATURE, (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|---|--|--------------------------------------|--------------------------------------|--------------------------------------|------------------------------------|-----------------------------------|-----------------------------------|--------------|--------------|--------------| | | | OCTOBER | = | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 19.1
19.5
20.1
20.1
18.6 | 16.8
17.1
18.0
18.6
13.8 | 18.0
18.3
19.1
19.6
14.9 | 16.0
16.4
16.0
16.3
16.4 | 14.5
15.0
14.4
15.0
14.7 | 15.3
15.7
15.1
15.5
15.5 | 7.3
8.5
10.9
13.6
15.0 | 6.0
6.4
8.5
10.9
12.4 | 6.7
7.4
9.5
12.3
13.8 |

 | |

 | | 6
7
8
9
10 | 14.4
14.6
15.8
17.4
18.9 | 12.5
12.8
14.1
15.7
17.3 | 13.6
13.9
15.0
16.5
18.1 | 16.5
16.8
16.0
13.1
12.4 | 14.6
15.3
13.1
10.9
10.6 | 15.6
16.0
14.9
11.8
11.4 | 12.9
10.9
9.9
7.8 | 10.9
9.7
7.8
6.5 | 12.0
10.3
9.0
7.1 |

 | |

 | | 11
12
13
14
15 | 18.5
17.1
17.1
16.1
15.0 | 16.9
15.9
15.7
14.6
10.7 | 17.6
16.3
16.2
15.4
13.0 | 12.2
12.2
13.7
15.2
16.0 | 10.6
10.7
12.1
13.5
14.6 | 11.4
11.5
12.9
14.4
15.2 |

 |

 |

 |

 | |

 | | 16
17
18
19
20 | 11.4
12.3
13.7
13.8
15.2 | 9.8
10.1
11.7
12.4
12.8 | 10.7
11.3
12.6
13.2
14.0 | 15.9
15.5
15.5
15.1
11.6 | 14.5
14.3
15.0
11.6
9.4 | 15.2
15.0
15.3
13.3
10.2 |

 |

 |

 |

 | |

 | | 21
22
23
24
25 | 17.4
18.4
19.7
19.0
16.4 | 15.2
17.4
17.9
16.4
13.2 | 16.2
17.9
18.7
17.9
14.5 | 9.6
10.7
11.9
14.2
11.2 | 8.3
9.1
10.2
11.2
10.3 | 9.1
9.8
11.0
12.2
10.9 |

 |

 |

 |

 | |

 | | 26
27
28
29
30
31 | 13.2
11.4
12.0
13.3
14.6
14.8 | 11.4
9.7
10.0
11.6
12.8
13.6 | 12.1
10.6
11.0
12.4
13.6
14.2 | 12.2
10.6
7.8
6.3
7.2 | 10.6
7.8
6.1
5.9
6.3 | 11.2
9.0
6.8
6.1
6.7 |

 |

 |

 |

 |

 |

 | | MONTH | 20.1 | 9.7 | 15.0 | 16.8 | 5.9 | 12.5 | | | | | | | BLUE RIVER BASIN 111 ## 06893500 BLUE RIVER NEAR KANSAS CITY, MO--Continued WATER TEMPERATURE, (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | WATER 1 | | | | | | | MEAN | | MIN | MEAN | |---|--|---|--|--|---
--|--|---|--|--|--|--| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2 | | | | | | | | | | 17.9
16.9 | 16.0
14.5 | 16.8
15.7 | | 3 | | | | | | | | | | 17.5 | 14.4 | 16.0 | | 4
5 | | | | | | | 14.1 | 10.0 | 12.0 | 19.3
21.7 | 15.2
17.2 | 17.2
19.4 | | 6 | | | | | | | 14.6 | 11.5 | 13.0 | 20.9 | 19.1 | 20.3 | | 7
8 | | | | | | | 13.6
12.8 | 12.6
12.2 | 13.1
12.5 | 20.5
18.9 | 18.9
17.5 | 19.6
18.3 | | 9 | | | | | | | 15.5 | 11.1 | 13.1 | 18.6 | 16.7 | 17.5 | | 10 | | | | | | | 17.6 | 12.8 | 15.1 | 17.8 | 15.3 | 16.5 | | 11 | | | | | | | 17.5
17.3 | 15.3
16.0 | 16.5 | 18.7
18.7 | 15.4
15.7 | 16.5
17.5 | | 12
13 | | | | | | | 16.7 | 14.8 | 16.6
15.9 | 17.2 | 14.4 | 15.8 | | 14 | | | | | | | 20.0 | 15.3 | 17.5 | 19.0 | 14.9 | 16.9 | | 15 | | | | | | | 23.1 | 18.8 | 20.7 | 20.1 | 16.8 | 18.4 | | 16
17 | | | | | | | 22.2
24.0 | 21.0
20.7 | 21.6
22.1 | 20.3
19.8 | 18.1
17.2 | 19.3
18.5 | | 18 | | | | | | | 24.0 | 22.3 | 23.1 | 18.7 | 15.7 | 17.3 | | 19 | | | | | | | 23.3 | 18.9 | 20.4 | 18.6 | 16.2 | 17.5 | | 20 | | | | | | | 18.9 | 14.6 | 17.2 | 19.1 | 16.2 | 17.8 | | 21 | | | | | | | 15.4 | 12.7 | 14.1 | 19.4 | 16.8 | 18.3 | | 22
23 | | | | | | | 16.9
19.4 | 13.0
15.6 | 14.9
17.5 | 20.7
20.3 | 17.9
19.1 | 19.3
19.6 | | 24 | | | | | | | 19.3 | 17.4 | 18.6 | 19.2 | 16.9 | 18.6 | | 25 | | | | | | | 17.8 | 15.1 | 16.6 | 17.5 | 15.9 | 16.6 | | 26 | | | | | | | 17.0 | 15.3 | 16.0 | 20.0 | 16.2 | 17.9 | | 27
28 | | | | | | | 15.3
16.4 | 12.8
13.5 | 13.9
14.8 | 21.1
22.5 | 18.4
19.6 | 19.6
21.0 | | 29 | | | | | | | 17.8 | 14.2 | 15.9 | 23.8 | 20.5 | 22.2 | | 30
31 | | | | | | | 18.5 | 16.1 | 17.3 | 25.1
26.5 | 22.0
23.6 | 23.6
25.1 | | | | | | | | | | | | | | | | MONTH | | | | | | | | | | 26.5 | 14.4 | 18.5 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMB | | | DAY
1 | MAX
27.6 | | MEAN
26.2 | MAX
29.4 | | MEAN | | | MEAN | MAX
27.8 | | | | 1
2 | 27.6
28.7 | JUNE
24.9
25.6 | 26.2
27.0 | 29.4
27.8 | JULY
27.4
26.6 | 28.3
27.2 | 32.3
31.1 | AUGUST
28.9
28.4 | 30.5
29.8 | 27.8
28.5 | SEPTEMB: 25.1 25.7 | ER
26.3
26.9 | | 1
2
3 | 27.6
28.7
29.1 | JUNE
24.9
25.6
26.0 | 26.2
27.0
27.4 | 29.4
27.8
28.7 | JULY
27.4
26.6
26.1 | 28.3
27.2
27.2 | 32.3
31.1
31.5 | AUGUST
28.9
28.4
28.4 | 30.5
29.8
29.9 | 27.8
28.5
28.2 | 25.1
25.7
26.0 | 26.3
26.9
27.0 | | 1
2 | 27.6
28.7 | JUNE
24.9
25.6 | 26.2
27.0 | 29.4
27.8 | JULY
27.4
26.6 | 28.3
27.2 | 32.3
31.1 | AUGUST
28.9
28.4 | 30.5
29.8 | 27.8
28.5 | SEPTEMB: 25.1 25.7 | ER
26.3
26.9 | | 1
2
3
4 | 27.6
28.7
29.1
27.6 | JUNE 24.9 25.6 26.0 23.3 | 26.2
27.0
27.4
26.1 | 29.4
27.8
28.7
28.0 | JULY
27.4
26.6
26.1
26.2 | 28.3
27.2
27.2
27.1 | 32.3
31.1
31.5
31.2 | 28.9
28.4
28.4
29.1 | 30.5
29.8
29.9
30.2 | 27.8
28.5
28.2
28.2 | 25.1
25.7
26.0
25.4 | 26.3
26.9
27.0
26.7
27.2 | | 1
2
3
4
5 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6 | 32.3
31.1
31.5
31.2
31.4 | AUGUST 28.9 28.4 28.4 29.1 28.9 28.2 26.8 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6 | 25.1
25.7
26.0
25.4
26.0 | 26.3
26.9
27.0
26.7
27.2 | | 1
2
3
4
5
6
7
8 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5 | AUGUST 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4 | | 1
2
3
4
5 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6 | 32.3
31.1
31.5
31.2
31.4 | AUGUST 28.9 28.4 28.4 29.1 28.9 28.2 26.8 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6 | 25.1
25.7
26.0
25.4
26.0 | 26.3
26.9
27.0
26.7
27.2 | | 1
2
3
4
5
6
7
8
9 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 |
26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8 | 28.9
28.4
28.4
29.1
28.9
28.2
26.8
25.6
25.4 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3
25.7 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2 | | 1
2
3
4
5
6
7
8
9
10 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.1 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7 | AUGUST 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.4 25.3 25.1 25.4 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3
25.7
25.2 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2 | | 1
2
3
4
5
6
7
8
9
10 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2 | 25.1
25.7
26.0
25.4
26.0
26.3
25.7
25.7
25.2
24.0
22.6
22.3 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.9
26.9
23.5
23.2 | | 1
2
3
4
5
6
7
8
9
10 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.1 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3
25.7
25.2 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 21.7 21.6 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
22.9
23.1 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7
28.9
27.1
27.2
28.3
28.9 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
27.2
27.2
25.9
24.4
24.2
23.5
23.1 | 25.1
25.7
26.0
25.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.2
24.9
23.5
23.1
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7
25.5 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 21.6 22.1 22.2 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
22.9
23.1 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7
28.9
27.1
27.2
28.3
28.9 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2
25.9
24.4
24.2
23.5
23.1 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.1
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7
25.5
25.9
25.0 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 21.7 21.6 22.1 22.2 23.5 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
22.9
23.1
23.7
24.0
24.2 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7
28.9
27.1
27.2
28.3
28.9 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.7 27.7 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7 | 28.9 28.4 28.4 29.1 28.9 26.8 25.6 25.4 25.3 25.1 22.2 21.4 23.0 25.1 24.6 23.5 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
27.2
25.9
24.4
24.2
23.5
23.1 | 25.1
25.7
26.0
25.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.2
23.1
22.5
22.1
22.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7
25.5 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 21.6 22.1 22.2 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
22.9
23.1 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7
28.9
27.1
27.2
28.3
28.9 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2
25.9
24.4
24.2
23.5
23.1 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.1
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.8
23.7
25.5
25.0
26.8
28.6 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 21.7 21.6 22.1 22.2 23.5 23.1 24.9 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
22.9
23.1
23.7
24.0
24.2
24.9 |
29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 | 28.3
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3
28.7 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7
27.6
26.9
26.0
26.3
27.2 | 28.9 28.4 28.4 29.1 28.9 26.8 25.6 25.4 25.3 25.1 26.4 22.2 21.4 23.0 25.1 24.6 23.5 24.6 24.3 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
27.2
25.9
24.4
24.2
23.5
23.1
23.2
23.8
25.0
24.4
22.5 | 25.1
25.7
26.0
25.4
26.0
26.3
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.0
22.0
22.6
20.6 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.2
24.9
23.5
23.1
22.5
22.1
22.5
22.1
22.7
21.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7
25.5
25.0
26.0
26.0
26.1
24.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.6 23.0 24.1 23.1 23.7 21.6 22.1 22.2 23.5 23.5 24.9 26.4 27.2 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
22.9
23.1
23.7
24.0
24.2
24.9
26.6 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3
28.7
27.7 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7
27.6
26.9
26.0
26.3
27.2 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 23.5 24.6 24.3 26.3 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
27.2
25.9
24.4
24.2
23.5
23.1
23.2
23.8
25.0
24.4
22.5 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.0
22.6
22.7
21.6
20.6 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.1
22.5
22.1
22.5
23.7
22.1
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.8
23.7
24.8
23.7
24.8
23.7
24.8
25.0
26.8
29.0
26.8 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 21.7 21.6 22.1 22.2 23.5 23.1 24.9 26.4 27.0 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
22.9
23.1
23.7
24.0
24.2
24.9
23.1 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 25.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 27.6 28.9 | 28.3
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3
28.7
27.7 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7
27.6
26.9
26.0
26.3
27.2 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 22.2 21.4 23.0 25.1 24.6 23.5 24.6 24.3 26.3 27.1 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
27.2
25.9
24.4
24.2
23.5
23.1
23.2
23.8
25.0
24.4
22.5
23.5 | 25.1
25.7
26.0
25.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.7
21.6
20.9 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.2
23.1
22.1
22.1
22.2
23.7
22.7
21.5
21.2
20.5
21.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7
25.5
25.0
26.0
26.0
26.1
24.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.6 23.0 24.1 23.1 23.7 21.6 22.1 22.2 23.5 23.5 24.9 26.4 27.2 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
22.9
23.1
23.7
24.0
24.2
24.9
26.6 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3
28.7
27.7 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7
27.6
26.9
26.0
26.3
27.2 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 23.5 24.6 24.3 26.3 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
27.2
25.9
24.4
24.2
23.5
23.1
23.2
23.8
25.0
24.4
22.5 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.0
22.6
22.7
21.6
20.6 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.1
22.5
22.1
22.5
23.7
22.1
22.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7
25.5
25.0
26.8
29.7
30.4
30.3
29.8
30.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 21.7 21.6 22.1 22.2 23.5 23.1 24.9 26.9 27.0 26.9 27.0 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
22.9
23.1
23.7
24.0
24.2
24.9
23.1 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8
31.0
30.0
29.4
29.8
30.6 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 25.3 24.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 27.6 28.9 26.3 26.9 | 28.3
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3
28.7
27.7
29.4
28.8 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7
27.6
26.9
26.0
26.3
27.2
27.9
29.1
29.0
28.2
27.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 22.2 21.4 23.0 25.1 24.6 23.5 24.6 24.3 26.3 27.1 26.3 24.9 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7 | 27.8 28.5 28.2 28.2 28.5 29.0 28.6 28.7 28.2 27.2 25.9 24.4 24.2 23.5 23.1 23.2 23.8 25.0 24.4 22.5 | 25.1
25.7
26.0
25.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.7
21.6
20.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.7
21.7
21.7
21.7
21.7
21.7
21.7 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.2
23.1
22.5
22.1
22.1
22.7
21.5
21.2
20.5
19.1
18.9
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.7
25.5
23.7
24.7
25.5
25.0
26.0
26.1
24.9
25.4
25.1
24.9
25.4
25.1
24.7
25.5
27.0
26.0
26.0
26.0
26.0
26.0
26.0
26.0
26 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.6 23.0 24.1 23.1 23.7 21.6 22.1 22.2 23.5 23.1 24.9 26.4 27.0 26.9 27.0 25.8 24.0 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
24.2
24.2
24.2
24.2
24.2 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8
31.0
30.0
29.4
29.4
30.6 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6
28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.7 27.4 26.6 26.9 26.3 26.9 26.3 26.9 28.6 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0
30.0 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.9
26.9
26.0
26.3
27.2
27.9
29.1
29.0
28.2
27.7 | 28.9 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 23.5 24.6 23.5 24.9 26.3 27.1 26.3 27.1 26.3 27.1 26.3 27.1 26.3 27.1 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7
27.0
27.6
28.1
27.0
26.2
27.0
26.2
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2
25.9
24.4
24.2
23.5
23.1
23.2
23.8
25.0
24.4
22.5
22.5
21.3
20.1
19.0
20.6 | 25.1
25.7
26.0
25.4
26.0
26.4
26.3
25.7
25.2
24.0
22.6
22.3
22.7
21.6
20.6
19.9
19.6
18.0
17.8
18.1 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.1
22.5
23.1
22.5
23.1
22.5
23.1
22.5
23.1
21.5
21.2
20.5
19.1
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7
25.5
25.0
26.8
29.7
30.4
30.3
29.8
30.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.7 21.6 22.1 22.2 23.5 23.1 24.9 26.4 27.0 26.9 27.0 25.8 24.0 26.0 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
24.2
24.2
24.2
24.2
24.3
23.1 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.3
31.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8
31.0
30.0
29.4
29.8
30.6 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 27.6 28.6 28.6 27.6 28.6 28.6 29.2 25.8 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3
28.7
27.7
29.2
29.4
28.1
28.0
28.6 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7
27.6
26.9
26.3
27.2
27.9
29.1
29.0
28.2
27.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 23.5 24.6 24.3 26.3 27.1 26.3 24.9 25.6 25.6 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7
27.0
27.6
28.1
27.0
26.2
27.0
27.6
28.1
27.0
27.6
28.1
27.0
27.6
28.1
27.0
27.6
28.1
27.0
27.6
28.1
27.0
27.0
27.0
27.0
27.0
27.0
27.0
27.0 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
22.7
22.5
23.5
23.1
23.2
23.8
25.0
24.4
22.5
22.5
21.3
20.1
19.9
20.6 | 25.1
25.7
26.0
25.4
26.0
26.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.7
21.6
20.6
20.1
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.7
21.6
21.6
21.7
21.7
21.6
21.7
21.7
21.6
21.7
21.7
21.7
21.7
21.7
21.7
21.7
21.7 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
23.5
23.1
22.5
23.7
22.5
22.1
12.2
23.7
21.5
21.2
20.5
19.1
18.9
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30
20
21
22
23
24
25
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.7
25.5
25.9
25.0
26.8
23.7
24.7
25.5
25.0
26.8
28.6
29.7
30.4
30.3
29.8
30.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.6 23.0 24.1 23.1 23.7 21.6 22.1 22.2 23.5 23.1 24.9 26.4 27.2 27.0 26.9 27.0 26.9 27.0 25.8 24.0 26.0 27.8 28.4 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
24.2
24.2
24.2
24.2
24.2 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8
31.0
30.0
29.4
29.5
30.6 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 27.6 28.6 26.9 26.3 26.9 26.3 26.9 |
28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.3
26.9
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
29.4
28.1
28.6
29.5
27.7
29.6
29.7
29.7
29.7
29.7
29.7
29.8
20.9
27.7
28.6
29.3
28.7
29.7
29.7
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
20.8 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
24.9
25.7
27.6
26.9
26.0
26.3
27.2
27.9
29.1
29.0
28.2
27.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 24.3 26.3 27.1 26.3 27.1 26.3 24.6 25.6 24.3 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7
27.0
27.6
28.1
27.0
26.2
28.1
27.0
26.2
28.1
27.0
27.0
27.0
28.0
28.0
28.0
28.0
28.0
28.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2
25.9
24.4
24.2
23.5
23.1
23.2
23.8
25.0
24.4
22.5
22.5
21.3
20.1
19.9
20.6
21.2
21.2
21.2
23.1
23.8 | 25.1
25.7
26.0
25.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.7
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.0
22.7
21.6
20.6
19.9
19.6
18.0
17.0
19.6
18.1 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.1
22.5
23.1
22.5
23.1
22.5
23.1
22.5
23.1
22.5
23.7
22.8
23.7
21.5
21.2
20.5
19.1
18.9
19.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.8
23.7
24.7
25.5
25.9
26.8
28.6
29.7
30.4
30.9
31.3
29.8
30.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.8 23.6 23.0 24.1 23.1 23.7 21.7 21.6 22.1 22.2 23.5 23.1 24.9 26.4 27.2 27.0 26.9 27.0 25.8 24.0 26.0 27.8 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
22.9
23.1
23.7
24.0
24.2
24.9
26.6
28.7
28.7
28.8
28.8 | 29.4
27.8
28.0
28.8
30.7
30.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.7
29.8
31.0
30.0
30.0
31.9
30.6 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 27.6 28.6 26.9 28.6 26.9 | 28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.4
26.3
26.9
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
26.9
26.1
24.9
25.7
27.6
26.9
26.3
27.2
27.9
29.1
29.1
29.1
29.7
27.5
27.5
27.5 | 28.9 28.4 29.1 28.9 28.2 26.8 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 24.3 26.2 26.3 27.1 26.3 24.9 25.6 25.6 25.6 25.6 25.6 25.6 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7
27.0
27.6
28.1
27.0
26.2
26.2
27.0
27.6
28.1
27.0
26.2
26.5
26.5 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2
25.9
24.4
24.2
23.5
23.1
23.2
23.8
25.0
24.4
22.5
21.3
20.1
19.9
20.6
21.2
21.2
21.6
23.1 | 25.1
25.7
26.0
25.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.0
22.6
21.6
20.6
19.9
19.6
18.0
17.8
18.1 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.2
23.1
22.5
22.1
22.8
23.7
21.5
21.2
20.5
19.8
20.1
20.1
20.1
20.1
20.1
20.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30
20
21
22
23
24
25
26
27
27
28
28
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | 27.6
28.7
29.1
27.6
23.7
25.1
26.5
27.0
26.1
24.9
25.4
25.1
24.7
25.5
25.9
25.0
26.8
23.7
24.7
25.5
25.0
26.8
28.6
29.7
30.4
30.3
29.8
30.9 | JUNE 24.9 25.6 26.0 23.3 22.5 21.4 22.3 23.6 23.0 24.1 23.1 23.7 21.6 22.1 22.2 23.5 23.1 24.9 26.4 27.2 27.0 26.9 27.0 26.9 27.0 25.8 24.0 26.0 27.8 28.4 | 26.2
27.0
27.4
26.1
23.1
23.2
24.3
25.4
24.9
23.9
24.8
24.2
24.2
24.2
24.2
24.2
24.2
24.2 | 29.4
27.8
28.7
28.0
28.8
30.7
30.9
30.7
28.9
27.1
27.2
28.3
28.9
29.5
30.8
31.3
31.7
29.8
31.0
30.0
29.4
29.5
30.6 | JULY 27.4 26.6 26.1 26.2 24.9 27.2 28.4 26.6 28.2 28.5 25.9 24.9 25.3 24.4 25.1 26.1 26.7 27.4 26.2 25.8 27.6 28.6 26.9 26.3 26.9 26.3 26.9 |
28.3
27.2
27.2
27.1
26.8
28.8
29.6
28.7
30.0
29.7
27.7
26.1
26.3
26.9
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
28.6
29.3
28.7
27.7
29.4
28.1
28.6
29.5
27.7
29.6
29.7
29.7
29.7
29.7
29.7
29.8
20.9
27.7
28.6
29.3
28.7
29.7
29.7
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
29.8
20.8 | 32.3
31.1
31.5
31.2
31.4
30.5
29.4
28.5
27.8
26.7
28.1
24.9
25.7
27.6
26.9
26.0
26.3
27.2
27.9
29.1
29.0
28.2
27.7 | 28.9 28.4 28.4 29.1 28.9 28.2 26.8 25.6 25.4 25.3 25.1 25.4 22.2 21.4 23.0 25.1 24.6 24.3 26.3 27.1 26.3 27.1 26.3 24.6 25.6 24.3 | 30.5
29.8
29.9
30.2
30.1
29.3
28.0
27.1
26.6
26.1
26.3
26.2
23.6
23.1
24.4
26.2
25.6
24.7
25.5
25.7
27.0
27.6
28.1
27.0
26.2
28.1
27.0
26.2
28.1
27.0
27.0
27.0
28.0
28.0
28.0
28.0
28.0
28.0
29.0
29.0
29.0
29.0
29.0
29.0
29.0
29 | 27.8
28.5
28.2
28.2
28.5
29.0
28.6
28.7
28.2
27.2
25.9
24.4
24.2
23.5
23.1
23.2
23.8
25.0
24.4
22.5
22.5
21.3
20.1
19.9
20.6
21.2
21.2
21.2
23.1
23.8 | 25.1
25.7
26.0
25.4
26.0
26.3
25.7
25.2
24.0
22.6
22.3
22.7
25.2
24.0
22.6
22.3
22.8
21.7
20.8
22.0
22.7
21.6
20.6
19.9
19.6
18.0
17.0
19.6
18.1 | 26.3
26.9
27.0
26.7
27.2
27.6
27.3
27.4
26.9
26.2
24.9
23.5
23.2
23.1
22.5
22.1
22.8
23.7
21.5
21.2
20.5
19.8
20.1
20.1
20.1
20.1
20.1
20.1 | ## 06893500 BLUE RIVER NEAR KANSAS CITY, MO--Continued pH, WH, FIELD, (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | pH, WH, | FIELD, | (STANDARD | UNITS), | WATER YEA | AR OCTOBER | 2001 TC |) SEPTEMBE | IR 2002 | | | |---|------------|----------------------|---|--------------|--------------|------------------|---|---|---|--|---|---| | DAY | MAX | MIN | MEAN | | | | | | | | | | | | | | | | | | OCTOBER | | N | OVEMBER | | Di | ECEMBER | | | JANUARY | | | 1 | 7.8 | 7.6 | 7.7 | 7.8 | 7.6 | 7.7 | 7.7 | 7.6 | 7.6 | | | | | 2 | 7.7 | 7.6 | 7.7 | 7.7 | 7.6 | 7.6 | 7.7 | 7.6 | 7.6 | | | | | 3
4 | 8.0
7.9 | 7.7
7.8 | 7.8
7.9 | 7.7
7.6 | 7.6
7.5 | 7.6 | 7.6
7.6 | 7.5
7.6 | 7.6
7.6 | | | | | 5 | 7.9 | 7.8 | 7.9 | 7.6 | 7.5 | 7.6
7.6 | 7.7 | 7.6 | 7.6 | | | | | | | | | | , . 5 | , | | ,.0 | , | | | | | 6 | 7.9 | 7.8 | 7.8 | 7.7 | 7.5 | 7.6 | 7.8 | 7.6 | 7.7 | | | | | 7
8 | 7.9
7.9 | 7.8
7.9 | 7.8
7.9 | 7.6
7.6 | 7.5
7.5 | 7.5
7.5 | 7.8
7.7 | 7.7
7.7 | 7.7
7.7 | | | | | 9 | 8.0 | 7.9 | 7.9 | 7.7 | 7.5 | 7.6 | 7.8 | 7.7 | 7.7 | | | | | 10 | 8.0 | 7.8 | 7.8 | 7.6 | 7.5 | 7.5 | 11
12 | 7.8
7.8 | 7.7
7.7 | 7.7
7.7 | 7.6
7.6 | 7.5
7.5 | 7.6
7.6 | | | | | | | | 13 | 7.8 | 7.7 | 7.8 | 7.6 | 7.3 | 7.5 | | | | | | | | 14 | 7.8 | 7.8 | 7.8 | 7.6 | 7.4 | 7.5 | | | | | | | | 15 | 8.0 | 7.7 | 7.8 | 7.6 | 7.3 | 7.5 | | | | | | | | 16 | 8.0 | 7.8 | 7.9 | 7.5 | 7.4 | 7.4 | | | | | | | | 17 | 8.0 | 7.9 | 8.0 | 7.4 | 7.3 | 7.4 | | | | | | | | 18 | 8.0 | 8.0 | 8.0 | 7.4 | 7.3 | 7.4 | | | | | | | | 19 | 8.0
7.9 | 7.9
7.8 | 7.9 | 7.5 | 7.3 | $7.4 \\ 7.7$ | | | | | | | | 20 | 7.9 | 7.8 | 7.8 | 7.8 | 7.5 | 7.7 | | | | | | | | 21 | 7.8 | 7.7 | 7.8 | 7.9 | 7.6 | 7.8 | | | | | | | | 22 | 7.8 | 7.7 | 7.7 | 7.8 | 7.6 | 7.7 | | | | | | | | 23
24 | 7.7
7.7 | 7.6
7.6 | 7.6
7.6 | 7.7
7.7 | 7.6
7.3 | 7.7
7.6 | | | | | | | | 25 | 7.7 | 7.6 | 7.7 | 7.7 | 7.5 | 7.6 | 26 | 7.9 | 7.7 | 7.8 | 7.6 | 7.5 | 7.5 | | | | | | | | 27
28 | 7.9
7.9 | 7.8
7.8 | 7.8
7.8 | 7.6
7.6 | 7.5
7.6 | 7.6
7.6 | | | | | | | | 29 | 7.9 | 7.7 | 7.8 | 7.6 | 7.4 | 7.6 | | | | | | | | 30 | 7.9 | 7.7 | 7.8 | 7.6 | 7.4 | 7.5 | | | | | | | | 31 | 7.9 | 7.7 | 7.8 | | | | | | | | | | | MONTH | 8.0 | 7.6 | 7.8 | 7.9 | 7.3 | 7.6 | | | | | | | | 11011111 | 0.0 | 7.0 | 7.0 | 7.5 | 7.5 | 7.0 | DAY | MAX | MTN | MEAN | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | DAY
1 | | | | MAX | | MEAN | MAX | | MEAN | MAX
8.0 | | MEAN | | 1
2 | | FEBRUARY | | | MARCH | | | APRIL | | 8.0
8.0 | MAY | 7.9
8.0 | | 1
2
3 | | FEBRUARY

 | |
 | MARCH |
 | | APRIL | | 8.0
8.0
8.1 | MAY
7.9
7.9
8.0 | 7.9
8.0
8.0 | | 1
2
3
4 | | FEBRUARY | | | MARCH |

 |

 | APRIL |

 | 8.0
8.0
8.1
8.1 | MAY
7.9
7.9
8.0
8.0 | 7.9
8.0
8.0
8.1 | | 1
2
3 | | FEBRUARY

 |

 |

 | MARCH |
 | | APRIL | | 8.0
8.0
8.1 | MAY
7.9
7.9
8.0 | 7.9
8.0
8.0
8.1 | | 1
2
3
4
5 | | FEBRUARY | |

 | MARCH |

 |

8.7
8.8 | APRIL 8.5 8.5 |

8.6 | 8.0
8.0
8.1
8.1
8.2 | MAY 7.9 7.9 8.0 8.0 8.1 7.7 | 7.9
8.0
8.0
8.1
8.1 | | 1
2
3
4
5 | ==== | FEBRUARY | ==== |

 | MARCH |

 |

8.7
8.8
8.6 | APRIL 8.5 8.5 8.2 |

8.6
8.7
8.5 | 8.0
8.0
8.1
8.1
8.2
8.1 | MAY 7.9 7.9 8.0 8.0 8.1 7.7 7.7 | 7.9
8.0
8.0
8.1
8.1
7.9
7.9 | | 1
2
3
4
5 | | FEBRUARY | |

 | MARCH |

 |

8.7
8.8
8.6
8.2 | APRIL 8.5 8.5 8.2 7.8 |

8.6
8.7
8.5
8.0 | 8.0
8.0
8.1
8.1
8.2
8.1
8.0 | MAY 7.9 7.9 8.0 8.0 8.1 7.7 7.7 | 7.9
8.0
8.0
8.1
8.1
7.9
7.9
8.0 | | 1
2
3
4
5 | | FEBRUARY | ======================================= | ==== | MARCH |

 |

8.7
8.8
8.6 | APRIL 8.5 8.5 8.2 |

8.6
8.7
8.5 | 8.0
8.0
8.1
8.1
8.2
8.1 | MAY 7.9 7.9 8.0 8.0 8.1 7.7 7.7 | 7.9
8.0
8.0
8.1
8.1
7.9
7.9 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY |

 | | MARCH | | 8.7
8.8
8.6
8.2
8.1 | APRIL 8.5 8.5 8.5 8.2 7.8 7.8 7.9 |

8.6
8.7
8.5
8.0
8.0 |
8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0 | 7.9
7.9
8.0
8.0
8.1
7.7
7.7
7.9
8.0 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.9 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | |

 | MARCH |

 | 8.7
8.8
8.6
8.2
8.1
8.3 | APRIL 8.5 8.5 8.5 8.7.8 7.8 7.9 |

8.6
8.7
8.5
8.0
8.0
8.1 | 8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.0 8.1 7.7 7.7 7.9 7.7 8.0 7.7 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.9
8.0 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY |

 | | MARCH | |

8.7
8.8
8.6
8.2
8.1
8.3 | APRIL 8.5 8.5 8.5 8.7 8.7 7.9 7.9 |

8.6
8.7
8.5
8.0
8.1 | 8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.1 | MAY 7.9 7.9 8.0 8.0 8.1 7.7 7.7 8.0 7.7 8.0 | 7.9
8.0
8.0
8.1
8.1
7.9
7.9
8.0
7.9
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | | MARCH | | 8.8
8.6
8.2
8.1
8.3
8.1
8.1
8.2
8.2 | APRIL 8.5 8.5 8.5 8.7.8 7.9 7.9 7.9 8.0 |

8.6
8.7
8.5
8.0
8.0
8.1 | 8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1 | MAY 7.9 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 7.9 7.7 8.0 7.7 7.9 7.7 8.0 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.9
8.0 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | |

8.7
8.8
8.6
8.2
8.1
8.3 | APRIL 8.5 8.5 8.2 7.8 7.9 7.9 |

8.6
8.7
8.5
8.0
8.0
8.1 | 8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.9 7.7 7.9 7.7 8.0 | 7.9
8.0
8.0
8.1
8.1
7.9
8.0
7.9
8.0
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2 | APRIL 8.5 8.5 8.5 8.7.8 7.9 7.9 7.9 8.0 8.0 |

8.6
8.7
8.5
8.0
8.1
8.0
8.0
8.1
8.0
8.1 | 8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.0
8.1
8.0
7.8
7.9
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.9 8.0 7.7 7.9 7.9 7.6 7.8 7.9 7.9 | 7.9
8.0
8.0
8.1
8.1
7.9
8.0
7.9
8.0
7.7
7.8
7.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | | MARCH | | 8.8
8.6
8.2
8.1
8.3
8.1
8.1
8.2
8.2 | APRIL 8.5 8.5 8.5 8.7.8 7.9 7.9 7.9 8.0 |

8.6
8.7
8.5
8.0
8.0
8.1 | 8.0
8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1 | MAY 7.9 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 7.9 7.7 8.0 7.7 7.9 7.7 8.0 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.9
8.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2 | APRIL 8.5 8.5 8.5 8.2 7.8 7.9 7.9 7.9 8.0 8.0 8.0 7.9 |

8.6
8.7
8.5
8.0
8.1
8.0
8.0
8.1
8.1
8.1
8.1 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
7.8
7.9
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.9 8.0 7.6 7.8 7.9 7.9 8.0 8.1 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
7.8
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.1
8.2
8.2
8.2
8.2
8.2 | APRIL 8.5 8.5 8.5 8.7.8 7.9 7.9 7.9 8.0 8.0 8.0 7.9 7.7 |

8.6
8.7
8.5
8.0
8.0
8.1
8.0
8.1
8.1
8.1
8.1 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
7.8
7.9
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 7.9 7.7 8.0 7.7 7.6 7.8 7.9 7.9 7.9 7.9 7.9 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
8.0
8.0
8.0
8.0
8.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2 | APRIL 8.5 8.5 8.5 8.2 7.8 7.9 7.9 7.9 8.0 8.0 8.0 7.9 |

8.6
8.7
8.5
8.0
8.1
8.0
8.0
8.1
8.1
8.1
8.1 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
7.8
7.9
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.9 8.0 7.6 7.8 7.9 7.9 8.0 8.1 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
7.8
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.1
8.2
8.2
8.2
8.2
8.2
8.3 | APRIL 8.5 8.5 8.5 8.7.8 7.9 7.9 7.9 8.0 8.0 8.0 7.9 7.7 7.7 |

8.6
8.7
8.5
8.0
8.0
8.1
8.0
8.1
8.1
8.1
8.1
8.7
7.7 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.1
8.0
8.0
8.1
8.0
8.1
8.1
8.0
8.1
8.1
8.0
8.1
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 7.6 7.8 7.9 7.9 7.9 8.0 8.0 8.0 8.0 | 7.9
8.0
8.1
8.1
7.9
8.0
7.9
8.0
7.7
7.8
8.0
8.0
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2
8.2
8.2 | APRIL 8.5 8.5 8.5 8.2 7.8 7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.0
8.1
8.1
8.1
8.0
8.7
7.7 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 8.0 7.7 9.9 8.0 8.0 8.0 8.0 8.0 8.0 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
8.0
7.7
7.8
7.9
8.0
8.0
8.0
8.0
8.0
8.0 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | | FEBRUARY | | | MARCH | | 8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2
8.2
8.7
8.9
7.8 | APRIL 8.5 8.5 8.5 8.2 7.8 7.9 7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.0
8.1
8.1
8.1
8.0
8.7
7.8
7.7 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 7.9 8.0 7.6 7.8 7.9 7.9 8.0 8.0 8.0 7.9 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
7.8
7.9
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2
8.2
8.2 | APRIL 8.5 8.5 8.5 8.2 7.8 7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.0
8.1
8.1
8.1
8.0
8.7
7.7 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 8.0 7.7 9.9 8.0 8.0 8.0 8.0 8.0 8.0 | 7.9
8.0
8.1
8.1
7.9
8.0
7.9
8.0
7.7
7.8
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2
8.2
8.1
8.0
7.8 | APRIL 8.5 8.5 8.5 8.2 7.8 7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.0
8.1
8.1
8.1
8.0
8.0
7.8
7.7
7.8
7.9
7.9
7.9 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.9 7.7 8.0 7.6 7.8 7.9 8.0 8.0 7.9 7.9 8.0 8.0 7.9 7.9 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
7.8
7.9
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.1
8.2
8.2
8.2
8.2
8.2
8.2
8.0
7.8
8.0
7.9
8.0
8.0 | APRIL 8.5 8.5 8.5 8.7.8 7.9 7.9 7.9 7.9 8.0 8.0 8.0 7.9 7.7 7.7 7.7 7.7 7.9 7.9 7.9 7.9 7.9 |

8.6
8.7
8.5
8.0
8.1
8.0
8.1
8.1
8.1
8.1
8.1
8.0
7.7
7.8
7.9
7.9
7.9
8.0 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 7.6 7.8 0 7.9 7.9 8.0 8.0 8.0 8.0 7.9 8.0 8.0 7.9 7.8 7.8 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2
8.2
8.2
8.2
8.0
7.8 | APRIL 8.5 8.5 8.5 8.7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.0
8.1
8.1
8.0
8.0
8.1
7.7
7.8
7.9
7.9
7.9
8.0 |
8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 8.0 7.7 9.9 8.0 8.0 8.0 7.9 7.9 8.0 8.0 8.0 7.7 7.8 8.0 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2
8.2
8.0
7.8
8.0
7.9
8.0
8.0
8.0 | APRIL 8.5 8.5 8.5 8.7.8 7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.1
8.1
8.1
8.1
8.0
7.8
7.7
7.8
7.9
7.9
7.9
8.0 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 7.6 7.8 8.0 7.7 7.6 8.0 7.7 7.8 8.0 7.9 7.9 8.0 8.0 7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | 7.9
8.0
8.1
8.1
7.9
8.0
7.9
8.0
8.0
7.7
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | | | MARCH | | 8.8
8.6
8.2
8.1
8.3
8.1
8.1
8.2
8.2
8.2
8.2
8.2
8.2
8.0
7.8
8.0
7.9
8.0
8.0
7.9
8.0
8.0
7.9 | APRIL 8.5 8.5 8.5 8.7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.1
8.1
8.0
8.1
8.1
8.0
7.7
7.8
7.9
7.9
7.9
8.0
7.9 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.90 8.0 8.1 7.7 7.7 8.0 7.7 8.0 7.7 8.0 7.7 8.0 8.0 8.0 8.0 7.9 7.9 8.0 8.0 7.9 7.9 7.9 7.9 7.9 7.9 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
29
20
20
20
20
20
20
20
20
20
20
20
20
20 | | FEBRUARY | | | MARCH | | 8.7
8.8
8.6
8.2
8.1
8.3
8.1
8.2
8.2
8.2
8.2
8.2
8.0
7.8
8.0
7.9
8.0
8.0
8.0 | APRIL 8.5 8.5 8.5 8.7.8 7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.1
8.1
8.1
8.1
8.0
7.8
7.7
7.8
7.9
7.9
7.9
8.0 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.9 8.0 8.1 7.7 7.7 8.0 7.7 7.6 7.8 8.0 7.7 7.6 8.0 7.7 7.8 8.0 7.9 7.9 8.0 8.0 7.9 8.0 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 7.9 | 7.9
8.0
8.1
8.1
7.9
8.0
7.9
8.0
8.0
7.7
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | | | MARCH | | 8.8
8.6
8.2
8.1
8.3
8.1
8.1
8.2
8.2
8.2
8.2
8.2
8.2
8.0
7.8
8.0
7.9
8.0
8.0
7.9
8.0
8.0
7.9 | APRIL 8.5 8.5 8.5 8.7.9 7.9 7.9 7.9 7.9 7.7 7.7 7.7 7.7 7.7 |

8.6
8.7
8.5
8.0
8.1
8.0
8.1
8.1
8.0
8.1
8.1
8.0
7.7
7.8
7.9
7.9
7.9
8.0
7.9 | 8.0
8.1
8.1
8.2
8.1
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0 | MAY 7.9 7.90 8.0 8.1 7.7 7.7 8.0 7.7 8.0 7.7 8.0 7.7 8.0 8.0 8.0 8.0 7.9 7.9 8.0 8.0 7.9 7.9 7.9 7.9 7.9 7.9 | 7.9
8.0
8.1
8.1
7.9
7.9
8.0
7.7
7.8
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8.0
8 | MAX MIN MEAN 113 MAX MIN --- MEAN ## 06893500 BLUE RIVER NEAR KANSAS CITY, MO--Continued pH, WH, FIELD, (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 MEAN MIN DAY MONTH 990 277 761 1015 404 916 MAX MIN MEAN MAX | DAY | MAX | MIN | MEAN | |---|--|--|--|--|---|---|--|--|---|-----------------|---------------------|--------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | R | | 1 | 8.1 | 8.0 | 8.1 | 8.1 | 7.8 | 7.9 | 8.0 | 7.7 | 7.8 | 7.7 | 7.5 | 7.6 | | 2 | 8.2 | 8.0 | 8.1 | 8.1 | 7.9 | 8.0 | 8.1 | 7.8 | 7.9 | 7.6 | 7.4 | 7.5 | | 3
4 | 8.3
8.2 | 8.1
7.7 | 8.2
8.1 | 8.2
8.0 | 7.9
7.7 | 8.0
7.9 | 8.2
8.0 | 7.9
7.8 | 8.0
7.9 | 7.6
7.6 | 7.4
7.4 | 7.5
7.5 | | 5 | 8.0 | 7.6 | 7.8 | 8.0 | 7.7 | 7.8 | 8.0 | 7.8 | 7.9 | 7.6 | 7.4 | 7.5 | | _ | 0 1 | 7.0 | 0.0 | 0 1 | 7.0 | 7.0 | 7.0 | | 7.0 | | 7.4 | | | 6
7 | 8.1
8.2 | 7.9
7.9 | 8.0
8.0 | 8.1
8.1 | 7.8
7.8 | 7.9
7.9 | 7.8
7.9 | 7.7
7.6 | 7.8
7.7 | 7.7
7.7 | 7.4
7.5 | 7.5
7.6 | | 8 | 8.2 | 7.9 | 8.1 | 8.0 | 7.6 | 7.7 | 7.9 | 7.6 | 7.7 | 7.6 | 7.5 | 7.5 | | 9 | 8.1 | 7.8 | 8.0 | 7.9 | 7.6 | 7.7 | 7.9 | 7.7 | 7.8 | 7.8 | 7.5 | 7.6 | | 10 | 8.0 | 7.8 | 7.9 | 7.9 | 7.7 | 7.8 | 7.8 | 7.6 | 7.7 | 7.7 | 7.5 | 7.6 | | 11 | 7.9 | 7.6 | 7.9 | 7.9 | 7.7 | 7.8 | 7.8 | 7.6 | 7.6 | 7.7 | 7.5 | 7.6 | | 12
13 | 7.8
7.8 | 7.6
7.7 | 7.7
7.8 | 7.8
7.9 | 7.6
7.6 | 7.7
7.8 | 7.8
7.8 | 7.5
7.6 | 7.6
7.7 | 7.7
7.7 | 7.5
7.6 | 7.6
7.6 | | 14 | 7.9 | 7.8 | 7.9 | 8.0 | 7.8 | 7.9 | 7.7 | 7.6 | 7.6 | 7.6 | 7.4 | 7.5 | | 15 | 8.0 | 7.9 | 8.0 | 8.1 | 7.8 | 8.0 | 7.8 | 7.7 | 7.7 | 7.6 | 7.4 | 7.5 | | 16 | 8.1 | 8.0 | 8.0 | 8.2 | 7.9 | 8.1 | 7.7 | 7.6 | 7.7 | 7.6 | 7.5 | 7.5 | | 17 | 8.2 | 8.0 | 8.1 | 8.3 | 7.9 | 8.1 | 7.7 | 7.6 | 7.6 | 7.6 | 7.5 | 7.5 | | 18
19 | 8.2
8.3 | 8.1
8.1 | 8.1
8.2 | 8.3
8.4 | 7.9
7.7 | 8.1
8.0 | 7.7
7.7 | 7.6
7.6 | 7.7
7.7 | 7.7
7.7 | 7.5
7.6 | 7.5
7.6 | | 20 | 8.4 | 8.2 | 8.3 | 7.9 | 7.6 | 7.6 | 7.7 | 7.6 | 7.6 | 7.6 | 7.5 | 7.6 | | 21 | 8.3 | 8.2 | 8.3 | 7.7 | 7.6 | 7.6 | 7.8 | 7.6 | 7.7 | 7.6 | 7.5 | 7.6 | | 22 | 8.4 | 8.2 | 8.3 | 7.7 | 7.7 | 7.8 | 7.8 | 7.6 | 7.7 | 7.0 | 7.5 | 7.6 | | 23 | 8.4 | 8.2 | 8.3 | 7.9 | 7.8 | 7.8 | 7.9 | 7.7 | 7.7 | 7.7 | 7.6 | 7.6 | | 24
25 | 8.4
8.4 | 8.2
8.1 | 8.3
8.2 | 8.1
8.2 | 7.8
8.0 | 8.0
8.1 | 7.8
7.8 | 7.6
7.6 | 7.7
7.7 | 7.8
7.8 | 7.6
7.6 | 7.7
7.7 | | | | | | | | | | | | | | | | 26 | 8.3 | 7.7 | 8.2 | 8.3 | 8.0 | 8.1 | 7.9 | 7.7 | 7.7 | 7.7 | 7.6 | 7.7 | | 27
28 | 7.8
7.9 | 7.6
7.6 | 7.7
7.7 | 8.3
8.2 | 8.0
7.9 | 8.1
8.0 | 7.8
7.9 | 7.7
7.7 | 7.7
7.8 | 7.8
7.9 | 7.6
7.7 | 7.7
7.7 | | 29 | 8.0 | 7.7 | 7.8 | 7.9 | 7.6 | 7.7 | 7.8 | 7.6 | 7.7 | 7.9 | 7.7 | 7.8 | | 30
31 | 8.1 | 7.8 | 7.9
 | 7.8
7.9 | 7.6
7.7 | 7.7
7.7 | 7.8
7.8 | 7.6
7.6 | 7.7
7.7 | 7.8 | 7.6
 | 7.7 | | 31 | | | | 1.5 | 7.7 | /./ | 7.0 | 7.0 | /./ | | | | | MONTH | 8.4 | 7.6 | 8.0 | 8.4 | 7.6 | 7.9 | 8.2 | 7.5 | 7.7 | 7.9 | 7.4 | 7.6 | | | | | | | | | | | | | | | | | 0 | DEGIETA | | | | | | | | | | | | | | | | | | TATE TO THE T | | | O CEDERAL | 2002 | | | | | ٥ | PECIFIC | CONDUCTAI | NCE, μS/cm | @ 25°C, | WATER | YEAR OCTOBE | ER 2001 T | O SEPTEME | BER 2002 | | | | DAY | MAX | MIN | CONDUCTAI
MEAN | NCE, μS/cm
MAX | @ 25°C,
MIN | WATER : | YEAR OCTOBE
MAX | ER 2001 T
MIN | O SEPTEME
MEAN | BER 2002
MAX | MIN | MEAN | | DAY | | MIN | MEAN | MAX | MIN | | MAX | MIN | | | | | | | MAX | MIN
OCTOBER | MEAN | MAX
NO | MIN | MEAN | MAX | MIN
DECEMBER | MEAN | MAX | JANUARY | | | 1 | MAX
887 | MIN
OCTOBER
867 | MEAN
875 | MAX
NO | MIN
OVEMBER
923 | MEAN
945 | MAX
I
921 | MIN
DECEMBER
907 | MEAN
914 | | | | | 1
2
3 | MAX | MIN
OCTOBER | MEAN | MAX
NO | MIN | MEAN | MAX
I
921
932
939 | MIN
DECEMBER | MEAN
914
926
930 | MAX | JANUARY | | | 1
2
3
4 | MAX
887
919
923
923 | MIN
OCTOBER
867
887
897
888 | MEAN
875
896
912
908 | MAX
NO
963
941
963
968 | MIN
OVEMBER
923
908
929
956 | MEAN
945
923
953
963 | MAX
I
921
932
939
927 | MIN
DECEMBER
907
908
915
915 | MEAN
914
926
930
923 | MAX | JANUARY

 |

 | | 1
2
3 | MAX
887
919
923 | MIN
OCTOBER
867
887
897 | MEAN
875
896
912 |
MAX
NO
963
941
963 | MIN
OVEMBER
923
908
929 | MEAN
945
923
953 | MAX
I
921
932
939 | MIN
DECEMBER
907
908
915 | MEAN
914
926
930 | MAX | JANUARY

 |
 | | 1
2
3
4
5 | 887
919
923
923
889
470 | MIN
OCTOBER
867
887
897
888
277 | 875
896
912
908
435 | MAX NG 963 968 976 977 | MIN OVEMBER 923 908 929 956 956 961 | MEAN 945 923 953 963 969 | MAX
I
921
932
939
927
936 | MIN DECEMBER 907 908 915 915 847 | 914
926
930
923
915 | MAX | JANUARY |

 | | 1
2
3
4
5 | 887
919
923
923
889
470
588 | MIN
OCTOBER
867
887
897
888
277
393
453 | 875
896
912
908
435
443
516 | MAX NO 963 941 963 968 976 977 985 | MIN OVEMBER 923 908 929 956 956 961 965 | 945
923
953
963
969
969 | MAX
I
921
932
939
927
936
938
950 | MIN DECEMBER 907 908 915 915 847 878 934 | 914
926
930
923
915
931
946 | MAX | JANUARY |

 | | 1
2
3
4
5 | 887
919
923
923
889
470 | MIN
OCTOBER
867
887
897
888
277 | 875
896
912
908
435 | MAX NG 963 968 976 977 | MIN OVEMBER 923 908 929 956 956 961 | MEAN 945 923 953 963 969 | MAX
I
921
932
939
927
936 | MIN DECEMBER 907 908 915 915 847 | 914
926
930
923
915 | MAX | JANUARY |

 | | 1
2
3
4
5 | MAX
887
919
923
923
889
470
588
699 | MIN
OCTOBER
867
887
897
888
277
393
453
588 | MEAN 875 896 912 908 435 443 516 636 | MAX NG 963 941 963 968 976 977 985 977 | MIN OVEMBER 923 908 929 956 956 961 965 962 | 945
923
953
963
969
969 | MAX
I
921
932
939
927
936
938
950
984 | MIN DECEMBER 907 908 915 915 847 878 934 947 | 914
926
930
923
915
931
946
970 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9 | 887
919
923
923
889
470
588
699
735 | MIN
OCTOBER
867
887
897
888
277
393
453
588
699
637 | 875
896
912
908
435
443
516
636
725
748 | 963
941
963
968
976
977
985
977 | MIN OVEMBER 923 908 929 956 956 961 965 962 941 | 945
923
953
963
969
969
976
971 | MAX
I
921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10 | 887
919
923
923
889
470
588
699
735
819 | MIN OCTOBER 867 887 897 898 277 393 453 588 699 637 573 580 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 | 963
941
963
968
976
977
985
977
971
980 | MIN OVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 | 945
923
953
963
969
969
976
971
957
971 | MAX I 921 932 939 927 936 938 950 984 1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10 | 887
919
923
923
889
470
588
699
735
819
701 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 | 963
941
963
968
976
977
985
977
971
980
975
996
1006 | MIN OVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 | 945
923
953
963
969
976
971
957
971 | MAX
I
921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10 | 887
919
923
923
889
470
588
699
735
819 | MIN OCTOBER 867 887 897 898 277 393 453 588 699 637 573 580 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 | 963
941
963
968
976
977
985
977
971
980 | MIN OVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 | 945
923
953
963
969
969
976
971
957
971 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 | 963
941
963
968
976
977
985
977
971
980
975
996
1006
1015 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 | 945
923
953
969
969
976
971
957
971
970
989
999
1005 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 | 963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 998 | 945
923
953
963
969
976
971
957
971
970
989
999
1005
991 | MAX I 921 932 939 927 936 938 950 984 1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 | 963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 | 945
923
953
969
969
976
971
957
971
970
989
999
1005
991 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 | 963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 | 945
923
953
963
969
976
971
957
971
970
989
999
1005
991 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 | 963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 | 945
923
953
969
969
976
971
957
971
970
989
999
1005
991 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 | 963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001
998
994
993
1002
1001 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 982 986 980 974 973 | 945
923
953
969
976
971
957
971
970
989
999
1005
991
990
987
993 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 887
919
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832 | MIN OCTOBER 867 887 887 888 277 393 453 588 699
637 573 580 714 769 281 340 467 590 688 785 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 | 963
941
963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001
998
994
993
1002
1001 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 982 986 980 974 973 | 945
923
953
963
969
969
976
971
970
989
999
1005
991
990
989
990
987
993 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832
864
899
898
901 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 832 859 882 871 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 850 879 889 881 | 963
941
963
976
977
985
977
971
980
975
996
1006
1015
1001
988
994
993
1002
1001
982
1010 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 982 986 974 973 961 982 978 404 | 945
923
953
969
969
976
971
957
971
970
989
999
1005
991
990
987
993
973
1001
994
566 | 921
932
939
927
936
938
950
984
1002
 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832
849
898 | MIN OCTOBER 867 887 897 898 8277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 832 859 882 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 850 879 889 | 963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001
998
993
1002
1001 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 982 986 974 973 | 945
923
953
969
969
976
971
957
971
970
989
999
1005
991
990
987
993 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832
864
899
898
901 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 832 859 882 871 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 850 879 889 881 | 963
941
963
976
977
985
977
971
980
975
996
1006
1015
1001
988
994
993
1002
1001
982
1010 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 982 986 974 973 961 982 978 404 | 945
923
953
969
969
976
971
957
971
970
989
999
1005
991
990
987
993
973
1001
94
566
503 | 921
932
939
927
936
938
950
984
1002
 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | 887
919
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832
864
899
898
901
902 | MIN OCTOBER 867 887 887 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 832 871 881 857 870 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 850 879 889 881 893 874 904 | 963
941
963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001
998
994
993
1002
1001
982
1010
1001
978
533 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 980 974 973 961 982 978 404 467 | 945
923
953
963
969
969
976
971
957
971
970
989
999
990
987
991
990
987
993
614
737 | 921
932
939
927
936
938
950
984
1002 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 887
919
923
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832
869
898
901
902 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 832 859 882 871 881 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 850 879 889 881 893 874 904 923 | 963
941
963
941
963
968
976
977
985
977
971
980
975
996
1006
1015
1001
998
994
993
1002
1001
978
533 | MIN DVEMBER 923 908 929 956 961 965 962 941 958 963 974 993 996 984 982 988 987 981 982 988 987 981 982 988 988 974 973 961 | 945
923
953
969
969
976
971
957
971
970
989
999
1005
991
990
987
993
973
1001
94
566
503 | 921
932
939
927
936
938
950
984
1002
 | MIN DECEMBER 907 908 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 887
919
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832
864
899
898
901
902
894
913
937
956 | MIN OCTOBER 867 887 887 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 832 871 881 857 870 903 914 929 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 850 879 889 881 893 874 904 923 937 947 | 963
941
963
941
963
968
976
977
985
977
980
975
996
1006
1015
1001
998
994
993
1002
1001
982
1010
1001
978
533 | MIN DVEMBER 923 908 929 956 961 965 962 941 958 974 993 996 984 980 974 973 961 982 978 404 467 533 684 778 859 894 | 945
923
953
963
969
969
976
971
970
989
999
1005
991
990
987
993
973
1001
994
565
503
614
737
808
868
869
909 | 921
932
939
927
936
938
950
984
1002
 | MIN DECEMBER 907 908 915 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 887
919
923
889
470
588
699
735
819
701
714
769
840
856
467
590
691
785
832
864
898
901
902
894
913
935
947 | MIN OCTOBER 867 887 897 888 277 393 453 588 699 637 573 580 714 769 281 340 467 590 688 785 832 859 882 871 881 857 870 903 914 | MEAN 875 896 912 908 435 443 516 636 725 748 632 656 748 802 617 387 533 658 726 811 850 879 889 881 893 874 904 923 937 | 963
941
963
941
963
976
977
985
977
971
980
975
996
1006
1015
1001
988
993
1002
1001
982
1010
1001
978
533
684
780
861
894 | MIN DVEMBER 923 908 929 956 956 961 965 962 941 958 963 974 993 996 984 982 986 974 973 961 982 986 974 973 | 945
923
953
969
969
976
971
957
971
970
989
999
1005
991
990
987
993
973
1001
94
566
503 | 921
932
939
927
936
938
950
984
1002
 | MIN DECEMBER 907 908 915 847 878 934 947 982 | 914
926
930
923
915
931
946
970
997
 | MAX | JANUARY | | ## 06893500 BLUE RIVER NEAR KANSAS CITY, MO--Continued SPECIFIC CONDUCTANCE, $\mu \text{S/cm}$ @ $25^{\circ}\text{C}\text{,}$ WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | SPECIFIC | CONDUCTAI | NCE, µS/cı | m @ 25°C, | WATER | YEAR OCT | OBER 2001 | TO SEPTEM | IBER 2002 | | | |---|--|--
--|---|--|--|--|--|---|---|---|---| | DAY | MAX | MIN | MEAN | | | | | | | | | | | | | | | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | 711 | 665 | 688 | | 2 | | | | | | | | | | 743 | 698 | 719 | | 3
4 | | | | | | | | | | 779
787 | 739
753 | 752
774 | | 5 | | | | | | | 951 | 882 | 923 | 780 | 753 | 769 | | | | | | | | | | | | | | | | 6 | | | | | | | 925 | 881 | 908 | 865 | 526 | 657 | | 7
8 | | | | | | | 943
988 | 909
642 | 931
885 | 534
493 | 457
373 | 482
426 | | 9 | | | | | | | 642 | 566 | 585 | 414 | 330 | 364 | | 10 | | | | | | | 661 | 598 | 634 | 527 | 414 | 472 | | 11 | | | | | | | 704 | 661 | 680 | 533 | 276 | 466 | | 12 | | | | | | | 704 | 704 | 748 | 362 | 224 | 268 | | 13 | | | | | | | 822 | 772 | 796 | 493 | 362 | 439 | | 14 | | | | | | | 842 | 822 | 834 | 555 | 491 | 525 | | 15 | | | | | | | 871 | 835 | 861 | 587 | 555 | 571 | | 16 | | | | | | | 899 | 871 | 888 | 633 | 506 | 568 | | 17 | | | | | | | 924 | | 915 | 506 | 472 | 491 | | 18 | | | | | | | 929 | 917 | 926 | 487 | 446 | 468 | | 19
20 | | | | | | | 936
673 | 599
349 | 767
567 | 546
596 | 487
545 | 517
572 | | 20 | | | | | | | 075 | 317 | 507 | 330 | 313 | 372 | | 21 | | | | | | | 462 | | 388 | 637 | 596 | 616 | | 22
23 | | | | | | | 546
671 | 462
546 | 503
615 | 657
780 | 635
655 | 644
679 | | 24 | | | | | | | 700 | 669 | 690 | 766 | 307 | 634 | | 25 | | | | | | | 735 | 699 | 714 | 390 | 185 | 281 | | 0.6 | | | | | | | 706 | 725 | 252 | 506 | 200 | 455 | | 26
27 | | | | | | | 786
766 | 735
310 | 757
528 | 506
594 | 389
481 | 455
525 | | 28 | | | | | | | 515 | 351 | 433 | 512 | 481 | 494 | | 29 | | | | | | | 612 | | 569 | 547 | 505 | 530 | | 30 | | | | | | | 666 | 612 | 645 | 590 | 545 | 569 | | 31 | | | | | | | | | | 632 | 589 | 602 | | MONTH | | | | | | | | | | 865 | 185 | 549 | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | MAX | | MEAN | | | | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN
JULY | MEAN | MAX | MIN
AUGUST | MEAN | | MIN
SEPTEMBE | | | 1 | MAX
635 | | MEAN
628 | MAX 723 | | MEAN | MAX
651 | | MEAN
579 | | | R
887 | | 1
2 | 635
645 | JUNE
621
632 | 628
638 | 723
765 | JULY
652
722 | 697
751 | 651
747 | AUGUST
529
651 | 579
703 | 896
923 | SEPTEMBE
871
888 | R
887
909 | | 1
2
3 | 635
645
664 | JUNE
621
632
637 | 628
638
645 | 723
765
794 | JULY
652
722
760 | 697
751
782 | 651
747
842 | AUGUST
529
651
747 | 579
703
795 | 896
923
930 | SEPTEMBE
871
888
913 | 887
909
922 | | 1
2
3
4 | 635
645
664
822 | JUNE
621
632
637
644 | 628
638
645
673 | 723
765
794
830 | JULY
652
722
760
545 | 697
751
782
766 | 651
747
842
878 | AUGUST
529
651
747
792 | 579
703
795
840 | 896
923
930
929 | 871
888
913
890 | 887
909
922
916 | | 1
2
3
4
5 | 635
645
664
822
674 | JUNE 621 632 637 644 485 | 628
638
645
673
537 | 723
765
794
830
684 | JULY 652 722 760 545 569 | 697
751
782
766
620 | 651
747
842
878
886 | AUGUST 529 651 747 792 843 | 579
703
795
840
868 | 896
923
930
929
909 | 871
888
913
890
887 | 887
909
922
916
899 | | 1
2
3
4
5 | 635
645
664
822
674 | JUNE 621 632 637 644 485 | 628
638
645
673
537 | 723
765
794
830
684 | JULY 652 722 760 545 569 618 | 697
751
782
766
620 | 651
747
842
878
886 | AUGUST 529 651 747 792 843 883 | 579
703
795
840
868 | 896
923
930
929
909 | 871
888
913
890
887
905 | 887
909
922
916
899 | | 1
2
3
4
5 | 635
645
664
822
674
555
579 | JUNE 621 632 637 644 485 531 555 | 628
638
645
673
537
545
562 | 723
765
794
830
684
731
666 | JULY 652 722 760 545 569 618 594 | 697
751
782
766
620
699
626 | 651
747
842
878
886
895 | AUGUST 529 651 747 792 843 883 887 | 579
703
795
840
868
889
904 | 896
923
930
929
909 | 871
888
913
890
887
905
935 | 887
909
922
916
899
930
944 | | 1
2
3
4
5 | 635
645
664
822
674 | JUNE 621 632 637 644 485 | 628
638
645
673
537 | 723
765
794
830
684 | JULY 652 722 760 545 569 618 | 697
751
782
766
620 | 651
747
842
878
886 | AUGUST 529 651 747 792 843 883 | 579
703
795
840
868 | 896
923
930
929
909 | 871
888
913
890
887
905 | 887
909
922
916
899 | | 1
2
3
4
5 | 635
645
664
822
674
555
579
641 | JUNE 621 632 637 644 485 531 555 579 | 628
638
645
673
537
545
562
616 | 723
765
794
830
684
731
666
794 | JULY 652 722 760 545 569 618 594 501 | 697
751
782
766
620
699
626
602 | 651
747
842
878
886
895
912
909 | AUGUST 529 651 747 792 843 883 887 891 | 579
703
795
840
868
889
904
899 | 896
923
930
929
909
942
951
950 | 871
888
913
890
887
905
935
930 | 887
909
922
916
899
930
944
940 | | 1
2
3
4
5
6
7
8
9 | 635
645
664
822
674
555
579
641
662
537 | JUNE 621 632 637 644 485 531 555 579 525 519 | 628
638
645
673
537
545
562
616
636
528 | 723
765
794
830
684
731
666
794
530 | JULY 652 722 760 545 569 618 594 501 463 443 | 697
751
782
766
620
699
626
602
488
516 | 651
747
842
878
886
895
912
909
919 | AUGUST 529 651 747 792 843 883 887 891 902 909 | 579
703
795
840
868
889
904
899
909 | 896
923
930
929
909
942
951
950
940 | 871
888
913
890
887
905
935
930
895
883 | 887
909
922
916
899
930
944
940
914
895 | | 1
2
3
4
5
6
7
8
9
10 | 635
645
664
822
674
555
579
641
662
537 | JUNE 621 632 637 644 485 531 555 579 525 519 | 628
638
645
673
537
545
562
616
636
528 | 723
765
794
830
684
731
666
794
530
600 | JULY 652 722 760 545 569 618 594 501 463 443 | 697
751
782
766
620
699
626
602
488
516 | 651
747
842
878
886
895
912
909
919
937 | AUGUST 529 651 747 792 843 883 887 891 902 909 | 579
703
795
840
868
889
904
899
909
920 | 896
923
930
929
909
942
951
950
940
906 | 871
888
913
890
887
905
935
930
895
883 | 887
909
922
916
899
930
944
940
914
895 | | 1
2
3
4
5
6
7
8
9
10 | 635
645
664
822
674
555
579
641
662
537
547
409
433 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 | 628
638
645
673
537
545
562
616
636
528
534
325
393 | 723
765
794
830
684
731
666
794
530
600 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 | 697
751
782
766
620
699
626
602
488
516
611
514
555 | 651
747
842
878
886
895
912
909
919
937
941
833
876 | AUGUST 529 651 747 792 843 883 887 891 902 909 753 707 238 | 579
703
795
840
868
889
904
899
909
920
895
766
440 |
896
923
930
929
909
942
951
950
940
906 | 871
888
913
890
887
905
935
930
895
883
895
883 | 887
909
922
916
899
930
944
940
914
895
926
923
901 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 635
645
664
822
674
555
641
662
537
547
409
433
517 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 | 697
751
782
766
620
699
626
602
488
516
611
514
555
739 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008 | 871
888
913
890
887
905
935
930
895
883
895
905
883 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817 | | 1
2
3
4
5
6
7
8
9
10 | 635
645
664
822
674
555
579
641
662
537
547
409
433 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 | 628
638
645
673
537
545
562
616
636
528
534
325
393 | 723
765
794
830
684
731
666
794
530
600 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 | 697
751
782
766
620
699
626
602
488
516
611
514
555 | 651
747
842
878
886
895
912
909
919
937
941
833
876 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425 | 579
703
795
840
868
889
904
899
909
920
895
766
440 | 896
923
930
929
909
942
951
950
940
906 | 871
888
913
890
887
905
935
930
895
883
895
883 | 887
909
922
916
899
930
944
940
914
895
926
923
901 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 635
645
664
822
674
555
641
662
537
547
409
433
517 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 | 697
751
782
766
620
699
626
602
488
516
611
514
555
739 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008 | 871
888
913
890
887
905
935
930
895
883
895
905
883 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 635
645
6645
822
674
555
579
641
537
547
409
433
517
579 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 | 697
751
782
766
620
699
626
602
488
516
611
514
555
739
765 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520
604 | AUGUST 529 651 747 792 843 883 887 891 902 909 753 707 238 425 520 604 705 | 579
703
795
840
868
889
904
899
920
895
766
440
476
561 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008
638 | 871
888
913
890
887
905
935
935
935
935
935
935
935
883
895
883
504 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 635
645
6645
822
674
555
579
641
662
537
547
409
433
517
579
625
657 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 | 697
751
782
766
620
699
626
602
488
516
611
514
555
739
765 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520
604
705
798
794 | AUGUST 529 651 747 792 843 883 887 891 902 909 753 707 238 425 520 604 705 690 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476
561 | 896
923
930
929
909
942
951
950
940
906
1008
638 | 871
888
913
890
887
905
935
930
895
883
895
883
895
884
638
504
554 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
694 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 635
645
664
822
674
555
579
641
662
537
547
403
517
579
625
657
711 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 | 697
751
782
766
620
699
626
488
516
611
514
555
739
765
740
783
826
710 | 651
747
842
878
886
895
912
909
919
937
941
833
876
604
705
798
794
762 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476
561
646
754
744
589 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008
638
586
632
784 | SEPTEMBE 871 888 913 890 887 905 935 930 895 883 895 905 888 638 504 554 573 632 448 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 635
645
664
822
674
555
579
641
662
537
547
409
433
517
579
625
657
692
711
716 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 | 697
7551
782
766
620
699
626
602
488
516
611
514
555
739
765
740
783
826
710
469 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520
604
705
798
794
762
514 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460
471 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476
561
646
754
744
589
487 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008
638
586
632
784
742
486 | 871
888
913
890
887
905
935
930
895
883
895
883
895
884
638
504
574
632
448 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
550
461 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 635
645
664
822
674
555
579
641
662
537
547
409
433
517
579
625
657
711
716 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734
728 750 816 273 355 | 697
7551
782
766
620
699
626
488
516
611
514
555
739
765
740
783
826
710
469 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520
604
705
798
794
762
514 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460
471 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476
561
646
754
754
754
758
887 | 896
923
930
929
909
942
951
950
940
906
1008
638
586
632
784
742
486 | 871
888
913
890
887
905
935
930
895
883
895
883
895
905
448
448
448 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
596
694 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 635
645
664
822
674
555
579
641
537
547
409
433
517
579
625
657
692
711
716 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 721 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 | 697
751
782
766
620
699
626
602
488
516
611
514
553
765
740
783
826
710
469 | 651
747
842
878
886
895
912
909
937
941
833
876
520
604
705
798
794
762
514 | AUGUST 529 651 747 792 843 883 887 891 902 909 753 707 238 425 520 604 705 690 460 471 514 600 | 579
703
795
840
868
889
904
899
920
895
766
440
476
561
646
754
744
589
487 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008
638
586
632
784
742
486
560
632 | 871
888
913
890
887
905
935
930
895
883
895
905
883
504
554
573
632
448
448 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
550
461 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 635
645
664
822
674
555
579
641
662
537
547
409
433
517
579
625
657
711
716 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 | 697
7551
782
766
620
699
626
488
516
611
514
555
739
765
740
783
826
710
469 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520
604
705
798
794
762
514 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460
471
514
600
695 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476
561
646
754
754
754
758
887 | 896
923
930
929
909
942
951
950
940
906
1008
638
586
632
784
742
486 | 871
888
913
890
887
905
935
930
895
883
895
883
895
905
448
448
448 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
596
694 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 635
645
6645
6642
674
555
579
641
662
537
547
409
433
517
579
625
627
711
716
731
750 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 721 723 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746
741 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 433 457 537 | 697
751
782
766
620
699
626
602
488
516
611
514
555
739
765
740
783
826
710
469
441
506
576 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520
604
705
798
794
762
514 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460
471 | 579
703
795
840
868
889
904
899
920
895
766
440
476
561
646
754
744
589
487 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008
638
586
632
784
742
486 | SEPTEMBE 871 888 913 890 887 905 935 930 895 883 895 885 638 504 554 573 632 448 448 486 560 632 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
550
461
520
595
671 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | 635
645
6645
6642
674
555
579
641
642
537
547
409
433
517
579
625
657
692
711
716
731
759
777
783 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 721 723 738 722 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746
741
759
756 | 723 765 794 830 684 731 666 794 530 600 636 622 659 775 779 751 822 839 851 514 457 537 607 701 760 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 433 457 537 607 688 | 697
751
782
766
620
699
626
602
488
516
611
514
555
739
765
740
783
826
710
469
441
506
576
671
734 | 651
747
842
878
886
895
912
909
919
937
941
833
876
520
604
705
798
794
762
514
600
695
753
801
826 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460
471
514
600
695
753
799 | 579 703 795 840 868 889 904 899 920 895 766 440 476 561 646 754 744 589 487 558 642 730 786 813 | 896
923
930
929
909
942
951
950
940
906
1008
638
586
632
784
742
486
560
632
701
803
849 | 871
888
913
890
887
905
935
935
935
935
883
895
883
504
554
573
632
448
448
486
560
632
701
800 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
550
461
550
461
550
822 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 635
645
664
822
674
555
579
641
662
537
547
409
433
517
579
625
657
711
716
731
759
750
777
783 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 721 723 738 722 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746
741
759
756 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514
457
537
607
701
760 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 433 457 537 607 688 | 697
7551
782
766
620
699
626
488
516
611
514
555
739
765
740
783
826
710
469
441
506
671
734 | 651
747
842
878
886
895
912
909
919
937
941
833
876
604
705
798
794
794
795
514
600
695
753
826 | 529
651
747
792
843
883
887
902
909
753
707
238
425
520
604
705
690
460
471
514
600
695
753
799 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476
561
646
754
744
589
487
558
642
730
786
813 | 896
923
930
929
909
942
951
950
940
906
1008
638
586
632
784
742
486
560
632
701
803
849 | 871
888
913
890
887
905
935
930
895
883
895
905
883
638
504
554
573
632
448
448
486
560
632
701
800 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
550
461
520
595
671
759
822 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 |
635
645
6645
6642
674
555
579
641
662
537
547
409
433
517
579
625
6657
692
711
716
731
759
777
783
804
548 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 723 738 722 404 352 439 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746
741
759
756 | 723 765 794 830 684 731 666 794 530 600 636 622 659 775 779 751 822 839 851 514 457 537 607 701 760 788 804 857 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 433 457 537 607 688 736 768 659 | 697
751
782
766
620
699
626
602
488
516
611
514
555
739
765
740
783
826
710
469
441
506
576
671
734 | 651
747
842
878
886
895
912
909
937
941
833
876
520
604
705
798
794
762
514
600
695
753
801
826 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460
471
514
600
695
753
799 | 579 703 795 840 868 889 904 899 920 895 766 440 476 561 646 754 744 589 487 558 642 730 786 813 838 860 883 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008
638
586
632
784
742
486
560
632
701
803
849 | 871
888
913
890
887
905
935
935
935
935
883
895
883
504
554
573
632
448
448
486
560
632
701
800
800
800
800
800
800
800
8 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
559
671
759
822 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 635
645
664
822
674
555
579
641
662
537
547
403
517
579
625
657
711
716
731
759
750
777
783
804
516
648
749
750
777
783 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 721 723 738 722 404 352 439 487 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746
741
759
756
755
421
464
514 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514
457
537
607
701
760
788
804
857
686 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 433 457 537 607 688 736 768 659 357 | 697
751
782
766
620
699
6262
488
516
611
514
555
739
765
740
783
826
710
469
441
506
671
734
761
794
794
794 | 651
747
842
878
886
895
912
909
919
937
941
833
876
604
705
798
794
794
600
695
753
81
826
864
865
892
886 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460
471
514
600
695
753
799 | 579
703
795
840
868
889
904
899
909
920
895
766
440
476
561
646
754
744
589
487
558
642
730
786
813
838
860
883
879 | 896
923
930
929
909
942
951
950
940
906
1008
638
586
632
784
742
486
560
632
701
803
849 | 871
888
913
890
887
905
935
930
895
883
895
905
883
895
905
448
448
448
448
448
486
560
632
701
800
822
910
927
937 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
550
461
520
595
671
759
822 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
30
30
30
30
30
30
30
30
30
30
30
30
30 | 635
645
644
822
674
555
579
641
662
537
547
409
433
517
579
625
657
6711
716
731
759
750
777
783
804
487
542
652 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 721 723 738 722 404 352 439 487 541 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746
741
759
756
755
421
464
514
591 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514
457
537
607
701
760
788
804
857
686
521 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 433 457 537 607 688 736 768 659 357 475 | 697
751
782
766
620
699
626
602
488
516
611
514
555
740
783
826
671
740
441
506
576
671
734
761
794
796
471
505 | 651
747
842
878
886
895
912
909
937
941
833
876
520
604
705
798
794
762
514
600
695
753
801
826
864
886
886
886
886 | 529
651
747
792
843
883
887
891
902
909
753
707
238
425
520
604
705
690
460
471
514
600
695
753
799
797
855
862
869
861 | 579
703
795
840
868
889
904
899
920
895
766
440
476
561
646
754
744
744
744
789
487
558
642
730
786
813
838
860
883
879
877 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008
638
586
632
784
742
486
560
632
701
803
849
920
946
956
956
956
956
9575
959 | SEPTEMBE 871 888 913 890 887 905 935 930 895 883 895 905 888 504 554 573 632 448 448 486 560 632 701 800 822 910 927 937 936 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
596
671
759
822
882
928
938
953 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 635
645
664
822
674
555
579
641
662
537
547
403
517
579
625
657
711
716
731
759
750
777
783
804
516
642
742
652 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 721 723 738 722 404 352 404 352 404 352 404 352 404 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746
741
759
756
755
421
464
514
591 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514
457
537
607
701
760
788
804
857
686
521
531 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273 355 433 457 537 607 688 736 768 659 357 475 504 | 697 751 782 766 620 699 6262 488 516 611 514 555 739 765 740 783 826 710 469 441 506 576 671 734 761 794 794 796 471 505 513 | 651
747
842
878
886
895
912
909
919
937
941
833
876
604
705
798
794
762
514
600
695
753
801
826
864
865
892
886
886
894 | AUGUST 529 651 747 792 843 883 887 891 902 909 753 707 238 425 520 604 705 690 460 471 514 600 695 753 799 797 855 862 869 861 870 | 579 703 795 840 868 889 904 899 909 920 895 766 440 476 561 646 754 744 744 748 589 487 558 642 730 786 813 838 860 883 879 877 885 | 896
923
930
929
909
942
951
950
940
906
1008
638
586
632
784
742
486
560
632
701
803
849
920
946
956
975
983 | 871
888
913
890
887
905
935
930
895
883
895
883
504
554
573
632
448
448
486
560
632
701
800
822
910
927
937
966
 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
550
461
520
595
671
759
822
882
928
933
940 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
20
30
30
30
30
30
30
30
30
30
30
30
30
30 | 635
645
644
822
674
555
579
641
662
537
547
409
433
517
579
625
657
6711
716
731
759
750
777
783
804
487
542
652 | JUNE 621 632 637 644 485 531 555 579 525 519 384 274 340 433 517 579 625 657 691 698 711 721 723 738 722 404 352 439 487 541 | 628
638
645
673
537
545
562
616
636
528
534
325
393
476
548
603
641
670
699
710
721
746
741
759
756
755
421
464
514
591 | 723
765
794
830
684
731
666
794
530
600
636
622
659
775
779
751
822
839
851
514
457
537
607
701
760
788
804
857
686
521 | JULY 652 722 760 545 569 618 594 501 463 443 466 393 467 659 734 728 750 816 273
355 433 457 537 607 688 736 768 659 357 475 | 697
751
782
766
620
699
626
602
488
516
611
514
555
740
783
826
671
740
441
506
576
671
734
761
794
796
471
505 | 651
747
842
878
886
895
912
909
937
941
833
876
520
604
705
798
794
762
514
600
695
753
801
826
864
886
886
886
886 | AUGUST 529 651 747 792 843 883 887 891 902 909 753 707 238 425 520 604 705 690 460 471 514 600 695 753 799 797 855 862 869 861 870 | 579
703
795
840
868
889
904
899
920
895
766
440
476
561
646
754
744
744
744
789
487
558
642
730
786
813
838
860
883
879
877 | 896
923
930
929
909
942
951
950
940
906
947
932
906
1008
638
586
632
784
742
486
560
632
701
803
849
920
946
956
956
956
956
9575
959 | SEPTEMBE 871 888 913 890 887 905 935 930 895 883 895 905 888 504 554 573 632 448 448 486 560 632 701 800 822 910 927 937 936 | 887
909
922
916
899
930
944
940
914
895
926
923
901
817
569
564
596
694
596
671
759
822
882
928
938
953 | BLUE RIVER BASIN ## 06893500 BLUE RIVER NEAR KANSAS CITY, MO--Continued 115 OXYGEN DISSOLVED, (mg/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|------------------|-----------------|------------|----------------------------------|--------------|------------------|--|---|--|--|---|--| | | | OCTOBER | | NO | OVEMBER | | D | ECEMBER | | | JANUARY | ? | | 1 | 9.8 | 7.6 | 8.4 | 8.7 | 6.4 | 7.4 | 10.2 | 8.3 | 9.5 | | | | | 2 | 9.8
9.4 | 7.3
6.7 | 8.2
7.9 | 8.5
8.9 | 5.9
6.1 | 7.0
7.3 | 10.0
8.8 | 8.2
5.7 | 9.2
7.7 | | | | | 4 | 8.5 | 6.4 | 7.4 | 7.9 | 5.9 | 6.7 | 7.7 | 5.2 | 6.5 | | | | | 5 | 9.5 | 7.3 | 8.9 | 8.4 | 6.0 | 6.9 | 7.5 | 3.9 | 6.1 | | | | | 6 | 9.2 | 8.8 | 9.0 | 8.5 | 5.7 | 6.9 | 7.8 | 5.2 | 6.6 | | | | | 7 | 9.5 | 8.8 | 9.0 | 7.6 | 5.2 | 6.3 | 8.2 | | | | | | | 8 | 9.4 | 8.4 | 8.8 | 8.2 | 5.6 | 6.7 | 9.1 | 5.4 | 7.2
7.5
8.5 | | | | | 9 | 9.1 | 7.7
7.0 | 8.3
7.4 | 9.3 | 6.6
7.4 | 7.7 | 10.0 | 6.4 | 8.5 | | | | | 10 | 8.1 | 7.0 | /.4 | 8.7 | 7.4 | 7.9 | | | | | | | | 11 | 8.4 | 7.0 | 7.5 | 9.5 | 7.2 | 8.1 | | | | | | | | 12
13 | 8.1 | 7.1 | 7.5 | 9.8
9.6 | 7.3 | 8.4 | | | | | | | | 14 | 8.6
9.1 | 7.2
7.6 | 7.7
8.1 | 9.2 | 6.8
6.3 | 8.0
7.4 | | | | | | | | 15 | 10.4 | 7.4 | 8.8 | 8.4 | 5.1 | 6.5 | | | | | | | | 1.6 | 10.2 | 0 4 | 1.0 | 0 1 | F 1 | <i>c</i> 2 | | | | | | | | 16
17 | 10.3
10.1 | 9.4
9.6 | 10
9.9 | 8.1
7.7 | 5.1
4.7 | 6.3
6.1 | | | | | | | | 18 | 9.7 | 8.8 | 9.3 | 6.4 | 4.3 | 5.2 | | | | | | | | 19 | 9.4 | 8.5 | 8.8 | 8.0 | 4.7 | 6.2 | | | | | | | | 20 | 8.9 | 7.7 | 8.4 | 10.6 | 6.4 | 8.6 | | | | | | | | 21 | 8.1 | 6.7 | 7.4 | 11.1 | 8.2 | 9.5 | | | | | | | | 22 | 7.3 | 5.7 | 6.5 | 10.4 | 8.0 | 9.0 | | | | | | | | 23 | 6.8 | 5.2 | 5.8 | 8.7 | 7.4 | 7.9 | | | | | | | | 24
25 | 6.9
8.4 | 5.0
6.0 | 5.8
7.1 | 9.0
8.6 | 6.7
8.1 | 8.3
8.4 | | | | | | | | 23 | 0.1 | 0.0 | / • ± | 0.0 | 0.1 | 0.1 | | | | | | | | 26 | 9.8 | 7.6 | 8.5 | 8.4 | 7.6 | 8.0 | | | | | | | | 27
28 | 10.3
10.5 | 8.6 | 9.3
9.4 | 9.1
9.9 | 7.6 | 8.4
9.2 | | | | | | | | 29 | 10.3 | 8.6
7.9 | 8.8 | 10.4 | 8.4
7.9 | 9.6 | | | | | | | | 30 | 9.8 | 7.6 | 8.5 | 10.0 | 7.6 | 9.3 | | | | | | | | 31 | 9.6 | 7.1 | 8.2 | | | | | | | | | | | MONTH | 10.5 | 5.0 | 8.2 | 11.1 | 4.3 | 7.6 | DAV | MAY | MIN | MEAN | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | MEAN | | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | | MEAN | | | MEAN | | | | | MAY | | | DAY
1
2 | | FEBRUARY | | | MARCH | | | APRIL | MEAN | MAX
7.9
8.9 | | MEAN 7.7 8.2 | | 1
2
3 | | FEBRUARY | |
 | MARCH |
 |
 | APRIL |
 | 7.9
8.9
9.3 | MAY
7.5
7.2
8.0 | 7.7
8.2
8.5 | | 1
2
3
4 |

 | FEBRUARY |

 | | MARCH |

 |

 | APRIL |

 | 7.9
8.9
9.3
9.2 | MAY
7.5
7.2
8.0
7.8 | 7.7
8.2
8.5
8.5 | | 1
2
3 | | FEBRUARY | |
 | MARCH |
 |
 | APRIL |
 | 7.9
8.9
9.3 | MAY
7.5
7.2
8.0 | 7.7
8.2
8.5 | | 1
2
3
4
5 | | FEBRUARY | | | MARCH |

 |

13.6 | APRIL |

12.1
11.2 | 7.9
8.9
9.3
9.2
9.0 | MAY
7.5
7.2
8.0
7.8 | 7.7
8.2
8.5
8.5
8.2 | | 1
2
3
4
5 | ==== | FEBRUARY | |

 | MARCH |

 |

13.6
12.7
10.2 | APRIL 10.9 10.2 9.1 |

12.1
11.2 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5 | | 1
2
3
4
5
6
7
8 |

 | FEBRUARY | |

 | MARCH |
 |

13.6
12.7
10.2
9.8 | APRIL 10.9 10.2 9.1 8.8 |

12.1
11.2
9.5
9.2 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0 | | 1
2
3
4
5 | ==== | FEBRUARY | |

 | MARCH |

 |

13.6
12.7
10.2 | APRIL 10.9 10.2 9.1 |

12.1
11.2 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | |

 | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 |

12.1
11.2
9.5
9.2
10
9.8 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
8.5 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | |

 | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 |

12.1
11.2
9.5
9.2
10
9.8
9.1 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.1 8.3 7.1 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1
8.7 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 |

12.1
11.2
9.5
9.2
10
9.8 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
8.5 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 | 11.2
9.5
9.2
10
9.8
9.1
8.7
9.4 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.1 8.3 7.1 6.9 8.3 8.0 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.1
8.7
8.3
7.7
8.3 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | |

 | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 |

12.1
11.2
9.5
9.2
10
9.8
9.1
8.7 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
8.5
9.0
8.6
8.4
9.1 | MAY 7.5 7.2 8.0 7.6 7.6 3.2 6.6 7.6 7.6 7.1 8.3 7.1 6.9 8.3 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1
8.7
8.3
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 | 11.2
9.5
9.2
10
9.8
9.1
8.7
9.4 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.1 8.3 7.1 6.9 8.3 8.0 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.1
8.7
8.3
7.7
8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 |

12.1
11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.8 |
7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.6
8.6
8.2 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1
8.7
8.3
7.7
8.6
8.4
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | |

 | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.5 6.5 |

12.1
11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7 | 7.9
8.9
9.3
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8
8.5 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.5 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1
8.7
8.3
7.7
8.6
8.4
8.2
7.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 | 11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.8
7.9
7.2
6.5 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.6
8.6
8.2 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1
8.7
8.3
7.7
8.6
8.4
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | |

 | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.8 6.5 5.8 5.5 |

12.1
11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.8
7.2
6.5
6.9 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8
8.6
8.2
9.2
9.2 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.5 8.2 8.4 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1
8.7
8.3
7.7
8.6
8.4
8.2
7.7
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0
8.8
9.2
7.3
8.5 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.8 6.5 5.8 5.5 | 11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.8
7.9
7.2
6.5
6.9 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8
8.6
8.2
8.7
9.2
9.2 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.5 8.2 8.4 8.6 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.1
8.7
8.3
7.7
8.4
8.2
7.7
8.3
8.4
8.2
7.7
8.8
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | |

 | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.8 6.5 5.5 0.3 7.9 | 11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.8
7.9
7.2
6.5
6.9 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.6
8.7
9.2
9.1
9.2 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 7.1 7.5 8.5 8.4 8.6 8.5 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.1
8.7
8.3
7.7
8.4
8.2
7.7
8.8
8.2
7.7
8.8
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0
8.8
9.2
7.9
7.9
7.9
8.5 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.8 6.5 5.8 5.5 | 11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.8
7.9
7.2
6.5
6.9 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8
8.6
8.2
8.7
9.2
9.2 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.5 8.2 8.4 8.6 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.1
8.7
8.3
7.7
8.4
8.2
7.7
8.3
8.4
8.2
7.7
8.8
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0
8.8
9.2
7.9
7.3
8.5 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.5 6.8 6.5 5.8 5.7 0.3 7.9 |

12.1
11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.2
6.5
6.9 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.4
9.1
8.8
8.6
8.2
9.2
9.2
9.2
9.2 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.5 8.2 8.4 8.6 8.5 7.4 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1
8.7
8.3
7.7
8.6
8.4
8.2
7.7
8.8
8.9
8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0
8.8
9.2
7.9
7.3
8.5 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.8 6.5 5.8 0.3 7.9 7.0 6.8 7.4 |

12.1
11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.2
6.5
6.9
7.4
8.8
7.7
7.2
7.9 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.4
9.1
8.6
8.2
9.2
9.1
9.2
9.2
9.3 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.5 8.2 8.4 8.6 8.7 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.0
8.1
8.7
8.6
8.4
8.2
7.7
8.8
8.9
8.2
8.4
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | FEBRUARY | | | MARCH | | 13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0,7
10.6
10.0
8.8
9.2
7.3
8.5
9.8
9.2
8.1
7.7 | APRIL 10.9 10.2 9.1 8.3 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.5 6.8 5.5 0.3 7.9 7.0 6.8 | 11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.8
7.9
6.5
6.9
7.4
8.8
7.7 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8
8.6
8.2
9.2
9.1
9.2
9.5
8.5 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 7.5 7.1 7.5 8.5 8.2 8.4 8.6 8.5 7.4 7.8 8.7 | 7.7
8.2
8.5
8.5
8.2
7.0
8.1
8.7
8.3
7.7
8.4
8.2
7.7
8.8
8.7
8.8
9.0
8.9
8.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0
8.8
9.2
7.9
7.3
8.5
9.8
9.2
8.1
7.7
8.5 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.8 6.5 5.5 0.3 7.0 6.8 7.4 7.4 7.2 8.3 |

12.1
11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.2
6.9
7.4
8.8
7.7
7.2
7.9 | 7.9
8.9
9.3
9.0
7.7
7.8
8.5
9.0
8.4
9.1
8.6
8.2
9.2
9.5
8.6
9.1
9.0
9.3
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.5 8.2 8.4 8.6 8.5 7.4 7.8 8.7 7.9 | 7.7
8.2
8.5
8.5
8.2
7.0
7.5
8.1
8.7
8.6
8.1
8.7
8.6
8.2
7.7
8.8
8.9
8.9
8.2
8.8
8.8
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | | MARCH | | 13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0,7
10.6
10.0
8.8
9.2
7.3
8.5
9.8
9.2
8.1
7.7
8.5 | APRIL 10.9 10.2 9.1 8.3 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.5 6.8 5.5 0.3 7.9 7.0 6.8 7.4 7.4 7.2 8.3 7.9 | 11.2
9.5
9.2
10
9.8
9.1
8.7
7.8
7.9
7.2
6.5
6.9
7.4
8.8
7.7
7.2
7.9
7.7
8.6
8.8
8.5 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8
8.6
8.2
9.1
9.2
9.5
8.6
9.2
9.1
9.2
9.3 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.2 8.4 8.6 8.5 7.4 8.7 8.2 7.9 7.6 | 7.7
8.25
8.5
8.5
8.2
7.0
8.1
8.7
8.3
7.7
8.4
8.2
7.7
8.8
8.7
8.8
8.9
8.9
8.9
8.9
8.1
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0
8.8
9.2
7.9
7.3
8.5
9.8
9.2
8.1
7.7
8.5 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.8 6.5 5.5 0.3 7.0 6.8 7.4 7.4 7.2 8.3 |

12.1
11.2
9.5
9.2
10
9.8
9.1
8.7
9.4
9.5
8.7
7.2
6.9
7.4
8.8
7.7
7.2
7.9 |
7.9
8.9
9.3
9.0
7.7
7.8
8.5
9.0
8.4
9.1
8.6
8.2
9.2
9.5
8.6
9.1
9.0
9.3
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 8.0 7.5 7.1 7.5 8.5 8.2 8.4 8.6 8.5 7.4 7.8 8.7 7.9 | 7.7
8.25
8.5
8.5
8.2
7.5
8.1
8.7
8.3
7.7
8.4
8.2
7.7
8.3
8.8
8.9
8.9
8.2
8.1
9.9
8.2
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | | FEBRUARY | | | MARCH | | 13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0
8.8
9.2
7.3
8.5
9.8
9.2
8.1
7.7
8.5
8.2
9.6
9.1
9.0
8.3 | APRIL 10.9 10.2 9.1 8.3 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.5 6.5 5.8 5.5 0.3 7.9 7.0 6.8 7.4 7.4 7.2 8.3 7.9 7.7 | 11.2
9.5
9.2
10
9.8
9.1
8.7
7.8
7.9
7.2
6.5
6.9
7.4
8.8
7.7
7.2
7.9
7.7
8.6
8.8
8.5
8.0 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
8.4
9.1
8.8
8.6
8.2
9.1
9.2
9.5
8.6
9.3
9.3
9.2
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.1 8.3 7.1 6.9 8.0 7.5 7.1 7.5 8.2 8.4 8.6 8.5 7.4 7.8 8.7 8.2 7.9 7.6 7.6 7.6 | 7.7
8.25
8.5
8.5
8.2
7.0
8.1
8.7
8.3
7.7
8.4
8.2
7.7
8.8
8.7
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9
8.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | | | MARCH | |

13.6
12.7
10.2
9.8
10.6
11.0
9.9
10.0
10.7
10.6
10.0
8.8
9.2
7.9
7.3
8.5
9.2
8.1
7.7
8.5
8.2
9.6
9.1
9.0
8.3 | APRIL 10.9 10.2 9.1 8.8 9.4 9.1 8.3 8.0 8.1 8.3 7.5 6.5 6.5 6.5 6.5 6.7 4 7.4 7.4 7.4 7.2 8.3 7.9 7.7 | 11.2
9.5
9.2
10
9.8
9.1
8.7
9.5
8.7
7.8
7.9
7.2
7.7
8.6
8.8
7.7
7.7
8.6
8.8
8.5
8.5 | 7.9
8.9
9.3
9.2
9.0
7.7
7.8
8.5
9.0
8.6
4.1
8.6
8.7
9.1
9.5
8.6
9.1
9.3
9.3
9.0
9.3
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0 | MAY 7.5 7.2 8.0 7.8 7.6 3.2 6.6 7.6 7.1 8.3 7.1 6.9 8.3 7.5 7.1 7.5 8.5 8.6 8.7 8.6 8.7 8.7 8.6 8.7 8.7 8.7 8.7 | 7.7
8.25
8.5
8.5
8.2
7.5
8.1
8.7
8.3
7.7
8.4
8.2
7.7
8.3
8.8
8.9
8.9
8.2
8.1
9.9
8.2
8.1 | MONTH 1100 3.0 43 1400 2.0 17 ## 06893500 BLUE RIVER NEAR KANSAS CITY, MO--Continued OXYGEN DISSOLVED, (mg/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | | MIN | MEAN | MAX | MIN | MEAN | MAX | MIN | MEAN | |---|--|---|--|---|---|--|---|---|--|---------------------------------|-------------------|---------------------------------| | | | JUNE | | | JULY | | i | AUGUST | | | SEPTEMBE | R | | 1
2
3
4
5 | 8.9
8.9
9.1
8.3
8.8 | 6.8
6.6
6.3
6.5 | 7.7
7.5
7.6
7.1
7.5 | 8.4
8.3
8.6
7.4
7.9 | 5.4
5.6
6.1
6.0
6.2 | | | | 6.4
6.6
6.9
6.3
6.6 | 8.7
8.6
8.4
8.5
8.1 | 5.6
5.2
5.3 | 7.1
6.8
6.6
6.7
6.6 | | 6
7
8
9
10 | 9.2
9.6
9.9
8.4
8.4 | 7.1
7.0
6.7
6.5
6.7 | 7.9
8.0
8.0
7.1
7.3 | 6 7 | 5.8
5.7
5.7
5.4
5.5 | 6.9
6.8
6.3
6.0 | 7.1
8.7
9.6
9.5
7.8 | 5.4
6.0
6.4
7.1
6.3 | 6.2
7.2
7.8
8.0
7.0 | 7.8
7.6
7.6
7.8
7.7 | 5.5 | 6.3
6.4 | | 11
12
13
14
15 | 7.4
7.3
7.2
7.8
8.2 | 6.4
6.8
6.8
7.1
7.4 | 6.9
7.0
7.0
7.5
7.7 | 7.4
6.9
7.7
8.2
8.4 | 5.8
6.1
5.9
6.4
6.2 | 6.5
6.8
7.1 |

 | | e5.9
e5.8
e7.0
e6.5
e6.4 | 7.8
8.2
8.1
7.2
7.6 | 6.4
6.4 | 6.7 | | 16
17
18
19
20 | 8.5
8.8
8.9
10.1
10.0 | 7.3
7.2
6.9
7.1
6.8 | 7.8
7.9
7.8
8.3
8.2 | 8.8
8.8
9.2
6.5 | 6.2
6.1
5.9
5.9 | 7.2
7.4
7.3
7.2
7.1
6.3 | 6.8
7.4
7.2
7.2 | 5.9
6.6
6.4
6.4 | e6.6
6.3
6.9
6.8
6.7 | 7.7
7.6
7.2
7.7
7.9 | 6.8 | 7.2
7.0
6.9
7.4
7.6 | | 21
22
23
24
25 | 9.6
9.7
9.9
9.7
9.7 | 6.4
6.0
6.0
6.1
6.2 | 7.8
7.6
7.7
7.7
7.6 | 7.6 | 5.6
5.5
6.0
6.2
6.2 | 5.9
6.0
6.6
7.0
7.1 | 7.1
7.4
7.5
7.1
7.9 | | | 8.2
8.5
9.0
9.3
9.3 | 7.4
7.8
7.3 | 8.4 | | 26
27
28
29
30
31 | 8.7
7.3
7.5
7.9
8.0 | 5.8
5.9
5.5
4.9
5.2 | 7.0
6.7
6.4
6.4
6.5 | 8.3
8.3
8.1
7.1
7.1
7.2 | 5.9
5.7
5.5
6.1
5.8
5.5 | 7.0
6.8
6.5
6.7
6.3
6.2 | 8.0
7.9
8.3
8.3
8.6
8.9 | 6.1
6.0
6.0
6.0
6.0 | 6.9
6.8
7.0
7.1
7.1 | 9.1
8.9
9.1
8.9
8.7 | 7.2 | 8.2
7.9
7.9
7.7
7.5 | | MONTH | 10.1 | 4.9 | 7.4 | 9.2 | | | 9.6 | | | 9.3 | 5.2 | 7.2 | | | | | | | | | | | | | | | | | | | TIPDID. | (2777) | | man ogmo | DDD 0001 FF | 0 GERREIN | | | | | | DAY | MAX | MIN | TURBID: | ITY, (NTU), | WATER Y | | DBER 2001 TO | O SEPTEM | | 2
MAX | MIN | MEAN | | DAY | MAX | MIN
OCTOBE | MEAN | MAX | | MEAN | MAX | | MEAN | | MIN
JANUARY | | | DAY 1 2 3 4 5 | MAX
11
29
10
11
900 | | MEAN | MAX
N | MIN
IOVEMBER | MEAN | MAX | MIN
ECEMBER
4.0 | MEAN | | | | | 1
2
3
4 | 11
29
10
11 | 0CTOBE
6.0
5.0
4.0
5.0
10 | MEAN R 8.4 8.1 6.5 7.2 | 7.0
6.0
6.0
7.0
7.0 | MIN
TOVEMBER
3.0
4.0
4.0
4.0
3.0 | MEAN 4.9 4.6 4.9 5.1 5.1 | MAX D1 7.0 9.0 17 20 | MIN
ECEMBER
4.0
4.0
5.0
5.0
4.0 | MEAN 4.9 5.5 7.0 7.0 | MAX | JANUARY

 |

 | | 1
2
3
4
5
6
7
8
9 | 11
29
10
11
900
300
84
27
19 | 0CTOBE
6.0
5.0
4.0
5.0
10 | MEAN 8.4 8.1 6.5 7.2 290 140 | 7.0
6.0
6.0
7.0
7.0 | MIN
TOVEMBER
3.0
4.0
4.0
4.0
3.0 | MEAN 4.9 4.6 4.9 5.1 | MAX D1 7.0 9.0 17 20 71 | MIN ECEMBER 4.0 4.0 5.0 5.0 4.0 5.0 4.0 4.0 | MEAN 4.9 5.5 7.0 7.0 16 8.8 5.5 5.6 4.8 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 11
29
10
11
900
300
84
27
19
55
31
35
60 | 0CTOBE 6.0 5.0 4.0 5.0 10 83 27 16 12 12 12 | MEAN R 8.4 8.1 6.5 7.2 290 140 56 20 15 23 19 17 26 e29 | 7.0
6.0
6.0
7.0
7.0
7.0
8.0
9.0
6.0
6.0
6.0 | MIN OVEMBER 3.0 4.0 4.0 4.0 3.0 4.0 4.0 3.0 4.0 4.0 3.0 3.0 4.0 4.0 3.0 3.0 3.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 3.0 3.0 | 4.9
4.6
4.9
5.1
5.1
4.8
5.5
5.5
4.8
3.7
4.7 | 7.0
9.0
17
20
71
24
8.0
13
11 | MIN ECEMBER 4.0 4.0 5.0 5.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 | 4.9
5.5
7.0
7.0
16
8.8
5.5
5.6
4.8 | MAX | JANUARY | | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 11
29
10
11
900
300
84
27
19
55
31
35
60
 | 0CTOBE 6.0 5.0 4.0 9.0 10 83 27 16 12 12 12 | MEAN R 8.4 8.1 6.5 7.2 290 140 56 20 15 23 19 17 26 e29 e220 e260 e62 e27 e15 | 7.0
6.0
7.0
7.0
7.0
7.0
7.0
8.0
9.0
6.0
6.0
6.0
10
8.0
10 | MIN OVEMBER 3.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 3.0 3.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4.0 4 | 4.9
4.6
4.9
5.1
5.1
4.8
5.5
4.8
3.7
4.7
5.8
4.9
4.7
4.1 | MAX DI 7.0 9.0 17 20 71 24 8.0 13 11 | MIN ECEMBER 4.0 4.0 5.0 5.0 4.0 4.0 4.0 4.0 | 4.9
5.5
7.0
7.0
16
8.8
5.5
5.6
4.8 | MAX | JANUARY | | ## 06893500 BLUE RIVER NEAR KANSAS CITY, MO--Continued TURBIDITY, (NTU), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--
---|---|---|---|---|---|--|---|---|---| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 2 | | | | | | | | | | 56
60 | 37
30 | 44
41 | | 3 | | | | | | | | | | 31 | 22 | 26 | | 4 | | | | | | | | | | 26 | 20 | 22 | | 5 | | | | | | | 18 | 11 | 14 | 28 | 15 | 20 | | 6 | | | | | | | 20 | 12 | 16 | 250 | 15 | 93 | | 7
8 | | | | | | | 21
270 | 14
16 | 16
99 | 460
1500 | 91
190 | 240
400 | | 9 | | | | | | | 210 | 63 | 100 | 1500 | 180 | 620 | | 10 | | | | | | | 67 | 29 | 43 | 180 | 65 | 100 | | 11 | | | | | | | 42 | 22 | 31 | 2700 | 60 | 420 | | 12 | | | | | | | 28 | 18 | 23 | 2700 | 330 | 910 | | 13
14 | | | | | | | 25
18 | 12
11 | 16
14 | 340
110 | 100
54 | 180
75 | | 15 | | | | | | | 20 | 8.8 | 13 | 55 | 40 | 48 | | 16 | | | | | | | 17 | 11 | 13 | 200 | 37 | 77 | | 17 | | | | | | | 18 | 8.1 | 13 | 110 | 52 | 70 | | 18 | | | | | | | 21 | 11 | 15 | 100 | 49 | 68 | | 19
20 | | | | | | | 780
1400 | 16
110 | 240
350 | 51
35 | 34
22 | 42
29 | | 20 | | | | | | | 1400 | 110 | 330 | 33 | 22 | 2,5 | | 21 | | | | | | | 1400 | 170 | 1100 | 26 | 18 | 23 | | 22
23 | | | | | | | 700
120 | 120
58 | 280
79 | 31
74 | 16
15 | 21
24 | | 24 | | | | | | | 59 | 43 | 51 | 950 | 26 | 87 | | 25 | | | | | | | 54 | 36 | 43 | 1400 | 220 | 750 | | 26 | | | | | | | 44 | 33 | 37 | 220 | 68 | 120 | | 27
28 | | | | | | | 1400 | 39 | 720
400 | 100
53 | 50
30 | 69
44 | | 29 | | | | | | | 1200
140 | 130
65 | 91 | 40 | 26 | 33 | | 30 | | | | | | | 70 | 51 | 57 | 30 | 21 | 26 | | 31 | | | | | | | | | | 23 | 15 | 20 | | MONTH | | | | | | | | | | 2700 | 15 | 150 | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN | MEAN | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | 1 | 20 | JUNE
13 | 16 | 32 | JULY
13 | 20 | 52 | AUGUST | 20 | 17 | SEPTEMBE | 9.4 | | 1
2 | 20
22 | JUNE
13
10 | 16
13 | 32
37 | JULY
13
14 | 20
20 | 52
23 | AUGUST
10
14 | 20
18 | 17
13 | SEPTEMBE
6.0
6.0 | 9.4
9.2 | | 1 | 20 | JUNE
13 | 16 | 32 | JULY
13 | 20 | 52 | AUGUST | 20 | 17 | SEPTEMBE | 9.4 | | 1
2
3 | 20
22
13 | JUNE
13
10
8.0 | 16
13
10 | 32
37
33 | JULY
13
14
12 | 20
20
19 | 52
23
48 | AUGUST
10
14
11 | 20
18
18 | 17
13
24 | SEPTEMBE
6.0
6.0
7.0 | 9.4
9.2
9.9 | | 1
2
3
4
5 | 20
22
13
140
120 | JUNE 13 10 8.0 7.0 24 | 16
13
10
27
50 | 32
37
33
190
74 | JULY 13 14 12 13 27 | 20
20
19
40
47 | 52
23
48
42
23 | 10
14
11
16
13 | 20
18
18
26
17 | 17
13
24
15 | 6.0
6.0
7.0
7.0
8.0 | 9.4
9.2
9.9
10 | | 1
2
3
4
5 | 20
22
13
140
120 | JUNE 13 10 8.0 7.0 24 11 9.0 | 16
13
10
27
50
18 | 32
37
33
190
74
40
25 | JULY 13 14 12 13 27 16 15 | 20
20
19
40
47
21 | 52
23
48
42
23
25
23 | AUGUST 10 14 11 16 13 12 12 | 20
18
18
26
17
16
16 | 17
13
24
15
15 | SEPTEMBE
6.0
6.0
7.0
7.0
8.0
8.0
9.0 | 9.4
9.2
9.9
10
11 | | 1
2
3
4
5 | 20
22
13
140
120
27
21
20 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 | 16
13
10
27
50
18
14
12 | 32
37
33
190
74
40
25
290 | JULY 13 14 12 13 27 16 15 22 | 20
20
19
40
47
21
19 | 52
23
48
42
23
25
23
27 | AUGUST 10 14 11 16 13 12 12 9.0 | 20
18
18
26
17
16
16 | 17
13
24
15
15
22
20
22 | SEPTEMBE 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 | 9.4
9.2
9.9
10
11
12
12
13 | | 1
2
3
4
5 | 20
22
13
140
120 | JUNE 13 10 8.0 7.0 24 11 9.0 | 16
13
10
27
50
18 | 32
37
33
190
74
40
25 | JULY 13 14 12 13 27 16 15 | 20
20
19
40
47
21 | 52
23
48
42
23
25
23 | AUGUST 10 14 11 16 13 12 12 | 20
18
18
26
17
16
16 | 17
13
24
15
15 | SEPTEMBE
6.0
6.0
7.0
7.0
8.0
8.0
9.0 | 9.4
9.2
9.9
10
11 | | 1
2
3
4
5
6
7
8
9 | 20
22
13
140
120
27
21
20
330
75 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 | 16
13
10
27
50
18
14
12
46
32 | 32
37
33
190
74
40
25
290
58
79 | JULY 13 14 12 13 27 16 15 22 35 20 | 20
20
19
40
47
21
19
120
46
37 | 52
23
48
42
23
25
23
27
24
22 | 10
14
11
16
13
12
12
9.0
12 | 20
18
18
26
17
16
16
15
16 | 17
13
24
15
15
20
22
27
20 | 6.0
6.0
7.0
7.0
8.0
8.0
9.0
9.0 | 9.4
9.2
9.9
10
11
12
12
13
15 | | 1
2
3
4
5
6
7
8
9 | 20
22
13
140
120
27
21
20
330 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 | 16
13
10
27
50
18
14
12
46 | 32
37
33
190
74
40
25
290
58 | JULY 13 14 12 13 27 16 15 22 35 | 20
20
19
40
47
21
19
120
46 | 52
23
48
42
23
25
23
27
24 | AUGUST 10 14 11 16 13 12 12 9.0 12 | 20
18
18
26
17
16
16
15
16 | 17
13
24
15
15
32
20
22
27 | SEPTEMBE 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 | 9.4
9.2
9.9
10
11
12
12
13
15 | | 1
2
3
4
5
6
7
8
9
10 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 | 16
13
10
27
50
18
14
12
46
32
55
790
200 | 32
37
33
190
74
40
25
290
58
79
600
1300
57 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 | 20
20
19
40
47
21
19
120
46
37
60
150
36 | 52
23
48
42
23
25
23
27
24
22
110
48
1400 | 10
14
11
16
13
12
12
9.0
12
10
11
16
18 | 20
18
18
26
17
16
16
15
16
16
16 | 17
13
24
15
15
15
20
22
27
20
21
20
21
20
20 | 6.0
6.0
7.0
7.0
8.0
8.0
9.0
9.0
11
12 | 9.4
9.2
9.9
10
11
12
12
13
15
15 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 552 | 20
18
18
26
17
16
16
16
16
16
16
26
630
130 | 17
13
24
15
15
15
20
22
27
20
21
20
20
470 | 6.0
6.0
7.0
7.0
8.0
8.0
9.0
9.0
11
12 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57 | AUGUST 10 14 11 16 13 12 12 9.0 12 10 11 16 18 52 29 | 20
18
18
26
17
16
16
15
16
16
26
630
130
44 | 17 13 24 15 15 15 32 20 22 27 20 21 20 20 470 150 |
6.0
6.0
7.0
7.0
8.0
8.0
9.0
9.0
11
12
11
11
10
12 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
70
60 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
57
32 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 | 20
18
18
18
26
17
16
16
16
16
16
32
26
630
130
44 | 17
13
24
15
15
15
32
20
22
27
20
21
20
470
150 | SEPTEMBE 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 11 12 11 11 10 12 19 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
15
16
00
24 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57 | AUGUST 10 14 11 16 13 12 12 9.0 12 10 11 16 18 52 29 | 20
18
18
26
17
16
16
15
16
16
26
630
130
44 | 17 13 24 15 15 15 32 20 22 27 20 21 20 20 470 150 | 6.0
6.0
7.0
7.0
8.0
8.0
9.0
9.0
11
12
11
11
10
12 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
70
60 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32
33
51
37 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 8.0 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
19
18
330 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 20 15 15 | 20
18
18
18
26
17
16
16
16
16
32
26
630
130
44
29
28
21
91 | 17 13 24 15 15 15 20 22 27 20 21 20 470 150 43 46 45 1300 | 8.0
9.0
9.0
11
12
11
11
10
12
19 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
15
16
0
24
24
24
26
140 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
57
32
33
31
37 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57 | AUGUST 10 14 11 16 13 12 12 9.0 12 10 11 16 18 52 29 18 20 15 | 20
18
18
26
17
16
16
15
16
16
32
26
630
130
44
29
28
21 | 17 13 24 15 15 15 32 20 22 27 20 21 20 470 150 43 46 45 | 6.0
6.0
7.0
7.0
8.0
8.0
9.0
9.0
11
12
11
11
10
12
19 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
70
60
24
24
26 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | 20
22
13
140
120
27
21
20
330
75
1100
1500
65
51
30
19
16
25 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15
12
11 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32
33
51
37
1500
1500 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 8.0 200 91 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
19
18
330
350 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 20 18 20 15 15 18 11 | 20
18
18
26
17
16
16
16
15
16
16
32
26
630
130
44
29
28
21
91
41 | 17 13 24 15 15 15 32 20 22 27 20 21 20 470 150 43 46 45 1300 73 34 | 8.0
9.0
9.0
11
12
11
11
10
12
19
14
13
16
30
24 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
16
0
24
24
24
24
24
24
24
24
24
24
24 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65
51
30
19
16
25 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 7.0 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32
33
51
37
1500
1500 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 9.0 9.0 9.0 9.0 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
18
330
350 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58 | AUGUST 10 14 11 16 13 12 12 12 9.0 12 10 11 16 18 52 29 18 20 15 15 18 11 8.0 | 20
18
18
26
17
16
16
15
16
16
26
6330
130
44
29
28
21
91
41 | 17 13 24 15 15 15 32 20 22 27 20 21 20 20 470 150 43 46 45 1300 73 34 30 | 6.0
6.0
7.0
7.0
8.0
9.0
9.0
9.0
11
12
11
11
10
12
19
14
13
16
30
24 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
16
0
24
24
24
24
24
24
24
24
24
24
24
24
24 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 20
22
13
140
120
27
21
20
330
75
1100
1500
65
51
30
19
16
25
17
17
32
19 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 9.0 8.0 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15
12
11 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32
33
51
37
1500
1500 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 8.0 200 91 41 31 22 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
19
18
330
350 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 20 15 15 18 11 8.0 7.0 7.0 | 20
18
18
26
17
16
16
16
16
16
32
26
630
130
44
29
28
21
91
41
18
15
11 | 17 13 24 15 15 15 32 20 22 27 20 21 20 470 150 43 46 45 1300 73 34 30 19 20 | SEPTEMBE 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 11 12 11 11 10 12 19 14 13 16 30 24 19 12 12 8.0 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
15
16
44
24
24
24
26
140
44
22
18
16
14 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65
51
30
19
16
25 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 8.0 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15
12
11
11
11 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32
33
51
37
1500
1500 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 8.0 200 91 41 31 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
18
330
350
150
62
40 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58 | AUGUST 10 14 11 16 13 12 12 9.0 12 10 11 16 18 52 29 18 20 15 15 18 11 8.0 7.0 |
20
18
18
26
17
16
16
15
16
16
32
26
630
130
44
29
28
21
91
41 | 17 13 24 15 15 15 32 20 22 27 20 21 20 470 150 43 46 45 1300 73 34 30 19 | 8.0
9.0
9.0
11
12
11
11
10
12
19
14
13
16
30
24 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
16
24
26
140
44
22
18
16 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 20
22
13
140
120
27
21
20
330
75
1100
1500
65
51
30
19
16
25
17
17
32
19 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 9.0 8.0 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15
12
11 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32
33
51
37
1500
1500 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 8.0 200 91 41 31 22 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
19
18
330
350 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 20 15 15 18 11 8.0 7.0 7.0 | 20
18
18
26
17
16
16
16
16
16
32
26
630
130
44
29
28
21
91
41
18
15
11 | 17 13 24 15 15 15 32 20 22 27 20 21 20 470 150 43 46 45 1300 73 34 30 19 20 | SEPTEMBE 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 11 12 11 11 10 12 19 14 13 16 30 24 19 12 12 8.0 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
15
16
44
24
24
24
26
140
44
22
18
16
14 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65
51
30
19
16
25
17
17
32
19
23 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 9.0 8.0 9.0 8.0 8.0 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15
12
11
11
11
12
11
12
13
14 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
57
32
33
51
37
1500
1500
210
96
58
47
130 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 9.0 91 41 31 22 13 10 10 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
18
330
350
150
62
40
31
24 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58
26
31
17
27
17 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 20 15 15 18 11 8.0 7.0 7.0 7.0 7.0 | 20
18
18
26
17
16
16
16
16
16
16
26
630
130
44
29
28
21
91
41
18
15
12
11
12 | 17 13 24 15 15 15 32 20 22 27 20 21 20 20 470 150 43 46 45 1300 73 34 30 19 20 14 14 14 | SEPTEMBE 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 11 12 11 11 10 12 19 14 13 16 30 24 19 12 12 8.0 9.0 7.0 7.0 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
16
0
24
24
26
140
44
22
18
16
11
11
11
11
11
11
11
11
11
11
11
11 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65
51
30
19
16
25
17
17
32
19
23 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 8.0 9.0 8.0 8.0 100 33 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15
12
11
11
11
11
12
13
14
95
250
59 | 32
37
33
190
74
40
25
290
1300
57
57
32
33
51
37
1500
1500
210
96
58
47
130 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 8.0 200 91 41 31 22 13 10 10 9.0 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
18
330
350
150
62
40
31
24
23
16
30 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58
26
31
17
27
17 | AUGUST 10 14 11 16 13 12 12 12 9.0 12 10 11 16 18 8.0 7.0 7.0 7.0 7.0 7.0 7.0 | 20
18
18
26
17
16
16
15
16
16
13
26
630
130
44
29
28
21
91
41
18
15
12
11
12
11
11 | 17 13 24 15 15 15 32 20 22 27 20 21 20 20 470 150 43 46 45 1300 73 34 30 19 20 14 14 14 13 | 6.0
6.0
7.0
7.0
8.0
9.0
9.0
9.0
11
12
11
11
10
12
19
14
13
16
30
24
19
12
12
8.0
9.0
9.0 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
16
24
24
26
140
44
21
18
16
14
11
10
9.0
8.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 | 20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65
51
30
19
16
25
17
17
32
19
23
730
10
24
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
11
11
11
11
11
11
11
11
11
11
11
11 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 9.0 8.0 9.0 8.0 100 33 17 15 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15
12
11
11
11
12
13
14
95
250
59
28
22 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
57
32
33
51
37
1500
1500
210
96
58
47
130 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 91 41 31 22 13 10 10 9.0 79 24 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
18
330
350
150
62
40
31
24
23
16
30
27
24 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58
26
31
17
27
17 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 20 15 18 11 8.0 7.0 7.0 7.0 7.0 6.0 6.0 | 20
18
18
26
17
16
16
16
16
16
16
13
26
630
130
44
29
28
21
91
41
18
15
12
11
11
11
11 | 17 13 24 15 15 15 32 20 22 27 20 21 20 20 470 150 43 46 45 1300 73 34 30 19 20 14 14 13 12 11 11 | \$\text{SEPTEMBE}\$ 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 11 12 11 11 10 12 19 14 13 16 30 24 19 12 12 8.0 9.0 7.0 6.0 4.0 4.0 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
16
0
24
24
26
140
44
11
10
9.0
8.1
7.0
6.7 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 20
22
13
140
120
27
21
20
330
75
1100
1500
65
51
30
19
16
25
17
17
32
19
23
730
620
110
42 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 9.0 8.0 7.0 8.0 9.0 8.0 100 33 17 | 16 13 10 27 50 18 14 112 46 32 55 790 200 84 51 33 23 15 12 11 11 11 11 12 13 14 95 250 59 28 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
32
33
51
37
1500
1500
210
96
58
47
130 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 8.0 200 91 41 31 22 13 10 10 9.0 79 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
19
18
330
350
150
62
40
31
24
23
16
30
270
270 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58
26
31
17
27
17 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 20 15 15 18 11 8.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7 | 20
18
18
26
17
16
16
15
16
16
16
32
26
630
130
44
29
28
21
91
41
18
15
12
11
11
12 | 17 13 24 15 15 15 32 20 22 27 20 21 20 470 150 43 46 45 1300 73 34 30 19 20 14 14 13 12 11 | SEPTEMBE 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 11 12 11 11 10 12 19 14 13 16 30 24 19 12 8.0 9.0 7.0 6.0 4.0 | 9.4
9.2
9.9
10
11
12
12
12
13
15
15
15
15
15
16
44
24
24
26
140
44
11
10
9.0
8.1
7.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 |
20
22
13
140
120
27
21
20
330
75
1100
1500
560
110
65
51
30
19
16
25
17
17
32
19
23
730
10
24
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
25
11
11
11
11
11
11
11
11
11
11
11
11
11 | JUNE 13 10 8.0 7.0 24 11 9.0 7.0 9.0 18 11 430 110 62 37 23 17 11 9.0 8.0 7.0 9.0 8.0 9.0 8.0 100 33 17 15 | 16
13
10
27
50
18
14
12
46
32
55
790
200
84
51
33
23
15
12
11
11
11
12
13
14
95
250
59
28
22 | 32
37
33
190
74
40
25
290
58
79
600
1300
57
57
57
32
33
51
37
1500
1500
210
96
58
47
130 | JULY 13 14 12 13 27 16 15 22 35 20 18 34 19 14 11 9.0 9.0 9.0 91 41 31 22 13 10 10 9.0 79 24 | 20
20
19
40
47
21
19
120
46
37
60
150
36
27
22
19
18
330
350
150
62
40
31
24
23
16
30
27
24 | 52
23
48
42
23
25
23
27
24
22
110
48
1400
280
57
44
40
26
330
58
26
31
17
27
17 | AUGUST 10 14 11 16 13 12 12 12 10 11 16 18 52 29 18 20 15 18 11 8.0 7.0 7.0 7.0 7.0 6.0 6.0 | 20
18
18
26
17
16
16
16
16
16
16
13
26
630
130
44
29
28
21
91
41
18
15
12
11
11
11
11 | 17 13 24 15 15 15 32 20 22 27 20 21 20 20 470 150 43 46 45 1300 73 34 30 19 20 14 14 13 12 11 11 | \$\text{SEPTEMBE}\$ 6.0 6.0 7.0 7.0 8.0 8.0 9.0 9.0 11 12 11 11 10 12 19 14 13 16 30 24 19 12 12 8.0 9.0 7.0 6.0 4.0 4.0 | 9.4
9.2
9.9
10
11
12
12
13
15
15
15
15
16
24
24
26
140
44
11
10
9.0
8.1
7.0
6.7 | e Estimated ## 06893557 BRUSH CREEK AT WARD PARKWAY IN KANSAS CITY, MO LOCATION.--Lat 39°01'59", long 94°36'19", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.31, T.49 N., R.33 W. in Jackson County, Hydrologic Unit 10300101, on the downstream side of the right wingwall on Ward Parkway at Shawnee Mission Parkway in Kansas City and 5.4 mi upstream from the Blue River. DRAINAGE AREA. -- 12.2 mi². PERIOD OF RECORD--July 1998 to current year. GAGE.--Water-stage recorder. Datum of gage is 800.00 ft above National Geodetic Vertical Datum of 1929 (from levels by the U.S. Geological Survey). ${\tt REMARKS.--Records\ fair\ except\ for\ estimated\ daily\ discharges,\ which\ are\ poor.\ U.S.G.S.\ satellite\ telemeter\ at\ station.}$ | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
MEAN VA | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|---|--|---|--------------------------------------|--|---|---------------------------------------|--------------------------------------|---|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.0
1.0
1.0
15 | 1.1
1.2
1.0
1.1 | 0.40
0.40
0.43
0.69 | | 13
e12
e3.5
e2.7
2.0 | 1.8
5.6
2.1
2.2
2.7 | 0.32
0.39
0.38
0.39
0.45 | 2.5
2.0
1.6
1.4
1.6 | 1.5
1.2
1.3
14
4.0 | 0.56
1.4
12
28
3.5 | 0.62
0.47
0.49
0.48
0.36 | 0.26
0.23
0.16
0.15
0.27 | | 6
7
8
9
10 | 3.7
2.2
1.6
1.4
38 | 1.0
0.87
0.92
1.1
0.86 | 1.4
0.39
0.36
0.39
0.40 | e0.00 | 1.8
1.6
1.8
1.9 | 2.0
1.7
1.9
36
1.1 | 0.51
1.8
45
4.1
0.77 | 107
49
75
28
6.3 | 0.97
0.80
0.76
19
2.7 | 1.9
2.9
1.6
0.53
1.7 | 0.77
0.49
0.35
0.35
0.53 | 0.39
0.23
0.54
0.24
0.82 | | 11
12
13
14
15 | 3.0
1.9
1.6
1.3 | 0.75
1.0
0.95
0.93
1.3 | 0.40
37
4.0
0.68
0.53 | e0.35
e0.35
e0.20
e0.15
e0.10 | 0.87
0.83
0.78
0.65
0.61 | 0.95
0.75
0.90
0.96
0.72 | | 63
66
13
5.4
3.8 | 30
20
1.9
1.5
1.2 | 4.5
6.3
1.2
0.54
0.51 | 1.5
1.8
75
1.4
0.56 | 0.24
0.07
0.07
4.2
2.9 | | 16
17
18
19
20 | 4.5
2.1
1.6
1.4
0.97 | 1.4
1.1
10
3.8
0.50 | 0.56
0.66
0.66
0.80
1.0 | e0.20
e0.10
e0.05
e1.0
e0.70 | 0.54
0.47
0.50
68
7.2 | 0.61
0.56
0.57
0.55
0.84 | 0.45
0.49
0.47
31
127 | 21
17
2.9
2.1
1.8 | 0.83
0.71
0.78
0.72
0.66 | 0.90
0.86
0.56
9.1
1.9 | 0.44
6.8
2.2
21
7.5 | 0.25
0.55
2.9
36
1.7 | | 21
22
23
24
25 | 0.93
1.2
4.9
2.0
1.0 | 0.48
0.48
16
63
1.7 | 1.0
1.0
1.1
e0.80
e0.65 | 0.59
0.42
0.52
0.36
0.24 | 1.8
1.1
0.91
0.80
0.82 | 1.4
0.64
0.75
0.82
4.2 | 240
12
4.7
3.9
2.2 | 1.5
1.3
19
45
97 | 0.72
0.65
0.55
0.53
0.50 | 0.51
0.39
0.44
0.50
0.46 | 0.59
0.85
e7.0
0.69
0.43 | 0.50
0.19
0.12
0.19
0.15 | | 26
27
28
29
30
31 | 0.57
0.57
0.57
0.59
0.64
0.72 | 0.66
0.44
0.44
0.44
0.44 | e0.50
e0.40
e0.30
e0.20
e0.10
e0.10 | 0.22
0.27
0.34
1.9
56
66 | 1.1
0.98
1.2
 | 0.63
0.49
12
0.76
0.41
0.34 | 3.5
110
9.6
4.2
3.0 | 4.4
24
3.8
2.5
3.1
1.8 | 30
3.5
0.79
0.62
2.3 | 1.9
0.44
14
28
1.1
0.50 | 0.35
0.28
0.25
0.22
0.22
0.22 | 0.19
0.17
0.15
0.13
0.16 | | MEAN
MAX
MIN
IN. | 9.39
104
0.57
0.89 | 3.88
63
0.44
0.35 | 1.91
37
0.10
0.18 | 4.20
66
0.00
0.40 | 4.67
68
0.47
0.40 | 2.80
36
0.34
0.26 | 20.3
240
0.32
1.86 | 21.7
107
1.3
2.05 | 4.82
30
0.50
0.44 | 4.15
28
0.39
0.39 | 4.33
75
0.22
0.41 | 1.80
36
0.07
0.16 | | STATIS | TICS OF MO | ONTHLY ME | AN DATA F | OR WATER | YEARS 1998 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 28.4
87.6
1999
1.64
2000 | 9.79
25.5
1999
2.71
2000 | 4.07
8.84
1999
0.48
2001 | 4.63
8.00
1999
0.41
2000 | 8.32
20.6
2001
2.71
2000 | 7.68
14.3
2001
2.80
2002 | 22.5
41.8
1999
1.15
2000 | 18.8
23.2
1999
7.32
2000 | 26.1
55.0
2001
4.82
2002 | 6.78
12.8
2000
2.46
1999 | 6.22
10.3
2000
3.46
1999 | 8.83
15.0
1999
1.80
2002 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CAI | ENDAR YEAR | | FOR 2002 W. | ATER YEAR | | WATER YE | ARS 1998 | - 2002 | | LOWEST
HIGHES | MEAN T ANNUAL M ANNUAL M T DAILY M DAILY M | EAN
EAN | | 15.2
427
0.10 | Jun 6
Dec 30,31 | | 7.02
240
0.00 | Apr 21
Jan 1-8 | | 12.7
21.3
6.59
1520
0.00 | Jul 1 | 1999
2000
4 1998
5 1998, | | ANNUAL | SEVEN-DAY | Y MINIMUM | | 0.26 | Aug 3 | | 0.00 | Jan 1 | | 0.00 | Jul 1 | 8 2002
5 1998,
1 2002 | | MAXIMU
INSTAN
ANNUAL
10 PER
50 PER | M PEAK FLO
M PEAK STA
TANEOUS LO
RUNOFF (I
CENT EXCEI
CENT EXCEI
CENT EXCEI | AGE
DW FLOW
INCHES)
EDS
EDS | |

16.90
38
1.8 | | | 4330
44.06
0.00
7.79
15
0.91
0.23 | Apr 21
Apr 21
Jan 1-8 | | 4710
50.90
0.00
14.09
25
1.4
0.39 | Jun
Oct | 6 2001
4 1998
8 2002 | e Estimated ### 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO LOCATION.--Lat 39°02'21", long 94°34'43", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.29, T.49 N., R.33 W., Jackson County, Hydrologic Unit 10300101, on the left upstream Rockhill Road bridge abutment and 3.7 mi upstream from the Blue River. DRAINAGE AREA.--17.0 \min^2 . ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1998 to current year. GAGE.--Water-stage recorder. Datum of gage is 799.70 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Geological Survey). REMARKS.--Water-discharge records fair except for estimated daily discharges, which are poor. U.S.G.S satellite telemeter at station. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN V | | ER 2001 TO | SEPTEMBE | ER 2002 | | | |--|--|---|--|--|--|---|--|--|--------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.97
0.57
0.48
21
154 | 3.0
2.7
3.2
3.4
4.3 | 7.1
6.0
4.1
2.2
1.5 | 0.00
0.00
0.00
0.00
e0.00 | 4.2
2.6 |
e4.6
e2.2
e5.6 | | 4.6
4.1
4.1 | e1.9
e1.5
e2.0
e15
e4.0 | 0.86
1.4
7.6
25
3.1 | e1.5
0.54
0.74
0.63
0.60 | 0.72
0.64
0.43
0.56
0.70 | | 6
7
8
9
10 | 13
9.3
6.2
3.8 | 4.0
3.4
2.9
4.5
5.8 | 3.1
2.1
2.3
3.8
4.0 | e0.00
0.00
0.00
0.00
0.00 | 2.3
3.9
3.4
2.4
2.8 | e4.4
e2.0
e4.5
29 | 1.8
4.1
52
10
4.6 | 161
59
104
35
9.7 | 1.6
1.2
1.1
41
2.3 | 2.8
2.7
2.3
3.7 | 0.64
0.43
0.32
0.74 | 0.79
0.78
0.88
0.64
0.92 | | 11
12
13
14
15 | 1.6
1.8
2.5
3.0 | 7.7
6.0
5.7
5.3
4.1 | 2.4 | 0.00
0.00
0.00
0.27
0.52 | 3.2
2.6
2.3
1.9 | 7.4
2.4
e1.6
e1.0
e0.80 | 3.6
3.7
2.3
1.7 | 98
84
21
11
e9.0 | 36
19
2.0
1.6
1.6 | 2.4
6.1
2.3
1.7 | | 0.93
0.51
0.76
3.0
2.3 | | 16
17
18
19
20 | 30
22
13
9.1
6.8 | 2.6
2.0
7.5
8.1
2.5 | 2.8
3.3
3.7
3.5
4.4 | 0.77
0.64
0.62
1.8
e2.3 | 1.2
0.90
0.75
e70
e13 | e0.70
e0.60
e0.60
e0.60
e0.90 | e1.4
e1.1
0.67
52
199 | e23
e20
e9.0
e7.0
e5.0 | 1.2
1.1
1.4
1.2 | | 1.4
5.9
2.2
20
5.7 | 0.64
0.79
2.5
28
1.8 | | 21
22
23
24
25 | 4.2
3.3
4.8
1.8
2.9 | 1.0
0.83
14
46
7.1 | 4.2
e3.0
e2.2
e2.0
e2.0 | e2.0
e1.8
e1.9
e1.7
e1.5 | e4.0
e2.0
e1.0
e0.90
e0.90 | e1.5
e0.70
e0.80
e0.80
e5.5 | 320
8.5
3.3
2.4
2.0 | 25
64 | 1.2
0.94
0.85
0.84
0.69 | e0.85
e0.97 | | 1.2
0.56
0.66
0.81
0.83 | | 26
27
28
29
30
31 | 3.5
5.1
4.5
3.6
2.5
3.3 | 4.5
5.0
7.7
6.0
6.1 | e2.0
e1.0
0.82
0.75
0.42
0.21 | e1.4
e1.5
e1.6
e4.2
56 | e1.5
e1.2
e1.2
 | 4.6
2.6
11
2.2
1.3
0.78 | 3.9
158
11
6.5
4.7 | 3.8
24
3.5
e3.0
e3.0
e2.5 | 45
3.5
1.4
1.1
1.9 | e15
e30 | 0.76
0.80
0.69
0.48
0.68 | 0.89
0.85
0.95
0.99
0.45 | | MEAN
MAX
MIN
IN. | 16.7
154
0.48
1.13 | 6.23
46
0.83
0.41 | 3.90
34
0.21
0.26 | 4.69
65
0.00
0.32 | 5.41
70
0.75
0.33 | 3.77
29
0.60
0.26 | 28.9
320
0.32
1.90 | 30.6
161
1.7
2.08 | 6.51
45
0.69
0.43 | 4.37
30
0.85
0.30 | 5.34
103
0.32
0.36 | 1.88
28
0.43
0.12 | | STATIS | STICS OF M | ONTHLY ME | AN DATA F | OR WATER | YEARS 199 | 8 - 2002 | , BY WATE | R YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 45.5
145
1999
3.45
2000 | 14.4
41.4
1999
4.91
2001 | 5.65
10.9
1999
0.76
2001 | 6.49
11.4
1999
2.93
2000 | 9.68
18.0
2001
5.41
2002 | 9.81
18.0
1999
3.77
2002 | 32.6
69.1
1999
2.65
2000 | 22.1
30.7
2002
11.7
2000 | 36.4
73.8
2001
6.51
2002 | 8.69
17.1
2000
3.08
1999 | 8.69
11.0
2000
5.34
2002 | 16.2
39.8
1998
1.88
2002 | | SUMMAR | RY STATIST | ICS | FOR | 2001 CALE | ENDAR YEAR | | FOR 2002 | WATER YEAR | | WATER Y | EARS 1998 | - 2002 | | LOWEST
HIGHES | MEAN TANNUAL ANNUAL M TOAILY ME | EAN
EAN | | 18.0
570
0.00 | Jun 6
Mar 7 | | 9.89
320
0.00 | Apr 21
Jan 1-13 | | 17.5
32.9
9.68
2540
0.00 | | 1999
2000
4 1998
7 2001, | | MAXIMU
MAXIMU
INSTAN
ANNUAL
10 PEF
50 PEF | J SEVEN-DA
JM PEAK FL
JM PEAK ST.
VTANEOUS L
J. RUNOFF (
RCENT EXCE
RCENT EXCE | OW
AGE
OW FLOW
INCHES)
EDS
EDS | | 0.41

14.33
35
2.7
0.56 | Aug 4 | | 0.00
4070
10.25
0.00
7.89
20
2.3
0.64 | Jan 1
Apr 21
Apr 21
Many Days | | 0.00
21700
21.71
0.00
13.97
29
3.3
0.80 | Jan
a Oct
b Oct
Mar | 1 2002
1 2002
4 1998
4 1998
Days | e Estimated Discharge determined by indirect method. From floodmark. #### 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued #### WATER-OUALITY RECORDS PERIOD OF RECORD. -- July 1998 to current year. PERIOD OF DAILY RECORD. - WATER TEMPERATURE FROM PRESSURE TRANSDUCER (PT) .-- July 1998 to May 14, 2002.(discontinued) WATER TEMPERATURE. --July 1998 to current year. pH.--July 1998 to current year. SPECIFIC CONDUCTANCE. --August 1998 to current year. DISSOLVED OXYGEN.--July 1998 to current year. TURBIDITY.--July 1998 to current year. INSTRUMENTATION.--Water-quality monitor seasonally since August 1998. Electronic data logger with 15 minute recording interval and 4 hour satellite transmission interval. The monitor is not operated during the winter months. Pressure transducer with temperature sensor, July 1998 to May 2002. MARKS.--The number of missing days of record exceeds 20 percent of the year. The monitor was not operated from Dec. 7 to April 22. Unpublished records prior to October 2000 are available in files of the Sub-district office. Interruptions in the record are generally due to malfunction or fouling of the sensors, where possible missing record has been estimated. Daily value estimations were based on partial data, inspection of contiguous data, hydrograph comparison, comparison with data from station 06893500, and the best judgment of the hydrographer. Detailed records of the procedures employed for estimating data and/or data shifts for specific periods of record have been included with the station analysis and are kept on file. The manufacturers' specified range for turbidity sensors used is 0 to 1000 NTU. All values beyond this limit may be considered as >1000 NTU. Values >1000 NTU are maintained for continuity of the record. Specific Conductance records were rated either good or excellent except for the following periods: May 6 rated poor; May 15-21 and July 29-August 1 rated poor-estimated. either good or excellent except for the following periods: May 6 rated poor; May 15-21 and July 29-August 1 rated poor-estimated. PH records were rated either good or excellent except for the following periods: June 12-26 rated fair, May 15-21 and July 29-August 1 rated poor-estimated. Water temperature records were rated either good or excellent except for the following periods: May 15-21 and July 29-August 1 rated poor-estimated. Temperature from pressure transducer not rated except for the following period: April 16-17 rated poor-estimated. Dissolved oxygen records were rated poor except for the following periods: October 11-December 7, April 22 - May 5, May 7-12, 22-24, June 5-11, 27 - July 5, August 2-22, September 17-30 rated either good or excellent; May 13-21 and July 29-August 1 rated poor-estimated. Turbidity records were rated excellent except for the following periods: May 12-14, June 12-26 rated poor, May 15-21, June 2-4, July 29-August 1, and August 22-September 16 rated poor-estimated. EXTREMES FOR PERIOD OF DAILY RECORD.--(more than 20 percent of record missing) WATER TEMPERATURE FROM PRESSURE TRANSDUCER.--Maximum recorded, 31.5 °C August 3, 2001. WATER TEMPERATURE, --Maximum recorded, 36.5 °C, Aug. 31, 2000. pH.--Maximum recorded, 9.8 standard units, Aug. 28, 2001; minimum recorded, 5.5 standard units, Nov. 6, 2000. SPECIFIC CONDUCTANCE.--Maximum recorded, 1,410 microsiemens per centimeter (µS/cm), July 6-7, 1999; minimum recorded, 84 µS/cm, Aug. 25, 2001. DISSOLVED OXYGEN. --Maximum recorded, 23.3 mg/L, June 26, 2001; minimum recorded, 0.0 mg/L, several days 1999, July 23, 2002. TURBIDITY.--Maximum recorded, 2,300 NTU, Sept. 13, 1998; minimum recorded, 0.0 NTU, many days 1998-2002. EXTREMES FOR CURRENT YEAR. -- (more than 20 percent of record missing) WATER TEMPERATURE FROM PRESSURE TRANSDUCER.--Maximum, 22.2 $^{\circ}$ C, April 18. WATER TEMPERATURE.--Maximum, 34.8 $^{\circ}$ C, July 20. PH.--Maximum recorded, 9.7 standard units, June 29 and July 7; minimum recorded, 7.0 standard units, several days. SPECIFIC CONDUCTANCE.--Maximum recorded, 910 μS/cm, April 27; minimum recorded, 103 μS/cm, May 25. DISSOLVED OXYGEN.--Maximum recorded, 22.5 mg/L, Oct. 1; minimum recorded, 0.0 mg/L, July 23. TURBIDITY.--Maximum recorded, 1,500 NTU, Aug. 18; minimum recorded, 0.0 NTU, many days. WATER TEMPERATURE FROM PT, (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|--|--|--|--|--| | | | OCTOBER | | No | OVEMBER | | DE | ECEMBER | | | JANUARY | 7 | | 1
2
3
4
5 | 19.4
20.2
20.1
20.1
17.7 | 18.0
18.5
18.6
15.7
12.7 | 18.6
19.1
19.3
19.4
13.4 | 14.6
15.1
14.6
14.5
14.5 | 13.3
14.1
14.0
14.2
14.1 | 13.8
14.5
14.2
14.3
14.2 | 5.1
6.1
7.3
8.9
11.5 | 4.7
4.7
5.6
7.0
8.5 | 4.9
5.3
6.4
8.1
9.8 | 5.0
5.0
5.0
5.3
5.3 | 4.6
4.7
4.7
4.8
5.1 | 4.8
4.9
4.8
5.1
5.2 | | 6
7
8
9
10 | 14.1
13.9
15.4
16.3
18.1 | 12.4
13.0
13.9
15.1
16.2 | 13.2
13.6
14.5
15.6
17.5 | 14.5
15.5
15.3
13.7
12.7 | 14.0
14.3
13.7
12.5
11.7 | 14.3
14.8
14.6
12.9
12.2 | 10.8
10.1
9.3
7.9
7.1 | 9.8
9.3
7.9
7.0
6.4 | 10.3
9.6
8.5
7.4
6.7 | 5.2
5.5
5.7
5.9
6.1 |
5.0
5.1
5.4
5.7
5.9 | 5.1
5.3
5.5
5.8
6.0 | | 11
12
13
14
15 | 18.1
17.5
16.8
16.2
15.3 | 17.2
16.4
16.0
15.0
9.7 | 17.6
16.8
16.3
15.5
12.5 | 12.4
11.9
12.0
12.9
14.3 | 11.4
11.4
11.4
12.0
12.6 | 12.0
11.6
11.6
12.3
13.4 | 6.7
7.5
7.4
7.4
6.9 | 6.0
5.9
7.1
6.9
6.4 | 6.4
6.6
7.2
7.2
6.7 | 6.4
6.3
5.8
5.6
5.0 | 6.1
5.0
5.0
4.0
3.6 | 6.2
5.8
5.5
4.6
4.2 | | 16
17
18
19
20 | 10.7
10.5
12.1
12.0
12.9 | 8.9
9.7
10.5
11.3
11.4 | 9.7
10.1
11.2
11.6
11.9 | 14.1
14.0
14.3
14.0
11.8 | 13.6
13.8
13.9
11.8
10.5 | 13.8
13.9
14.0
12.7
11.1 | 7.1
7.1
6.8
6.5
5.5 | 6.7
6.5
6.2
5.5
4.9 | 6.8
6.4
6.0
5.2 | 4.4
4.7
5.0
5.0
5.3 | 3.6
3.4
3.8
4.0
5.0 | 4.0
4.0
4.3
4.4
5.1 | | 21
22
23
24
25 | 13.9
15.1
15.8
16.6
15.3 | 12.7
13.3
14.4
15.3
12.8 | 13.0
14.1
15.2
16.0
13.7 | 10.5
9.9
11.3
11.8
10.8 | 9.4
9.1
9.7
10.4
10.0 | 9.8
9.5
10.1
11.4
10.4 | 5.5
6.0
5.2
3.3
2.7 | 4.9
5.2
3.3
1.4
1.3 | 5.2
5.6
4.1
2.3
1.8 | 5.7
5.9
5.7
5.4
5.5 | 5.1
5.3
5.1
4.5
4.5 | 5.3
5.6
5.4
5.0
5.1 | | 26
27
28
29
30
31 | 12.8
11.7
12.0
11.9
13.0
13.4 | 11.7
10.5
10.3
11.1
11.9
12.6 | 12.1
11.0
11.0
11.5
12.3
12.9 | 10.9
9.8
7.3
5.7
5.4 | 9.8
7.3
5.7
5.2
5.1 | 10.4
8.4
6.3
5.4
5.2 | 3.8
4.1
4.6
4.5
4.7 | 2.6
2.6
4.1
4.1
4.2
4.3 | 3.1
3.7
4.5
4.3
4.4
4.6 | 5.5
6.4
6.3
5.8
5.2
2.8 | 4.0
4.8
5.7
4.6
0.2
0.5 | 4.7
5.5
6.0
5.1
4.2
1.8 | | MONTH | 20.2 | 8.9 | 14.2 | 15.5 | 5.1 | 11.8 | 11.5 | 1.3 | 6.0 | 6.4 | 0.2 | 5.0 | ## 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued WATER TEMPERATURE FROM PT, (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|---------------------------------|----------------------------------|---|---|--|--------------------------------------|--------------------------------------|--|--------------------------------------|--------------------------------------|--------------------------------------| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1
2
3
4
5 | 5.0
3.9
4.3
4.1
4.2 | 2.8
3.3
3.4
3.2
3.6 | 3.6
3.8
3.7
4.1 | 4.4
4.1
6.2
8.0
8.3 | 2.5
-0.3
-0.5
2.3
5.1 | 3.5
1.3
2.6
5.1
6.2 | 14.1
14.0
12.4
10.7
11.6 | 11.3
12.4
10.2
9.6
9.8 | 12.6
13.2
10.8
10.0
10.3 | 17.7
16.3
17.3
17.1
20.5 | 16.3
15.2
15.2
16.0
17.0 | 16.9
15.8
16.2
16.5
18.0 | | 6
7
8
9
10 | 4.4
3.8
4.8
5.4
5.1 | 3.6
2.7
3.3
4.5
4.1 | 4.3
3.3
4.0
4.9
4.6 | 9.0
8.4
11.0
10.9
7.2 | 4.4
6.2
7.7
6.9
6.0 | 6.2
7.2
9.4
7.9
6.6 | 12.6
12.4
11.7
11.9
12.9 | 10.8
11.5
11.2
10.7
11.3 | 11.8
11.9
11.4
11.1 | 20.6
19.5
18.6
18.3
17.4 | 17.3
18.3
16.8
16.4
15.6 | 18.5
18.7
17.5
17.4
16.4 | | 11
12
13
14
15 | 4.8
4.8
5.2
5.5
5.9 | 3.2
3.8
4.0
4.1
4.7 | 4.0
4.3
4.6
5.0
5.3 | 7.1
7.4
8.4
11.3
10.5 | 6.5
6.5
7.1
8.0
9.4 | 6.8
7.0
7.7
9.7
9.8 | 14.3
14.5
15.6
18.1
17.7 | 12.0
13.7
14.0
14.3
16.7 | 12.7
14.1
14.7
15.5
17.2 | 18.6
18.4
16.7
16.6 | 14.8
15.1
14.0
15.1 | 15.8
16.9
15.2
15.9 | | 16
17
18
19
20 | 6.3
6.7
7.1
10.6
10.6 | 5.0
5.4
6.0
7.0
9.4 | 5.6
6.1
6.5
8.6
10.0 | 9.6
9.9
9.6
9.4
10.7 | 8.3
7.6
9.0
8.8
8.4 | 8.8
8.5
9.2
9.1
9.3 | 22.2
22.0
17.4 | 18.5
17.3
12.2 | e17.7
e18.7
19.9
18.6
16.1 | |

 |

 | | 21
22
23
24
25 | 12.4
13.4
14.9
14.8
10.0 | 6.3
4.0
4.7
6.8
3.0 | 9.1
8.5
9.5
10.4
5.9 | 10.3
7.3
9.3
8.5
7.5 | 7.2
5.2
5.7
7.5
5.3 | 8.6
6.4
7.2
8.1
6.3 | 13.7
14.7
15.0
17.5 | 10.6
12.9
14.1
14.5
15.4 | 12.4
13.6
14.5
16.0
16.3 |

 |

 |

 | | 26
27
28
29
30
31 | 3.0
6.0
7.8
 | -0.4
-0.3
1.8
 | 0.9
2.2
4.2
 | 7.2
8.5
8.7
12.0
12.0
13.2 | 4.6
6.4
7.9
8.3
9.3
10.3 | 5.7
7.3
8.3
9.3
10.3
11.5 | 16.7
15.1
15.1
14.7
17.8 | 15.1
12.3
13.3
14.1
14.4 | 15.8
13.9
14.0
14.3
15.8 |

 |

 |

 | | MONTH | 14.9 | -0.4 | 5.4 | 13.2 | -0.5 | 7.4 | | | 14.2 | | | | e Estimated WATER TEMPERATURE, (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--|--|--|--------------------------------------|--------------------------------------|--------------------------------------|-----------------------------------|----------------------------------|-----------------------------------|--------------|--------------|--------------| | | | OCTOBER | | N | OVEMBER | | D | ECEMBER | | | JANUARY | | | 1
2
3
4
5 | 21.2
21.0
21.9
20.8
18.1 | 18.3
18.6
18.9
15.9
13.1 | 19.6
19.9
20.2
19.9
14.0 | 15.7
16.3
17.7
17.0
16.8 | 13.7
14.5
14.4
14.9
14.5 | 14.7
15.1
15.4
15.5
15.2 | 7.8
7.6
9.1
12.4
12.6 | 4.8
4.8
6.7
8.6
11.2 | 5.9
6.2
7.7
10.2
11.9 |

 |

 |

 | | 6
7
8
9
10 | 15.5
16.6
16.1
17.3
19.4 | 12.7
13.4
14.3
15.5
17.0 | 13.8
14.8
15.2
16.2
18.1 | 17.7
17.6
16.2
14.0
14.0 | 14.3
15.4
13.3
12.1
11.8 | 15.8
16.4
14.9
13.2
12.9 | 11.5

 | 10.3 | 10.9 |

 | |

 | | 11
12
13
14
15 | 19.3
17.7
17.4
16.5
15.6 | 17.4
16.7
16.4
15.4
10.1 | 18.1
17.1
16.8
15.9
12.8 | 13.6
13.0
13.9
14.9
15.4 | 11.5
11.3
11.8
12.6
13.6 | 12.5
12.2
12.7
13.7
14.5 |

 |

 |

 |

 | | | | 16
17
18
19
20 | 11.9
14.2
13.0
14.3
15.8 | 9.4
10.0
11.1
11.7 | 10.4
11.6
12.0
12.7
13.3 | 16.4
15.3
14.9
14.3
12.1 | 13.9
13.9
14.2
11.5
10.2 | 15.1
14.7
14.6
12.9
11.2 |

 | |

 |

 | | | | 21
22
23
24
25 | 16.6
17.6
19.7
18.4
15.6 | 14.1
15.4
16.6
15.6
13.0 | 15.2
16.3
17.9
16.9
14.1 | 10.9
11.8
11.9
12.2
12.6 | 9.4
9.3
10.2
10.8
10.3 | 10.3
10.4
10.6
11.8
11.2 |

 |

 |

 |

 |

 |

 | | 26
27
28
29
30
31 | 13.0
13.1
13.1
14.9
15.6
14.4 | 11.9
10.8
10.7
11.6
12.6
13.0 | 12.5
11.7
11.8
12.9
13.6
13.6 | 12.0
10.2
7.7
5.8
5.9 | 10.2
7.6
5.8
5.4
5.4 | 10.9
8.8
6.6
5.6
5.6 |

 |

 |

 |

 |

 |

 | | MONTH | 21.9 | 9.4 | 15.1 | 17.7 | 5.4 | 12.5 | | | | | | | ## 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued WATER TEMPERATURE, (DEGREES C), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | WAI | LEK IEM | FERMIURE, | (DEGREES | C), WAIE | ik IEAK OC | TOBER 20 | 01 10 36 | FIEMBER 20 | 02 | | |----------|--------------|--------------|--------------|--------------|--------------|---------------|--------------|--------------|--------------|--------------|--------------|----------------| | DAY | MAX | MIN | MEAN | | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | 18.0 | 16.6 | 17.3 | | 2 | | | | | | | | | | 17.8 | 15.5 | 16.6 | | 3
4 | | | | | | | | | | 17.7
20.5 | 15.5
16.2 | 16.6
18.0 | | 5 | | | | | | | | | | 22.3 | 17.9 | 19.7 | | 6 | | | | | | | | | | 20.9 | 17.7 | 19.4 | | 7 | | | | | | | | | | 20.6 | 18.6 | 19.5 | | 8
9 | | | | | | | | | | 19.5
19.3 | 17.1
16.7 | 18.4
18.1 | | 10 | | | | | | | | | | 17.7 | 15.9 | 16.8 | | 11 | | | | | | | | | | 19.1 | 15.2 | 16.6 | | 12 | | | | | | | | | | 18.8 | 15.4 | 17.2 | | 13
14 | | | | | | | | | | 17.9
22.7 | 14.3
15.5 | 16.1
18.4 | | 15 | | | | | | | | | | | | e19.3 | | 16 | | | | | | | | | | | | e19.8 | | 17 | | | | | | | | | | | | e19.0 | | 18 | | | | | | | | | | | | e17.8 | | 19
20 | | | | | | | | | | | | e18.0
e18.3 | | 21 | | | | | | | | | | | | | | 22 | | | | | | | | | | 22.9 | 18.4 | e18.9
20.0 | | 23 | | | | | | | 20.9 | 14.9 | 17.8 | 20.6 | 19.5 | 19.8 | | 24
25 | | | | | | | 19.4
17.7 | 17.1
15.8 | 18.1
16.8 | 20.6
20.2 | 17.1
15.4 | 19.3
17.4 | | | | | | | | | | | | | | | | 26
27 | | | | | | | 17.0
15.4 | 15.4
12.6 | 16.1
14.3 | 22.4
24.4 | 17.0
18.8 | 19.6
21.8 | | 28 | | | | | | | 17.5 | 13.7 | 15.3 | 24.4 | 21.1 | 22.5 | | 29
30 | | | | | | | 20.7
18.4 | 14.7
16.4 | 16.9
17.4 | 26.4
28.6 | 21.9
23.4 | 23.9
25.7 | | 31 | | | | | |
 | | | 29.5 | 24.9 | 26.9 | | MONTH | | | | | | | | | | | | 19.2 | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1 | 29.5 | 26.1 | 27.8 | 30.2 | 27.9 | 29.1 | | | e31.8 | 29.9 | 26.0 | 27.8 | | 2 | 31.0 | 26.7 | 28.6 | 29.1 | 27.5 | 28.3 | 31.3 | 28.8 | 30.1 | 29.3 | 26.6 | 27.9 | | 3
4 | 30.6
28.2 | 26.6
25.4 | 28.4
26.7 | 30.9
29.7 | 26.9
26.4 | 28.2
27.6 | 32.9
32.5 | 28.6
29.5 | 30.4
30.9 | 28.4
28.4 | 26.8
25.9 | 27.6
26.9 | | 5 | 26.5 | 24.1 | 24.9 | 31.3 | 25.6 | 28.1 | 33.8 | 29.8 | 31.4 | 31.0 | 26.2 | 27.8 | | 6 | 26.5 | 22.8 | 24.5 | 32.2 | 27.4 | 29.4 | 31.4 | 29.1 | 30.1 | 31.1 | 26.9 | 28.4 | | 7 | 26.8 | 23.6 | 25.2 | 33.5 | 28.5 | 30.3 | 29.6 | 27.7 | 28.7 | 29.8 | 27.0 | 28.4 | | 8
9 | 27.4
26.4 | 24.6
24.4 | 26.0
25.3 | 33.0
34.1 | 28.6
29.5 | 30.8
31.7 | 28.9
29.8 | 26.2
26.1 | 27.6
27.7 | 29.9
29.4 | 27.2
27.4 | 28.6
28.4 | | 10 | 26.1 | 23.9 | 24.9 | 32.2 | 29.4 | 30.8 | 28.0 | 26.4 | 27.2 | 28.9 | 27.1 | 27.9 | | 11 | 27.0 | 24.8 | 25.6 | 33.3 | 28.2 | 30.0 | 31.0 | 26.4 | 28.3 | 27.3 | 25.4 | 26.3 | | 12 | 31.1 | 24.6 | 27.1 | 30.0 | 27.8 | 28.5 | 28.2 | 26.6 | 27.2 | 26.0 | 24.2 | 25.0 | | 13
14 | 27.8
25.4 | 25.2
23.5 | 26.2
24.6 | 28.0
28.9 | 26.4
25.9 | 27.2
27.4 | 26.9
28.7 | 22.5
21.9 | 23.5
24.4 | 25.4
24.3 | 23.4
23.6 | 24.3
24.0 | | 15 | 26.1 | 23.4 | 24.6 | 29.6 | 26.4 | 28.0 | 28.1 | 23.6 | 25.6 | 25.8 | 22.8 | 24.0 | | 16 | 27.0 | 23.4 | 25.1 | 30.7 | 27.0 | 28.8 | 27.6 | 25.9 | 26.8 | 26.5 | 22.7 | 24.2 | | 17 | 28.4 | 23.7 | 25.7 | 32.4 | 27.7 | 29.8 | 27.3 | 25.1 | 25.9 | 24.8 | 23.4 | 23.9 | | 18
19 | 26.0
28.1 | 24.1
23.7 | 24.8
25.6 | 31.9
34.4 | 28.6
29.0 | 30.2
30.4 | 28.5
27.2 | 24.4
24.8 | 25.9
26.0 | 26.4
24.8 | 23.3
22.0 | 24.6
23.1 | | 20 | 30.0 | 25.4 | 27.2 | 34.8 | 28.3 | 31.0 | 27.0 | 23.8 | 25.4 | 23.5 | 21.3 | 22.3 | | 21 | 30.1 | 26.3 | 28.0 | 33.1 | 29.2 | 31.1 | 27.9 | 26.0 | 26.9 | 24.6 | 21.6 | 22.9 | | 22 | 31.5 | 26.9 | 29.1 | 32.2 | 29.4 | 30.6 | 29.1 | 26.3 | 27.5 | 23.3 | 21.2 | 22.1 | | 23
24 | 30.9
30.8 | 27.3
27.3 | 28.9
28.9 | 30.9
30.8 | 28.0
27.8 | 29.3
29.3 | 30.2
28.5 | 26.3
26.7 | 28.2
27.4 | 21.6
21.0 | 20.1
19.1 | 21.0
20.1 | | 25 | 32.0 | 27.8 | 29.7 | 31.7 | 27.9 | 29.8 | 29.3 | 26.0 | 27.4 | 21.7 | 19.1 | 20.1 | | 26 | 33.4 | 26.0 | 29.4 | 33.3 | 28.8 | 30.6 | 29.8 | 26.3 | 27.8 | 22.5 | 19.8 | 21.1 | | 27 | 32.1 | 25.1 | 27.5 | 31.4 | 28.9 | 30.3 | 28.3 | 26.5 | 27.4 | 23.6 | 20.2 | 21.5 | | 28
29 | 29.3
32.8 | 25.9
27.5 | 27.7
29.9 | 30.9 | 26.6 | 29.4
e28.6 | 28.5
28.0 | 26.1
26.2 | 27.2
27.0 | 23.6
24.4 | 20.3
21.6 | 21.7
22.7 | | 30 | 31.0 | 28.0 | 29.9 | | | e30.0 | 28.0 | 25.7 | 26.7 | 24.4 | 21.8 | 23.0 | | 31 | | | | | | e31.6 | 28.1 | 25.4 | 26.7 | | | | | MONTH | 33.4 | 22.8 | 26.9 | | | 29.6 | | | 27.6 | 31.1 | 19.1 | 24.6 | | | | | | | | | | | | | | | e Estimated pH, WH, FIELD, (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued | | | Pπ, | WH, FIELD, | (SIAND | AKD UNII | S), WAIEK | IEAR OCIC | JBER 200 | 1 10 5551 | EMBER 2002 | | | |---|--------------|----------------------|----------------------|------------|--------------|--------------|---|--------------|--|---|---|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1 | 9.2 | 7.6 | 8.5 | 8.4 | 7.8 | 8.1 | 7.2 | 7.2 | 7.2 | | | | | 2 | 9.4 | 7.5 | 8.5 | 8.7 | 7.6 | 8.1 | 7.3 | 7.2 | 7.2 | | | | | 3
4 | 9.2 | 7.9 | 8.7 | 8.9 | 7.7 | 8.2 | 7.3 | 7.2 | 7.2 | | | | | 4
5 | 8.8
8.4 | 7.8
7.4 | 8.4
7.8 | 8.8
8.5 | 7.7
7.6 | 8.1
8.0 | 7.3
7.4 | 7.2
7.2 | 7.3
7.3 | | | | | | | | | | | | | | | | | | | 6 | 7.6 | 7.2 | 7.4 | 8.8 | 7.8 | 8.2 | 7.2 | 7.2 | 7.2 | | | | | 7
8 | 7.6
7.7 | 7.2
7.2 | 7.3
7.4 | 8.9
8.5 | 7.7
7.6 | 8.3
8.1 | | | | | | | | 9 | 7.8 | 7.2 | 7.5 | 8.4 | 7.5 | 7.9 | | | | | | | | 10 | 7.8 | 7.2 | 7.5 | 8.3 | 7.5 | 7.8 | | | | | | | | 11 | 7.2 | 7.2 | 7.2 | 8.6 | 7.5 | 7.9 | | | | | | | | 12 | 7.2 | 7.1 | 7.2 | 8.1 | 7.5 | 7.7 | | | | | | | | 13
14 | 7.3
7.4 | 7.2
7.2 | 7.2
7.3 | 8.4
8.4 | 7.6
7.6 | 7.9
7.9 | | | | | | | | 15 | 7.4 | 7.2 | 7.5 | 8.3 | 7.5 | 7.8 | 16
17 | 7.6 | 7.0 | 7.4 | 7.7 | 7.5
7.5 | 7.6 | | | | | | | | 18 | $7.4 \\ 7.4$ | 7.0
7.2 | 7.2
7.3 | 7.9
8.0 | 7.5 | 7.6
7.7 | | | | | | | | 19 | 7.4 | 7.0 | 7.2 | 8.3 | 7.6 | 8.0 | | | | | | | | 20 | 7.6 | 7.1 | 7.3 | 8.2 | 7.5 | 7.8 | | | | | | | | 21 | 7.6 | 7.1 | 7.4 | 8.3 | 7.6 | 8.0 | | | | | | | | 22 | 7.8 | 7.2 | 7.6 | 8.4 | 7.6 | 8.0 | | | | | | | | 23 | 7.6 | 7.3 | 7.4 | 8.0 | 7.8 | 7.9 | | | | | | | | 24
25 | 7.6
7.6 | $7.2 \\ 7.4$ | 7.4
7.5 | 7.9
7.8 | 7.5
7.3 | 7.8
7.5 | 26 | 7.7 | 7.3 | 7.5 | 7.3 | 7.3 | 7.3 | | | | | | | | 27
28 | 7.7
7.9 | 7.4
7.5 | 7.5
7.7 | 7.3
7.3 | 7.3
7.2 | 7.3
7.3 | | | | | | | | 29 | 7.9 | 7.6 | 7.7 | 7.2 | 7.2 | 7.2 | | | | | | | | 30 | 8.3 | 7.5 | 7.8 | 7.2 | 7.2 | 7.2 | | | | | | | | 31 | 8.3 | 7.8 | 8.0 | | | | | | | | | | | MONTH | 9.4 | 7.0 | 7.6 | 8.9 | 7.2 | 7.8 | DAY | MAX | MIN | MEAN | | DAY | | | | | | MEAN | | | MEAN | MAX | | MEAN | | DAY | | MIN
FEBRUARY | | | MIN
MARCH | MEAN | | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | 1 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7 | MAY
7.4 | 7.5 | | 1
2 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7
7.8 | MAY
7.4
7.6 | 7.5
7.7 | | 1 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7 | MAY
7.4
7.6
7.6 | 7.5
7.7
7.8 | | 1
2
3 |
 | FEBRUARY

 |
 | | MARCH | |
 | APRIL | | 7.7
7.8
8.0 | MAY
7.4
7.6 | 7.5
7.7 | | 1
2
3
4
5 |

 | FEBRUARY

 |

 | | MARCH |

 |

 | APRIL |

 | 7.7
7.8
8.0
8.0 | MAY 7.4 7.6 7.6 7.7 | 7.5
7.7
7.8
7.9
8.1 | | 1
2
3
4 |

 | FEBRUARY

 |

 | | MARCH |

 |

 | APRIL |

 | 7.7
7.8
8.0
8.0 | MAY
7.4
7.6
7.6
7.7 | 7.5
7.7
7.8
7.9
8.1 | | 1
2
3
4
5 | | FEBRUARY |

 |

 | MARCH | | | APRIL |

 | 7.7
7.8
8.0
8.0
8.3
8.2
7.7 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.5 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY |

 | | MARCH | |

 | APRIL |

 | 7.7
7.8
8.0
8.0
8.3
8.2
7.8
7.7 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.5 | | 1
2
3
4
5 | | FEBRUARY |

 |

 | MARCH | | | APRIL |

 | 7.7
7.8
8.0
8.0
8.3
8.2
7.7 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.5 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | | | APRIL |

 | 7.7
7.8
8.0
8.0
8.3
8.2
7.8
7.7
7.6
7.3 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.5
7.4
7.2 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY |

 | | MARCH |

 | | APRIL |

 | 7.7
7.8
8.0
8.0
8.3
8.2
7.8
7.7
7.6
7.3 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.4
7.2 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | | | APRIL |

 | 7.7
7.8
8.0
8.0
8.3
8.2
7.8
7.7
7.6
7.3 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.2 7.3 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.5
7.4
7.2 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY |

 | | MARCH | | | APRIL |

 | 7.7
7.8
8.0
8.3
8.2
7.8
7.7
7.6
7.3 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.4
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7
7.8
8.0
8.3
8.2
7.8
7.7
7.6
7.3
7.5
7.6
7.6 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 | 7.5
7.7
7.8
8.1
7.6
7.5
7.4
7.2
7.3
7.4
7.5
7.5
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7
7.8
8.0
8.0
8.3
8.2
7.8
7.6
7.3
7.5
7.5
7.6 |
MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.5
7.4
7.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7
7.8
8.0
8.0
8.3
8.2
7.8
7.7
7.6
7.3
7.5
7.6
7.6
7.6 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 | 7.5
7.7
7.8
8.1
7.6
7.5
7.5
7.4
7.5
7.5
e7.6
e7.7
e7.9
e8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7
7.8
8.0
8.0
8.3
8.2
7.8
7.7
7.6
7.3
7.5
7.5
7.6
7.6 | MAY 7.4 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.4
7.2
7.3
7.4
7.5
e7.6
e7.7
e7.9
e8.0
e8.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7
7.8
8.0
8.0
8.3
8.2
7.8
7.7
7.6
7.3
7.5
7.6
7.6
7.6 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 | 7.5
7.7
7.8
8.1
7.6
7.5
7.5
7.4
7.5
7.5
e7.6
e7.7
e7.9
e8.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.6 7.3 7.5 7.6 7.6 | MAY 7.4 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.4
7.2
7.3
7.4
7.5
e7.6
e7.7
e7.9
e8.0
e8.2
e8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.7 7.6 7.3 7.5 7.6 7.6 9.1 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 8.4 | 7.5
7.7
7.8
8.1
7.6
7.5
7.5
7.4
7.2
7.3
7.4
7.5
e7.6
e7.7
e8.0
e8.0
e8.3
e8.6
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | | | MARCH | | | APRIL | | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.6 7.3 7.5 7.6 7.6 | MAY 7.4 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.4
7.2
7.3
7.4
7.5
e7.6
e7.7
e7.9
e8.0
e8.2
e8.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | | MARCH | |

 | APRIL |

 | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.7 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 8.8 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 8.4 7.7 | 7.5
7.7
7.8
8.1
7.6
7.5
7.5
7.4
7.5
7.5
7.5
67.6
e7.7
e8.0
e8.2
e8.3
e8.6
8.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | | MARCH | |

 | APRIL |

7.9
7.8 | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.7 7.6 7.3 7.5 7.6 7.6 7.6 7.6 7.7 8.1 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 8.4 7.7 7.3 7.4 | 7.5
7.7
7.8
8.1
7.6
7.5
7.5
7.4
7.2
7.3
7.4
7.5
7.5
67.6
e7.7
e8.0
e8.2
e8.3
e8.6
8.8
4
7.5
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27 | | FEBRUARY | | | MARCH | |

8.0
8.0
7.6 | APRIL |

 | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.6 7.3 7.5 7.6 7.6 9.1 8.8 7.7 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 8.4 7.7 7.3 7.4 7.4 7.3 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.5
7.4
7.2
7.3
7.4
7.5
e7.6
e7.7
e8.0
e8.0
e8.3
e8.6
8.8
8.4
7.5
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | FEBRUARY | | | MARCH | |

8.0
8.0
7.6 | APRIL |

 | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.7 7.6 7.3 7.5 7.6 7.6 7.6 7.7 8.8 7.7 8.1 7.6 7.8 7.8 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 8.4 7.7 7.3 7.4 7.4 7.3 7.5 | 7.5
7.7
7.8
8.1
7.6
7.5
7.5
7.4
7.2
7.3
7.4
7.5
7.5
6.6
e7.7
e8.0
e8.0
e8.2
e8.3
e8.6
8.8
8.4
7.5
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | FEBRUARY | | | MARCH | |

8.0
8.0
7.6 | APRIL | | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.7 8.1 7.6 7.8 8.1 | MAY 7.4 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 8.4 7.7 7.3 7.4 7.4 7.3 7.5 7.4 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.4
7.2
7.3
7.4
7.5
e7.6
e7.7
e7.9
e8.2
e8.3
e8.6
8.8
8.8
8.4
7.5
7.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 | | FEBRUARY | | | MARCH | |

8.0
8.0
7.6 | APRIL |

 | 7.7 7.8 8.0 8.3 8.2 7.8 7.7 7.6 7.3 7.5 7.6 7.6 7.6 7.7 8.8 7.7 7.6 7.7 7.7 | MAY 7.4 7.6 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 8.4 7.7 7.3 7.4 7.4 7.3 7.5 | 7.5
7.7
7.8
8.1
7.6
7.5
7.5
7.4
7.2
7.3
7.4
7.5
7.5
6.6
8.0
8.0
8.2
8.4
7.5
7.6
7.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | | FEBRUARY | | | MARCH | |

8.0
8.0
7.6
7.8
8.2
7.8
7.6 | APRIL |

 | 7.7 7.8 8.0 8.0 8.3 8.2 7.8 7.6 7.6 7.6 7.6 9.1 8.8 7.7 8.1 7.6 7.8 8.1 8.9 | MAY 7.4 7.6 7.7 7.9 7.5 7.4 7.3 7.2 7.1 7.1 7.2 7.3 7.5 8.4 7.7 7.3 7.4 7.3 7.5 8.4 7.7 7.3 7.6 | 7.5
7.7
7.8
7.9
8.1
7.6
7.5
7.5
7.4
7.5
e7.6
e7.7
e8.0
e8.0
e8.3
e8.6
8.8
8.4
7.5
7.6
7.6
7.7 | ## 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued pH, WH, FIELD, (STANDARD UNITS), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---------------------------------|---|--|---------------------------------|--|---------------------------------|---------------------------------|---------------------------------| | | | JUNE | | | JULY | | I | AUGUST | | 5 | SEPTEMBE | R | | 1
2
3
4
5 | 8.7
8.3
8.2
7.7
7.6 | 7.6
7.5
7.4
7.4
7.3 | 8.1
7.9
7.7
7.5
7.4 | 9.1
8.7
7.8
7.7
8.0 | 7.6
7.2
7.2
7.1
7.0 | 8.6
7.6
7.4
7.3
7.3 | 8.4
8.0
8.3
8.4 | 7.2
7.2
7.3
7.2 | e8.5
7.6
7.5
7.7 | 8.5
8.5
8.0
8.0 | 7.7
7.8
7.7
7.6
7.6 | 8.1
8.1
7.9
7.7
7.9 | | 6
7
8
9
10 | 7.6
7.7
8.0
7.8
7.2 | 7.3
7.3
7.4
7.1
7.0 | 7.4
7.5
7.7
7.5
7.1 | 9.3
9.7
9.5
9.3
8.9 | 7.1
8.6
8.4
7.7
7.3 | 8.1
9.2
9.1
8.8
8.4 | 7.8
8.0
8.5
8.4
8.3 | 7.3
7.2
7.3
7.5
7.4 | 7.5
7.5
7.8
7.9
7.8 | 8.6
8.8
8.7
8.5
8.6 | 7.7
7.8
7.8
7.8
7.7 | 8.0
8.2
8.2
8.1
8.0 | | 11
12
13
14
15 | 7.5
7.7
8.6
8.3
8.9 | 7.1
7.2
7.2
7.1
7.2 | 7.2
7.4
7.5
7.4
7.9 | 8.6
8.0
8.3
9.0
9.3 | 7.0
7.2
7.2
7.3
7.7 | 7.6
7.5
7.6
8.1
8.8 | 8.4
7.4
7.9
7.2
7.6 | 7.3
7.3
7.2
7.1
7.1 | 7.7
7.3
7.4
7.1
7.3 | 8.7
8.9
8.8
8.2
8.5 | 7.8
7.9
8.1
7.8
7.8 | 8.1
8.2
8.3
8.0
7.9 | | 16
17
18
19
20 | 9.3
9.3
9.2
9.2
9.3 | 7.5
7.8
7.9
7.6
8.0 | 8.5
8.7
8.6
8.5
8.7 | 9.1
9.1
9.1
8.9
8.9 | 8.3
7.9
8.1
7.4
7.4 | 8.8
8.7
8.7
8.4
8.1 | 8.8
8.8
8.1
7.8
7.6 | 7.1
7.1
7.1
7.2
7.1 | 7.8
7.6
7.4
7.5
7.2 | 8.8
8.6
8.7
8.0
7.4 | 7.8
7.5
7.6
7.2
7.2 | 8.1
8.1
8.1
7.5
7.2 | | 21
22
23
24
25 | 9.1
9.1
9.2
9.1
9.2 | 8.0
8.0
7.9
8.1
8.0 | 8.6
8.6
8.6
8.6 | 8.8
8.5
8.2
8.2
7.8 | 8.0
7.4
7.3
7.3
7.4 | 8.6
8.0
7.6
7.6
7.6 | 7.7
8.3
8.6
7.7
8.3 | 7.1
7.2
7.2
7.2
7.2 | 7.3
7.5
7.7
7.4
7.6 | 7.5
7.6
7.9
8.4
8.6 | 7.1
7.2
7.3
7.5
7.6 | 7.3
7.3
7.5
7.8
8.1 | | 26
27
28
29
30
31 | 8.9
7.4
7.4
9.7
9.4 | 7.4
7.0
7.0
7.1
7.8 | 8.3
7.2
7.2
8.2
8.9 |
7.9
8.6
8.5
 | 7.4
7.4
7.2
 | 7.6
7.9
7.8
e7.2
e7.3
e8.2 | 8.6
8.5
8.2
8.1
8.8
9.0 | 7.4
7.5
7.4
7.5
7.7 | 8.0
7.9
7.7
7.6
7.9
8.2 | 9.2
9.2
9.0
8.9
8.7 | 8.0
8.4
8.2
8.3
8.1 | 8.6
8.8
8.6
8.5 | | MONTH | 9.7 | 7.0 | 8.0 | | | 8.0 | | | 7.6 | 9.2 | 7.1 | 8.0 | e Estimated SPECIFIC CONDUCTANCE, in $\mu s/cm$ @ $25^{\circ}C$, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |-------|-----|---------|------|------|---------|------|-----|---------|------|-----|---------|------| | | | OCTOBER | | NO | OVEMBER | | DI | ECEMBER | | | JANUARY | | | 1 | 393 | 331 | 375 | 640 | 568 | 590 | 234 | 226 | 230 | | | | | 2 | 381 | 338 | 363 | 609 | 586 | 595 | 241 | 232 | 237 | | | | | 3 | 370 | 347 | 360 | 617 | 574 | 603 | 259 | 240 | 245 | | | | | 4 | 391 | 215 | 372 | 626 | 597 | 616 | 274 | 252 | 260 | | | | | 5 | 411 | 124 | 186 | 638 | 616 | 627 | 294 | 263 | 280 | | | | | 6 | 212 | 190 | 198 | 662 | 628 | 646 | 308 | 269 | 295 | | | | | 7 | 225 | 209 | 216 | 662 | 626 | 648 | | | | | | | | 8 | 249 | 225 | 234 | 659 | 636 | 652 | | | | | | | | 9 | 261 | 242 | 250 | 669 | 621 | 657 | | | | | | | | 10 | 391 | 180 | 327 | 682 | 652 | 671 | | | | | | | | 11 | 357 | 338 | 349 | 692 | 665 | 682 | | | | | | | | 12 | 340 | 331 | 336 | 695 | 654 | 687 | | | | | | | | 13 | 335 | 329 | 333 | 706 | 680 | 700 | | | | | | | | 14 | 333 | 321 | 330 | 714 | 694 | 707 | | | | | | | | 15 | 339 | 115 | 238 | 721 | 659 | 711 | 16 | 180 | 140 | 162 | 725 | 668 | 719 | | | | | | | | 17 | 212 | 180 | 189 | 731 | 721 | 725 | | | | | | | | 18 | 226 | 204 | 214 | 737 | 719 | 730 | | | | | | | | 19 | 250 | 223 | 232 | 763 | 711 | 750 | | | | | | | | 20 | 273 | 243 | 257 | 763 | 756 | 759 | | | | | | | | 0.1 | 005 | 050 | 0.00 | 7.00 | E 0.4 | 756 | | | | | | | | 21 | 295 | 253 | 278 | 768 | 734 | 756 | | | | | | | | 22 | 329 | 288 | 304 | 773 | 764 | 768 | | | | | | | | 23 | 385 | 303 | 341 | 770 | 564 | 763 | | | | | | | | 24 | 413 | 374 | 397 | 689 | 181 | 265 | | | | | | | | 25 | 452 | 402 | 432 | 196 | 182 | 188 | | | | | | | | 26 | 477 | 447 | 461 | 194 | 188 | 191 | | | | | | | | 27 | 503 | 463 | 480 | 202 | 193 | 197 | | | | | | | | 28 | 511 | 462 | 494 | 211 | 202 | 206 | | | | | | | | 29 | 532 | 507 | 522 | 221 | 211 | 216 | | | | | | | | 30 | 562 | 526 | 537 | 226 | 218 | 221 | | | | | | | | 31 | 592 | 551 | 566 | MONTH | 592 | 115 | 333 | 773 | 181 | 575 | | | | | | | 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued SPECIFIC CONDUCTANCE, in $\mu \text{s/cm}$ @ $25^{\circ}\text{C}\text{,}$ WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |---|--|--|---|---|--|---|---|--|--|--|---|---| | | 1 | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | 689 | 633 | 662 | | 2 | | | | | | | | | | 718 | 688 | 701 | | 3 | | | | | | | | | | 753 | 717 | 738 | | 4 | | | | | | | | | | 783 | 753 | 765 | | 5 | | | | | | | | | | 799 | 524 | 788 | | 6 | | | | | | | | | | 748 | 162 | 266 | | 7 | | | | | | | | | | 399 | 157 | 320 | | 8 | | | | | | | | | | 483 | 228 | 313 | | 9 | | | | | | | | | | 586 | 372 | 442 | | 10 | | | | | | | | | | 467 | 369 | 410 | | 11 | | | | | | | | | | 685 | 179 | 496 | | 12 | | | | | | | | | | 441 | 242 | 377 | | 13 | | | | | | | | | | 692 | 441 | 579 | | 14 | | | | | | | | | | 804 | 692 | 756 | | 15 | | | | | | | | | | | | e814 | | 16 | | | | | | | | | | | | e686 | | 17 | | | | | | | | | | | | e560 | | 18 | | | | | | | | | | | | e440 | | 19 | | | | | | | | | | | | e444 | | 20 | | | | | | | | | | | | e451 | | 21 | | | | | | | | | | | | e454 | | 22 | | | | | | | | | | 457 | 380 | 425 | | 23 | | | | | | | 820 | 763 | 791 | 584 | 266 | 429 | | 24 | | | | | | | 854 | 817 | 841 | 582 | 195 | 529 | | 25 | | | | | | | 879 | 853 | 864 | 375 | 103 | 242 | | 26 | | | | | | | 901 | 879 | 893 | 440 | 373 | 410 | | 27 | | | | | | | 910 | 128 | 501 | 567 | 334 | 500 | | 28 | | | | | | | 446 | 276 | 370 | 505 | 428 | 461 | | 29 | | | | | | | 568 | 438 | 485 | 494 | 474 | 488 | | 30 | | | | | | | 635 | 563 | 601 | 499 | 456 | 487 | | 31 | | | | | | | | | | 484 | 390 | 454 | | MONTH | | | | | | | | | | | | 512 | | | | | | | | | | | | | | | | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | | | MEAN | MAX | | | | DAY | MAX | MIN
JUNE | MEAN | MAX | MIN | MEAN | | MIN
AUGUST | MEAN | MAX | MIN
SEPTEMBE | | | | | JUNE | | | JULY | | 1 | AUGUST | | | SEPTEMBE | R | | 1 | 464 | JUNE
413 | 450 | 363 | JULY
342 | 356 | | AUGUST | e374 | 415 | SEPTEMBE | R
402 | | | | JUNE | | | JULY | | 1 | AUGUST | | | SEPTEMBE | R | | 1
2
3
4 | 464
499
516
592 | JUNE 413 449 498 516 | 450
478
506
539 | 363
379
399
514 | JULY
342
341
356
257 | 356
372
382
394 |
405
418
425 | AUGUST 386 404 390 | e374
398
410
417 | 415
424
435
445 | 385
400
414
428 | 402
414
423
436 | | 1
2
3 | 464
499
516 | JUNE
413
449
498 | 450
478
506 | 363
379
399 | JULY
342
341
356 | 356
372
382 |
405
418 | AUGUST 386 404 | e374
398
410 | 415
424
435 | 385
400
414 | 402
414
423 | | 1
2
3
4
5 | 464
499
516
592
684 | JUNE 413 449 498 516 592 | 450
478
506
539
640 | 363
379
399
514
260 | JULY
342
341
356
257
220 | 356
372
382
394
240 | 405
418
425
432 | AUGUST 386 404 390 403 | e374
398
410
417
426 | 415
424
435
445
451 | 385
400
414
428
420 | 402
414
423
436
441 | | 1
2
3
4
5 | 464
499
516
592
684 | JUNE 413 449 498 516 592 678 | 450
478
506
539
640 | 363
379
399
514
260 | JULY 342 341 356 257 220 203 | 356
372
382
394
240 | 405
418
425
432
457 | AUGUST 386 404 390 403 | e374
398
410
417
426 | 415
424
435
445
451 | 385
400
414
428
420
448 | 402
414
423
436
441
455 | | 1
2
3
4
5 | 464
499
516
592
684 | JUNE 413 449 498 516 592 | 450
478
506
539
640 | 363
379
399
514
260 | JULY
342
341
356
257
220 | 356
372
382
394
240 | 405
418
425
432 | AUGUST 386 404 390 403 | e374
398
410
417
426 | 415
424
435
445
451 | 385
400
414
428
420 | 402
414
423
436
441 | | 1
2
3
4
5
6
7
8
9 | 464
499
516
592
684
695
683
670
651 | JUNE 413 449 498 516 592 678 666 647 204 | 450
478
506
539
640
687
678
660
480 | 363
379
399
514
260
221
227
241
274 | JULY 342 341 356 257 220 203 196 222 229 | 356
372
382
394
240
215
217
232
261 | 405
418
425
432
457
463
458
457 | AUGUST 386 404 390 403 403 451 445 450 | e374
398
410
417
426
444
458
452
454 | 415
424
435
445
451
462
466
479
493 | 385
400
414
428
420
448
442
463
474 | 402
414
423
436
441
455
459
469
480 | | 1
2
3
4
5 | 464
499
516
592
684
695
683
670 | JUNE 413 449 498 516 592 678 666 647 | 450
478
506
539
640
687
678
660 | 363
379
399
514
260
221
227
241 | JULY 342 341 356
257 220 203 196 222 | 356
372
382
394
240
215
217
232 | 405
418
425
432
457
463
458 | AUGUST 386 404 390 403 403 451 445 | e374
398
410
417
426
444
458
452 | 415
424
435
445
451
462
466
479 | 385
400
414
428
420
448
442
463 | 402
414
423
436
441
455
459
469 | | 1
2
3
4
5
6
7
8
9 | 464
499
516
592
684
695
683
670
651
309 | JUNE 413 449 498 516 592 678 666 647 204 221 | 450
478
506
539
640
687
678
660
480
268 | 363
379
399
514
260
221
227
241
274
303 | JULY 342 341 356 257 220 203 196 222 229 268 | 356
372
382
394
240
215
217
232
261
284 | 405
418
425
432
457
463
458
457
464 | AUGUST 386 404 390 403 403 451 445 450 455 | e374
398
410
417
426
444
458
452
454
458 | 415
424
435
445
451
462
466
479
493
503 | 385
400
414
428
420
448
442
463
474
487 | 402
414
423
436
441
455
459
469
480
493 | | 1
2
3
4
5
6
7
8
9 | 464
499
516
592
684
695
683
670
651 | JUNE 413 449 498 516 592 678 666 647 204 221 198 | 450
478
506
539
640
687
678
660
480
268 | 363
379
399
514
260
221
227
241
274
303 | JULY 342 341 356 257 220 203 196 222 229 268 300 | 356
372
382
394
240
215
217
232
261
284 | 405
418
425
432
457
463
458
457 | AUGUST 386 404 390 403 403 451 445 450 455 | e374
398
410
417
426
444
458
452
454 | 415
424
435
445
451
462
466
479
493
503 | 385
400
414
428
420
448
442
463
474 | 402
414
423
436
441
455
459
469
480
493 | | 1
2
3
4
5
6
7
8
9
10 | 464
499
516
592
684
695
683
670
651
309 | JUNE 413 449 498 516 592 678 666 647 204 221 | 450
478
506
539
640
687
678
660
480
268 | 363
379
399
514
260
221
227
241
274
303 | JULY 342 341 356 257 220 203 196 222 229 268 | 356
372
382
394
240
215
217
232
261
284 | 405
418
425
432
457
463
458
457
464 | AUGUST 386 404 390 403 403 451 445 450 455 | e374 398 410 417 426 444 458 452 454 458 | 415
424
435
445
451
462
466
479
493
503 | 385
400
414
428
420
448
442
463
474
487 | 402
414
423
436
441
455
459
469
480
493 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250 | JUNE 413 4498 516 592 678 666 647 204 221 198 163 173 213 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442 | 405
418
425
432
457
463
457
464
470
449
451
212 | AUGUST 386 404 390 403 403 451 445 450 455 433 433 136 178 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536 | | 1
2
3
4
5
6
7
8
9
10
11
12
13 | 464
499
516
592
684
695
683
670
651
309
373
311
213 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 | 450
478
506
539
640
687
678
660
480
268
328
181
192 | 363
379
399
514
260
221
227
241
274
303
325
403
437 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 | 356
372
382
394
240
215
217
232
261
284
309
382
416 | 405
418
425
432
457
463
458
457
464
470
449
451 | AUGUST 386 404 403 403 445 450 455 433 433 136 | e374 398 410 417 426 444 458 452 454 458 | 415
424
435
445
451
462
466
479
493
503
513
520
530 | 385
400
414
428
420
448
442
463
474
487
497
507
518 | 402
414
423
436
436
441
455
459
469
480
493
505
514
523 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 213 246 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229 | AUGUST 386 404 403 403 451 445 450 455 433 136 178 210 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281 | JUNE 413 4498 516 592 678 666 647 204 221 198 163 173 213 246 270 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268 | 363
379
399
514
260
221
227
241
274
303
325
403
457
459 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229 | AUGUST 386 404 404 390 403 403 451 445 450 455 433 433 136 178 210 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 | 415
424
435
445
451
462
466
479
493
503
513
520
569
568 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554 | 402
414
423
436
441
455
459
469
480
493
505
514
526
559 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 213 246 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229 | AUGUST 386 404 403 403 451 445 450 455 433 136 178 210 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333 | JUNE 413 4498 516 592 678 666 647 204 221 198 163 173 213 246 270 237 282 286 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
284
307
325 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460 | AUGUST 386 404 404 390 403 403 451 445 450 455 433 433 136 178 210 222 237 305 252 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
587
417 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
598
524 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318 | JUNE 413 449 498 516 592 678 666
647 204 221 198 163 173 213 246 270 237 282 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268
284
284 | 363
379
399
399
514
260
221
227
241
274
303
325
403
437
459
457 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338 | AUGUST 386 404 403 403 451 445 450 455 433 136 178 210 222 237 305 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
588 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 213 246 270 237 282 286 308 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268
284
307
325
337 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457
462
473
497
507 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422 | AUGUST 386 404 403 403 451 445 450 455 433 136 178 210 222 237 305 252 279 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683
419 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
587
417
337 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
598
524
373 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346 | JUNE 413 4498 498 516 592 678 666 647 204 221 198 163 173 213 246 270 237 282 286 308 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
284
307
325
337 | 363
379
514
260
221
227
241
274
303
325
403
437
459
457
455
462
473
497
507 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422 | AUGUST 386 404 404 390 403 403 451 445 450 455 433 433 136 178 210 222 237 305 252 279 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 330 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683
419 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
57
582
417
337 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
598
524
373 | | 1 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 213 246 270 237 282 286 308 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268
284
307
325
337 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457
462
473
497
507 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422 | AUGUST 386 404 403 403 451 445 450 455 433 136 178 210 222 237 305 252 279 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683
419 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
587
417
337 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
598
524
373 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346 | JUNE 413 4498 498 516 592 678 6666 647 204 221 198 163 173 213 246 270 237 282 286 308 342 370 380 402 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
284
307
325
337
359
345
416 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457
455
462
473
497
507
512
531
535 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 493 501 502 531 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
527
534 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
328 | AUGUST 386 404 404 390 403 403 445 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 307 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 330 336 311 315 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683
419
346
353
361
368 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
57
582
417
337
336
343
351
361 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
598
524
373
342
350
355
365 | | 1 2 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346
381
396
415 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 213 246 270 237 282 286 308 342 370 380 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268
284
307
325
337 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457
455
462
473
497
507 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
527 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422 | AUGUST 386 404 403 403 451 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 330 336 311 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
57
617
683
419
346
353
361 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
587
417
337 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
598
524
373
342
350
355 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 464
499
516
592
684
695
683
670
309
373
311
213
250
281
292
307
318
333
346
381
396
415
434
449 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 213 246 270 237 282 286 308 342 370 380 402 427 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268
284
2307
325
337
359
385
394
416
436 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457
455
462
473
497
507
512
531
535
539
552 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 493 501 502 531 521 |
356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
527
534
540 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
328
350 | AUGUST 386 404 403 403 451 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 307 327 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 330 336 311 315 336 | 415
424
435
451
462
466
479
493
503
513
520
530
569
568
582
57
617
683
419
346
353
361
368
369 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
782
587
417
337
336
343
351
361
366 | 402
414
423
436
441
455
459
480
493
505
514
523
536
559
567
586
598
524
373
342
350
355
365
368 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346
415
434
449 | JUNE 413 4498 498 516 592 678 6666 647 204 221 198 163 173 213 246 270 237 282 286 308 342 370 380 402 427 187 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
284
325
337
325
337
359
344
416
436 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457
455
462
473
497
507
512
531
539
552 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 493 501 502 531 521 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
534
540 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
350
359 | AUGUST 386 404 404 390 403 403 445 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 307 327 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 330 336 311 315 336 351 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683
419
346
353
361
368
369
373 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
57
582
417
337
336
343
351
361
366 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
586
524
373
342
350
355
368
368 | | 1 2 3 4 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | 464
499
516
592
684
695
683
670
309
373
311
213
250
281
292
307
318
333
346
381
396
415
434
449 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 213 246 270 237 282 286 308 342 370 380 402 427 | 450
478
506
539
640
687
678
660
480
268
328
181
192
230
268
284
2307
325
337
359
385
394
416
436 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457
455
462
473
497
507
512
531
535
539
552 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 493 501 502 531 521 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
527
534
540 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
328
350 | AUGUST 386 404 403 403 451 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 307 327 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 330 336 311 315 336 | 415
424
435
451
462
466
479
493
503
513
520
530
569
568
582
57
617
683
419
346
353
361
368
369 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
782
587
417
337
336
343
351
361
366 | 402
414
423
436
441
455
459
480
493
505
514
523
536
559
567
586
598
524
373
342
350
355
365
368 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346
415
434
449
455
359
355
354 | JUNE 413 4498 498 516 592 678 6666 647 204 221 198 163 173 246 270 237 282 286 308 342 370 380 402 427 187 336 317 336 317 316 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
284
325
337
325
337
359
345
416
436 | 363
379
379
514
260
221
227
241
274
303
325
403
437
459
457
455
462
473
497
507
512
531
539
552
554
555
561 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 411 463 473 493 501 502 531 521 543 546 219 | 356
372
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
534
540
549
549
549
549
549
549
549
549
540
540
540
540
540
540
540
540
540
540 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
350
359
381
392
401 | AUGUST 386 404 404 390 403 403 445 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 279 323 331 282 307 327 345 355 374 388 | e374 398 410 417 426 444 458 452 454 458 464 4455 200 196 218 230 2666 316 405 321 330 336 311 315 336 351 367 383 394 | 415
424
435
445
451
462
466
479
493
503
513
520
569
568
582
592
617
683
419
346
353
361
368
369
377
370
366 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
587
417
337
336
343
351
361
366
362
359
358
355 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
586
524
373
342
350
355
368
368
368
368
368
368
368 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 | 464
499
516
592
684
695
683
670
651
309
373
311
213
3250
281
292
307
318
333
346
381
396
415
434
449 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 246 270 237 282 86 308 342 370 380 402 427 187 336 317 316 308 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
230
268
284
337
337
359
345
345
339 | 363
379
399
514
260
221
227
241
274
303
325
403
437
457
455
462
473
497
507
512
531
535
539
552 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 493 501 502 531 521 543 546 219 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
527
534
540
549
552
482
482
483
6375 | 405
418
425
432
457
463
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
350
359
381
392
401
415 | AUGUST 386 404 390 403 403 451 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 307 327 345 355 374 388 396 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 330 336 311 315 336 351 367 383 394 402 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683
419
346
353
361
368
369
377
370
366
366
387 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
587
417
337
336
343
351
366
362
359
358
355
359 | 402
414
423
436
441
455
459
469
469
480
493
505
514
523
536
536
536
598
524
373
342
350
355
368
368
368
368
368
368
368
374 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346
415
434
449
455
359
355
354 | JUNE 413 4498 498 516 592 678 6666 647 204 221 198 163 173 246 270 237 282 286 308 342 370 380 402 427 187 336 317 336 317 316 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
284
325
337
325
337
359
345
416
436 |
363
379
379
514
260
221
227
241
274
303
325
403
437
459
457
455
462
473
497
507
512
531
539
552
554
555
561 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 411 463 473 493 501 502 531 521 543 546 219 | 356
372
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
534
540
549
549
549
549
549
549
549
549
540
540
540
540
540
540
540
540
540
540 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
350
359
381
392
401 | AUGUST 386 404 404 390 403 403 445 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 279 323 331 282 307 327 345 355 374 388 | e374 398 410 417 426 444 458 452 454 458 464 4455 200 196 218 230 2666 316 405 321 330 336 311 315 336 351 367 383 394 | 415
424
435
445
451
462
466
479
493
503
513
520
569
568
582
592
617
683
419
346
353
361
368
369
377
370
366 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
587
417
337
336
343
351
361
366
362
359
358
355 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
586
524
373
342
350
355
368
368
368
368
368
368
368 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31 | 464
499
516
592
684
695
683
670
651
309
373
311
213
250
281
292
307
318
333
346
415
434
449
455
359
355
354
349 | JUNE 413 4498 498 516 592 678 6666 647 204 221 198 163 173 213 246 270 237 282 286 308 342 370 380 402 427 187 336 316 308 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
284
307
325
337
359
345
416
436
427
345
345
345
345
345 | 363
379
399
514
260
221
227
241
274
303
325
403
437
457
455
462
473
497
507
512
531
535
539
552 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 493 501 502 531 521 543 546 219 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
534
540
549
548
549
548
549
548
549
549
549
549
549
549
549
549
549
549 | 405
418
425
432
457
463
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
350
359
381
392
401
415 | AUGUST 386 404 390 403 403 451 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 307 327 345 355 374 388 396 | e374 398 410 417 426 444 458 452 454 458 464 4455 200 196 218 230 2666 316 405 321 330 336 311 315 336 351 367 383 394 402 407 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683
419
346
353
361
368
369
377
370
366
387
 | 385 400 414 428 420 448 442 463 474 487 497 507 518 524 554 557 582 587 417 337 336 343 351 366 362 359 358 355 359 | 402
414
423
436
441
455
459
469
480
493
505
514
523
536
559
567
586
598
524
373
342
350
355
368
368
368
368
368
368
368
368
369
374 | | 1 2 2 3 4 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | 464
499
516
592
684
695
683
670
651
309
373
311
213
3250
281
292
307
318
333
346
381
396
415
434
449 | JUNE 413 449 498 516 592 678 666 647 204 221 198 163 173 246 270 237 282 86 308 342 370 380 402 427 187 336 317 316 308 | 450
478
539
640
687
678
660
480
268
328
181
192
230
268
284
230
268
284
337
337
359
345
345
339 | 363
379
399
514
260
221
227
241
274
303
325
403
437
459
457
452
473
497
507
512
531
535
539
552
554
555
561
 | JULY 342 341 356 257 220 203 196 222 229 268 300 322 401 433 427 433 444 441 463 473 493 501 502 531 521 543 546 219 | 356
372
382
394
240
215
217
232
261
284
309
382
416
442
446
443
456
463
473
499
504
517
527
534
540
549
552
482
482
483
6375 | 405
418
425
432
457
463
458
457
464
470
449
451
212
229
242
311
338
460
422
337
341
343
350
359
381
392
401
415
417 | AUGUST 386 404 404 390 403 403 445 445 450 455 433 136 178 210 222 237 305 252 279 323 331 282 279 323 331 282 307 327 345 355 374 388 396 385 | e374 398 410 417 426 444 458 452 454 458 464 445 200 196 218 230 266 316 405 321 330 336 311 315 336 351 367 383 394 402 | 415
424
435
445
451
462
466
479
493
503
513
520
530
569
568
582
592
617
683
419
346
353
361
368
369
377
370
366
366
387 | 385
400
414
428
420
448
442
463
474
487
497
507
518
524
554
557
582
587
417
337
336
343
351
366
362
359
358
355
359 | 402
414
423
436
441
455
459
469
469
480
493
505
514
523
536
536
536
598
524
373
342
350
355
368
368
368
368
368
368
368
374 | e Estimated ## 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued OXYGEN DISSOLVED, (mg/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | UA. | TODIN DIDE | SOLVED, (IIIS | ე/ ⊔ / , WA | IDN IDAN | OCTOBER 20 | 001 10 B | BE I BRIDBIC | 2002 | | | |---|--------------|-----------------|--------------|----------------------------------|--------------|--------------|---|--------------|--|--|--|---| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | NT/ | OVEMBER | | 7 | ECEMBER | | | JANUAR | , | | | | OCTOBER | | IN | OVEMBER | | D | ECEMBER | | | JANUAR | Ĺ | | 1 | 22.5 | 7.3 | 14.5 | 11.4 | 6.1 | 9.0 | 1.4 | 0.2 | 0.4 | | | | | 2
3 | 19.4
17.4 | 6.7 | 14.7 | 14.4 | 4.8
3.4 | 9.1 | 3.8
4.2 | 0.3 | 1.3 | | | | | 4 | 11.6 | 9.7
3.6 | 14.1
9.0 | 17.7
17.6 | 4.1 | 9.7
9.5 | 5.0 | 1.1 | 2.4
3.6 | | | | | 5 | 10.1 | 4.3 | 8.9 | 16.6 | 2.8 | 8.1 | 5.7 | 0.4 | 4.1 | | | | | | | | | | | | | | | | | | | 6
7 | 8.1
8.0 | 2.1
1.7 | 5.8
4.9 | 17.2
19.7 | 5.0
6.4 | 10.6
13.0 | 3.1 | 0.4 | 1.0 | | | | | 8 | 9.1 | 2.1 | 5.6 | 15.7 | 4.9 | 11.3 | | | | | | | | 9 | 9.0 | 4.3 | 7.1 | 13.8 | 4.2 | 8.4 | | | | | | | | 10 | 8.6 | 1.0 | 5.9 | 11.5 | 3.6 | 7.0 | | | | | | | | 11 | 2.8 | 0.5 | 1.4 | 13.5 | 1.1 | 7.0 | | | | | | | | 12 | 1.4 | 0.3 | 0.6 | 11.8 | 1.6 | 5.6 | | | | | | | | 13 | 3.8 | 0.2 | 1.7 | 11.0 | 1.1 | 6.8 | | | | | | | | 14
15 | 4.3
10.2 | 0.3 | 2.4
6.0 | 11.4
10.6 | 1.5
0.9 | 6.5
5.3 | | | | | | | | 13 | 10.2 | 0.2 | 0.0 | 10.0 | 0.9 | 5.5 | | | | | | | | 16 | 9.1 | 1.4 | 7.5 | 5.7 | 1.3 | 2.6 | | | | | | | | 17 | 7.4 | 0.5 | 4.9 | 8.0 | 0.8 | 2.8 | | | | | | | | 18
19 | 7.4
7.1 | 3.5
0.2 | 6.1
4.3 | 7.8
11.0 | 0.6
2.6 | 3.7
7.5 | | | | | | | | 20 | 8.6 | 0.5 | 4.8 | 10.5 | 1.4 | 5.9 | 21 | 7.1 | 1.1 | 5.2 | 11.6
12.4 | 3.5 | 8.4 | | | | | | | | 22
23 | 8.8
6.3 | 2.7
2.0 | 6.6
3.9 | 10.0 | 3.0
6.9 | 8.4
8.1 | | | | | | | | 24 | 6.2 | 1.1 | 4.1 | 10.0 | 4.9 | 7.8 | | | | | | | | 25 | 7.0 | 2.9 | 5.2 | 6.3 | 0.1 | 3.0 | | | | | | | | 26 | 7.2 | 2.4 | 5.0 | 2.8 | 1.3 | 2.1 | | | | | | | | 27 | 8.1 | 2.3 | 5.1 | 3.8 | 2.8 | 3.3 | | | | | | | | 28 | 9.7 | 3.5 | 7.2 | 3.6 | 0.6 | 2.7 | | | | | | | | 29
30 | 9.6
11.9 | 5.3
3.2 | 7.1
7.8 | 1.9
2.8 | 0.2 | 0.6
1.2 | | | | | | | | 31 | 11.2 | 7.5 | 9.2 | 2.0 | MONTH | 22.5 | 0.2 | 6.3 | 19.7 | 0.1 | 6.5 | DAV | млч | MTN | MEAN | MAY | MTN | MEAN | млу | MTN | MEAN | MAY | MTN | MEAN | | DAY | MAX | MIN | MEAN | | DAY | | MIN
FEBRUARY | | MAX | MIN
MARCH | MEAN | MAX | MIN
APRIL | MEAN | MAX | MIN
MAY | MEAN | | | | | | MAX | | MEAN | MAX | | | | MAY | | | DAY
1
2 | | FEBRUARY | | | MARCH | | | APRIL | MEAN
 | MAX
5.0
8.0 | | MEAN
3.7
6.3 | | 1
2
3 |
 | FEBRUARY |
 | | MARCH | |
 | APRIL | | 5.0
8.0
8.8 | MAY
2.2
4.9
4.1 |
3.7
6.3
7.5 | | 1
2
3
4 |

 | FEBRUARY |

 |

 | MARCH |

 |

 | APRIL |

 | 5.0
8.0
8.8
10.2 | MAY
2.2
4.9
4.1
6.7 | 3.7
6.3
7.5
8.4 | | 1
2
3 |
 | FEBRUARY |
 | | MARCH | |
 | APRIL | | 5.0
8.0
8.8 | MAY
2.2
4.9
4.1 | 3.7
6.3
7.5 | | 1
2
3
4
5 | | FEBRUARY |

 |

 | MARCH |

 |

 | APRIL |

 | 5.0
8.0
8.8
10.2
12.3 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 | 3.7
6.3
7.5
8.4
10.1 | | 1
2
3
4
5 | | FEBRUARY | |

 | MARCH | ==== |

 | APRIL | ==== | 5.0
8.0
8.8
10.2
12.3
10.6
8.6 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4 | | 1
2
3
4
5
6
7
8 | | FEBRUARY |

 |

 | MARCH |

 |

 | APRIL |

 | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0 | | 1
2
3
4
5 |

 | FEBRUARY | |

 | MARCH | |

 | APRIL | ====
====
==== | 5.0
8.0
8.8
10.2
12.3
10.6
8.6 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | |

 | MARCH | |

 | APRIL |

 | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9 | | 1
2
3
4
5
6
7
8
9 | | FEBRUARY | |

 | MARCH | |

 | APRIL |

 | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3 | | 1
2
3
4
5
6
7
8
9
10 | | FEBRUARY | |

 | MARCH | |

 | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 | 3.7
6.3
7.5
8.4
10.1
8.4
7.0
4.8
2.9
3.2
5.8
e5.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | FEBRUARY | |

 | MARCH | | | APRIL | | 5.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e3.6 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 4.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e3.0
e5.1
e7.3
e9.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.0
e5.1
e7.3
e9.2
e11.4 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 4.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e3.0
e5.1
e7.3
e9.2
e11.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1
 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 4.0 12.4 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.4
7.4
8.2.9
3.2
5.8
e5.2
e4.3
e3.6
e5.1
e7.3
e9.2
e11.4 | | 1
2
3
4
5
6
7
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 4.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e3.0
e5.1
e7.3
e9.2
e11.4 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | FEBRUARY | | | MARCH | | | APRIL | | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1
 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 12.4 6.8 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e7.3
e9.2
e11.4
e14.0
16.9
12.5 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 | | FEBRUARY | | | MARCH | |

9.5
8.6
3.4 | APRIL |

9.0
6.5
2.7 | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1

21.8
17.6
8.9
9.5 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 12.4 6.8 2.9 6.2 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.0
e5.1
e7.3
e9.2
e11.4
e14.0
16.9
12.5
4.9
8.2 | | 1 2 2 3 4 4 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | | FEBRUARY | | | MARCH | |

9.5
8.6
3.4
6.2
10.7 | APRIL |

9.0
6.5
2.7
5.1 | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1

21.8
17.6
8.9
9.5
7.0
8.1 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 12.4 6.8 2.9 6.2 4.8 5.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.4
7.4
8.2.9
3.2
5.8
e5.2
e4.3
e3.6
e5.1
e7.3
e9.2
e11.4
e14.0
16.9
12.5
4.9
8.2
e12.5 | | 1 2 3 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | | MARCH | |

9.5
8.6
3.4
6.2
10.7
9.2 | APRIL |

9.0
6.5
2.7
5.1
9.0
8.2 | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1

21.8
17.6
8.9
9.5
7.0
8.1
7.8 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 12.4 6.8 2.9 6.2 4.8 5.0 4.9 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e7.3
e9.2
e11.4
e14.0
16.9
12.5
4.9
8.2 | | 1 2 3 4 4 5 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | | FEBRUARY | | | MARCH | | | APRIL |

9.0
6.5
2.7
5.1
9.0
8.2
5.8 | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1

21.8
17.6
8.9
9.5
7.0
8.1
7.7
8.9
9.5 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 4.0 12.4 6.8 2.9 6.2 4.8 5.0 4.9 5.0 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e7.3
e9.2
e11.4
e14.0
16.9
12.5
4.9
8.2 | | 1 2 3 3 4 4 5 5 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 | | FEBRUARY | | | MARCH | |

9.5
8.6
3.4
6.2
10.7
9.2 | APRIL |

9.0
6.5
2.7
5.1
9.0
8.2 |
5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1

21.8
17.6
8.9
9.5
7.0
8.1
7.8 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 2.4 4.0 12.4 6.8 2.9 6.2 4.8 5.0 4.9 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.0
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e7.3
e9.2
e11.4
e14.0
16.9
12.5
4.9
8.2 | | 1 2 2 3 4 4 5 6 7 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 | | FEBRUARY | | | MARCH | |

9.5
8.6
3.4
6.2
10.7
9.2
6.5
5.2 | APRIL |

9.0
6.5
2.7
5.1
9.0
8.2
5.8
4.2 | 5.0
8.0
8.8
10.2
12.3
10.6
8.6
8.3
6.0
4.2
5.8
7.7
7.5
6.1

21.8
17.6
8.9
9.5
7.0
8.1
7.8
9.5 | MAY 2.2 4.9 4.1 6.7 7.4 6.9 5.8 5.0 2.4 1.3 0.9 2.0 4.0 12.4 6.8 2.9 6.2 4.8 5.0 4.9 5.0 6.3 | 3.7
6.3
7.5
8.4
10.1
8.4
7.4
7.4
7.4
4.8
2.9
3.2
5.8
e5.2
e4.3
e3.6
e5.1
e7.3
e9.2
e11.4
e14.0
16.9
12.5
4.9
8.2
e11.5
4.9
8.2
e11.5
4.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6.0
6 | ### BLUE RIVER BASIN 127 ## 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued OXYGEN DISSOLVED, (mg/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|---------------------------------|--------------------------------------|--------------------------------------|----------------------------------|---|---|--|--|--------------------------------------|------------------------------------|--------------------------------------| | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | lR. | | 1
2
3
4
5 | 16.6
12.5
8.8
5.8
5.8 | 9.3
5.2
3.2
2.9
1.6 | 12.8
8.7
5.6
4.3
3.2 | 14.6
10.9
7.1
6.6
8.0 | 5.5
2.4
0.8
0.9
0.1 | 10.9
5.5
3.9
3.6
3.3 | 8.8
7.4
9.0
10.0 | 1.2
0.8
1.2
0.2 | e8.7
4.9
4.1
4.9
4.5 | 14.8
11.6
9.5
9.7
12.7 | 6.1
3.6
3.2
2.3
3.2 | 10.1
8.2
6.5
5.6
7.1 | | 6
7
8
9
10 | 5.2
6.9
9.1
7.4
3.0 | 1.6
2.2
3.8
2.8
0.8 | 3.3
4.7
6.3
5.5
1.9 | 15.3
16.8
13.4
14.5
11.3 | 1.4
7.5
2.4
1.6
2.8 | 7.8
11.6
9.5
10.4
8.2 | 6.3
6.1
7.5
7.9
9.4 | 1.4
0.4
1.0
1.5
2.1 | 3.4
2.4
3.4
4.5
5.5 | 11.6
13.2
13.0
10.9
11.8 | 3.8
2.1
2.1
3.0
2.2 | 7.8
7.2
7.3
6.3
5.7 | | 11
12
13
14
15 | 6.6
6.2
9.4
9.8
12.8 | 0.8
3.3
2.5
1.7 | 2.9
5.0
4.9
4.9
7.2 | 11.1
11.1
13.8
18.4
15.8 | 1.0
1.3
2.5
3.0
6.9 | 4.5
5.6
7.3
9.8
13.1 | 8.5
2.2
6.8
2.7
5.8 | 0.4
0.1
0.1
0.1
0.3 | 3.9
0.6
1.7
0.8
2.7 | 13.8
14.9
14.4
7.5
11.8 | 3.5
3.2
3.6
2.8
3.0 | 7.3
8.2
8.7
4.4
5.4 | | 16
17
18
19
20 | 17.3
17.3
16.6
16.4
15.2 | 4.3
4.5
7.9
3.9
6.5 | 11.0
11.4
11.8
11.0
11.2 | 13.9
12.6
13.4
10.5
8.7 | 10.3
4.8
5.8
0.9
0.2 | 12.3
10.7
9.5
6.3
3.8 | 11.9
11.4
9.3
8.0
6.0 | 0.6
0.8
0.3
1.1
0.1 | 6.1
5.5
3.8
5.2
3.0 | 13.5
11.4
12.6
6.9
5.0 | 3.3
3.7
4.5
3.2
2.3 | 7.6
8.4
7.9
5.1
3.4 | | 21
22
23
24
25 | 13.6
12.4
13.7
13.2
13.2 | 7.3
5.8
5.3
5.4
5.8 | 10.5
9.3
9.4
8.9
9.2 | 8.3
9.3
7.5
8.1
6.6 | 2.1
1.2
0.0
0.6
1.1 | 5.4
4.7
2.8
3.7
4.3 | 7.6
11.6
13.0
8.7
10.8 | 0.8
1.3
0.3
1.6
0.6 | 4.0
5.6
6.5
3.7
5.1 | 6.1
6.7
8.5
11.0
12.6 | 2.4
3.3
4.1
6.2
6.8 | 4.1
4.7
6.2
7.9
9.2 | | 26
27
28
29
30
31 | 12.5
3.6
4.2
21.8
18.5 | 3.2
0.1
0.1
1.2
6.6 | 7.5
0.7
1.7
9.3
13.2 | 6.9
13.2
11.2
 | 1.2
1.8
0.7
 | 4.1
7.3
5.8
e1.4
e2.7
e8.8 | 13.3
11.1
10.5
9.2
13.8
20.5 | 1.4
2.9
2.0
1.9
1.9
3.8 | 7.7
7.2
5.7
4.9
6.1
9.7 | 19.6
18.1
17.2
15.6
13.0 | 8.7
10.4
11.7
11.3
7.2 | 12.6
13.9
14.2
13.5
10.9 | | MONTH | 21.8 | 0.1 | 7.2 | | | 6.7 | | | 4.7 | 19.6 | 2.1 | 7.8 | e Estimated TURBIDITY, (NTU), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------------------------------|--------------------------------------|--|--|---------------------------------|---------------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|----------|--------------|----------| | | | OCTOBER | | N | OVEMBER | | I | DECEMBER | | | JANUARY | | | 1
2
3
4
5 | 18
16
11
150
200 | 0.0
1.0
1.0
0.0 | 5.5
6.5
6.5
13
54 | 7.0
6.0
4.0
9.0
4.0 | 1.0
0.0
0.0
0.0
0.0 | 4.9
2.7
1.7
1.7 | 63
65
35
35
50 | 29
27
26
24
21 | 35
33
31
28
30 |

 |

 |

 | | 6
7
8
9
10 | 21
18
16
7.0
87 | 9.0
4.0
2.0
3.0
3.0 | 16
11
7.7
4.8 | 7.0
12
14
9.0
12 | 0.0
1.0
1.0
1.0 | 2.2
3.4
7.1
4.6
3.7 | 38

 | 19

 | 29

 |

 |

 |

 | | 11
12
13
14
15 | 25
12
17
9.0
130 | 10
5.0
3.0
2.0
2.0 | 18
6.6
5.4
5.6
41 | 16
16
17
20
9.0 | 1.0
1.0
1.0
0.0 | 5.5
5.9
5.5
5.4
2.9 |

 |

 |

 |

 |

 | | | 16
17
18
19
20 | 48
34
28
17
10 | 17
15
13
6.0
4.0 | 37
25
22
10
6.5 | 27
19
18
21
14 | 0.0
0.0
0.0
1.0 | 3.7
3.2
4.7
11
6.7 |

 |

 |

 |

 |

 | | | 21
22
23
24
25 | 27
21
46
15
130 | 3.0
2.0
5.0
2.0
2.0 | 4.2
4.7
13
6.3
7.7 | 18
11
67
320
220 | 4.0
1.0
4.0
24
110 | 9.3
6.4
8.2
220
160 |

 |

 |

 |

 | | | | 26
27
28
29
30
31 | 7.0
4.0
9.0
9.0
14
21 | 1.0
0.0
2.0
1.0
0.0
4.0 | 3.8
2.2
4.4
3.4
3.6
6.7 | 140
89
66
74
54 | 83
65
46
39
36 | 110
75
57
44
41 |

 |

 |

 | |

 | | | MONTH | 200 | 0.0 | 13 | 320 | 0.0 | 27 | | | | | | | 128 BLUE RIVER BASIN ### 06893562 BRUSH CREEK AT ROCKHILL ROAD IN KANSAS CITY, MO--Continued TURBIDITY, (NTU), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |----------|-----------|------------|--------------|-----------|------------|------------|-----------|------------|------------|-----------|------------|------------| | | | FEBRUARY | | | MARCH | | | APRIL | | | MAY | | | 1 | | | | | | | | | | 110 | 21 | 54 | | 2 | | | | | | | | | | 94
21 | 14 | 53 | | 4 | | | | | | | | | | 12 | 7.0
6.0 | 13
8.7 | | 5 | | | | | | | | | | 81 | 6.0 | 10 | | 6 | | | | | | | | | | 160 | 22 | 83 | | 7
8 | | | | | | | | | | 120
47 | 28
22 | 42
38 | | 9 | | | | | | | | | | 39 | 17 | 26 | | 10 | | | | | | | | | | 27 | 9.0 | 18 | | 11 | | | | | | | | | | 160 | 7.0 | 32 | | 12
13 | | | | | | | | | | 71
29 | 28
14 | 47
20 | | 14 | | | | | | | | | | 25 | 1.0 | 10 | | 15 | | | | | | | | | | | | e2.6 | | 16 | | | | | | | | | | | | e34 | | 17
18 | | | | | | | | | | | | e30
e30 | | 19 | | | | | | | | | | | | e15 | | 20 | | | | | | | | | | | | e12 | | 21 | | | | | | | | | | | | e9.0 | | 22
23 | | | | | | | 28 | 18 | 20 | 22
96 | 10
11 | 14
20 | | 24 | | | | | | | 26 | 13 | 18 | 300 | 15 | 33 | | 25 | | | | | | | 14 | 2.0 | 5.5 | 420 | 29 | 64 | | 26 | | | | | | | 7.0 | 2.0 | 3.8 | 32 | 20 | 27 | | 27 | | | | | | | 320 | 4.0 | 83 | 42 | 6.0 | 16 | | 28
29 | | | | | | | 72
51 | 36
31 | 50
36 | 35
5.0 | 2.0
1.0 | 4.2
2.5 | | 30 | | | | | | | 180 | 29 | 59 | 48 | 2.0 | 7.0 | | 31 | | | | | | | | | | 37 | 5.0 | 11 | | MONTH | | | | | | | | | | | | 25 | | DAY | MAX | MIN | MEAN | | | | JUNE | | | JULY | | | AUGUST | | | SEPTEMB | ER | | 1 | 16 | 6.0 | 9.9 | 13 | 3.0 | 6.3 | | | e4.0 | | | e10 | | 2 | | | e9.0 | 21 | 1.0 | 4.2 | 10 | 2.0 | 5.3 | | | e10 | | 3
4 | | | e8.0
e7.0 | 10
23 | 0.0 | 2.8
8.2 | 12
13 | 2.0
2.0 | 4.4
3.9 | | | e10
e10 | | 5 | 14 | 2.0 | 6.1 | 14 | 0.0 | 4.9 | 33 | 1.0 | 4.9 | | | e10 | | 6 | 15 | 1.0 | 3.0 | 14 | 1.0 | 3.4 | 14 | 2.0 | 6.1 | | | e10 | | 7 | 12 | 2.0 | 3.7 | 13 | 2.0 | 5.2 | 21 | 3.0 | 7.0 | | | e10 | | 8
9 | 12
170 | 2.0 | 3.6
19 | 10
20 | 3.0
5.0 | 6.1
8.7 | 18
15 | 3.0
3.0 | 7.4
6.3 | | | e10
e10 | | 10 | 29 | 3.0 | 15 | 21 | 5.0 | 11 | 22 | 4.0 | 6.6 | | | e10 | | 11 | 170 | 1.0 | 11 | 24 | 5.0 | 13 | 19 | 3.0 | 7.1 | | | e10 | | 12 | 160 | 10 | 45 | 14 | 2.0 | 7.3 | 28 | 5.0 | 14 | | | e10 | | 13
14 | 18 | 6.7
5.2 | 11
6.9 | 17
19 | 6.0
7.0 | 10
11 | 660
80 | 11 | 110
37 | | | e10 | | 15 | 10
21 | 2.6 | 5.4 | 31 | 7.0 | 16 | 61 | 21
16 | 26 | | | e12
e11 | | 16 | 12 | 4.0 | 6.4 | 46 | 10 | 18 | 77 | 26 | 42 | | | e10 | | 17 | 20 | 5.2 | 9.5 | 23 | 13 | 17 | 500 | 48 | 150 | 30 | 6.0 | 10 | | 18 |
26 | 5.8 | 9.4 | 25 | 9.0 | 17 | 1500 | 0.0 | 150 | 29 | 5.0 | 12 | | 19
20 | 27
19 | 7.2
5.9 | 12
9.9 | 25
33 | 7.0
5.0 | 15
12 | 68
34 | 0.0
15 | 22
21 | 40
19 | 7.0
5.0 | 15
9.4 | | | | | | | | | | | | | | | | 21
22 | 120
51 | 6.3
6.7 | 13
12 | 10
15 | 5.0
4.0 | 7.5
9.0 | 91
 | 14 | 30
e15 | 19
21 | 3.0
3.0 | 5.8
5.3 | | 23 | 100 | 7.1 | 15 | 20 | 4.0 | 11 | | | e20 | 16 | 2.0 | 4.1 | | 24 | 67 | 7.7 | 12 | 12 | 3.0 | 8.1 | | | e10 | 8.0 | 1.0 | 3.5 | | 25 | 29 | 8.1 | 11 | 11 | 3.0 | 6.3 | | | e10 | 27 | 2.0 | 3.9 | | 26 | 160 | 7.0 | 34 | 9.0 | 3.0 | 4.7 | | | e10 | 14 | 0.0 | 4.0 | | 27
28 | 200
29 | 12
4.0 | 54
11 | 12
170 | 4.0 | 6.0
18 | | | e10
e10 | 19
36 | 1.0
2.0 | 4.4
5.7 | | 28
29 | 29
27 | 3.0 | 5.9 | 170 | 4.0 | e22 | | | e10
e10 | 13 | 1.0 | 3.5 | | 30 | 16 | 5.0 | 7.2 | | | e5.7 | | | e10 | 22 | 2.0 | 4.3 | | 31 | | | | | | e2.7 | | | e10 | | | | | MONTH | | | 13 | | | 9.6 | | | 25 | | | 8.5 | e Estimated ### BLUE RIVER BASIN 129 ### 06893590 BLUE RIVER AT 12TH STREET IN KANSAS CITY, MO LOCATION.--Lat 39°05'48", long 94°29'26" in NW $\frac{1}{4}$ NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec. 6, T.49 N., R.32 W., Jackson County, Hydrologic Unit 10300101, on left downstream end of Twelfth Street Bridge, 5.0 mi above Missouri River, and at river mile 4.3. DRAINAGE AREA.--258 mi². PERIOD OF RECORD.--Sept. 3, 1980 to current year. Stage only from Sept. 3, 1980 to Sept. 30, 1999. GAGE.--Water-stage recorder. Datum of gage 714.41 ft above National Geodetic Vertical Datum of 1929. Prior to May 20, 1997, datum of gage 10 ft higher. REMARKS.--Records fair except estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum discharge of 34,900 ft³/s during flood of Sept. 13, 1977. | | | DISCHAR | GE, CUBIC | FEET PER | | JATER YE
MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--------------------------------------|-------------------------------------|--|-------------------------------------|-----------------------------------|--------------------------------------|---|---|------------------------------------|---|------------------------------------|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 46
e39
e38
e42
978 | e35
e34
e32
e37
e40 | e37
e37
e37
e37
e33 | e42
e42
e43
e47
e48 | 370
250
216
190
137 | 66
83
85
73
75 | e45
e36
e38
e39
e40 | 221
198
172
155
149 | 167
148
136
129
245 | 36
35
34
53
75 | 37
31
31
34
33 | 33
32
30
29
32 | | 6
7
8
9
10 | 178
77
60
52
102 | e38
e43
e41
e35
e37 | e35
e35
e34
e34
e35 | e48
e45
42
45
45 | 109
95
89
85
81 | 80
76
73
319
130 | 43
45
107
322
91 | 1070
816
1250
2250
736 | 141
121
111
180
289 | 42
38
72
43
46 | 32
31
31
29
26 | 33
33
34
36
36 | | 11
12
13
14
15 | 85
53
49
47
551 | e42
e41
42
42
42 | e39
e90
270
89
67 | 43
44
42
44
42 | 75
69
64
61
59 | 95
88
77
72
68 | 69
65
61
56
52 | 1120
6370
2470
689
441 | 156
1390
291
118
88 | 53
101
47
44
33 | 26
40
945
169
66 | 38
35
35
72
106 | | 16
17
18
19
20 | 602
123
89
79
59 | e38
e36
e40
60
45 | 62
58
55
e52
e52 | 42
43
46
50
58 | 57
56
54
370
908 | 65
62
60
60 | 50
49
49
241
405 | 513
577
463
262
218 | 73
63
60
53
47 | 30
27
26
28
502 | 53
57
83
162
130 | 59
43
42
300
129 | | 21
22
23
24
25 | 53
53
55
60
58 | e37
e38
e37
233
89 | e52
e52
e50
e49
e48 | 57
53
50
49
44 | 241
134
106
93
84 | e59
e56
e56
e55
e57 | 3900
903
365
249
198 | 186
174
189
272
4950 | 47
42
40
37
39 | 62
41
36
34
33 | 57
49
66
48
39 | 59
45
39
38
35 | | 26
27
28
29
30
31 | 46
48
e38
e35
e32
e30 | 53
51
46
44
e39 | e46
e46
e48
e50
e50
e48 | 42
42
43
44
120
1070 | 77
70
66

 | 60
e56
e82
89
e55
e50 | 172
1390
1420
417
272 | 1040
628
429
273
218
189 | 103
339
61
44
39 | 26
26
50
315
79
46 | 39
38
35
35
32
32 | 35
34
34
30
29 | | MEAN
MAX
MIN | 124
978
30 | 48.9
233
32 | 55.7
270
33 | 81.1
1070
42 | 152
908
54 | 78.8
319
50 | 373
3900
36 | 925
6370
149
YEAR (WY) | 160
1390
37 | 68.2
502
26 | 81.2
945
26 | 52.2
300
29 | | MEAN
MAX
(WY)
MIN
(WY) | 130
210
2001
54.4
2000 | 79.0
132
2001
48.9
2002 | 53.9
55.7
2002
52.1
2001 | 87.7
149
2001
32.5
2000 | 256
478
2001
141
2000 | 186
325
2001
78.8
2002 | 296
463
2001
50.8
2000 | 468
925
2002
139
2000 | 685
1542
2001
160
2002 | 151
209
2000
68.2
2002 | 106
167
2001
68.7
2000 | 116
180
2001
52.2
2002 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEAR | 2 | FOR 2002 | WATER YEA | R | WATER YEA | ARS 2000 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN | | | 334
9480
30 | Jun 6
Oct 31 | i 6 | 184
5370
26 J | May 1
ul 18,26,2
Aug 10,1 | 7, | 266
348
184
9480
22 | | 2001
2002
6 2001
LO 1999 | | | ANNUAL SEVEN-DAY MINIMUM
MAXIMUM PEAK FLOW
MAXIMUM PEAK STAGE
INSTANTANEOUS LOW FLOW
10 PERCENT EXCEEDS
50 PERCENT EXCEEDS
90 PERCENT EXCEEDS | | | | 34

586
105
41 | Oct 29 | 8
18 | 30
8680
8.30
23 Jul 1
320
53
34 | Aug 10,1
Aug
May 1
May 1
8,26,Aug 1 | 5
2
2 | 24
13300
21.80
20
453
72
37 | Jun
Jun | 10 1999
6 2001
6 2001
9 2000 | e Estimated 130 LITTLE BLUE RIVER BASIN ### 06893791 LONGVIEW RESERVOIR AT KANSAS CITY, MO LOCATION.--Lat $38^{\circ}55^{\circ}29^{\circ}$, long $94^{\circ}27^{\circ}35^{\circ}$, in SE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ Sec.4, T.48 N., R.32 W., Jackson County, Hydrologic Unit 10300101, in the U.S. Army Corps of Engineers Administration Building at the right end of dam on Little Blue River at Kansas City and 3.1 mi upstream from Cedar Creek. DRAINAGE AREA. -- 50.3 mi². PERIOD OF RECORD. -- October 1985 to current year. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of REMARKS.--Lake is formed by a rolled earthfill type dam. Closure began June 16, 1983. Storage began on Sept. 16, 1985. An uncontrolled limited service type spillway 200 ft wide is located at the left abutment. Capacity of surcharge pool 35,370 ac-ft (909.0 ft to 922.9 ft); of flood control pool 24,800 ac-ft (elevation 891.0 ft to 909.0 ft); and of multipurpose pool 22,100 ac-ft (elevation 816.0 ft to 891.0 ft). Lake is used for flood control, water-quality control, recreation, and fish and wildlife enhancement. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 37,100 ac-ft, May 16, 1990, elevation, 903.36 ft; minimum, 2,680 ac-ft, Oct. 1, 1985, elevation, 849.40 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 28,100 ac-ft, May 12, elevation, 896.67 ft; minimum, 21,500 ac-ft, Sept. 14, elevation, 890.33 ft. ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 0800 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 891.17
891.15
891.12
891.10
891.25 | 891.10
891.09
891.09
891.08 | 890.94
890.94
890.94
890.94 | 890.79
890.78
890.78
890.77 | 891.48
891.50
891.53
891.49
891.45 | 891.23
891.25
891.24
891.22 | 891.10
891.08
891.06
891.06 | 891.76
891.64
891.54
891.46
891.41 | 891.62
891.54
891.45
891.32 | 890.98
890.96
890.95
890.94
890.93 | 890.81
890.78
890.76
890.75 | 890.68
890.68
890.65
890.64 | | 6
7
8
9
10 | 891.32
891.29
891.26
891.22 | 891.08
891.08
891.07
891.06
891.05 | 890.95
890.95
890.94
890.94 | 890.76
890.76
890.76
890.76 | 891.41
891.37
891.34
891.32 | 891.21
891.21
891.21
891.29
891.30 |
891.05
891.05
891.06
891.18
891.18 | 891.37
891.76
892.44
893.82
893.08 | 891.30
891.24
891.18
891.16
891.20 | 890.92
890.90
890.88
890.86 | 890.73
890.71
890.68
890.66 | 890.58
890.52
890.52
890.50
890.49 | | 11
12
13
14
15 | 891.22
891.20
891.19
891.17
891.15 | 891.05
891.04
891.04
891.03 | 890.93
890.93
891.02
891.01
890.99 | 890.77
890.77
890.78
890.77 | 891.26
891.23
891.21
891.20
891.18 | 891.29
891.27
891.24
891.23 | 891.19
891.18
891.17
891.17 | 892.99
896.67
895.86
894.32
893.26 | 891.20
893.52
892.92
892.43
892.10 | 890.84
890.95
890.96
890.95 | 890.64
890.64
890.77
890.85
890.85 | 890.44
890.37
890.35
890.33 | | 16
17
18
19
20 | 891.46
891.43
891.38
891.34
891.31 | 891.02
891.01
891.01
891.01 | 890.98
890.96
890.95
890.93 | 890.76
890.76
890.75
890.78
890.79 | 891.16
891.15
891.14
891.19
891.57 | 891.20
891.19
891.18
891.17 | 891.15
891.14
891.14
891.17
891.21 | 892.65
892.52
892.50
892.20
891.97 | 891.85
891.63
891.52
891.42
891.34 | 890.93
890.89
890.88
890.88 | 890.84
890.83
890.83
890.90 | 890.35
890.35
890.34
890.47
890.53 | | 21
22
23
24
25 | 891.29
891.27
891.27
891.27 | 891.00
890.99
890.98
891.00
891.00 | 890.90
890.89
890.88
890.87
890.86 | 890.78
890.78
890.78
890.78 | 891.55
891.50
891.46
891.41
891.34 | 891.15
891.14
891.12
891.10
891.10 | 891.98
892.04
891.88
891.73
891.59 | 891.81
891.70
891.59
891.56
893.68 | 891.28
891.24
891.19
891.15
891.12 | 890.92
890.89
890.80
890.79
890.77 | 890.82
890.81
890.85
890.83
890.82 | 890.52
890.50
890.47
890.45
890.44 | | 26
27
28
29
30
31 | 891.21
891.19
891.16
891.12
891.12 | 890.99
890.98
890.97
890.95
890.95 | 890.85
890.84
890.81
890.80
890.80 | 890.78
890.77
890.76
890.76
890.85
891.34 | 891.32
891.28
891.26
 | 891.10
891.10
891.10
891.11
891.10 | 891.51
891.52
892.40
892.13
891.91 | 893.09
892.63
892.33
892.07
891.90 | 891.09
891.10
891.07
891.04
891.01 | 890.73
890.73
890.71
890.82
890.85
890.83 | 890.80
890.78
890.76
890.75
890.73 | 890.43
890.41
890.40
890.38
890.38 | | MAX
MIN | 891.46
891.10 | 891.10
890.95 | 891.02
890.79 | 891.34
890.75 | 891.57
891.14 | 891.30
891.10 | 892.40
891.05 | 896.67
891.37 | 893.52
891.01 | 890.98
890.71 | 890.91
890.64 | 890.68
890.33 | | (-)
(=) | 22200
-100 | 22100
-100 | 22000
-100 | 22500
+500 | 22400
-100 | 22200
-200 | 23000
+800 | 22900
-100 | 22100
-800 | 22000
-100 | 21900
-100 | 21600
-300 | CAL YR 2001...-200 WTR YR 2002....-700 ⁽⁻⁾ Contents, in acre-feet, at the end of the month.(=) Change in contents, in acre-feet. ### LITTLE BLUE RIVER BASIN 131 ### 06893885 BLUE SPRINGS RESERVOIR NEAR BLUE SPRINGS, MO LOCATION.--Lat 39°01'03", long 94°20'06", sec.33, T.49 N., R.31 W., Jackson County, Hydrologic Unit 10300101, in maintenance building at right end of dam on East Fork Little Blue River, 2.2 mi west of Blue Springs, and 2.5 mi upstream from mouth. DRAINAGE AREA. -- 32.8 mi². PERIOD OF RECORD. -- August 1988 to current year. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). REMARKS.--Lake is formed by a rolled earthfill type dam. An uncontrolled limited service type spillway 300 ft wide is located on left abutment. Capacity of surcharge pool, 3,310 ac-ft (elevation 820.3 to 823.6 ft); of flood control pool, 1,590 ac-ft (elevation 802.0 to 820.3 ft); and of multipurpose pool, 10,640 ac-ft (elevation 760.0 to 802.0 ft). U.S. Army Corps of Engineers satellite telemeter at station. COOPERATION.--Records provided by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 22,800 ac-ft, May 17, 1990, elevation, 816.37 ft; minimum contents, 142 ac-ft, Oct. 22, 29, 30, and Nov. 1-11, 1988, elevation, 773.10 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 15,700 ac-ft, May 13, elevation, 808.28 ft; minimum, 9,430 ac-ft, Jan. 18 elevation, 800.00 ft. ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 0800 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 802.55
802.51
802.49
802.45
802.53 | 802.34
802.31
802.30
802.30
802.28 | 802.10
802.10
802.09
802.10
802.11 | 800.31
800.23
800.14
800.12
800.11 | 800.50
800.61
800.72
800.83
800.92 | 802.43
802.44
802.45
802.44
802.43 | 802.21
802.20
802.18
802.17
802.16 | 803.08
803.00
802.90
802.84
802.77 | 802.99
802.88
802.79
802.70
802.68 | 802.11
802.09
802.07
802.04
802.08 | 801.79
801.76
801.74
801.73 | 801.49
801.48
801.45
801.43
801.42 | | 6 | 802.54 | 802.28 | 802.12 | 800.10 | 801.02 | 802.43 | 802.16 | 802.82 | 802.60 | 802.05 | 801.70 | 801.41 | | 7 | 802.52 | 802.27 | 802.11 | 800.10 | 801.08 | 802.42 | 802.17 | 803.10 | 802.56 | 802.05 | 801.68 | 801.40 | | 8 | 802.51 | 802.25 | 802.05 | 800.10 | 801.16 | 802.42 | 802.16 | 803.33 | 802.51 | 802.03 | 801.64 | 801.38 | | 9 | 802.48 | 802.25 | 801.98 | 800.10 | 801.25 | 802.44 | 802.23 | 804.85 | 802.46 | 802.01 | 801.62 | 801.36 | | 10 | 802.47 | 802.23 | 801.90 | 800.10 | 801.30 | 802.44 | 802.23 | 805.01 | 802.46 | 801.99 | 801.60 | 801.34 | | 11
12
13
14
15 | 802.47
802.44
802.44
802.42
802.39 | 802.22
802.21
802.20
802.21
802.19 | 801.82
801.76
801.76
801.70
801.63 | 800.10
800.08
800.07
800.05
800.04 | 801.37
801.42
801.47
801.52
801.53 | 802.43
802.42
802.41
802.41
802.38 | 802.23
802.23
802.23
802.22
802.22 | 804.70
806.60
808.28
807.63
806.68 | 802.43
802.54
802.54
802.54
802.52 | 801.98
802.05
802.05
802.03
802.02 | 801.59
801.57
801.58
801.57 | 801.32
801.29
801.28
801.27
801.30 | | 16 | 802.55 | 802.19 | 801.54 | 800.02 | 801.59 | 802.37 | 802.22 | 805.70 | 802.50 | 802.01 | 801.55 | 801.29 | | 17 | 802.54 | 802.18 | 801.48 | 800.01 | 801.63 | 802.36 | 802.22 | 804.72 | 802.47 | 802.01 | 801.55 | 801.27 | | 18 | 802.54 | 802.18 | 801.40 | 800.00 | 801.66 | 802.35 | 802.25 | 804.10 | 802.44 | 802.00 | 801.55 | 801.30 | | 19 | 802.53 | 802.19 | 801.32 | 800.01 | 801.74 | 802.34 | 802.26 | 803.69 | 802.42 | 801.98 | 801.61 | 801.33 | | 20 | 802.52 | 802.18 | 801.26 | 800.02 | 802.04 | 802.33 | 802.28 | 803.41 | 802.39 | 801.96 | 801.60 | 801.35 | | 21 | 802.50 | 802.17 | 801.18 | 800.03 | 802.17 | 802.31 | 802.74 | 803.19 | 802.37 | 801.95 | 801.59 | 801.32 | | 22 | 802.50 | 802.16 | 801.12 | 800.04 | 802.27 | 802.29 | 802.92 | 803.04 | 802.34 | 801.94 | 801.57 | 801.30 | | 23 | 802.48 | 802.14 | 801.04 | 800.05 | 802.35 | 802.27 | 802.98 | 802.94 | 802.30 | 801.91 | 801.57 | 801.28 | | 24 | 802.48 | 802.15 | 800.95 | 800.05 | 802.40 | 802.26 | 802.97 | 802.86 | 802.27 | 801.88 | 801.60 | 801.27 | | 25 | 802.46 | 802.15 | 800.87 | 800.05 | 802.41 | 802.27 | 802.92 | 803.80 | 802.25 | 801.87 | 801.59 | 801.25 | | 26
27
28
29
30
31 | 802.42
802.40
802.38
802.36
802.35
802.34 | 802.13
802.13
802.12
802.11
802.10 | 800.80
800.70
800.63
800.55
800.47
800.40 | 800.05
800.06
800.04
800.03
800.05
800.31 | 802.44
802.43
802.44
 | 802.25
802.25
802.24
802.24
802.23
802.22 | 802.85
802.87
803.21
803.24
803.17 | 804.23
803.99
803.69
803.47
803.26
803.11 | 802.22
802.21
802.19
802.16
802.14 | 801.85
801.83
801.80
801.83
801.82
801.80 | 801.58
801.57
801.55
801.54
801.51
801.51 | 801.24
801.21
801.21
801.19
801.19 | | MEAN | 802.47 | 802.20 | 801.45 | 800.08 | 801.58 | 802.35 | 802.47 | 804.09 | 802.46 | 801.97 | 801.61 | 801.32 | | MAX | 802.55 | 802.34 | 802.12 | 800.31 | 802.44 | 802.45 | 803.24 | 808.28 | 802.99 | 802.11 | 801.79 | 801.49 | | MIN | 802.34 | 802.10 | 800.40 | 800.00 | 800.50 | 802.22 | 802.16 | 802.77 | 802.14 | 801.80 | 801.51 | 801.19 | | (-) | 11100 | 11000 | 9720 | 9660 | 11900 | 11000 | 11700 | 11700 | 11000 | 10700 | 10500 | 10300 | | (=) | -200 | -100 | -1280 | -60 | +2240 | -900 | +700 | 0 | -700 | -300 | -200 | -200 | CAL YR 2001...-1280 WTR YR 2002...-1000 ⁽⁻⁾ Contents, in acre-feet, at the end of the month. ⁽⁼⁾ Change in contents, in acre-feet. 132 LITTLE BLUE RIVER BASIN ### 06894000 LITTLE BLUE RIVER NEAR LAKE CITY, MO LOCATION.--Lat 39°06'02", long 94°18'01", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.35, T.50 N., R.31 W., Jackson County, Hydrologic Unit 10300101, on right bank 50 ft downstream from bridge on west bound
lane of State Highway 78, 3.0 mi southwest of Lake City, and 10.5 mi upstream from mouth. DRAINAGE AREA. -- 184 mi². PERIOD OF RECORD. -- March 1948 to current year. GAGE.--Water-stage recorder. Datum of gage is 719.15 ft above National Geodetic Vertical Datum of 1929. Prior to July 24, 1957, nonrecording gage at site 50 ft downstream at same datum; July 24, 1957, to Apr. 28, 1977, water-stage recorder; Apr. 29, 1977, to May 10, 1979, nonrecording gage; May 11, 1979, to Sept. 12, 1983, water-stage recorder at site 50 ft upstream at present datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. | | | DISCHARG | GE, CUBIC | FEET PER | | WATER YE | EAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|----------------------------------|----------------------------|---|-----------------------------------|------------------------|---|---|---|--|--------------------------------------|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 44 | 30 | 16 | 31 | 180 | 51 | 26 | 292 | 225 | 20 | 6.3 | 3.7 | | 2 | 40 | 29 | 16 | 31 | 153 | e55 | 24 | 254 | 192 | 18 | 5.2 | 3.4 | | 3 | 40 | 28 | 16 | 30 | 147 | e52 | 24 | 225 | 166 | 17 | 5.3 | 3.6 | | 4 | 37 | 26 | 17 | 16 | 128 | e45 | 21 | 202 | 148 | 21 | 5.9 | 3.8 | | 5 | 325 | 27 | 20 | 11 | 101 | e52 | 21 | 184 | 142 | 22 | 5.8 | 3.8 | | 6 | 120 | 24 | 24 | 13 | 82 | 57 | 21 | 1830 | 125 | 20 | 6.7 | 3.8 | | 7 | 72 | 23 | 22 | 12 | 73 | 53 | 25 | 893 | 109 | 17 | 5.7 | 3.9 | | 8 | 60 | 22 | 46 | 12 | 66 | 57 | 61 | 1200 | 97 | 30 | 5.5 | 4.1 | | 9 | 51 | 22 | 46 | 13 | 62 | 136 | 107 | 2310 | 90 | 14 | 5.2 | 4.5 | | 10 | 54 | 21 | 45 | 14 | 58 | 85 | 58 | 1220 | 101 | 10 | 5.3 | 4.7 | | 11 | 54 | 21 | 45 | 13 | 51 | 68 | 44 | 2230 | 96 | 33 | 5.1 | 4.8 | | 12 | 44 | 20 | 68 | 12 | 46 | 62 | 46 | 4320 | 516 | 98 | 5.5 | 4.9 | | 13 | 39 | 19 | 101 | 12 | 42 | 63 | 41 | 2040 | 481 | 38 | 9.3 | 4.8 | | 14 | 35 | 21 | 55 | 11 | 39 | 52 | 40 | 1590 | 324 | 19 | 27 | 5.0 | | 15 | 185 | 29 | 44 | 10 | 38 | 46 | 40 | 1170 | 237 | 14 | 10 | 5.3 | | 16 | 232 | 23 | 41 | 10 | 35 | 45 | 41 | 985 | 186 | 11 | 6.7 | 4.3 | | 17 | 102 | 21 | 39 | 10 | 33 | 46 | 41 | 838 | 151 | 9.4 | 5.7 | 4.0 | | 18 | 79 | 21 | 40 | 9.8 | 31 | 49 | 40 | 661 | 127 | 8.5 | 8.2 | 4.0 | | 19 | 66 | 33 | 39 | 11 | 205 | 48 | 145 | 477 | 108 | 7.7 | 22 | 37 | | 20 | 58 | 22 | 37 | 14 | 481 | 44 | 312 | 371 | 88 | 7.0 | 59 | 25 | | 21 | 53 | 20 | 33 | 12 | 166 | 41 | 2170 | 305 | 76 | 6.7 | 11 | 6.7 | | 22 | 49 | 19 | 35 | 12 | 117 | 37 | 502 | 261 | 63 | 6.2 | 6.7 | 4.3 | | 23 | 59 | 18 | 34 | 17 | 91 | 35 | 330 | 223 | 54 | 6.8 | 32 | 3.5 | | 24 | 47 | 28 | 34 | 27 | 79 | 35 | 265 | 221 | 44 | 6.2 | 28 | 3.1 | | 25 | 43 | 26 | 34 | 26 | 72 | 44 | 220 | 3160 | 38 | 5.7 | 8.0 | 3.0 | | 26
27
28
29
30
31 | 38
35
32
33
31
30 | 22
21
18
17
17 | 34
34
33
31
31 | 25
24
23
24
74
389 | 69
56
53

 | 44
32
40
35
29
27 | 197
1020
686
438
349 | 1010
752
533
400
319
263 | 36
62
36
27
23 | 5.3
5.0
5.0
21
21
9.1 | 5.3
4.4
4.1
3.8
3.8
3.9 | 2.8
2.8
2.8
3.2
3.7 | | MEAN | 70.6 | 22.9 | 36.8 | 30.6 | 98.4 | 50.5 | 245 | 992 | 139 | 17.2 | 10.5 | 5.81 | | MAX | 325 | 33 | 101 | 389 | 481 | 136 | 2170 | 4320 | 516 | 98 | 59 | 37 | | MIN | 30 | 17 | 16 | 9.8 | 31 | 27 | 21 | 184 | 23 | 5.0 | 3.8 | 2.8 | | IN. | 0.44 | 0.14 | 0.23 | 0.19 | 0.56 | 0.32 | 1.49 | 6.21 | 0.84 | 0.11 | 0.07 | 0.04 | | STATISTI | ICS OF MO | NTHLY MEAN | N DATA FO | R WATER Y | EARS 1948 | - 2002, | , BY WATER Y | YEAR (WY) | | | | | | MEAN | 134 | 109 | 89.0 | 87.2 | 132 | 192 | 249 | 281 | 272 | 144 | 92.0 | 154 | | MAX | 983 | 854 | 495 | 357 | 576 | 1153 | 1069 | 1534 | 1216 | 1103 | 1455 | 1018 | | (WY) | 1987 | 1962 | 1993 | 1993 | 1985 | 1973 | 1983 | 1995 | 1967 | 1993 | 1982 | 1961 | | MIN | 0.13 | 0.49 | 1.36 | 1.36 | 3.09 | 4.15 | 11.3 | 27.9 | 10.3 | 0.26 | 0.02 | 0.20 | | (WY) | 1954 | 1957 | 1956 | 1957 | 1957 | 1956 | 1954 | 1988 | 1953 | 1954 | 1953 | 1953 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | ıR | FOR 2002 V | VATER YEA | AR | WATER YE | ARS 1948 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 214
4960
11
16

15.83
430
90
22 | Jun
Jan
Jan | 2 | 4320
2.8
3.0
5130
16.76
2.7
10.63
297
35
5.3 | May 1
Sep 26-2
Sep 26-2
May 2
May 2
Sep 26-2 | 28
23
25
25 | 162
440
11.5
27700
0.00
42300
27.94
0.00
11.94
317
48
8.1 | Severa
Severa
Aug
Sep | | | e Estimated ### MISSOURI RIVER MAIN STEM 133 ### 06895500 MISSOURI RIVER AT WAVERLY, MO LOCATION.--Lat 39°12'54", long 93°30'54", sec.14, T.51 N., R.23 W., Lafayette County, Hydrologic Unit 10300101, on downstream side of pier of bridge on State Highway 24 and U.S. Highway 65 at Waverly and at mile 293.5. DRAINAGE AREA.--485,900 mi^2 . The 3,959 mi^2 in Great Divide basin are not included. PERIOD OF RECORD.--October 1928 to current year. Gage-height records collected at same site 1878-79, 1883-99 are contained in reports of the Missouri River Commission; since 1915 in reports of the National Weather Service. Daily discharge not computed Apr. 1, 1977, to Mar. 31, 1978. REVISED RECORDS.--WDR MO-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 646.00 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 1, 1934, at datum 5.00 ft lower; Mar. 30, 1929, to Apr. 4, 1934, nonrecording gage; Apr. 5, 1934, to June 13, 1943, water-stage recorder; June 14, 1943, to Sept. 15, 1944, nonrecording gage; Sept. 16, 1944, to May 28, 1969, water-stage recorder all at present site and datum; May 29, 1969, to Jan. 8, 1984, water-stage recorder at site 450 ft downstream, present datum; Jan. 9, 1984, to May 24, 1984, nonrecording gage at present site and datum. REMARKS.--Records good. Some regulation from many upstream reservoirs. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBIC | C FEET PER | | WATER Y | EAR OCTOBE | R 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|--|--|-----------------------------|--|---|--|---|--|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 52100 | 40200 | 41700 | 26100 | 34300 | 28800 | 37300 | 44800 | 52900 | 37800 | 32800 | 37400 | | 2 | 53700 | 39600 | 40700 | 24700 | 31500 | 29000 | 37400 | 44000 | 51400 | 37300 | 31900 | 37600 | | 3 | 54600 | 39700 | 39100 | 24400 | 29200 | 28900 | 37300 | 43800 | 50800 | 36800 | 31400 | 37400 | | 4 | 50900 | 40400 | 36800 | 23600 | 28100 | 27100 | 37700 | 42100 | 49100 | 36600 | 30900 | 36400 | | 5 | 50300 | 40700 | 34800 | 22900 | 26800 | 25900 | 39000 | 40700 | 47800 | 37100 | 30600 | 35900 | | 6 | 52200 | 41100 | 33100 | 22900 | 25300 | 25800 | 39900 | 51500 | 48400 | 36200 | 30400 | 36000 | | 7 | 47300 | 41300 | 31500 | 22900 | 25100 | 25200 | 40000 | 77300 | 46800 | 35900 | 30400 | 36000 | | 8 | 45100 | 41300 | 31200 | 23300 | 25200 | 24800 | 39600 | 82100 | 45400 | 35500 | 30600 | 35600 | | 9 | 43500 | 41200 | 31200 | 24200 | 25400 | 25600 | 39800 | 93200 | 44700 | 35300 | 31300 | 35400 | | 10 | 42700 | 40700 | 30800 | 24900 | 25900 | 27700 | 39900 | 75100 | 44400 | 34800 | 33400 | 35400 | | 11 | 42600 | 40500 | 31000 | 26200 | 27300 | 28400 | | 63400 | 43900 | 34900 | 34100 | 35400 | | 12 | 42900 | 40600 | 31100 | 27200 | 28300 | 28500 | | 81600 | 48000 | 35500 | 32600 | 35300 | | 13 | 44000 | 40600 | 31100 | 26500 | 29600 | 27900 | | 100000 | 54600 | 35000 | 32000 | 35100 | | 14 | 44000 | 40400 | 31300 | 26600 | 30300 | 27500 | | 92500 | 52400 | 35100 | 33600 | 35400 | | 15 | 44600 | 40500 | 30400 | 27800 | 30200 | 27600 | | 79300 | 59100 | 36000 | 32600 | 35900 | | 16 | 51800 | 40200 | 29800 | 28900 | 30300 | 27800 | 40000 | 66100 | 61800 | 37600 | 33000 | 36600 | | 17 | 52700 | 40000 | 29200 | 29800 | 30600 | 29700 | 39000 | 58500 | 54800 | 36400 | 33100 | 36900 | | 18 | 48200 | 40000 | 29100 |
30400 | 30500 | 35800 | 38500 | 55500 | 49700 | 35200 | 31800 | 37100 | | 19 | 45300 | 39900 | 29000 | 30300 | 30300 | 37800 | 38900 | 56400 | 48400 | 34800 | 32300 | 37600 | | 20 | 44300 | 40500 | 28500 | 29100 | 34200 | 33900 | 40800 | 54400 | 47300 | 34400 | 35100 | 37600 | | 21 | 43300 | 41100 | 28200 | 28300 | 38300 | 30700 | 52300 | 51200 | 45600 | 34300 | 35800 | 36400 | | 22 | 42700 | 41200 | 28700 | 29000 | 34800 | 29500 | 70600 | 47700 | 44700 | 33500 | 38800 | 35800 | | 23 | 42700 | 41000 | 30200 | 29900 | 33300 | 29300 | 55100 | 45300 | 43500 | 32900 | 42300 | 36300 | | 24 | 42200 | 41000 | 30800 | 29500 | 32300 | 29800 | 47300 | 45900 | 42800 | 32200 | 40700 | 36000 | | 25 | 42000 | 41700 | 30500 | 28700 | 31200 | 32200 | 43700 | 59500 | 42800 | 31700 | 45500 | 34800 | | 26
27
28
29
30
31 | 42400
41500
41200
40700
40300
40600 | 42400
44000
45200
45900
43700 | 30000
29800
29600
28800
27500
26800 | 28200
27900
27600
27400
28600
31000 | 30200
29400
29100
 | 35700
38200
39900
39000
37100
37100 | 41300
41500
54000
51700
46600 | 67900
57300
57400
53900
51800
52300 | 42800
41900
41600
41600
38600 | 31400
31500
31600
32600
34600
34300 | 57100
48800
45000
42300
39800
38300 | 34000
33400
33100
33000
33900 | | MEAN | 45560 | 41220 | 31360 | 27060 | 29890 | 30720 | 42970 | 61050 | 47590 | 34800 | 36070 | 35760 | | MAX | 54600 | 45900 | 41700 | 31000 | 38300 | 39900 | 70600 | 100000 | 61800 | 37800 | 57100 | 37600 | | MIN | 40300 | 39600 | 26800 | 22900 | 25100 | 24800 | 37300 | 40700 | 38600 | 31400 | 30400 | 33000 | | IN. | 0.11 | 0.09 | 0.07 | 0.06 | 0.06 | 0.07 | 0.10 | 0.14 | 0.11 | 0.08 | 0.09 | 0.08 | | MEAN | 57700 | 53570 | 38360 | 30660 | 40140 | 56350 | 73910 | 76350 | 81750 | 73380 | 57540 | 57720 | | MAX | 141900 | 116200 | 74470 | 65720 | | 133500 | 145500 | 168400 | 176600 | 306500 | 155700 | 121700 | | (WY) | 1974 | 1999 | 1987 | 1973 | | 1979 | 1984 | 1995 | 1984 | 1993 | 1993 | 1993 | | MIN | 35340 | 21620 | 13010 | 14770 | | 19250 | 37920 | 39350 | 41340 | 34800 | 34420 | 35380 | | (WY) | 1992 | 1992 | 1964 | 1963 | | 1964 | 1989 | 1989 | 1988 | 2002 | 1991 | 1991 | | SUMMAR | Y STATIST | rics | FOR 2 | 2001 CALEN | DAR YEAR | | FOR 2002 W | ATER YEAR | | WATER Y | EARS 1958 | - 2002 ^a | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 57270 168000 22900 23800 1.60 93900 47300 27900 | Jun 22
Jan 27
Jan 1 | | 38710
100000
22900
23500
103000
18.96
22700
1.08
51900
36900
27900 | May 13
Jan 5-7
Jan 3
May 13
May 13
Jan 5-7 | | 58250
109900
35950
611000
5000
5540
633000
1.15
5000
1.62
98000
49500
25900 | | 1993
1963
28 1993
27 1963
27 1993
27 1993
20 1963 | | a Post-regulation period. # 06896187 MIDDLE FORK GRAND RIVER NEAR GRANT CITY, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $40^{\circ}27^{\circ}17^{\circ}$, long $94^{\circ}24^{\circ}12^{\circ}$, in NW $\frac{1}{4}$ SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.9, T.65 N., R.31 W., Worth County, Hydrologic Unit 10280101, on Highway 169 approximately 2.0 mi south of the junction of Highway 169 and State Highway 46 in Grant City. DRAINAGE AREA.--82.4 mi². PERIOD OF RECORD. -- November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
07 | 1425 | ENVIRONM | ENTAL | 3.2 | 10.6 | 117 | 8.3 | 519 | 18.5 | 220 | 63.9 | 13.8 | 5.37 | | JAN
16 | 0950 | ENVIRONM | ENTAL. | 2.3 | 13.2 | 95 | 8.3 | 688 | .5 | | | | | | MAR
13
13 | 0925
0926 | ENVIRONM
REPLICAT | ENTAL | 4.4 | 11.4 | 95 | 8.2 | 519 | 6.0 | | | | | | MAY
08 | 1015 | ENVIRONM | | 28 | 7.9 | 88 | 8.1 | 387 | 18.5 | 160 | 47.1 | 10.0 | 5.70 | | JUL
31 | 0927 | ENVIRONM | | .40 | 7.0 | 86 | 8.1 | 533 | 24.0 | | | | | | SEP | | | | | | 83 | 8.0 | 506 | | | | | | | 04 | 1020 | ENVIRONM | ENTAL | .15 | 7.3 | 83 | 8.0 | 506 | 20.5 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
07
JAN | 17.0 | 193 | 196 | 238 | 0 | 24.2 | .2 | 49.1 | <10 | 320 | <.04 | .34 | <.05 | | 16
MAR | | 240 | 240 | 287 | 3 | | | | <10 | | .26 | .82 | 1.79 | | 13
13 | | 188 | 191 | 233 | 0 | | | | <10
10 | | .05 | .47
.45 | .59
.59 | | MAY | | | 146 | 170 | | 10.0 | | | | | | | | | 08
JUL | 9.24 | 143 | 146 | 178 | 0 | 12.2 | .3 | 35.4 | 250 | 235 | .07 | 1.3 | 1.23 | | 31
SEP | | 210 | 210 | 257 | 0 | | | | <10 | | <.04 | .37 | <.05 | | 04 | | 199 | 198 | 242 | 0 | | | | <10 | | <.04 | .37 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | | | | | | | | _ | | | | | | | 07
JAN | <.008 | .06 | .05 | .09 | 250 | K240 | 140 | 4 | 38 | 1.2 | .04 | <.1 | <6 | | 16
MAR | .043 | <.06 | <.02 | E.04 | 33 | К4 | 110 | | | | | | | | 13
13
MAY | .015
.015 | E.04
E.04 | E.01
E.01 | E.05
.06 | K17
 | K25
 | K33 | | | | | | | | 08
JUL | .037 | .09 | .07 | .38 | 6100 | 7300 | 3200 | 6 | 3040 | 1.6 | E.02 | E.1 | <6 | | 31
SEP | <.008 | E.05 | .05 | .09 | 300 | 280 | 640 | | | | | | | | 04 | <.008 | E.06 | .05 | .09 | 480 | K740 | K2100 | | | | | | | 06896187 MIDDLE FORK GRAND RIVER NEAR GRANT CITY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(μg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 07 | E7 | <.08 | <1 | 579 | <.01 | E.2 | 3 | 3 | |
JAN | | | | | | | | | | 16 | | | | | | | | | | MAR | | | | | | | | | | 13 | | | | | | | | | | 13 | | | | | | | | | | MAY | | | | | | | | | | 08 | <10 | E.05 | 6 | 26.6 | .02 | 1.1 | 2 | 18 | | JUL | | | | | | | | | | 31 | | | | | | | | | | SEP | | | | | | | | | | 04 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 06896320 EAST FORK GRAND RIVER AT ALLENDALE, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $40^{\circ}28^{\circ}53^{\circ}$, long $94^{\circ}19^{\circ}06^{\circ}$, in SE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.32, T.66 N., R.30 W., Worth County, Hydrologic Unit 10280101, located in Allendale on Highway 46, approximately 1.6 mi west of the junction of Highway NN and State Highway 46. DRAINAGE AREA.--211 mi². PERIOD OF RECORD.--November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
07 | 1025 | ENVIRONM | ENTAL | 5.3 | 11.0 | 105 | 8.2 | 454 | 12.0 | 220 | 64.3 | 13.5 | 5.71 | | JAN
16 | 1425 | ENVIRONM | ENTAL | 3.2 | 16.0 | 115 | 8.4 | 529 | .5 | | | | | | MAR
13 | 1300 | ENVIRONM | ENTAL | 14 | 12.1 | 107 | 8.5 | 417 | 8.5 | | | | | | MAY
08 | 1420 | ENVIRONM | ENTAL | 75 | 8.3 | 99 | 8.1 | 349 | 22.0 | 160 | 47.3 | 8.97 | 4.64 | | JUL
31 | 1410 | ENVIRONM | ENTAL | .32 | 8.4 | 125 | 8.2 | 462 | 34.5 | | | | | | SEP
04 | 1415 | ENVIRONM | ENTAL | <.01 | 11.6 | 141 | 8.1 | 587 | 23.5 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV | | | | | | | | | | | | | | | 07
JAN | 8.53 | 209 | 210 | 256 | 0 | 8.47 | . 2 | 30.6 | 12 | 278 | <.04 | .41 | <.05 | | 16
MAR | | 257 | 258 | 305 | 5 | | | | <10 | | <.04 | .30 | .10 | | 13
MAY | | 173 | 171 | 198 | 5 | | | | <10 | | <.04 | .38 | <.05 | | 08
JUL | 6.41 | 144 | 142 | 174 | 0 | 6.47 | .2 | 29.5 | 190 | 215 | .07 | 1.2 | .64 | | 31
SEP | | 212 | 212 | 250 | 4 | | | | <10 | | <.04 | .54 | .10 | | 04 | | 263 | 265 | 323 | 0 | | | | 19 | | <.04 | .61 | 1.99 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | . 000 | T 04 | 0.0 | 0.0 | 70 | 60 | 240 | 4 | 110 | 1 0 | T 00 | . 1 | .6 | | 07
JAN | <.008 | E.04 | .02 | .08 | 70 | 60 | 340 | 4 | 118 | 1.2 | E.02 | <.1 | <6 | | 16
MAR | <.008 | <.06 | <.02 | <.06 | K4 | K2 | 66 | | | | | | | | 13
MAY | <.008 | <.06 | <.02 | E.04 | K14 | Кб | K48 | | | | | | | | 08
JUL | .029 | .07 | .05 | . 29 | K800 | 1300 | 1300 | 6 | 2400 | 1.6 | E.03 | <.1 | E3 | | 31
SEP | .012 | E.03 | <.02 | E.05 | 40 | 70 | 99 | | | | | | | | 04 | .023 | E.05 | .04 | .11 | 98 | 160 | K230 | | | | | | | # 06896320 EAST FORK GRAND RIVER AT ALLENDALE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 07 | 13 | <.08 | <1 | 346 | < .01 | <.3 | 4 | 3 | | JAN | | | | | | | | | | 16 | | | | | | | | | | MAR | | | | | | | | | | 13 | | | | | | | | | | MAY | | | | | | | | | | 08 | E6 | E.07 | 4 | 15.5 | .01 | 1.1 | 5 | 12 | | JUL | | | | | | | | | | 31 | | | | | | | | | | SEP | | | | | | | | | | 04 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### 06897000 EAST FORK BIG CREEK NEAR BETHANY, MO LOCATION.--Lat 40°17'50", long 94°01'36", in SE $\frac{1}{4}$ sec.34, T.64 N., R.28 W., Harrison County, on right bank 50 ft downstream from bridge on old U.S. Highway 69, 2 mi north of Bethany, and 4 mi upstream from confluence with West Fork. DRAINAGE AREA.--95 mi^2 , approximately. PERIOD OF RECORD.--April 1934 to September 1972, October 1996 to September 1999, October 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is 854.74 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. | | | DISCHAF | RGE, CUBIO | C FEET PER | | WATER YE
MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |--|---|---------------------------------------|--|---|-------------------------------------|--------------------------------------|---|-------------------------------------|------------------------------------|---|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.1
1.8
1.8
1.9 | 7.6
7.2
7.9
7.8
7.1 | 4.2
3.9
3.6
3.4
3.0 | e0.30
e0.28
e0.28
e0.28
e0.30 | e1.5
e1.4
e1.5
e1.0 | e3.5
e2.5
e1.5
e2.0
e3.0 | 9.4
7.6
5.9
4.5
3.7 | 53
40
29
22
18 | 11
9.5
8.4
7.6
7.5 | 1.3
0.79
0.71
1.0
1.7 | 2.6
2.6
2.4
2.2
2.0 | 0.44
0.20
0.07
0.00
0.00 | | 6
7
8
9
10 | 11
11
7.3
3.4
5.2 | 6.6
7.3
7.2
6.4
6.1 | 2.7
2.6
2.0
2.5
1.7 | e0.35
e0.48
e0.65
e0.90 | e1.9
e2.5
e3.5
e4.8
8.6 | e3.5
3.9
4.0
6.3
14 | 2.8
2.7
5.4
41
36 |
681
552
154
82
63 | 7.4
7.0
6.5
5.7
5.3 | 0.75
0.68
0.89
1.2 | 2.5
3.7
3.7
2.9
2.5 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 4.9
3.3
4.1
6.0
6.4 | 5.7
5.4
5.3
5.2
5.2 | 2.0
2.3
3.0
3.2
3.3 | 1.7
2.5
3.1
3.3
3.5 | 9.2
11
10
8.7
7.4 | 9.7
7.8
7.0
6.4
5.9 | 23
485
124
59
36 | 950
1310
377
230
108 | 5.7
294
177
e34
e22 | 72
82
34
11
7.6 | 2.3
2.1
3.8
3.6
3.0 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 7.5
7.1
5.1
3.6
2.9 | 5.1
4.8
4.5
4.8
5.2 | 3.5
3.1
2.9
3.1
3.2 | 3.3
3.2
3.1
3.1
2.9 | 5.8
6.0
5.3
6.4
8.8 | 5.3
4.9
4.6
4.2
4.0 | 24
18
21
347
92 | 57
43
31
22
16 | e12
e8.3
e6.1
4.7
4.6 | 6.5
6.0
5.3
4.5
4.1 | 3.0
3.2
3.5
3.3 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 3.3
6.7
38
55
21 | 5.0
4.9
4.5
5.1
6.0 | 3.5
3.1
e2.8
e2.0
e1.0 | 3.0
3.0
3.1
2.9
3.0 | 7.2
6.4
5.3
4.7
4.4 | 3.8
3.5
2.9
3.5
4.4 | 150
103
61
64
127 | 13
15
17
14
45 | 4.0
2.8
2.1
2.0
1.8 | 3.8
4.0
4.1
3.5
3.6 | 11
4.9
e7.5
6.1
4.3 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 13
10
8.6
7.9
8.2
8.4 | 5.8
5.2
4.9
5.0
4.5 | e0.50
e0.45
e0.40
e0.34
e0.35
e0.30 | 3.1
3.1
3.3
3.2
e1.8
e1.2 | e4.0
e3.0
e3.5
 | 4.5
4.7
2.6
24
43 | 63
291
651
167
81 | 43
25
19
14
12
9.9 | 2.1
3.1
2.1
1.7
1.7 | 3.5
3.4
3.4
3.1
2.7
2.5 | 3.2
2.3
1.7
1.2
0.88
0.70 | 0.00
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN
IN. | 9.06
55
1.8
0.11 | 5.78
7.9
4.5
0.07 | 2.38
4.2
0.30
0.03 | 2.11
3.5
0.28
0.03 | 5.19
11
1.0
0.06 | 7.06
43
1.5
0.09 | 104
651
2.7
1.22 | 163
1310
9.9
1.98 | 22.3
294
1.7
0.26 | 9.38
82
0.68
0.11 | 3.64
14
0.70
0.04 | 0.02
0.44
0.00
0.00 | | STATIST | ICS OF MO | NTHLY MEA | AN DATA FO | OR PERIOD | OF RECORD | , BY WAT | • | · | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 26.9
140
1960
0.00
1938 | 27.8
313
1962
0.00
1938 | 15.6
78.1
1945
0.00
1938 | 24.6
240
1946
0.00
1939 | 66.3
349
1937
0.00
1938 | 86.8
341
1960
0.00
1956 | 82.3
305
1944
0.00
1956 | 78.7
332
1945
0.00
1956 | 111
932
1947
0.00
1956 | 32.6
284
1969
0.00
1936 | 15.6
94.1
1959
0.00
1936 | 32.8
425
1961
0.00
1937 | | SUMMARY | STATISTI | CS | FOR | R 2001 CAL | ENDAR YEA | R | FOR 2002 | WATER YE | AR | FOR F | PERIOD OF | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY I PEAK FLO I PEAK STA ANEOUS LO RUNOFF (II ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 1390
0.30
0.48

12.46
256
12
2.5 | Feb 2
Dec 3
Dec 2 | 1 | 27.9
1310
0.00
0.00
1780
9.91
0.00
3.99
42
4.1
0.35 | Sep 4-
Sep
May
May | 12
30
4
12
12
12 | 50.4
111
2.27
6200
0.00
0.00
8120
17.65
0.00
7.21
90
4.2 | Jun
Several
Several
Jun
Jun
Several | Years
6 1947
6 1947 | e Estimated ### 06897500 GRAND RIVER NEAR GALLATIN, MO LOCATION.--Lat 39°55'37", long 93°56'33", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.16, T.59 N., R.27 W., Daviess County, Hydrologic Unit 10280101, on left bank 100 ft upstream from bridge on State Highway 6, 50 ft downstream from Chicago, Rock Island and Pacific Railroad Company Bridge, 1.0 mi northeast of Gallatin, 6.0 mi upstream from Honey Creek, and at mile 90.0. DRAINAGE AREA. -- 2,250 mi². PERIOD OF RECORD. -- June 1921 to current year. REVISED RECORDS.--WSP 786: 1933-34. WSP 1280: 1922. WDR MO-83-1: 1981. WDR MO-93-1: 1991(M). GAGE.--Water-stage recorder. Datum of gage is 707.56 ft above National Geodetic Vertical Datum of 1929. This figure supercedes figures published in reports from 1982 to 1992. Prior to Jan. 31, 1922, nonrecording gage at site 100 ft upstream at datum 5.00 ft lower; Jan. 31, 1922, to Nov. 15, 1936, nonrecording gage at site about 1,100 ft upstream at datum 4.83 ft lower; Nov. 16, 1936, to Nov. 14, 1937, nonrecording gage; Nov. 15, 1937, to Sept. 21, 1961, water-stage recorder on center pier of highway bridge at datum 5.00 ft lower; Sept. 22-27, 1961, nonrecording gage at railroad bridge 100 ft upstream at datum 5.00 ft lower; Sept. 28, 1961, to Mar. 4, 1964, water-stage recorder on downstream side of left bank pier of highway bridge and wire-weight gage for stages below 7.2 ft at datum 5.00 ft lower; Mar. 5, 1964, to Mar. 5, 1982, at present site at datum 5.00 ft. higher. REMARKS.--Records good except for estimated daily discharges, which are poor. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, about 45 ft, July 8, 1909, from floodmarks. | | | DISCHAR | GE, CUBIC | C FEET PEI | R SECOND,
DAILY | WATER YE | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--|--|--|---|--|--------------------------------------|---|--|---------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 65 | 107 | 77 | e24 | e55 | e45 | 363 | 1130 | 440 | 89 | 39 | 28 | | 2 | 59 | 100 | 75 | e23 | e50 | e50 | 250 | 828 | 347 | 79 | 35 | 26 | | 3 | 55 | 103 | 73 | e23 | e50 | e42 | 186 | 634 | 288 | 73 | 34 | 23 | | 4 | 53 | 99 | 72 | e22 | e40 | e35 | 150 | 498 | 250 | 71 | 32 | 21 | | 5 | 62 | 94 | 72 | e23 | e55 | e50 | 127 | 400 | 228 | 70 | 31 | 20 | | 6 | 61 | 91 | 72 | e24 | 72 | e60 | 111 | 3240 | 212 | 67 | 30 | 19 | | 7 | 96 | 89 | 74 | e30 | 77 | 80 | 103 | 10000 | 199 | 76 | 29 | 18 | | 8 | 141 | 84 | 71 | e39 | 70 | 110 | 112 | 4320 | 183 | 72 | 27 | 16 | | 9 | 134 | 80 | 69 | 40 | 81 | 276 | 450 | 2170 | 166 | 62 | 26 | 14 | | 10 | 112 | 77 | 68 | 45 | 117 | 334 | 750 | 1590 | 155 | 57 | 25 | 14 | | 11 | 94 | 74 | 67 | 45 | 139 | 238 | 575 | 12200 | 166 | 55 | 26 | 13 | | 12 | 123 | 73 | 71 | 52 | 148 | 196 | 1320 | 26100 | 2150 | 63 | 26 | 13 | | 13 | 138 | 73 | 88 | 56 | 146 | 180 | 2780 | 13800 | 2290 | 179 | 32 | 13 | | 14 | 129 | 74 | 98 | 62 | 137 | 162 | 1100 | 5470 | 1180 | 130 | 36 | 14 | | 15 | 138 | 73 | 107 | 58 | 130 | 142 | 606 | 3350 | 600 | 168 | 32 | 15 | | 16 | 286 | 74 | 105 | 67 | 132 | 124 | 410 | 2340 | 360 | 152 | 38 | 14 | | 17 | 361 | 73 | 96 | 55 | 135 | 111 | 312 | 1720 | 247 | 116 | 47 | 13 | | 18 | 234 | 73 | 89 | 58 | 133 | 101 | 247 | 1380 | 197 | 92 | 40 | 14 | | 19 | 162 | 70 | 84 | 67 | 137 | 94 | 211 | 1160 | 166 | 78 | 37 | 18 | | 20 | 125 | 71 | 80 | 57 | 158 | 87 | 1170 | 923 | 152 | 69 | 50 | 20 | | 21 | 108 | 68 | 75 | 63 | 183 | 81 | 1460 | 746 | 131 | 63 | 53 | 19 | | 22 | 97 | 68 | 73 | 68 | 191 | 75 | 2340 | 625 | 120 | 59 | 61 | 17 | | 23 | 148 | 68 | 70 | 69 | 176 | 71 | 1420 | 548 | 107 | 56 | 99 | 17 | | 24 | 790 | 72 | e50 | 74 | 151 | 66 | 803 | 557 | 99 | 52 | 76 | 17 | | 25 | 662 | 79 | e38 | 66 | 128 | 68 | 553 | 1950 | 90 | 50 | 78 | 15 | | 26
27
28
29
30
31 | 369
234
176
145
126
114 | 83
88
88
85
81 | e28
e27
e25
e27
e28
e24 | 66
68
72
72
51
44 | 106
76
e56
 | 76
78
88
107
311
528 | 932
996
5080
4200
1800 | 1840
1130
992
746
722
677 | 85
88
110
119
108 | 52
56
52
53
46
42 | 83
61
48
41
36
31 | 15
14
13
13
13 | | MEAN | 180 | 81.1 | 66.8 | 51.1 | 112 | 131 | 1031 | 3348 | 368 | 77.4 | 43.2 | 16.6 | | MAX | 790 | 107 | 107 | 74 | 191 | 528 | 5080 | 26100 | 2290 | 179 | 99 | 28 | | MIN | 53 | 68 | 24 | 22 | 40 | 35 | 103 | 400 | 85 | 42 | 25 | 13 | | IN. | 0.09 | 0.04 | 0.03 | 0.03 | 0.05 | 0.07 | 0.51 | 1.72 | 0.18 | 0.04 | 0.02 | 0.01 | | MEAN
MAX
(WY)
MIN
(WY) | 821
8965
1974
3.09
1957 | 856
8613
1929
8.18
1939 | 525
5463
1983
6.15
1939 | 482
4212
1932
3.94
1940 | YEARS 1921
1003
6196
1962
5.61
1939 | 1735
8760
1979
18.7
1938 | 1998
7906
1927
12.0
1956 | 2032
14820
1995
15.4
1956 | 2355
22670
1947
51.9
1988 | 1611
33930
1993
13.3
1936 | 521
4136
1987
7.05
1936 | 1044
11610
1926
10.2
1955 | | SUMMARY | Y STATISTI | CS | FOR 2 | 2001 CALEI | NDAR YEAR | I | FOR 2002 W | ATER YEAR | | WATER YE | ARS 1921 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN INSTANT ANNUAL 10 PERC 50 PERC | MEAN I ANNUAL ME ANNUAL ME DAILY ME DAILY ME DEVENDAY M PEAK FLC RUNOFF (I CENT EXCER CENT EXCER | AN A | | 25800
21
28

10.32
5220
363
60 | Feb 25
Jan 1
Dec 25 | |
463 26100 13 Sev 14 28700 27.22 12 2.79 813 80 25 | May 12
veral Days
Sep 11
May 12
May 12
Sep 30 | | 1247
5740
129
85500
2.0
2.6
89800
41.50
2.0
7.53
2540
218
28 | Aug
Oct
Jul
Jul | 1993
1938
24 1993
30 1980
23 1956
7 1993
7 1993
30 1980 | e Estimated ## 06898100 THOMPSON RIVER NEAR MOUNT MORIAH, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $40^{\circ}20^{\circ}11^{\circ}$, long $93^{\circ}46^{\circ}02^{\circ}$, in NW $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.24, T.64 N., R.26 W., Harrison County, Hydrologic Unit 10280102, on Highway 136 approximately 15 mi east of junction I-35 and Highway 136, 1.5 mi northeast of Mt. Moriah. DRAINAGE AREA.--891 mi², including Panther Creek. PERIOD OF RECORD.--November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|---|--|---|--|---|---| | NOV
08 | 0920 | ENVIRONM | ENTAL | 41 | 10.8 | 98 | 8.4 | 467 | 10.5 | 210 | 64.2 | 12.5 | 4.43 | | JAN
17 | 1030 | ENVIRONM | ENTAL | 14 | 13.2 | 94 | 8.0 | 524 | .5 | | | | | | MAR
14 | 0945 | ENVIRONM | ENTAL | 91 | 11.2 | 98 | 8.2 | 411 | 7.5 | | | | | | MAY
09 | 1045 | ENVIRONM | ENTAL | 223 | 9.8 | 103 | 8.3 | 386 | 16.5 | 170 | 53.0 | 10.3 | 4.06 | | AUG
01
01 | 0910
0911 | ENVIRONM
REPLICAT | | 26
 | 6.8 | 89
 | 8.1 | 442 | 27.0 | | | | | | SEP
03 | 1445 | ENVIRONM | ENTAL | 17 | 8.1 | 111 | 8.2 | 474 | 30.5 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
08 | 11.2 | 194 | 192 | 228 | 3 | 11.4 | .2 | 40.8 | 14 | 270 | <.04 | .30 | <.05 | | 17
MAR | | 218 | 217 | 265 | 0 | | | | <10 | | .11 | .36 | .38 | | 14
MAY | | 152 | 150 | 183 | 0 | | | | 43 | | E.03 | .74 | 1.20 | | 09
AUG | 7.83 | 159 | 156 | 190 | 0 | 8.58 | .3 | 34.6 | 347 | 230 | <.04 | 1.3 | .56 | | 01 | | 183 | 183 | 223 | 0 | | | | 30
13 | | <.04
<.04 | .54
.56 | <.05
<.05 | | SEP
03 | | 193 | 193 | 235 | 0 | | | | 176 | | <.04 | .80 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
08 | <.008 | <.06 | <.02 | E.06 | K32 | 130 | 230 | 4 | 109 | .6 | E.03 | <.1 | <6 | | JAN
17
MAR | .009 | <.06 | <.02 | E.03 | K1 | кз | К9 | | | | | | | | MAR
14
MAY | .020 | E.03 | <.02 | .10 | К8 | K13 | 150 | | | | | | | | 09
AUG | .008 | .06 | .04 | .39 | 2500 | 3600 | 5500 | 2 | 3580 | 1.2 | <.04 | E.1 | <6 | | 01
01 | <.008
<.008 | <.06
E.03 | E.01
E.01 | .12 | 73
 | 150
 | 140 | | | | | | | | SEP
03 | <.008 | E.03 | E.01 | .30 | K69 | 210 | 97 | | | | | | | # 06898100 THOMPSON RIVER NEAR MOUNT MORIAH, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(μg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 08 | 15 | <.08 | <1 | 424 | <.01 | E.2 | 3 | 4 | | JAN | | | | | | | | | | 17 | | | | | | | | | | MAR | | | | | | | | | | 14 | | | | | | | | | | MAY | | | | | | | | | | 09 | <10 | <.08 | 6 | 30.5 | .02 | 1.0 | <1 | 19 | | AUG | | | | | | | | | | 01 | | | | | | | | | | 01 | | | | | | | | | | SEP | | | | | | | | | | 03 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 06898800 WELDON RIVER AT PRINCETON, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $40^{\circ}24^{\circ}03^{\circ}$, long $93^{\circ}36^{\circ}10^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.28, T.65 N., R.24 W., Mercer County, Hydrologic Unit 10280102, approximately 1 mi west of Princeton on US Highway 136. DRAINAGE AREA. -- 452 mi². PERIOD OF RECORD.--November 1999 to current year. | DATE | TIME | SAMPL:
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
06 | 1330 | ENVIRONM | ENTAL | 36 | 10.3 | 108 | 8.2 | 409 | 16.5 | 180 | 53.4 | 10.9 | 6.01 | | JAN
15 | 1355 | ENVIRONM | ENTAL | 20 | 14.2 | 101 | 8.2 | 516 | .5 | | | | | | MAR
12 | 1320 | ENVIRONM | ENTAL | 101 | 12.0 | 102 | 8.2 | 382 | 7.0 | | | | | | MAY
07
07 | 1400
1515 | ENVIRONM
BLANK | ENTAL | 527 | 7.7 | 89 | 7.9 | 287 | 21.0 | 130 | 40.0 | 7.26
<.008 | 4.70
<.10 | |
JUL
30 | 1405 | ENVIRONM | ENTAL | 17 | 9.1 | 136 | 8.4 | 393 | 35.5 | | | | | | AUG
15 | 1225 | ENVIRONM | | 8.7 | 10.4 | 135 | 8.3 | 425 | 27.0 | | | | | | SEP
05 | 0845 | ENVIRONM | | 3.3 | 7.3 | 81 | 8.1 | 489 | 19.0 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLITRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
06 | 10.0 | 166 | 168 | 206 | 0 | 11.6 | .2 | 29.5 | 18 | 248 | <.04 | .52 | .08 | | JAN
15 | | 218 | 221 | 270 | 0 | | | | <10 | | .10 | .41 | .16 | | MAR
12 | | 143 | 143 | 175 | 0 | | | | 114 | | .09 | 1.1 | 1.45 | | MAY
07
07 | 5.24
E.06 | 116 | 116 | 141 | 0 | 6.37
<.30 | .2 | 22.4 | 210
<10 | 177
<10 | .04 | 1.7
<.10 | .61
<.05 | | JUL
30 | | 160 | 160 | 188 | 4 | | | | 14 | | <.04 | .47 | <.05 | | AUG
15 | | 180 | 180 | 220 | 0 | | | | 20 | | <.04 | .49 | <.05 | | SEP
05 | | 209 | 210 | 256 | 0 | | | | 13 | | <.04 | .40 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
06 | <.008 | E.05 | .04 | .10 | K26 | 77 | K40 | 5 | 177 | .9 | E.02 | <.1 | <6 | | JAN
15
MAR | E.004 | <.06 | <.02 | <.06 | K15 | К4 | 46 | | | | | | | | 12
MAY | .016 | E.04 | .02 | .21 | К90 | 160 | 360 | | | | | | | | 07
07
JUL | .025
<.008 | .07
<.06 | .05
<.02 | .50
<.06 | K19000
 | K18000 | 4700
 | 8
4 | 4940
6 | 1.1 | <.04
<.04 | .2 | E3
<6 | | 30
AUG | <.008 | <.06 | <.02 | .07 | 150 | 100 | 140 | | | | | | | | 15
SEP | <.008 | <.06 | <.02 | .07 | 160 | 270 | 160 | | | | | | | | 05 | <.008 | <.06 | <.02 | E.04 | К9 | 130 | 140 | | | | | | | # 06898800 WELDON RIVER AT PRINCETON, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 06 | <10 | <.08 | <1 | 176 | <.01 | E.2 | 2 | 2 | | JAN | | | | | | | | | | 15 | | | | | | | | | | MAR | | | | | | | | | | 12 | | | | | | | | | | MAY | | | | | | | | | | 07 | 17 | <.08 | 9 | 7.4 | .03 | . 9 | <1 | 24 | | 07 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | 2 | <1 | | JUL | | | | | | | | | | 30 | | | | | | | | | | AUG | | | | | | | | | | 15 | | | | | | | | | | SEP | | | | | | | | | | 05 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### 06899500 THOMPSON RIVER AT TRENTON, MO LOCATION.--Lat $40^{\circ}04^{\circ}10^{\circ}$, long $93^{\circ}38^{\circ}16^{\circ}$ in SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.19, T.61 N., R.24 W., Grundy County, Hydrologic Unit 10280102, at downstream side of bridge pier in Trenton, 2.6 mi downstream from Weldon River, and at mile 25.2. DRAINAGE AREA. -- 1,720 mi², approximately. PERIOD OF RECORD.--June 1921 to September 1923, August 1928 to current year. June 1921 to September 1923, published as "near Hickory". Monthly discharge only for some periods, published in WSP 1310. Gage-height records collected in vicinity 1910-14 and since 1925 in reports of the National Weather Service. REVISED RECORDS.--WSP 1116: 1945(M). WDR MO-83-1: 1981. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 721.87 ft above National Geodetic Vertical Datum of 1929. June 25, 1921, to Aug. 26, 1923, nonrecording gage at two sites 12 mi downstream (by old channel route) at different datums; Aug. 1, 1928, to Sept. 15, 1930, nonrecording gage at site 0.8 mi upstream from current site at current datum; Sept. 16, 1930, to May 31 1945, nonrecording gage at site 0.7 mi downstream at datum 3.46 ft lower; June 1, 1945, to Dec. 7, 1959, nonrecording gage at same site and datum; Dec. 8, 1959 to Oct. 27, 1998 at site 0.8 mi upstream, at same datum. REMARKS.--Records good except for estimated daily discharges and those above $6,000~{\rm ft}^3/{\rm s}$, which are poor. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 30.7 ft, July 6, 1909, present site and datum, from information by local residents; discharge, 50,000 ft³/s, determined by the U.S. Army Corps of Engineers, occurred before new channel was dredged. | | | DISCHARG | E, CUBIC | FEET PER | SECOND, W | | | ER 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|--|---|-------------------------------------|--|--|---|---------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 62 | 196 | 82 | e34 | e60 | e60 | 295 | 880 | 392 | 93 | 58 | 46 | | 2 | 61 | 187 | 82 | e33 | e52 | e65 | 222 | 669 | 354 | 89 | 54 | 43 | | 3 | 56 | 148 | 76 | e33 | e50 | e55 | 175 | 531 | 317 | 89 | 52 | 38 | | 4 | 56 | 126 | 72 | e31 | e60 | e47 | 145 | 445 | 291 | 87 | 51 | 34 | | 5 | 77 | 114 | 70 | e32 | e65 | e65 | 128 | 387 | 275 | 86 | 47 | 33 | | 6 | 170 | 106 | 68 | e35 | e75 | e90 | 118 | 7000 | 261 | 85 | 49 | 33 | | 7 | 179 | 101 | 71 | e45 | 96 | 127 | 115 | 4120 | 247 | 81 | 66 | 36 | | 8 | 123 | 94 | 75 | 51 | 79 | 276 | 142 | 1600 | 228 | 84 | 82 | 35 | | 9 | 98 | 92 | 74 | 51 | 100 | 374 | 1280 | 1970 | 216 | 81 | 71 | 31 | | 10 | 89 | 91 | 71 | 57 | 135 | 616 | 1100 | 1400 | 205 | 84 | 65 | 28 | | 11 | 82 | 88 | 66 | 65 | 130 | 496 | 545 | 16200 | 203 | 99 | 58 | 27 | | 12 | 103 | 87 | 74 | 69 | 150 | 345 | 3950 | 19700 | 301 | 163 | 53 | 27 | | 13 | 121 | 81 | 104 | 68 | 161 | 280 | 1490 | 6620 | 613 | 129 | 65 | 29 | | 14 | 88 | 79 | 128 | 77 | 154 | 242 | 649 | 3380 | 348 | 103 | 72 | 32 | | 15 | 113 | 77 | 124 | 66 | 155 | 215 | 461 | 2080 | 248 | 133 | 59 | 32 | | 16 | 208 | 75 | 112 | 76 | 163 | 186 | 344 | 1530 | 245 | 178 | 111 | 28 | | 17 | 121 | 73 | 98 | 58 | 159 | 164 | 284 | 1820 | 290 | 130 | 70 | 26 | | 18 | 91 | 74 | 89 | 61 | 157 | 150 | 239 | 1490 | 220 | 102 | 63 | 26 | | 19 | 73 | 71 | 83 | 74 | 183 | 141 | 1260 | 1150 | 188 | 91 | 54 | 30 | | 20 | 64 | 69 | 79 | 68 | 306 | 132 | 758 | 914 | 166 | 83 | 85 | 36 | | 21 | 64 | 72 | 78 | 77 | 374 | 122 | 2300 | 756 | 150 | 77 | 278 | 35 | | 22 | 191 | 78 | 79 | 73 | 261 | 117 | 1320 | 647 | 139 | 73 | 204 | 30 | | 23 | 575 | 77 | 71 | 82 | 212 | 110 | 661 | 584 | 131 | 73 | 161 | 28 | | 24 | 1320 | 82 | e45 | 72 | 183 | 112 | 440 | 578 | 122 | 64 | 110 | 38 | | 25 | 629 | 86 | e35 | 68 | 159 | 110 | 825 | 1390 | 117 | 60 | 81 | 39 | | 26
27
28
29
30
31 | 388
260
199
163
139
125 | 88
84
81
79
80 | e34
e34
e32
e35
e37
e35 | 74
80
82
82
56
48 | 109
e90
e70
 | 106
118
131
182
996
494 | 490
2770
6770
2240
1220 | 1520
1060
790
648
530
442 | 110
110
104
101
97 | 62
69
63
74
64
63
 64
54
50
48
47
48 | 34
31
32
30
30 | | MEAN | 196 | 94.5 | 71.4 | 60.6 | 141 | 217 | 1091 | 2672 | 226 | 90.7 | 78.4 | 32.6 | | MAX | 1320 | 196 | 128 | 82 | 374 | 996 | 6770 | 19700 | 613 | 178 | 278 | 46 | | MIN | 56 | 69 | 32 | 31 | 50 | 47 | 115 | 387 | 97 | 60 | 47 | 26 | | IN. | 0.14 | 0.06 | 0.05 | 0.04 | 0.09 | 0.15 | 0.73 | 1.85 | 0.15 | 0.06 | 0.05 | 0.02 | | MEAN
MAX
(WY)
MIN
(WY) | 582
4678
1974
11.1
1957 | MTHLY MEAN
650
6280
1962
9.53
1956 | 470
4209
1983
6.48
1956 | 456
3682
1946
4.74
1956 | 924
4378
1962
13.0
1956 | 1595
5765
1979
17.6
1938 | 1735
5580
1973
10.7
1956 | 1790
8757
1995
10.2
1956 | 1817
16460
1947
13.9
1956 | 1078
18860
1993
6.00
1934 | 509
3990
1959
9.32
1936 | 679
8443
1992
12.9
1955 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALEN | DAR YEAR | | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS DS | | 20100
19
22

11.40
4280
281
62 | Jun 6
Jan 1,2
Jan 1 | | 417
19700
26
29
33800
15.31
25 Se
3.39
704
91
36 | May 12
Sep 17,18
Sep 12
May 11
May 11
p 16-18,23 | | 1022
3576
117
73800
1.0
1.7
95000
25.70
1.0
8.32
2350
214 | Jun 1
Aug
Jun
Jun | 1993
1934
6 1947
17 1956
4 1934
6 1947
6 1947
17 1956 | e Estimated # 06899580 NO CREEK NEAR DUNLAP, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $40^{\circ}06^{\circ}19^{\circ}$, long $93^{\circ}29^{\circ}29^{\circ}$, in SE $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.4, T.61 N., R.23 W., Grundy County, Hydrologic Unit 10280102, on upstream side of bridge on County Road N approximately 0.6 mi west of Dunlap. DRAINAGE AREA.--34.0 mi². PERIOD OF RECORD. -- November 1997 to current year. | DATE | TIME | SAMPL:
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|---|---|--|--|---|--|--|--|--|---|---|--|---| | OCT
23
NOV | 1350 | ENVIRONM | ENTAL | 38 | 6.0 | 64 | 7.8 | 229 | 16.0 | | | | | | 29 | 1245 | ENVIRONM | ENTAL | .28 | 12.8 | 102 | 8.2 | 410 | 4.5 | 170 | 48.2 | 12.9 | 6.36 | | DEC
13
13 | 1440
1441 | ENVIRONM
REPLICAT | | | 12.3 | 102 | 8.3 | 414 | 6.0 | | | | | | FEB 28 | 1400 | ENVIRONM | ENVIRONMENTAL | | 14.6 | 105 | 8.1 | 359 | 1.0 | | | | | | MAR
21 | 1010 | ENVIRONM | ENTAL | 2.1 | 13.7 | 105 | 7.9 | 386 | 4.0 | | | | | | APR
18 | 1130 | ENVIRONM | ENTAL | 4.3 | 9.1 | 107 | 8.2 | 371 | 21.5 | | | | | | MAY
23 | 0915 | ENVIRONM | ENTAL | 2.4 | 8.5 | 91 | 8.0 | 361 | 17.0 | 160 | 45.1 | 10.6 | 2.94 | | JUN
13
28 | 1120
1340 | ENVIRONM
ENVIRONM | | .53
.07 | 8.8
12.8 | 107
167 | 8.2
8.5 | 414
507 | 23.5
27.5 | 170 | 49.9 | 12.3 | 4.04 | | JUL | | | | | | | | | | | | | | | 23
23
AUG | 1130
1130 | ENVIRONM
BLANK | ENTAL | .01 | 11.7 | 140 | 8.3 | 738
 | 23.0 | 260
 | 71.8
.02 | 19.3
<.008 | 22.6
<.10 | | 22 | 1340 | ENVIRONM | ENTAL | 1.0 | 5.1 | 64 | 7.8 | 217 | 25.5 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT 23 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
23
NOV
29 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
23
NOV | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
23
NOV
29
DEC
13 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 124 189 190 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃)(00419) 125 185 190 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃)(00447) 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 386 78 20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.2 1.1 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .10 <.05 | | OCT 23 NOV 29 DEC 13 13 FEB 28 MAR 21 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 124 189 190 | WATER UNFLITRD IT FIELD (mg/L as CaCO ₃) (00419) 125 185 190 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
153
226
226 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 3 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 386 78 20 16 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.2 1.1 .45 .47 | GEN, NO ₂
+NO ₃ DIS- SOLVED (mg/L as N) (00631) .10 <.05 <.05 | | OCT 23 NOV 29 DEC 13 13 FEB 28 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
124
189
190
 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
125
185
190
 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
153
226
226
 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 3 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 386 78 20 16 22 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.2 1.1 .45 .47 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .10 <.05 <.05 <.05 | | OCT 23 NOV 29 DEC 13 13 FEB 28 MAR 21 APR 18 MAY 23 | DIS-
SOLVED (mg/L as Na) (00930) | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 124 189 190 123 141 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
125
185
190

121 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
153
226
226

148
174 | CAR-BONATE IT FIELD (mg/L as CO ₃)(00447) 0 0 0 0 3 0 0 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940) | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 386 78 20 16 22 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.2 1.1 .45 .47 .52 .43 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .10 <.05 <.05 <.05 .64 <.05 | | OCT 23 NOV 29 DEC 13 13 FEB 28 MAR 21 APR 18 MAY 23 JUN 13 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 124 189 190 123 141 134 144 175 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
125
185
190

121
143
132
143
175 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 153 226 226 148 174 161 174 214 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 386 78 20 16 22 <10 36 <10 20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.2 1.1 .45 .47 .52 .43 .67 .46 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .10 <.05 <.05 <.05 .64 <.05 .07 E.04 | | OCT 23 NOV 29 DEC 13 13 FEB 28 MAR 21 APR 18 MAY 23 JUN | DIS-
SOLVED (mg/L
as Na) (00930) | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 124 189 190 123 141 134 144 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
125
185
190

121
143
132 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
153
226
226

148
174
161 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940)

8.84

7.27
6.94 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) 22 .2 .2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

25.9

36.5
31.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 386 78 20 16 22 <10 36 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.2 1.1 .45 .47 .52 .43 .67 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .10 <.05 <.05 <.05 .64 <.05 .07 | # 06899580 NO CREEK NEAR DUNLAP, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |------------------------|--|--|--|---|--|--|--|--|---|--|---|--|---| | OCT 23 | <.008 | .12 | .10 | .72 | K37000 | K29000 | K31000 | | | | | | | | NOV
29 | <.008 | E.04 | .02 | .19 | К3900 | K4000 | 1900 | 1 | 1500 | 1.4 | <.04 | <.1 | <6 | | DEC
13
13 | <.008
<.008 | E.06
E.06 | .05 | .10
.10 | K470
 | 800 | 2600 | | | | | | | | FEB 28 | .012 | <.06 | <.02 | .07 | K7 | К3 | 80 | | | | | | | | MAR
21 | <.008 | <.06 | <.02 | E.03 | K47 | 34 | 48 | | | | | | | | APR
18 | .008 | E.04 | .03 | .12 | К93 | 150 | 223 | | | | | | | | MAY
23 | <.008 | E.04 | .02 | .07 | 160 | 130 | 230 | 2 | 112 | 1.3 | <.04 | <.1 | <6 | | JUN
13
28 | E.005 | E.05
.06 | .04 | .10 | 670
510 | 1100
350 | 600
290 | 2 | 336 | 1.8 | <.04 | <.1 | <6
 | | JUL
23
23
AUG | .018
<.008 | .06
<.06 | E.01
<.02 | .17
<.06 | 380
 | 320
 | 190
 | 2
<1 | 164
<2 | 7.1
<.2 | .04
<.04 | <.1
<.1 | <6
<6 | | 22 | .128 | E.04 | <.02 | .91 | K15000 | K16000 | 4000 | | | | | | | | | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV | 3 | | | | | | | | | | | | | | | 9 | E6 | <.08 | 4 | 521 | E.01 | E.3 | <1 | 6 | | | | | | 1 | 3
3 | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | APR | | | | | | | | | | | | | | | MAY | | E6 | <.08 | <1 | 109 | <.01 | .5 | 1 | 2 | | | | | | JUN | | E6 | <.08 | М | 129 | <.01 | .5 | 4 | 4 | | | | | | | 8 | | | | | | | | | | | | | | | 3 | 75
<10 | .09
<.08 | M
<1 | 3580
<2.0 | <.01
<.01 | .9
<.3 | <1
<1 | 4
6 | | | | | | | 2 | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. # 06899950 MEDICINE CREEK AT HARRIS, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 40°18'32", long 93°20'15", in NE $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.35, T.64 N., R.22 W., Sullivan County, Hydrologic Unit 10280103, on the left bank on upstream side of the bridge on State Highway E, approximately 0.6 mi east of Harris. DRAINAGE AREA.--192 mi². PERIOD OF RECORD. -- October 1999 to current year. | DATE | TIME | SAMPLI
TYPE | Ε | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|---
--|---|---|---|---|--|--|---|---|---|--| | OCT
25 | 1450 | ENVIRONM | ENTAL | 33 | 10.3 | 96 | 8.0 | 285 | 11.0 | | | | | | NOV
28 | 0910 | ENVIRONM | ENTAL | 3.4 | 12.8 | 97 | 8.0 | 468 | 3.0 | 220 | 65.1 | 14.5 | 4.00 | | DEC 12 | 1055 | ENVIRONM | ENTAL | 6.2 | 12.6 | 103 | 8.0 | 466 | 5.5 | | | | | | JAN
03
08 | 1200
1610 | ENVIRONM
ENVIRONM | | 4.6
5.0 | 9.8
12.1 | 69
87 | 7.5
7.5 | 608
534 | .5
.5 |
240 |
70.9 |
15.7 |
3.15 | | FEB 27 | 0955 | ENVIRONM | ENTAL | 9.9 | 13.7 | 96 | 8.1 | 460 | .5 | | | | | | MAR
19
APR | 1645 | ENVIRONM | ENTAL | 18 | 10.9 | 98 | 8.1 | 448 | 9.5 | | | | | | 17
MAY | 0945 | ENVIRONM | ENTAL | 68 | 8.8 | 98 | 8.1 | 364 | 19.0 | | | | | | 21
JUN | 1420 | ENVIRONM | ENTAL | 38 | 9.1 | 99 | 8.1 | 404 | 18.5 | 190 | 55.1 | 11.6 | 3.63 | | 28
JUL | 1105 | ENVIRONM | ENTAL | 5.6 | 9.4 | 116 | 7.9 | 495 | 24.5 | | | | | | 24
AUG | 1030 | ENVIRONM | ENTAL | 3.6 | 7.7 | 92 | 7.8 | 487 | 23.4 | 210 | 62.8 | 13.3 | 3.52 | | 21
SEP | 1345 | ENVIRONM | ENTAL | 17 | 9.7 | 124 | 8.3 | 414 | 26.0 | | | | | | 10 | 0938 | ENVIRONM | ENTAL | 1.4 | 7.6 | 89 | 7.9 | 467 | 21.5 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
25
NOV | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
25
NOV
28
DEC | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
98 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 | | OCT 25 NOV 28 DEC 12 JAN | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
99
192 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
98
191 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 121 234 223 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 118 12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 .05 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
1.4
.33 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 <.05 | | OCT 25
NOV 28
DEC 12
JAN 03 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
98 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 | | OCT 25 NOV 28 DEC 12 JAN 03 08 FEB 27 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
99
192
184 | WATER
UNFLITCD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
98
191
182 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 121 234 223 194 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 118 12 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 .05 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as
N)
(00625)
1.4
.33
.28 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 <.05 | | OCT 25 NOV 28 DEC 12 JAN 03 08 FEB | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.5

18.7 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
99
192
184
162
313 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
98
191
182
159
311 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
121
234
223
194
379 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

8.86

10.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

58.4

64.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 118 12 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 .05 <.04 .15 .12 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
1.4
.33
.28
.48
.41 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 <.05 .07 E.04 | | OCT 25 NOV 28 DEC 12 JAN 03 08 FEB 27 MAR 19 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.5

18.7 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 99 192 184 162 313 172 | WATER
UNFLITED
IT
FIELD (mg/L as
CaCO ₃)
(00419)
98
191
182
159
311 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 121 234 223 194 379 209 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.86

10.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

58.4

64.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 118 12 <10 <10 12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 .05 <.04 .15 .12 E.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
1.4
.33
.28
.48
.41 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 <.05 .07 E.04 .68 | | OCT 25 NOV 28 DEC 12 JAN 03 08 FEB 27 MAR 19 APR 17 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.5

18.7 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
99
192
184
162
313
172 | WATER UNFLITCH TO THE LOCATION OF | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
121
234
223
194
379
209
207 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

8.86

10.5 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

58.4

64.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 118 12 <10 <10 12 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 308 340 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 .05 <.04 .15 .12 E.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.4 .33 .28 .48 .41 .57 .40 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 <.05 .07 E.04 .68 <.05 | | OCT 25 NOV 28 DEC 12 JAN 03 08 FEB 27 MAR 19 APR 17 MAY 21 | DIS-
SOLVED (mg/L as Na) (00930) 15.5 18.7 10.7 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 99 192 184 162 313 172 172 134 156 180 | WATER UNFLITED TT FIELD (mg/L as CaCO ₃) (00419) 98 191 182 159 311 172 170 134 154 182 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 121 234 223 194 379 209 207 163 188 222 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

8.86

10.5

7.37 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.2

.2

.2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

58.4

64.3

43.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 118 12 <10 <10 12 <10 130 38 13 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 308 340 262 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 .05 <.04 .15 .12 E.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.4 .33 .28 .48 .41 .57 .40 .92 .51 .47 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 <.05 .07 E.04 .68 <.05 .47 .54 <.05 | | OCT 25 NOV 28 DEC 12 JAN 03 08 FEB 27 MAR 19 APR 17 MAY 21 JUN 28 | DIS-
SOLVED (mg/L as Na) (00930) 15.5 18.7 10.7 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 99 192 184 162 313 172 172 134 156 | WATER UNFLITED 1T FIELD (mg/L as CaCO ₃) (00419) 98 191 182 159 311 172 170 134 154 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 121 234 223 194 379 209 207 163 188 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.86

10.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

58.4

64.3

43.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 118 12 <10 <10 12 <10 130 38 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 308 340 262 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 .05 <.04 .15 .12 E.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.4 .33 .28 .48 .41 .57 .40 .92 .51 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 <.05 .07 E.04 .68 <.05 .47 | | OCT 25 NOV 28 DEC 12 JAN 03 08 FEB 27 MAR 19 APR 17 MAY 21 JUN 28 JUL 24 | DIS-
SOLVED (mg/L as Na) (00930) 15.5 18.7 10.7 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 99 192 184 162 313 172 172 134 156 180 | WATER UNFLITED TT FIELD (mg/L as CaCO ₃) (00419) 98 191 182 159 311 172 170 134 154 182 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 121 234 223 194 379 209 207 163 188 222 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

8.86

10.5

7.37 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.2

.2

.2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

58.4

64.3

43.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 118 12 <10 <10 12 <10 130 38 13 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 308 340 262 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 .05 <.04 .15 .12 E.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.4 .33 .28 .48 .41 .57 .40 .92 .51 .47 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.17 E.02 <.05 .07 E.04 .68 <.05 .47 .54 <.05 | # 06899950 MEDICINE CREEK AT HARRIS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |-----------|--|--|--|---|---|--|--|--|---|---|---|--|---| | OCT | | | | | | | | | | | | | | | 25 | .012 | .13 | .10 | .37 | K4800 | K5000 | 1400 | | | | | | | | NOV | | | | | | | | | | | | | | | 28 | <.008 | <.06 | <.02 | E.03 | 220 | 160 | 140 | 5 | 83 | . 6 | E.02 | <.1 | <6 | | DEC | 000 | 0.5 | 0.0 | 0.5 | | 100 | 210 | | | | | | | | 12
JAN | <.008 | <.06 | <.02 | <.06 | K153 | 120 | 310 | | | | | | | | 03 | <.008 | <.06 | <.02 | <.06 | 27 | 21 | К9 | | | | | | | | 08 | <.008 | <.06 | <.02 | <.06 | K17 | к9 | K19 | 4 | 20 | . 6 | .07 | <.1 | <6 | | FEB | | | | | | | | | | | | | | | 27 | .008 | <.06 | E.01 | .07 | K18 | K10 | 52 | | | | | | | | MAR | | | | | | | | | | | | | | | 19 | <.008 | <.06 | E.01 | .06 | <1 | K10 | K35 | | | | | | | | APR | 010 | D 06 | ٥٦ | 0.4 | ***1.00 | 0.77 | 211 | | | | | | | | 17
MAY | .010 | E.06 | .05 | .24 | K100 | 97 | 311 | | | | | | | | 21 | .009 | E.04 | .03 | .10 | 71 | 120 | 110 | 2 | 429 | . 8 | E.02 | <.1 | <6 | | JUN | .005 | 2.01 | .05 | .10 | , - | 120 | | - | 127 | | 2.02 | | - 0 | | 28 | <.008 | < .06 | <.02 | E.06 | 210 | 260 | 210 | | | | | | | | JUL | | | | | | | | | | | | | | | 24 | <.008 | <.06 | <.02 | .08 | K170 | 130 | 160 | 3 | 195 | 1.0 | .04 | <.1 | <6 | | AUG | | | | | | | | | | | | | | | 21 | <.008 | <.06 | .02 | .14 | 600 | 660 | 510 | | | | | | | | SEP
10 | <.008 | <.06 | E.01 | E.05 | K26 | 590 | 220 | | | | | | | | TO | <.008 | <.00 | E.UI | E.U5 | r/20 | 590 | 220 | | | | | | | | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) |
LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |-----------|---|---|--|---|--|--|---|--| | OCT | | | | | | | | | | 25
NOV | | | | | | | | | | 28 | E9 | <.08 | <1 | 1940 | <.01 | . 3 | 3 | 4 | | DEC | 2, | | | 1710 | | .5 | 3 | - | | 12 | | | | | | | | | | JAN
03 | | | | | | | | | | 08 | 114 | <.08 | <1 | 4110 | <.01 | E.2 | 3 | 3 | | FEB | | | | | | | | | | 27
MAR | | | | | | | | | | 19 | | | | | | | | | | APR | | | | | | | | | | 17
MAY | | | | | | | | | | MAY
21 | <10 | E.04 | 1 | 97.2 | < . 01 | . 7 | <1 | 4 | | JUN | | | | | | | | | | 28 | | | | | | | | | | JUL
24 | 15 | <.08 | <1 | 1460 | <.01 | E.2 | 1 | 3 | | AUG | 15 | 1.00 | `- | 1100 | 1.01 | 5.5 | _ | 3 | | 21 | | | | | | | | | | SEP
10 | | | | | | | | | | ±0 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. ### 06900050 MEDICINE CREEK AT LAREDO, MO LOCATION.--Lat $40^{\circ}01'36"$, long $93^{\circ}26'09"$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.12, T.60 N., R.23 W., Grundy County, Hydrologic Unit 10280103, on downstream side of Highway E bridge, approximately 0.5 mi east of Laredo. DRAINAGE AREA.--355 mi². PERIOD OF RECORD.--November 14, 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | , WATER Y
LY MEAN V | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|--|---|-------------------------------------|------------------------------------|--|--|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
12
11
12
18 | 13
18
16
14
12 | 14
12
12
12
12 | e6.4
e6.2
e6.1
e5.9
e6.1 | e9.0
e8.7
e8.3
e9.0
e10 | e35
e25
e15
e15
e20 | 137
110
87
67
57 | 243
181
142
117
100 | 69
59
51
49
47 | e14
13
13
13
12 | 12
9.7
8.1
7.5
7.7 | 6.0
5.7
5.5
5.3
5.1 | | 6
7
8
9
10 | 16
16
19
16
15 | 12
12
12
12
12 | 12
12
12
12
11 | e6.3
e6.1
e6.1
e6.5
e7.0 | 16
17
15
32
96 | e40
50
64
124
152 | 50
52
69
764
e479 | 3720
2440
651
1790
978 | 41
37
34
31
34 | 12
12
12
12
12 | 13
13
9.0
7.7
7.2 | 5.0
5.0
4.8
5.0
4.8 | | 11
12
13
14
15 | 15
15
14
17
37 | 11
11
11
10
9.5 | 11
14
26
35
58 | 9.2
10
11
12
11 | 62
55
59
58
61 | 106
83
71
60
52 | e238
e572
e746
e287
e189 | 7040
9050
1550
555
324 | 36
39
36
56
44 | 17
32
34
17
12 | 7.0
6.6
11
15 | 4.6
4.6
5.6
5.5 | | 16
17
18
19
20 | 56
22
16
14
14 | 10
12
11
11 | 38
29
22
19 | 12
11
11
12
11 | 57
46
44
96
207 | 44
37
33
32
31 | e153
e141
e126
e117
e117 | 230
192
171
144
119 | 36
28
26
25
22 | 11
9.9
9.5
9.3
9.2 | 89
30
12
10
77 | 5.0
5.0
5.5
6.1
6.7 | | 21
22
23
24
25 | 14
20
194
348
120 | 9.3
9.1
9.1
9.5 | 16
16
14
e8.5
e8.0 | 13
12
17
12
11 | 248
132
93
76
62 | 26
21
22
23
26 | 1460
466
236
160
313 | 102
91
95
126
518 | 20
20
18
18
17 | 8.7
8.3
9.1
8.7
8.5 | 50
29
33
17
11 | 6.7
6.6
5.8
4.9
4.7 | | 26
27
28
29
30
31 | 65
43
28
19
15 | 19
14
12
10
11 | e7.5
e7.5
e7.5
e8.0
e7.5
e6.5 | 14
18
17
16
9.6
e9.2 | e40
e25
e25
 | 27
27
36
52
409
238 | 246
2220
3290
800
350 | 465
223
148
116
95
80 | 16
e17
e19
e18
e16 | 8.3
8.3
9.1
12
10 | 8.7
7.8
7.0
6.6
6.4
6.2 | 4.4
4.4
4.5
4.8
4.2 | | MEAN
MAX
MIN | 40.2
348
11 | 11.9
19
9.1 | 16.0
58
6.5 | 10.4
18
5.9 | 59.5
248
8.3 | 64.4
409
15 | 470
3290
50 | 1026
9050
80 | 32.6
69
16 | 12.7
34
8.3 | 17.6
89
6.2 | 5.21
6.7
4.2 | | STATIST | ICS OF MOI | NTHLY MEAN | N DATA FOR | R WATER Y | EARS 200 | 01 - 2002 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 40.2
40.2
2002
40.2
2002 | 11.9
11.9
2002
11.9
2002 | 11.0
16.0
2002
5.97
2001 | 75.9
141
2001
10.4
2002 | 515
971
2001
59.5
2002 | 462
860
2001
64.4
2002 | 487
504
2001
470
2002 | 909
1026
2002
793
2001 | 670
1307
2001
32.6
2002 | 132
252
2001
12.7
2002 | 24.1
30.5
2001
17.6
2002 | 12.9
20.6
2001
5.21
2002 | | SUMMARY | STATISTIC | CS | FOR | 2001 CAL | ENDAR YE | EAR | FOR 2002 | WATER YEA | IR. | WATER YEA | ARS 2001 | - 2002 | | LOWEST A
HIGHEST
LOWEST ANNUAL S
MAXIMUM
MAXIMUM
INSTANTA
10 PERCE
50 PERCE | MEAN ANNUAL ME ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY PEAK FLOT PEAK STAC ANTEOUS LOV ENT EXCEEL ENT EXCEEL | AN
AN
N
MINIMUM
W
GE
W FLOW
DS | | 7780
3.8
4.2

925
62
11 | Jun
Jan
Jan | 2 | 9050
4.2
4.6
13900°
17.95
4.0 Sep 1
193
16
6.4 | May 1
Sep 3
Sep 2
May 1
May 1
2,26,27,3 | 0
14
2
.2 | 148
148
9050
3.3
3.6
13900 ^a
17.95
3.0
193
16 | Dec 1
Dec 1
May 1
May 1 | 2002
2002
12 2002
15 2000
13 2000
12 2002
12 2002
5 2000 | e Estimated $^{\rm a}$ From rating extended above 8,510 ${\rm ft^3/s.}$ # 06900100 LITTLE MEDICINE CREEK NEAR HARRIS, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 40°19'02", long 93°22'52", in SW $^{1}\!\!/_4$ SE $^{1}\!\!/_4$ NW $^{1}\!\!/_4$ sec.28, T.64 N., R.22 W., Mercer County, Hydrologic Unit 10280103, on the left bank on upstream side of bridge on State Highway E, approximately 1.7 mi west of Harris. DRAINAGE AREA.--66.5 mi². PERIOD OF RECORD.--November 1997 to current year. | DATE | TIME | SAMPL:
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|---|---|---|--|---|--|--|---|---|--|---|---| | OCT
25 |
1030 | ENVIRONM | ENTAL | 7.5 | 10.9 | 91 | 8.0 | 310 | 6.5 | | | | | | NOV
28 | 1210 | ENVIRONM | ENTAL | 1.5 | 13.8 | 105 | 8.2 | 453 | 3.0 | 200 | 57.3 | 12.9 | 4.88 | | DEC 12 | 1420 | ENVIRONM | ENTAL | 1.7 | 13.2 | 110 | 8.3 | 472 | 6.0 | | | | | | JAN
08 | 1155 | ENVIRONM | ENTAL | .38 | 7.3 | 53 | 7.3 | 599 | .5 | 270 | 80.1 | 17.5 | 3.84 | | FEB
27
27 | 1425
1426 | ENVIRONM
REPLICAT | | 1.8 | 12.5 | 90
 | 7.8 | 460
 | 1.0 | | | | | | MAR
19 | 1315 | ENVIRONM | ENTAL | 2.0 | 12.2 | 113 | 8.4 | 434 | 10.5 | | | | | | APR
17 | 1220 | ENVIRONM | ENTAL | 13 | 8.8 | 108 | 8.2 | 397 | 24.0 | | | | | | MAY
21 | 1205 | ENVIRONM | ENTAL | 9.1 | 10.4 | 108 | 8.2 | 422 | 16.5 | 200 | 58.5 | 12.1 | 3.67 | | JUN
28 | 0840 | ENVIRONM | ENTAL | 2.0 | 8.6 | 99 | 8.0 | 497 | 20.5 | | | | | | JUL
24
AUG | 1300 | ENVIRONM | ENTAL | .59 | 10.1 | 135 | 8.1 | 485 | 29.0 | 210 | 62.1 | 12.6 | 4.54 | | 21 | 0910 | ENVIRONM | ENTAL | 3.1 | 7.4 | 89 | 8.1 | 388 | 23.0 | | | | | | SEP
10 | 1330 | ENVIRONM | ENTAL | .15 | 11.6 | 153 | 8.1 | 424 | 28.0 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
25
NOV | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
25
NOV
28
DEC | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530)
54
<10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 | | OCT 25
NOV 28
DEC 12
JAN | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
112
185 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
110
182
184 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 54 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04 <.04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.1 .27 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 | | OCT 25
NOV 28
DEC 12
JAN 08
FEB | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
110
182
184
371 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530)
54
<10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 <.05 | | OCT 25
NOV 28
DEC 12
JAN 08 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.0

21.4 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
112
185
182
372 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
110
182
184 | BICAR-BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
134
223
225
452 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

11.1 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

49.8

70.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 54 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
1.1
.27
.25 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 | | OCT 25 NOV 28 DEC 12 JAN 08 FEB 27 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.0

21.4 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
112
185
182
372
171 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 110 182 184 371 171 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
134
223
225
452
209 | CAR-BONATE IT FIELD (mg/L as CO ₃)(00447) 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

11.1

12.1 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

49.8

70.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 54 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04 <.04 .39 .13 | GEN, AM- MONIA + ORGANIC TOTTAL (mg/L as N) (00625) 1.1 .27 .25 .67 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 <.05 .13 .78 | | OCT 25 NOV 28 DEC 12 JAN 08 FEB 27 27 MAR 19 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.0

21.4 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 112 185 182 372 171 | WATER UNFLTRD 1T FIELD (mg/L as CaCO ₃) (00419) 110 182 184 371 171 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
134
223
225
452
209 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

11.1 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

49.8

70.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 54 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04 <.04 .39 .13 .12 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.1 .27 .25 .67 .46 .45 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 <.05 .13 .78 .76 | | OCT 25 NOV 28 DEC 12 JAN 08 FEB 27 27 MAR 19 APR 17 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.0

21.4 | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
112
185
182
372
171
 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 110 182 184 371 171 158 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
134
223
225
452
209
 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 5 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

11.1

12.1 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

49.8

70.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 54 <10 <10 <10 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 280 382 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04
<.04 .39 .13 .12 E.02 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.1 .27 .25 .67 .46 .45 .34 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 <.05 .13 .78 .76 <.05 | | OCT 25 NOV 28 DEC 12 JAN 08 FEB 27 27 MAR 19 APR 17 MAY 21 | DIS-
SOLVED (mg/L as Na) (00930) 15.0 21.4 10.9 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 112 185 182 372 171 158 140 166 197 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 110 182 184 371 171 158 141 165 197 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 134 223 225 452 209 184 172 201 240 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 5 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

11.1

12.1

7.37 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) 2222 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

49.8

70.1

46.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 54 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 280 382 267 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04 <.04 .39 .13 .12 E.02 <.04 E.03 .05 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.1 .27 .25 .67 .46 .45 .34 .60 .38 .41 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 <.05 .13 .78 .76 <.05 .43 .29 E.03 | | OCT 25 NOV 28 DEC 12 JAN 08 FEB 27 27 MAR 19 APR 17 MAY 21 JUN 28 | DIS-
SOLVED (mg/L as Na) (00930) 15.0 21.4 10.9 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 112 185 182 372 171 158 140 166 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 110 182 184 371 171 158 141 165 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 134 223 225 452 209 184 172 201 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 5 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

11.1

12.1

7.37 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS- SOLVED (mg/L as SO ₄) (00945) 49.8 70.1 46.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L)(00530) 54 <10 <10 <10 <10 <10 <10 <11 11 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 280 382 267 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04 <.04 .39 .13 .12 E.02 <.04 E.03 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.1 .27 .25 .67 .46 .45 .34 .60 .38 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 <.05 .13 .78 .76 <.05 .43 | | OCT 25 NOV 28 DEC 12 JAN 08 FEB 27 27 MAR 19 APR 17 MAY 21 JUN 28 JUL 24 | DIS-
SOLVED (mg/L as Na) (00930) 15.0 21.4 10.9 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 112 185 182 372 171 158 140 166 197 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 110 182 184 371 171 158 141 165 197 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 134 223 225 452 209 184 172 201 240 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 5 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

11.1

12.1

7.37 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) 2222 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

49.8

70.1

46.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 54 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 280 382 267 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 <.04 <.04 .39 .13 .12 E.02 <.04 E.03 .05 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.1 .27 .25 .67 .46 .45 .34 .60 .38 .41 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.06 <.05 <.05 .13 .78 .76 <.05 .43 .29 E.03 | # 06900100 LITTLE MEDICINE CREEK NEAR HARRIS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |-----------------|---|--|---|--|--|--|--|--|--|--|--|--|---| | OCT 25 | E.005 | .08 | .06 | .20 | 910 | 1000 | 2500 | | | | | | | | NOV
28 | <.008 | <.06 | <.02 | <.06 | K45 | K55 | 110 | 3 | 18 | . 4 | <.04 | <.1 | <6 | | DEC
12 | <.008 | <.06 | <.02 | <.06 | 150 | 170 | 250 | | | | | | | | JAN
08 | E.005 | <.06 | <.02 | <.06 | K10 | к7 | 45 | 4 | 14 | .6 | .07 | <.1 | <6 | | FEB
27
27 | .008 | <.06
<.06 | <.02
<.02 | E.03 | K3 | K2
 | K8 | | | | | | | | MAR
19 | <.008 | <.06 | <.02 | <.06 | K10 | K21 | 40 | | | | | | | | APR
17 | .009 | .06 | .05 | .13 | 190 | 130 | 340 | | | | | | | | MAY
21 | E.006 | E.04 | .02 | .07 | 62 | 56 | 110 | 2 | 201 | .8 | <.04 | <.1 | <6 | | JUN
28 | <.008 | <.06 | E.01 | E.04 | 930 | к970 | 900 | | | | | | | | JUL
24 | E.005 | <.06 | E.01 | E.04 | 140 | 170 | 190 | 1 | 56 | .9 | E.03 | <.1 | <6 | | AUG
21 | E.007 | E.03 | E.01 | .10 | 1100 | 1300 | 1500 | | | | | | | | SEP
10 | <.008 | <.06 | <.02 | E.04 | K160 | 190 | 170 | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT | | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV | 5 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV
2
DEC | 5
8 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED (µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | | | | | | OCT
2
NOV
2
DEC
1
JAN
0 | 5
8
2 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV
2
DEC
1
JAN
0
FEB | 5
8
2
8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

59

561 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

1530
6400 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145)

E.3

.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

3 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | | | | | | OCT
2
NOV
2
DEC
1
JAN
0
FEB
2
2 | 5
8
2
8
7 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

59

561 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV-
ERABLE (μg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

1530
6400 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Zn)
(01145)

E.3
 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

3 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | | | | | | OCT
2
NOV
2
DEC
1
JAN
0
FEB
2
2
2
MAR
1
APR | 5
8
2
8
7 |
DIS-
SOLVED
(µg/L
as Fe)
(01046)

59

561 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

1530
6400 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145)

E.3

.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

3 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | | | | | | OCT
2
NOV
2
DEC
1
JAN
0
FEB
2
2
2
MAR
1
APR | 5
8
2
8
7
9 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

59

561 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV-
ERABLE (μg/L as Pb) (01051) <1 <1 <1 | NESE, DIS- SOLVED (μg/L as Mn) (01056) 1530 6400 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145)

E.3

.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

3 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | | | | | | OCT 2 NOV 2 DEC 1 JAN 0 FEB 2 2 MAR 1 APPR 1 MAY 2 JUN | 5
8
2
8
7
7
7 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

59

561
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

1530
6400
 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Zn) (01145) E.33 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

3 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | | | | | | OCT 2 NOV 2 DEC 1 JAN 0 FEB 2 2 MAR 1 APPR 1 MAY 2 JUN | 5
8
2
8
7
7
9 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

59

561

 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 <1 | NESE, DIS- SOLVED (μg/L as Mn) (01056) 1530 6400 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.01 <.01 < | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145)

E.3

.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

3

 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | | | | | | OCT 2 NOV 2 DEC 1 JAN 0 FEB 2 Z MAR 1 APR 1 MAY 2 JUN 2 JUL | 5
8
2
8
7
9
1
8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

59

561

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 <1 <1 <1 | NESE, DIS- SOLVED (μg/L as Mn) (01056) 1530 6400 97.8 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Zn) (01145) E.338 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

3

<1 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 3 | | | | | | OCT 2 NOV 2 DEC 1 JAN 0 FEB 2 2 MAR 1 APR 1 MAY 2 JUN 2 JUN 2 AUG | 5
8
2
7
7
9
1
8
4 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

59

561

<-10 | DIS-
SOLVED (µg/L as Pb) (01049)
<.08
<.08
<- <.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 <1 <1 <1 <1 <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 1530 6400 97.8 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Zn) (01145) E.338 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

3

<1 | TOTAL RECOV- REABLE (µg/L as Zn) (01092) 5 2 3 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. ## 06900900 LOCUST CREEK NEAR UNIONVILLE, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $40^{\circ}28^{\circ}23^{\circ}$, long $93^{\circ}07^{\circ}37^{\circ}$, in SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.35, T.66 N., R.20 W., Putnam County, Hydrologic Unit 10280103, on left bank on upstream side of bridge on Highway HH approximately 3.2 mi west of State Highway 5, 9.4 mi south of Unionville. DRAINAGE AREA.--77.5 mi². PERIOD OF RECORD. -- October 1999 to current year. | DATE | TIME | SAMPLE
TYPE | : | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|---|--|---|---|---|---|---|---|---|--|---|---| | OCT 24 | 0950 | ENVIRONME | NTAL | 59 | 8.1 | 82 | 7.8 | 286 | 13.5 | | | | | | NOV 27 | 1250 | ENVIRONME | NTAL | 4.4 | 16.0 | 129 | 8.4 | 486 | 5.0 | 230 | 66.8 | 15.7 | 4.69 | | DEC 11 | 1350 | ENVIRONME | NTAL | 3.1 | 14.6 | 113 | 8.4 | 491 | 3.5 | | | | | | JAN
02 | 1525 | ENVIRONME | | .66 | 11.4 | 81 | 7.7 | 718 | .5 | | | | | | 09
FEB | 0955 | ENVIRONME | | .94 | 9.5 | 69 | 7.7 | 680 | .5 | 330 | 93.6 | 22.4 | 4.36 | | 26
MAR | 1350 | ENVIRONME | | 9.2 | 14.6 | 104 | 8.2 | 464 | .5 | | | | | | 20
APR | 1040 | ENVIRONME | | 8.8 | 12.5 | 103 | 8.3 | 474 | 6.0 | | | | | | 16
MAY | 1315 | ENVIRONME | | 27 | 8.8 | 106 | 8.2 | 425 | 22.5 | | | | | | 22 | 1305
1330 | ENVIRONME
BLANK | NTAL | 16
 | 9.6
 | 101 | 8.1 | 433 | 16.5
 | 200 | 59.9
.02 | 12.3 | 3.45
<.10 | | JUN
27 | 1145 | ENVIRONME | NTAL | 1.6 | 8.3 | 103 | 8.2 | 481 | 24.5 | | | | | | JUL
25 | 0945 | ENVIRONME | NTAL | .52 | 6.9 | 82 | 8.1 | 497 | 22.0 | 220 | 64.6 | 14.0 | 4.77 | | AUG
20 | 1410 | ENVIRONME | NTAL | 14 | 7.8 | 95 | 8.1 | 322 | 23.5 | | | | | | SEP
09 | 1330 | ENVIRONME | NTAL | .05 | 9.6 | 123 | 8.1 | 451 | 26.5 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | FET
FIELD
(mg/L as
CaCO ₃) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
24
NOV | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT 24
NOV 27
DEC |
DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITD FET FIELD (mg/L as CaCO ₃) (00410) 97 210 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 | | OCT 24 NOV 27 DEC 11 JAN | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
97
210 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209
207 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 117 248 247 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 4 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.7 .37 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 | | OCT 24 NOV 27 DEC 11 JAN 02 09 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITD FET FIELD (mg/L as CaCO ₃) (00410) 97 210 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 | | OCT 24 NOV 27 DEC 11 JAN 02 09 FEB 26 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
97
210
210
324 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209
207
321 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
117
248
247
392 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 4 3 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 .11 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
1.7
.37
.31 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 <.05 | | OCT 24 NOV 27 DEC 11 JAN 02 09 FEB 26 MAR 20 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.2

26.0 | WATER
UNFLITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
97
210
210
324
435 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209
207
321
435 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
117
248
247
392
531 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 4 3 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.94

13.3 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

50.3

70.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 .11 .10 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
1.7
.37
.31
.58
.48 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 <.05 | | OCT 24 NOV 27 DEC 11 JAN 02 09 FEB 26 MAR 20 APR 16 | DIS-
SOLVED (mg/L
as Na)
(00930)

15.2

26.0 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 97 210 210 324 435 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209
207
321
435
170 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
117
248
247
392
531
207 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 4 3 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1)
(00940)

8.94

13.3 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

50.3

70.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 <10 <10 28 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 .11 .10 E.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.7 .37 .31 .58 .48 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 <.05 .06 .07 | | OCT 24 NOV 27 DEC 11 JAN 02 09 FEB 26 MAR 20 APR 16 MAY 22 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.2

26.0 | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
97
210
210
324
435
171
188 | WATER
UNFLITD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209
207
321
435
170
187 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
117
248
247
392
531
207
228 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 4 3 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

8.94

13.3 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

50.3

70.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 <10 <10 28 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 .11 .10 E.04 E.03 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.7 .37 .31 .58 .48 .53 .39 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 <.05 .06 .07 .76 <.05 | | OCT 24 NOV 27 DEC 11 JAN 02 09 FEB 26 MAR 20 APR 16 MAY 22 22 JUN 27 | DIS-
SOLVED (mg/L as Na) (00930) 15.2 26.0 11.4 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 97 210 210 324 435 171 188 159 172 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209
207
321
435
170
187
161 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
117
248
247
392
531
207
228
196
210 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 4 3 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

8.94

13.3

7.07 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.2

.2

.2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

50.3

70.7

44.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 <10 <10 28 <10 120 15 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 .11 .10 E.04 E.03 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.7 .37 .31 .58 .48 .53 .39 .51 .48 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 <.05 .06 .07 .76 <.05 .26 .30 | | OCT | DIS-
SOLVED (mg/L as Na) (00930) 15.2 26.0 11.4 <.09 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 97 210 210 324 435 171 188 159 172 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209
207
321
435
170
187
161 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 117 248 247 392 531 207 228 196 210 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 4 3 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

8.94

13.3

7.07
<.30 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.2

.2

.2

.2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

50.3

70.7

44.4
<.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L)(00530) 192 <10 <10 <10 28 <10 120 15 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 306 436 277 <10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 .11 .10 E.04 E.03 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.7 .37 .31 .58 .48 .53 .39 .51 .48 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 .06 .07 .76 <.05 .26 .30 <.05 | | OCT 24 NOV 27 DEC 11 JAN 02 09 FEB 26 MAR 20 APR 16 MAY 22 JUN 27 JUL | DIS-
SOLVED (mg/L
as Na) (00930) 15.2 26.0 11.4 <.09 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 97 210 210 324 435 171 188 159 172 184 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
96
209
207
321
435
170
187
161
172
 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
117
248
247
392
531
207
228
196
210
 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0 4 3 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.94

-13.3

7.07
<.30 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS- SOLVED (mg/L as SO ₄) (00945) 50.3 70.7 44.4 <.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 192 <10 <10 <10 28 <10 120 15 <10 13 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 306 436 277 <10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 .11 .10 E.04 E.03 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.7 .37 .31 .58
.48 .53 .39 .51 .48 <.10 .54 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 <.05 .06 .07 .76 <.05 .26 .30 <.05 | # 06900900 LOCUST CREEK NEAR UNIONVILLE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |------------------|--|--|--|---|--|--|--|--|---|--|---|--|---| | OCT 24 | .009 | .11 | .09 | .43 | K21000 | 11000 | K36000 | | | | | | | | NOV
27 | <.008 | <.06 | <.02 | E.04 | 120 | K74 | K100 | 3 | 36 | .7 | <.04 | <.1 | <6 | | DEC
11 | <.008 | <.06 | <.02 | <.06 | K32 | К32 | 120 | | | | | | | | JAN
02
09 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | K17
K10 | K17
K12 | K18
65 |
4 |
14 |
.7 |
E.03 |
<.1 |
<6 | | FEB
26 | .009 | <.06 | <.02 | .06 | K10 | K27 | 100 | | | | | | | | MAR
20 | <.008 | E.04 | .04 | E.04 | K45 | 73 | 46 | | | | | | | | APR
16 | E.006 | E.05 | .04 | .11 | K210 | 280 | 290 | | | | | | | | MAY
22
22 | E.006 | <.06
<.06 | .02
<.02 | .07
<.06 | 140
 | 190
 | 160
 | 2
<1 | 221
<2 | .8 | <.04
<.04 | <.1
<.1 | <6
<6 | | JUN
27 | E.007 | <.06 | E.01 | E.06 | 390 | 300 | 280 | | | | | | | | JUL
25 | .010 | <.06 | .02 | .08 | 240 | 230 | 900 | <1 | 347 | 1.3 | E.03 | <.1 | <6 | | AUG
20
SEP | E.005 | E.03 | .02 | .18 | 2700 | 2100 | 4800 | | | | | | | | 09 | E.006 | <.06 | E.02 | .07 | 250 | 180 | 460 | | | | | | | | | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2 | 4 | | | | | | | | | | | | | | NOV
2 | ,
:7 | 19 | <.08 | <1 | 535 | <.01 | E.3 | 2 | 3 | | | | | | | 1 | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | FEB | | 38 | <.08 | <1 | 2440 | <.01 | .5 | 1 | 1 | | | | | | 2
MAR | 16
L | | | | | | | | | | | | | | 2
APR | 0 | | | | | | | | | | | | | | 1
MAY | 6 | | | | | | | | | | | | | | | 2 | E7
<10 | <.08
<.08 | M
<1 | 147
<2.0 | <.01
<.01 | .7
<.3 | <1
<1 | 2
<1 | | | | | | JUN | | | | | | | | | | | | | | | JUL | | <10 | <.08 | <1 | 702 | <.01 | . 4 | <1 | 4 | | | | | | AUG | | | | | | | | | | | | | | | SEP | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 06901500 LOCUST CREEK NEAR LINNEUS, MO LOCATION.--Lat 39°53'45", long 93°14'10", in NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.34, T.59 N., R.21 W., Linn County, Hydrologic Unit 10280103, on right bank on upstream side of county road, 1 mi upstream from Boyer bridge, 1.5 mi upstream from Strawberry and Couch Creeks, 3 mi northwest of Linneus, and 5 mi downstream from West Locust Creek. DRAINAGE AREA. -- 550 sq mi². REVISED RECORDS. -- WSP 896: 1939. PERIOD OF RECORD.--October 1928 to September 1972, July 2000 to current year. Prior to April 1929 monthly discharge only published in WSP 1310. GAGE.--Water-stage recorder. Datum of gage is 692.61 ft above National Geodetic Vertical Datum of 1929. Prior to July 26, 1956, nonrecording gage at same site and datum. REMARKS.--Records fair except for July through September and estimated daily discharges, which are poor. U.S.G.S satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 1909 reached a discharge of about 18,000 ft³/s, determination by the Corps of Engineers. | DISCHARGE | E, CUBIC | FEET PER | | | | 2001 TO | SEPTEMBE | R 2002 | | | |--------------------------------------|--|--
---|---|---|---|---|---|---|---| | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 34
30
31
30
28 | 20
20
19
e18
e18 | e15
e16
e14
e11
e13 | e17
e18
e17
e16
e17 | e45
e55
e50
e40
e50 | 122
90
73
59
50 | 458
350
280
229
185 | 145
120
103
91
85 | e21
e19
e19
e19
e20 | 11
12
11
9.9
9.7 | 9.7
9.2
8.6
7.2
6.8 | | 26
26
24
23
23 | 18
18
18
18
17 | e15
e15
e17
e17
e19 | e19
e23
27
47
119 | e64
e83
e96
281
300 | 45
43
49
316
742 | 4480
4350
1330
2010
1330 | 77
69
62
56
59 | e18
e15
e13
e15
e35 | 20
19
14
11 | 6.4
6.2
5.6
5.6 | | 23
21
24
22
22 | 17
20
33
45
45 | e21
e22
26
28
26 | 109
123
110
113
110 | 183
132
113
100
87 | 296
184
521
275
174 | 7820
17100
9370
2560
1190 | 81
119
66
75
91 | e36
e65
e43
e26
e19 | 9.4
9.1
12
12
13 | 5.5
5.4
5.2
5.8
6.4 | | 21
21
22
22
21 | 45
36
31
28
25 | 28
25
30
32
30 | 113
104
90
193
628 | 77
67
55
51
48 | 126
111
94
205
122 | 838
657
541
423
345 | 75
56
44
37
35 | 15
15
13
13
12 | 90
55
33
22
78 | 5.6
7.3
7.3
7.3
7.2 | | 21
20
20
21
22 | 23
24
23
e20
e17 | 30
27
20
22
24 | 446
236
e148
e110
e98 | 45
41
38
37
42 | 2570
1020
426
287
382 | 285
230
200
299
1520 | 29
26
24
22
20 | 11
12
10
9.9 | 103
50
48
31
24 | 6.4
6.2
5.5
5.0
4.8 | | 24
23
21
22
22 | e15
e16
e15
e16
e16
e14 | 17
18
19
21
e18
e17 | e83
e79
e52
 | 43
42
46
50
94
250 | 291
3480
5490
1610
692 | 1260
516
438
487
268
187 | 18
17
e17
e22
e23 |
11
10
10
14
13 | 18
14
12
11
9.9
9.7 | 4.9
5.1
4.9
4.4
4.2 | | 23.7
34
20
0.05 | 22.8
45
14
0.05 | 21.1
32
11
0.04 | 117
628
16
0.22 | 87.3
300
37
0.18 | 665
5490
43
1.35 | 1985
17100
185
4.16 | 58.8
145
17
0.12 | 18.5
65
9.9
0.04 | 25.5
103
9.1
0.05 | 6.17
9.7
4.2
0.01 | | THLY MEAN | DATA FOR | R PERIOD (| OF RECORD | , BY WAT | ER YEAR (WY | 7) | | | | | | 198
2272
1932
2.38
1957 | 140
803
1943
2.70
1938 | 189
1027
1946
1.29
1940 | 328
1557
2001
3.61
1957 | 481
1898
1961
6.47
1957 | 591
2103
1944
5.92
1956 | 502
2647
1935
23.2
1938 | 705
5820
1947
4.72
1934 | 277
2903
1958
0.40
1934 | 130
1812
1932
0.67
1936 | 160
2079
1970
1.97
1955 | | CS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 V | VATER YEA | R | FOR 1 | PERIOD OF | RECORD | | CAN N N N MIN MINIMUM FLOW ICHES) SS | | 13100
6.0
7.4

13.95
1270
80 | Jan | 3 | 260
17100
4.2
4.8
19200
24.48
3.8
6.42
306
26 | Sep 3
Sep 2
May 1
May 1 | 0
4
2
2 | 0.00
38000
26.93
0.00 Jul
7.83
594
43 | l 17-Aug
Jul
Jun
Jun | 17 1934
6 1947
6 1947 | | | NOV 34 30 31 30 28 26 26 24 23 23 23 21 24 22 21 21 21 20 20 21 21 20 20 21 21 22 22 21 21 20 20 21 21 22 22 21 21 20 20 21 22 24 23 21 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 22 24 23 21 22 22 22 24 23 21 22 22 23 21 20 20 20 21 22 23 24 23 21 22 22 22 24 23 21 22 22 22 24 23 21 22 22 23 24 23 21 22 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 20 20 20 21 21 22 22 24 23 21 22 22 24 23 21 22 22 24 23 21 20 20 20 21 21 22 22 24 23 21 20 20 20 21 21 22 22 24 23 21 20 20 20 21 21 22 22 24 23 21 20 20 20 21 21 22 22 24 23 21 20 20 20 21 21 22 22 24 23 34 20 0.05 STHLY MEAN 198 2272 1932 2.38 1957 2.5 SAN N N MINIMUM INIMUM INIMU | NOV DEC 34 20 30 20 31 19 30 e18 28 e18 26 18 26 18 24 18 23 18 23 17 21 20 24 33 22 45 21 45 21 45 21 36 22 31 22 28 21 25 21 23 20 23 21 e20 22 e17 24 e15 23 e16 21 e15 22 22 e17 24 e15 23 e16 21 e15 22 e16 21 e15 22 e16 22 e16 21 e15 22 e16 22 e16 21 e15 22 e16 22 e16 22 e16 21 e15 22 e16 22 e16 22 e16 21 e15 22 e16 21 e15 22 e16 22 e16 21 e15 22 e16 21 e15 22 e16 22 e16 21 e15 22 e16 21 e15 22 e16 22 e16 21 e15 22 e16 21 e15 22 e16 22 e16 21 e15 22 e16 22 e16 22 e16 21 e15 22 e16 22 e16 21 e15 22 e16 22 e16 22 e16 23 e16 24 e15 25 e16 25 e16 26 e16 27 e16 28 e18 e1 | NOV DEC JAN 34 20 e15 30 20 e16 31 19 e14 30 e18 e11 28 e18 e13 26 18 e15 26 18 e15 26 18 e15 24 18 e17 23 17 e19 23 17 e19 23 17 e19 23 17 e21 21 20 e22 24 33 26 22 45 28 22 45 26 21 45 28 21 45 28 21 36 25 22 31 30 22 28 32 21 25 30 21 e20 23 22 22 e17 24 24 e15 17 23 e16 21 24 e15 19 22 e16 21 22 e16 21 22 e16 e18 21 e15 19 21 22 e16 21 22 e16 21 23 a1 0.05 0.05 0.04 ETHLY MEAN DATA FOR PERIOD 6 STAN SIN 13100 IN 189 277 1932 1943 1946 2.38 2.70 1.29 1957 1938 1940 ES FOR 2001 CALI SES SES FOR 2001 CALI SES SES FOR 2001 CALI SES SES SES SES SES SES SES SES SES SE | NOV DEC JAN FEB 34 20 e15 e17 30 20 e16 e18 31 19 e14 e17 30 e18 e11 e16 28 e18 e13 e17 26 18 e15 e23 24 18 e17 27 23 18 e17 47 23 17 e19 119 23 17 e21 109 21 20 e22 123 24 33 26 110 22 45 28 113 22 45 26 110 21 45 28 113 22 45 26 110 21 45 28 113 22 45 26 110 21 45 28 113 22 1 20 e22 123 24 33 26 120 22 45 26 110 21 45 28 13 21 36 25 104 22 31 30 90 22 28 32 193 21 25 30 628 21 23 30 446 20 24 27 236 20 23 20 e148 21 e20 22 e110 22 e17 24 e98 24 e15 17 e83 23 e16 18 e79 21 e15 19 e52 22 e16 e18 23 7 22 8 21 1 17 34 45 32 628 20 14 11 16 0.05 0.05 0.04 0.22 ETHLY MEAN DATA FOR PERIOD OF RECORD 198 140 189 328 277 293 1943 1946 2001 2 38 270 1.29 3.61 1957 1938 1940 1957 ES FOR 2001 CALENDAR YEA SEN WIN HALL STAN AND AND AND AND AND AND AND AND AND A | NOV DEC JAN FEB MAR 34 20 e15 e17 e45 30 20 e16 e18 e55 31 19 e14 e17 e50 30 e18 e11 e16 e40 28 e18 e13 e17 e50 26 18 e15 e23 e83 24 18 e17 27 e96 26 18 e17 47 281 23 18 e17 47 281 23 17 e19 119 300 23 17 e21 109 183 21 20 e22 123 132 24 33 26 110 113 22 45 28 113 100 22 45 26 110 87 21 45 28 113 100 22 45 26 110 87 21 45 28 113 77 21 36 25 104 67 22 231 30 90 55 22 28 32 193 51 21 25 30 628 48 21 23 30 446 45 20 24 27 236 41 20 22 e17 24 e98 42 24 e15 17 e83 43 23 e16 18 e79 42 24 e15 19 e52 46 22 e16 21 50 22 e16 e18 94 21 e15 19 e52 46 22 e16 e18 94 21 e17 22 803 1027 1557 1898 1932 1943 1946 2001 1961 23 27 28 21 1 117 87.3 34 45 32 628 300 34 45 32 628 300 34 45 32 628 300 34 45 32 628 300 35 20 14 11 16 37 20 14 e17 250 23.7 22.8 21.1 117 87.3 34 45 32 628 300 35 20 14 11 16 37 36 22 e16 e18 94 2 e14 e17 250 23.7 22.8 21.1 117 87.3 34 45 32 628 300 35 20 14 11 16 37 36 20 14 11 16 37 37 22.8 21.1 117 87.3 34 45 32 628 300 35 20 14 11 16 37 36 20 14 11 16 37 37 22.8 21.1 117 87.3 34 45 32 628 300 30 1027 1557 1898 1932 1943 1946 2001 1961 2.38 2.70 1.29 3.61 6.47 1957 1938 1940 1957 1957 25 FOR 2001 CALENDAR YEAR 565 26N 26N 27 | NOV DEC JAN FEB MAR APR 34 20 e15 e17 e45 122 30 20 e16 e18 e55 90 31 19 e14 e17 e50 73 30 e18 e11 e16 e40 59 28 e18 e13 e17 e50 50 26 18 e15 e19 e64 45 26 18 e15 e23 e83 43 24 18 e17 27 e96 49 23 18 e17 47 281 316 23 17 e19 119 300 742 23 17 e21 109 183 296 21 20 e22 123 132 184 24 33 26 110 113 521 22 45 28 113 100 275 22 45 28 113 100 275 22 45 28 113 100 275 21 36 25 104 67 111 22 31 30 90 55 94 21 25 30 628 48 122 21 23 30 446 45 2570 20 24 27 236 41 1020 20 23 20 e148 38 426 21 e20 22 e110 37 287 21 e20 22 e110 37 287 21 e20 22 e110 37 287 22 28 32 193 51 205 21 25 30 628 48 122 21 23 30 446 45 2570 20 24 27 236 41 1020 20 23 20 e148 38 426 21 e20 22 e110 37 287 22 e16 e18 94 692 22 e16 e18 94 692 23 e16 18 e79 42 3480 24 e15 17 e83 43 291 25 e16 e18 94 692 26 e16 e18 94 692 27 e16 e18 94 692 28 e16 e18 94 692 29 e16 e18 94 692 20 14 11 16 37 43 20 22 e16 e18 94 692 20 14 11 16 37 43 20 20 14 11 16 37 43 21 e15 19 e52 46 5490 22 e16 e18 94 692 23 e16 e18 94 692 24 e15 17 e83 43 291 25 e16 e18 94 692 26 e16 e18 94 692 27 e16 e18 94 692 28 e16 e18 94 692 29 e16 e18 94 692 20 14 11 16 37 43 20 05 0.05 0.04 0.22 0.18 1.35 FITHLY MEAN DATA FOR PERIOD OF RECORD, BY WATER YEAR (W) 198 140 189 328 481 591 272 803 1027 1557 1898 2103 31 932 1943 1946 2001 1961 1944 2.38 2.70 1.29 3.61 6.47 5.92 1957 1938 1940 1957 1957 1956 ES FOR 2001 CALENDAR YEAR FOR 2002 W ANN NN 13100 Jun 6 17100 | NOV DEC JAN FEB MAR APR MAY | NOV DEC JAN FEB MAR APR MAY JUN | NOV DEC JAN FEB MAR AFR MAY JUN JUL 34 20 e15 e17 e45 122 458 145 e21 30 20 e16 e18 e55 90 350 120 e19 31 19 e14 e17 e50 73 280 103 e19 30 e18 e11 e16 e40 59 229 91 e19 28 e18 e13 e17 e50 50 185 85 e20 26 18 e15 e23 e63 43 4350 69 e15 26 18 e15 e23 e63 43 4350 69 e15 27 e26 18 e17 27 e26 49 1330 62 e13 23 17 e19 119 300 742 1330 56 e15 23 17 e21 109 183 296 7820 81 e36 24 18 e17 27 e26 49 1330 62 e13 23 17 e21 109 183 296 7820 81 e36 24 13 e17 e27 e19 119 300 742 1330 56 e15 23 17 e21 109 113 521 194 110 119 e65 24 33 26 110 113 521 194 110 119 e65 24 33 26 110 87 174 1190 91 e19 21 45 28 113 100 275 2560 75 e26 22 45 26 110 87 174 1190 91 e19 21 45 28 113 100 275 2560 75 e26 22 13 23 20 e148 48 122 345 35 12 21 22 23 30 446 45 2570 285 29 11 20 23 27 236 41 1020 230 26 12 21 22 23 20 628 48 122 345 35 12 21 22 23 20 e148 38 426 200 24 10 21 22 24 27 236 41 1020 230 26 12 22 24 27 236 41 1020 230 26 12 23 24 27 236 41 1020 230 26 12 24 27 236 41 1020 230 26 12 25 26 17 24 e88 42 382 1520 20 10 24 e15 17 e83 43 201 486 5490 438 e17 10 23 17 e84 688 42 382 1520 20 10 24 e15 17 e83 43 201 486 5490 438 e17 10 23 e16 18 e99 328 481 591 502 705 285 29 11 23 17 e86 28 28 113 37 43 185 17 24 e15 17 e83 43 201 140 47 190 488 e17 10 23 e16 21 23 30 446 5490 438 e17 10 24 e15 17 e83 43 201 140 47 190 488 e17 10 24 e15 17 e83 43 201 140 47 190 488 e17 10 25 e16 22 e16 21 94 692 268 e23 13 21 22 e16 21 950 140 1961 1944 1935 1947 1958 22 e16 21 950 140 1961 1944 1935 1947 1958 23 e16 18 e79 328 481 591 502 705 277 24 e18 60 Jan 3 4 2 2 Sep 30 0.00 Jul 36 60 Jan 3 4 2 Sep 30 0.00 Jul 37 EVAN 181 1100 Jun 6 17100 May 12 2693 0.00 Jul 38 190 120 120 May 12 260 30 Jul 39 190 120 May 12 260 30 Jul 30 120 120 120 120 120 130 1961 1944 1935 1947 1958 21 193 194 1957 1957 1956 1938 1934 1934 25 FOR 2001 CALENDAR YEAR FOR 200 43 Sep 30 0.00 Jul 38 190 120 120 144 11 16 37 43 185 17 9.99 30 100 Jul 6 17100 May 12 2693 0.00 Jul 30 120 120 120 120 130 130 144 1935 1947 1958 21 120 24 48 48 120 1990 May 12 260 360 1 | NOV DEC JAN FEB MAR APR MAY JUN JUL AUG 34 20 e15 e17 e45 122 458 145 e21 111 33 1 9 e14 e18 e55 90 350 120 e19 112 33 1 9 e14 e17 e50 79 229 91 103 e19 112 33 1 9 e14 e17 e50 79 229 91 03 e19 112 34 20 e18 e11 e16 e40 59 229 92 e19 97 70 97 28 e19 97 97 26 18 e15 e19 e64 45 4480 77 e18 20 20 97 24 112 26 18 e15 e23 e83 43 4350 69 e15 19 24 18 e17 27 e96 49 1330 62 e13 14 23 18 e17 47 281 316 2010 56 e15 11 23 11 23 18 e17 47 281 316 2010 56 e15 11 23 11 23 11 23 11 23 11 23 11 23 11 23 11 24 13 30 62 e13 14 23 18 e17 47 281 316 2010 56 e15 11 23 11 23 11 24 31 25 25 25 25 25 25 25 25 25 25 25 25 25 | e Estimated ### 06902000 GRAND RIVER NEAR SUMNER, MO LOCATION.--Lat $39^{\circ}38^{\circ}25^{\circ}$, long $93^{\circ}16^{\circ}25^{\circ}$, in NE $\frac{1}{4}$ sec.29, T.56 N., R.21 W., Livingston County, Hydrologic Unit 10280103, near right bank on downstream side of pier of bridge on State Highway 139, 240 ft downstream from Chicago, Burlington and Quincy Railroad Bridge, 2.0 mi southwest of Sumner, 2.5 mi downstream from Locust Creek, and at mile 41.0. DRAINAGE
AREA. -- 6,880 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1923 to current year. Prior to April 1924 monthly discharge only, published in WSP 1310. GAGE.--Water-stage recorder. Datum of gage is 631.18 ft above National Geodetic Vertical Datum of 1929. Prior to July 11, 1926, nonrecording gage at site 200 ft upstream at same datum; July 11, 1926, to July 9, 1939, nonrecording gage at same site and datum; July 10, 1939, to Aug. 8, 1952, water-stage recorder at site 200 ft upstream at same datum; Aug. 9, 1952, to Nov. 12, 1953, nonrecording gage at site 120 ft upstream and at same datum; Nov. 13, 1953, to July 6, 1964, water-stage recorder and nonrecording gage, for stages below 8.3 ft, at site 120 ft upstream and at same datum; July 7, 1964, to May 26, 1965, nonrecording gage at present site and datum. Auxiliary water-stage recorder at site 3.2 mi downstream from base gage at datum 631.30 ft above National Geodetic Vertical Datum of 1929; Mar. 15, 1939, to Aug. 4, 1942, auxiliary nonrecording gage at various sites; Aug. 5, 1942, to Dec. 14, 1956, auxiliary nonrecording gage at present site. REMARKS.--Water-discharge records fair. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 9, 1909, reached a stage of 36.7 ft, from floodmark. | | | DISCHARGE, | CUBIC | FEET PER | | WATER Y
Y MEAN V | EAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---------------------------------------|--|---|---------------------------------------|---|--|---|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 443 | 475 | 330 | 211 | 262 | 606 | 1630 | 4700 | 2960 | 445 | 361 | 161 | | 2 | 419 | 455 | 328 | 200 | 320 | 615 | 1190 | 3450 | 2470 | 418 | 287 | 165 | | 3 | 396 | 504 | 323 | 189 | 344 | 510 | 964 | 2780 | 2210 | 405 | 244 | 168 | | 4 | 374 | 461 | 323 | 186 | 367 | 446 | 813 | 2200 | 1560 | 384 | 224 | 145 | | 5 | 418 | 434 | 318 | 184 | 347 | 532 | 698 | 1810 | 1230 | 364 | 213 | 139 | | 6 | 585 | 418 | 315 | 183 | 327 | 600 | 622 | 8220 | 1100 | 365 | 193 | 143 | | 7 | 569 | 403 | 314 | 183 | 354 | 712 | 575 | 39600 | 1100 | 377 | 334 | 134 | | 8 | 545 | 387 | 305 | 182 | 380 | 798 | 558 | 22100 | 981 | 346 | 278 | 131 | | 9 | 510 | 378 | 310 | 189 | 576 | 894 | 820 | 13300 | 915 | 375 | 237 | 123 | | 10 | 480 | 363 | 308 | 197 | 1520 | 1370 | 4340 | 10800 | 841 | 402 | 222 | 122 | | 11 | 499 | 357 | 307 | 205 | 2150 | 1700 | 3530 | 22500 | 856 | 420 | 205 | 110 | | 12 | 562 | 352 | 314 | 217 | 1470 | 1450 | 2160 | 64000 | 7470 | 508 | 191 | 113 | | 13 | 478 | 350 | 345 | 232 | 1180 | 1170 | 5880 | 69300 | 9090 | 470 | 175 | 107 | | 14 | 464 | 346 | 400 | 237 | 1000 | 1020 | 4750 | 53700 | 4900 | 498 | 174 | 111 | | 15 | e1340 | 345 | 487 | 246 | 901 | 890 | 2520 | 28900 | 2770 | 490 | 191 | 115 | | 16 | e3500 | 329 | 539 | 240 | 832 | 803 | 1790 | 13500 | 1850 | 408 | 259 | 133 | | 17 | 3200 | 319 | 496 | 245 | 781 | 728 | 1430 | 7260 | 1350 | 516 | 1800 | 116 | | 18 | 1590 | 313 | 443 | 228 | 737 | 666 | 1230 | 6140 | 1140 | 561 | 1130 | 116 | | 19 | 929 | 311 | 396 | 229 | 786 | 623 | 1060 | 5420 | 947 | 442 | 570 | 118 | | 20 | 687 | 302 | 369 | 238 | 2540 | 594 | 1820 | 4630 | 801 | 380 | 365 | 116 | | 21 | 565 | 295 | 351 | 243 | 3210 | 563 | 5270 | 3930 | 705 | 327 | 433 | 120 | | 22 | 490 | 306 | 345 | 252 | 2190 | 533 | 12500 | 3400 | 769 | 335 | 694 | 123 | | 23 | 476 | 303 | 337 | 252 | 1450 | 510 | 6660 | e3000 | 652 | 285 | 804 | 122 | | 24 | 1200 | 327 | 302 | 261 | 1160 | 504 | 3660 | 4200 | 626 | 276 | 619 | 117 | | 25 | 2450 | 321 | 226 | 253 | 982 | 502 | 2480 | 5660 | 592 | 291 | 545 | 115 | | 26
27
28
29
30
31 | 1680
1160
861
698
592
527 | 327
325
324
336
337 | 240
237
240
248
206
218 | 243
252
255
257
280
274 | 845
640
597
 | 521
521
525
546
594
1530 | 2670
3210
22100
17700
9550 | 10400
9090
6560
5820
5300
4610 | 520
511
450
441
458 | 294
292
288
614
660
501 | 417
303
255
211
194
179 | 95
102
104
91
90 | | MEAN | 925 | 360 | 330 | 227 | 1009 | 760 | 4139 | 14400 | 1742 | 411 | 397 | 122 | | MAX | 3500 | 504 | 539 | 280 | 3210 | 1700 | 22100 | 69300 | 9090 | 660 | 1800 | 168 | | MIN | 374 | 295 | 206 | 182 | 262 | 446 | 558 | 1810 | 441 | 276 | 174 | 90 | | IN. | 0.16 | 0.06 0 | 0.06 | 0.04 | 0.15 | 0.13 | 0.67 | 2.41 | 0.28 | 0.07 | 0.07 | 0.02 | | MEAN
MAX
(WY)
MIN
(WY) | 2699
20630
1974
37.1
1957 | 2914 2
29030 15 | 2024
5440
.983 | 1932
14750
1932
32.1
1940 | 3807
19250
1962
57.0
1939 | 6040
34220
1979
79.5
1957 | 7101
26680
1973
67.3
1956 | 6609
43450
1995
130
1956 | 7452
67270
1947
176
1988 | 4640
87900
1993
52.8
1934 | 1707
9194
1987
41.0
1936 | 3036
28090
1926
62.5
1955 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1925 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MISTANT ANNUAL 10 PERC 50 PERC | ANNUAL M
ANNUAL ME.
DAILY ME.
DAILY MEA | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 6395 69100 198 209 12.62 16600 1800 320 | Jun
Jan
Jan | | 2082
69300
90
102
72600
39.57
90
4.11
4040
475
184 | Sep
Sep | 30 | 4156
17390
367
166000
10
12
180000
42.52
10
8.21
10200
975
132 | Aug
Aug
Jun
Jul | 1993
1934
8 1947
12 1934
7 1934
8 1947
10 1993
12 1934 | e Estimated ## 06902000 GRAND RIVER NEAR SUMNER, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1962 to June 1963, August 1967 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: January 1974 to September 1981. WATER TEMPERATURE: January 1974 to September 1981. REMARKS.--National Stream-Quality Accounting Network station October 1967 to September 1993. Ambient Water-Quality Monitoring Network station October 1993 to current year. | DATE | TIME | SAMPLE
TYPE | 3 | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|---|---|--|--|---|---|---|---|---|---|--|---|---| | OCT
17 | 1115 | ENVIRONME | NTAL | 3210 | 8.6 | 75 | 7.5 | 263 | 8.9 | | | | | | NOV
06 | 0915 | ENVIRONME | INTAL | 416 | 9.3 | 90 | 7.3 | 421 | 13.0 | 190 | 58.3 | 10.5 | 4.10 | | DEC 04 | 0910 | ENVIRONME | NTAL | 323 | 9.7 | 87 | 7.8 | 494 | 9.5 | | | | | | JAN
08
08 | 0910
0955 | BLANK
ENVIRONME | INTAL |
179 |
14.6 |
104 |
7.4 |
L591 |
.5 |
280 | .06
84.2 | E.007
15.9 | <.10
3.21 | | FEB
05 | 0940 | ENVIRONME | NTAL | 347 | 13.6 | 95 | 7.8 | 267 | .5 | | | | | | MAR
06 | 0959 | BLANK | | | | | | | | | | | | | 06
APR | 1000 | ENVIRONME | NTAL | 573 | 13.7 | 103 | 7.9 | 495 | 2.4 | | | | | | 10
MAY | 0820 | ENVIRONME | NTAL | 4220 | 8.1 | 76 | 7.7 | 371 | 11.9 | | | | | | 07
JUN | 0950 | ENVIRONME | ENTAL | 43700 | 5.2 | 56 | 7.2 | 171 | 17.6 | 71 | 22.3 | 3.63 | .76 | | 10
10
JUL | 1400
1401 | ENVIRONME
REPLICATE | | 841 | 7.2 | 91
 | 7.9 | 472
 | 25.1 | | | | | | 16
AUG | 0850 | ENVIRONME | ENTAL
 393 | 6.0 | 77 | 7.7 | 443 | 26.8 | 200 | 61.1 | 12.5 | 4.14 | | 13
SEP | 1335 | ENVIRONME | NTAL | 175 | 6.3 | 79 | 7.7 | 465 | 25.6 | | | | | | 04 | 1320 | ENVIRONME | NTAL | 145 | 7.1 | 91 | 7.8 | 399 | 27.4 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | FET
FIELD
(mg/L as
CaCO ₃) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | DATE OCT 17 | DIS-
SOLVED
(mg/L
as Na) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N) | | OCT
17
NOV
06 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
17
NOV
06
DEC
04 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
17
NOV
06
DEC
04
JAN
08 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 106 170 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO_2+NO_3 DIS-SOLVED (mg/L as N) (00631) | | OCT
17
NOV
06
DEC
04
JAN
08 | DIS-
SOLVED
(mg/L
as Na)
(00930)

12.1
 | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
106
170
207 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
107
174
206 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
130
212
252 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

12.1

<.30 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) 30.0 E.1 | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530)
555
18
16
<10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.0 .57 .40 <.10 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .44 <.05 .06 <.05 | | OCT
17
NOV
06
DEC
04
JAN
08
08
FEB
05
MAR
06 | DIS-
SOLVED
(mg/L
as Na)
(00930)

12.1

.30
19.2 | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
106
170
207

234 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
107
174
206

235 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
130
212
252

287 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

12.1

<.30
14.8 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

30.0

E.1
49.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 555 18 16 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 <.04 .09 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) 2.0 .57 .40 <.10 .40 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .44 <.05 .06 <.05 .21 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
06 | DIS-
SOLVED
(mg/L
as Na)
(00930)

12.1

.30
19.2 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 106 170 207 234 168 | WATER
UNFLITD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
107
174
206

235
168 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
130
212
252

287
205 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 00 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

12.1

<.30
14.8 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.2

<.1
.2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

30.0

E.1
49.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 555 18 16 <10 <10 12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 <.04 .09 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.0 .57 .40 <.10 .40 .46 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .44 <.05 .06 <.05 .21 .49 | | OCT
17
NOV
06
DEC
04
JAN
08
08
FEB
05
MAR
06
APR
10
MAY | DIS-
SOLVED
(mg/L
as Na)
(00930)

12.1

.30
19.2 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 106 170 207 234 168 178 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
107
174
206

235
168

179 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
130
212
252

287
205

218 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 00 00 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

12.1

<.30
14.8 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.2

<.1
.2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

30.0

E.1
49.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 555 18 16 <10 <10 12 12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 <.04 .09 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.0 .57 .40 <.10 .40 .4651 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .44 <.05 .06 <.05 .21 .4948 | | OCT
17
NOV
06
DEC
04
JAN
08
08
FEB
05
MAR
06
06
4PR
10
MAY
07
JUN
10 | DIS-
SOLVED (mg/L as Na) (00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 106 170 207 234 168 178 124 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
107
174
206

235
168

179 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
130
212
252

287
205

218 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

12.1

<.30
14.8 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

.2

<.1
.2
 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

30.0

E.1
49.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 555 18 16 <10 <10 12 12 1440 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 <.04 .09 <.0410 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.0 .57 .40 <.10 .40 .4651 3.2 | GEN, NO2+NO3 DIS- SOLVED (mg/L as N) (00631) .44 <.05 .06 <.05 .21 .4948 .63 | |
OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
APR
10
MAY
07
JUN
10
10 | DIS-
SOLVED (mg/L as Na) (00930) 12.130 19.2 4.91 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 106 170 207 234 168 178 124 73 181 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
107
174
206

235
168

179
125
71
181 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 130 212 252 287 205 218 152 87 221 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 | RIDE, DIS- SOLVED (mg/L as C1) (00940) 12.1 <.30 14.8 3.16 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

.2

<.1
.2

.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

30.0

E.1
49.7

10.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 555 18 16 <10 <10 12 12 1440 2420 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 .09 <.0410 <.04 .23 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 2.0 .57 .40 <.10 .40 .4651 3.2 7.5 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .44 <.05 .06 <.05 .21 .4948 .63 1.56 <.05 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
06
4PR
10
MAY
07
JUN
10 | DIS-
SOLVED
(mg/L
as Na)
(00930)

12.1

.30
19.2

4.91 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 106 170 207 234 168 178 124 73 181 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
107
174
206

235
168

179
125
71
181 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 130 212 252 287 205 218 152 87 221 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 00 0 00 0 00 | RIDE, DIS- SOLVED (mg/L as C1) (00940) 12.1 <.30 14.8 3.16 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950)

.2

<.1
.2

.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

30.0

E.1
49.7

10.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 555 18 16 <10 <10 12 12 1440 2420 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 262 <10 360 401 401 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 <.04 <.04 .09 <.0410 <.04 .23 <.04 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) 2.0 .57 .40 <.10 .40 .4651 3.2 7.5 .93 .74 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .44 <.05 .06 <.05 .21 .4948 .63 1.56 <.05 <.05 | # 06902000 GRAND RIVER NEAR SUMNER, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |---|---|--|--|---|--|---|--|--|---|--|--|---|---| | OCT
17 | .019 | .17 | .13 | .65 | K17000 | K22700 | K18600 | | | | | | | | NOV
06 | <.008 | <.06 | E.01 | .10 | к34 | к38 | K22 | 14 | 119 | .8 | .05 | <.1 | <6 | | DEC
04 | E.005 | <.06 | <.02 | .12 | K13 | K14 | K30 | | | | | | | | JAN
08
08 | <.008
E.006 | <.06
<.06 | <.02
<.02 | <.06
E.05 |
<1 |
K7 |
K12 | 7
7 | 8
33 | <.2 | <.04 | <.1
E.1 | <6
<6 | | FEB
05 | .017 | <.06 | <.02 | .08 | K13 | K12 | 730 | | | | | | | | MAR
06
06 |
.019 |
<.06 |
<.02 |
E.05 |
<1 |
K6 |
66 | | | | | | | | APR
10 | .019 | E.04 | .03 | 1.16 | 4000 | 5400 | 7900 | | | | | | | | MAY
07 | .173 | .21 | .25 | 3.12 | K11000 | K18500 | K33700 | 634 | 26900 | 1.3 | .10 | 2.1 | E4 | | JUN
10 | <.008 | E.05 | .03 | .20 | K2 | K10 | K42 | | | | | | | | JUL | <.008 | E.04 | .03 | .17 | K6 | K16 | K21 | | | | | | | | 16
AUG | .033 | .33 | .31 | .54 | K31 | K69 | K34 | 1 | 758 | 1.6 | .05 | E.1 | <6 | | 13
SEP
04 | <.008 | E.03 | .02
E.02 | .17 | 280
66 | 84
155 | 180
58 | | | | | | | | 04 | <.000 | <.00 | E.U2 | .10 | 66 | 155 | 56 | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | DATE OCT 17 | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(μg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | | OCT
17
NOV
06 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(μg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV
06
DEC
04 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV
06
DEC
04
JAN
08 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

69

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

215

<2.0 | TOTAL RECOV- REABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 9 6 | ETHYL ANILINE WAT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV
06
DEC
04
JAN | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | ETHYL
ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253)

<.005 | ZINE,
WATER,
DISS,
REC (µg/L)
(39632) | | OCT
17
NOV
06
DEC
04
JAN
08
FEB | DIS-
SOLVED
(µg/L
as Fe)
(01046)

69

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05

<.08
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 | NESE,
DIS-
SOLVVED
(μg/L
as Mn)
(01056)

215

<2.0
2530 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.01 .01 | NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145)

<.3

<.3
.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

3 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 9 6 9 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR, WATER FITTED REC (µg/L) (49260) <.004 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.010 | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC (µg/L) (39632)
109 | | OCT
17
NOV
06
DEC
04
JAN
08
08
FEB
05
MAR
06 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

69

<10
100 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05

<.08
<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) M <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

215

<2.0
2530 | TOTAL RECOV-
ERABLE (μg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145)

<.3

<.3
.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 9 6 9 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004 <.006 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.010 <.004 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.109

<.007
.047 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
APR
10 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

69

<10
100
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05

<.08
<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) M <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mm)
(01056)

215

<2.0
2530

 | TOTAL RECOV- REABLE (μg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

<.3
.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 9 6 9 | ETHYL ANILINE 0.7 µ GF, REC (µg/L) (82660) <.002 <.006 <.006 <.002 | CHLOR, WATER FITRD REC (µg/L) (49260) <.004 <.006 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.010 <.004 <.004 | BHC DTS- SOLVED (μg/L) (34253) <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 109 <.007 .047 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
06
01
MAR
01
MAR | DIS-
SOLVED
(µg/L
as Fe)
(01046)

69

<10
100

714 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05

<.08
<.08 | TOTAL RECOV-
ERABLE (μg/L as Pb) (01051) M <1 <1 64 | NESE,
DIS-
SOLVVED
(μg/L
as Mn)
(01056)

215

<2.0
2530

70.6 | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) <.01 <.01 <.15 | NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145)

<.3

<.3
.5

 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 9 6 9 166 | ETHYL ANILINE UNT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.002 <.006 | CHLOR, WATER WATER FLITED REC (µg/L) (49260) <.004 <.006 <.006 .082 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.010 <.004 <.004 <.002 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 109 | | OCT
17
NOV
06
DEC
04
JAN
08
68
FEB
05
MAR
06
06
4PR
10
MAY
07
JUN
10 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

69

<10
100
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05

<.08
<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) M <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mm)
(01056)

215

<2.0
2530

 | TOTAL RECOV- REABLE (μg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

<.3
.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 9 6 9 | ETHYL ANILINE 0.7 µ GF, REC (µg/L) (82660) <.002 <.006 <.006 <.002 | CHLOR, WATER FITRD REC (µg/L) (49260) <.004 <.006 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.010 <.004 <.004 | BHC DTS- SOLVED (μg/L) (34253) <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 109 <.007 .047 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
06
APR
10
MAY
07
JUN
10 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

69

<10
100

714 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05

<.08
<.08

2.10 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) M <1 64 | NESE,
DIS-
SOLVVED
(μg/L
as Mn)
(01056)

215

<2.0
2530

70.6 | TOTAL RECOV- REABLE (μg/L as Hg) (71900) <.01 <.01 1515 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

<.3
.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 9 6 9 166 | ETHYL ANILINE WAT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 <.006 <.006 <.002 <.006 <.006 | CHLOR, WATER FITRD REC (µg/L) (49260) <.004 <.006 <.006 .082 1.58 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.010 <.004 <.004 <.002 .356 .021 | BHC DTS- SOLVED (μg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 109 <.007 .047 .502 10.8 2.34 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
06
MAP
10
MAY
07
JUN
10 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

69

<10
100

714 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05

<.08
<.08

2.10 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) M <1 <1 64 64 | NESE, DIS- SOLVVED (μg/L as Mn) (01056) 215 <2.0 2530 70.6 | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) <.01 <.01 <.1515 | NIUM, DIS- SOLVED (μg/L as Se) (01145) <.3 <.3 <.44 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 9 6 9 166 | ETHYL ANILINE UNT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 <.006 .082 1.58 .045 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.010 <.004 <.004 <.002 .356 .021 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 109 <.007 .047 .502 10.8 2.34 2.35 | # 06902000 GRAND RIVER NEAR SUMNER, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | |---
---|--|---|--|--|--|--|--|--|--|---|---|--| | OCT
17 | | | | | | | | | | | | | | | NOV
06 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.039 | <.005 | <.005 | <.02 | <.002 | <.009 | | DEC
04 | | | | | | | | | | | | | | | JAN
08 | | | | | | | | | | | | | | | 08
FEB | | | | | | | | | | | | | | | 05
MAR | | | | | | | | | | | | | | | 06
06
APR | <.010
<.010 | <.002
<.002 | <.041
<.041 | <.020
<.020 | <.005
<.005 | <.018
<.018 | <.003
<.003 | <.006
E.011 | <.005
<.005 | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | | 10
MAY | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.023 | <.005 | <.005 | <.02 | <.002 | <.009 | | 07
JUN | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.572 | <.005 | <.005 | <.02 | <.002 | <.009 | | 10
10
JUL | <.010
<.010 | <.002
<.002 | E.003
<.041 | <.020
<.020 | <.005
<.005 | <.018
<.018 | <.003
<.003 | E.103
E.142 | <.005
<.005 | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | | 16
AUG | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.088 | <.005 | <.005 | <.02 | <.002 | <.009 | | 13
SEP | | | | | | | | | | | | | | | 04 | DATE | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(μg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(μg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | DATE OCT 17 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
17
NOV
06 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
17
NOV
06
DEC
04 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
17
NOV
06
DEC
04
JAN
08 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) | THION, DIS-
SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) 047 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT
17
NOV
06
DEC
04
JAN
08
08 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L) (39341) <.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 047 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007
 | | OCT 17 NOV 06 DEC 04 JAN 08 08 FEB 05 MAR | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004

 | URON WATER FLITED 0.7 µ GF, REC (µg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 047 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLITED 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 | | OCT
17
NOV
06
DEC
04
JAN
08
08
FEB
05 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 | URON WATER FLITED 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF,
REC
(µg/L)
(82686)

<.050

<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006

<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 047 <.013 .019 | BUZIN SENCOR WATER DISSOLV (µg/L) (82630) <.006 <.006 <.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007
 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
APR
10 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 | PARA- THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 047 <.013 .019 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.007 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
06
01
MAR
01
MAR | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <-005 <-005 <-005 <-005 <-005 <-005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006

<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 047 <.013 .019 .071 | BUZIN SENCOR WATER DISSOLV (µg/L) (82630) <.006 <.006 <.006 <.006 .009 | INATE WATER WATER 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.007 <.010 | | OCT
17
NOV
06
DEC
04
JAN
08
08
FEB
05
MAR
06
06
APR
10 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 | PARA- THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 047 <.013 .019 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.007 | | OCT 17 NOV 06 DEC 04 JAN 08 08 FEB 05 MAR 06 06 APR 10 MAY 07 JUN 10 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 <- 0.005 < | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004
<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 | PARA- THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.006 <.006 .010 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 047 <.013 .019 .071 1.61 .410 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010 | | OCT
17
NOV
06
DEC
04
JAN
08
FEB
05
MAR
06
06
APR
10
MAY
07
JUN
10 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) (.005 (.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006

<.006
<.006
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 047 <.013 .019 .071 1.61 .410 | BUZIN SENCOR WATER DISSOLV (µg/L) (82630) <.006 <.006 <.006 <.006 .009 <.006 <.006 | INATE WATER WATER O.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010 <.010 | ## 06902000 GRAND RIVER NEAR SUMNER, MO--Continued (Ambient Water-Quality Monitoring Network) | | PEB- | PENDI- | PER- | | | PRON- | | PRO- | PRO- | | TEBU- | TER- | TER- | |------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | | ULATE | METH- | METHRIN | PHORATE | PRO- | AMIDE | PROPA- | PANIL | PARGITE | SI- | THIURON | BACIL | BUFOS | | | WATER | ALIN | CIS | WATER | METON, | WATER | CHLOR, | WATER | WATER | MAZINE, | WATER | WATER | WATER | | | FILTRD | WAT FLT
0.7 µ | WAT FLT | FLTRD | WATER, | FLTRD
0.7 μ | WATER, | FLTRD | FLTRD | WATER, | FLTRD | FLTRD | FLTRD | | DAME | 0.7 μ | | 0.7 μ | 0.7 μ | DISS, | | DISS, | 0.7 μ | 0.7 μ | DISS, | 0.7 μ | 0.7 μ | 0.7 μ | | DATE | GF, REC | GF, REC | GF, REC | GF, REC | REC | GF, REC | REC | GF, REC | GF, REC | REC | GF, REC | GF, REC | GF, REC | | | (µg/L)
(82669) | (µg/L)
(82683) | (µg/L)
(82687) | (µg/L)
(82664) | (µg/L)
(04037) | (µg/L)
(82676) | (µg/L)
(04024) | (µg/L)
(82679) | (µg/L)
(82685) | (µg/L)
(04035) | (µg/L)
(82670) | (µg/L)
(82665) | (µg/L)
(82675) | | | (02009) | (02003) | (02007) | (02004) | (04037) | (02070) | (04024) | (02079) | (02005) | (04035) | (82070) | (82005) | (02075) | | OCT | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | NOV | | | | | | | | | | | | | | | 06 | <.002 | <.010 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | | DEC | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 06 | <.004
 <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | 06 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .009 | <.02 | <.034 | <.02 | | APR | | | | | | | | | | | | | | | 10 | <.002 | <.010 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | E.008 | <.01 | <.034 | <.02 | | MAY | | | | | | | | | | | | | | | 07 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .621 | <.02 | <.034 | <.02 | | JUN | | | | | | | | | | | | | | | 10 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .074 | <.02 | <.034 | <.02 | | 10 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .068 | <.02 | <.034 | <.02 | | JUL | | | | | | | | | | | | | | | 16 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .045 | <.02 | <.034 | <.02 | | AUG | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | DATE | THIO-
BENCARB
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82681) | | $(\mu g/L)$ | |-----------|--|-------|-------------| | OCT | | | | | 17
NOV | | | | | 06
DEC | <.005 | <.002 | <.009 | | 04
JAN | | | | | 08 | | | | | 08 | | | | | FEB
05 | | | | | MAR
06 | <.005 | <.002 | <.009 | | 06 | <.005 | <.002 | <.009 | | APR | | | | | 10
MAY | <.005 | <.002 | <.009 | | 07 | <.005 | <.002 | <.009 | | JUN | | | | | 10 | <.005 | <.002 | <.009 | | 10 | <.005 | <.002 | <.009 | | JUL
16 | <.005 | <.002 | <.009 | | AUG | <.003 | <.UUZ | ×.009 | | 13
SEP | | | | | 04 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. L--Laboratory value.</pre> 160 CHARITON RIVER BASIN ### 06904050 CHARITON RIVER AT LIVONIA, MO LOCATION.--Lat $40^{\circ}29^{\circ}00^{\circ}$, long $92^{\circ}41^{\circ}10^{\circ}$, in NW $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.34, T.66 N., R.16 W., Schuyler County, Hydrologic Unit 10280201, on left bank 10 ft downstream from bridge on U.S. Highway 136, 1.0 mi upstream from Shoal Creek, 0.5 mi east of Livonia, and at mile 90.9. DRAINAGE AREA.--864 mi². PERIOD OF RECORD.--May 1974 to current year. Occasional discharge measurements were made from October 1962 to May 1974. REVISED RECORDS.--WDR MO-83-1: 1981. GAGE.--Water-stage recorder. Datum of gage is 770.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair except for estimated daily discharges, which are poor. Considerable regulation by Rathbun Lake (Iowa station 06903880), 51.0 mi upstream. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER YE
MEAN V | EAR OCTOBER | 2001 TO | SEPTEMBER | R 2002 | | | |--|--|--------------------------------|--|------------------------------------|---------------------------------|-------------------------------------|---|--|--------------------------------------|--|----------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e44
e43
e43
e44
48 | 395
376
346
150
66 | 45
44
43
43 | e30
e28
e28
e30
e35 | e75
e60
e45
e35
e40 | e45
e40
e38
e37
e37 | 192
141
119
96
84 | 279
214
164
129
104 | 1500
1470
1450
1430
1420 | 263
622
1100
271
82 | 40
e38
e37
e36
e35 | 28
28
28
28
27 | | 6 | 131 | 57 | 43 | e35 | e55 | e60 | 77 | 574 | 1260 | 65 | e35 | 26 | | 7 | 99 | 54 | 70 | e28 | e60 | 89 | 78 | 366 | 1040 | 65 | 34 | 26 | | 8 | 69 | 51 | 1080 | e27 | 65 | 348 | 124 | 212 | 870 | 63 | 33 | 27 | | 9 | 59 | 50 | 1110 | e34 | 63 | 381 | 801 | 1280 | 692 | 72 | 34 | 33 | | 10 | 55 | 48 | 1110 | e48 | 67 | 287 | 685 | 536 | 689 | 74 | 33 | 33 | | 11 | 52 | 47 | 1120 | e60 | 82 | 185 | 351 | 2420 | 700 | 218 | 32 | 33 | | 12 | 63 | 47 | 920 | 62 | 91 | 152 | 389 | 4820 | 730 | 229 | 32 | 31 | | 13 | 62 | 46 | 660 | 58 | 84 | 124 | 413 | 3330 | 1560 | 143 | 34 | 30 | | 14 | 54 | 46 | 654 | 56 | 79 | 106 | 276 | 2440 | 1450 | 226 | 33 | 31 | | 15 | 58 | 45 | 648 | 55 | 80 | 91 | 200 | 951 | 888 | 243 | 33 | 32 | | 16 | 58 | 47 | 645 | 52 | 85 | 81 | 158 | 560 | 765 | 237 | 36 | 31 | | 17 | 58 | 45 | 635 | e40 | 85 | 79 | 128 | 447 | 717 | 232 | 36 | 31 | | 18 | 58 | 45 | 628 | e35 | 82 | 89 | 110 | 692 | 697 | 230 | 34 | e32 | | 19 | 55 | 44 | 581 | e40 | 108 | 85 | 93 | 1530 | 684 | 213 | 43 | e33 | | 20 | 52 | 43 | 344 | e45 | 217 | 73 | 86 | 1540 | 774 | 92 | 77 | e31 | | 21 | 170 | 43 | 125 | e45 | 297 | 68 | 117 | 1510 | 846 | 48 | 65 | 29 | | 22 | 254 | 45 | 68 | 54 | 211 | 65 | 190 | 1500 | 842 | 45 | 59 | 29 | | 23 | 340 | 47 | 64 | 49 | 148 | 60 | 188 | 1510 | 838 | 44 | 56 | e28 | | 24 | 509 | 48 | e45 | 57 | 117 | 61 | 317 | 1620 | 833 | 42 | 51 | e27 | | 25 | 586 | 45 | e40 | 54 | 95 | 64 | 389 | 2170 | 828 | 43 | 51 | 26 | | 26
27
28
29
30
31 | 473
410
390
382
379
386 | 45
45
45
46
45 | e38
e38
e42
e45
e38
e38 | 59
62
58
58
e55
e90 | 81
69
e55
 | 65
69
76
124
292
287 | 178
1040
2290
1200
451 | 1920
1310
2300
2240
1860
1590 | 825
824
658
299
269 | 43
42
43
45
46
48 | 40
35
32
32
30
28 | 26
26
27
27
26 | | MEAN | 177 | 83.4 | 356 | 47.3 | 94.0 | 118 | 365 | 1359 | 928 | 169 | 39.5 | 29.0 | | MAX | 586 | 395 | 1120 | 90 | 297 | 381 | 2290 | 4820 | 1560 | 1100 | 77 | 33 | | MIN | 43 | 43 | 38 | 27 | 35 | 37 | 77 | 104 | 269 | 42 | 28 | 26 | | IN. | 0.24 | 0.11 | 0.48 | 0.06 | 0.11 | 0.16 | 0.47 | 1.81 | 1.20 | 0.23 | 0.05 | 0.04 | | MEAN | 430 | 454 | 589 | 341 | 540 | 850 | 857 | 936 | 877 | 1013 | 613 | 472 | | MAX | 1764 | 1714 | 2005 | 1797 | 1956 | 2046 | 1898 | 2239 | 1839 | 3923 | 2045 | 2029 | | (WY) | 1994 | 1994 | 1983 | 1993 | 1983 | 1993 | 1983 | 1995 | 1980 | 1993 | 1993 | 1993 | | MIN | 27.2 | 26.2 | 19.9 | 13.6 | 23.0 | 47.6 | 31.1 | 33.1 | 33.6 | 23.6 | 32.3 | 29.0 | | (WY) | 1977 | 1990 | 1977 | 1977 | 1989 | 2000 | 1989 | 2000 | 1988 | 1988 | 1988 | 2002 | | SUMMARY | STATISTI | CS | FOR 2001 CALENDAR YEAR | | | FOR 2002 WATER YEAR | | | | WATER YE | ARS 1974 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 796 3990 25 30 12.51 1720 538 45 | Mar 16
Jan 1
Jan 1 | 539
21.3
4.9
93 | 20
26 Sep 6,7,2
26
20
20
88
88
24 ^a | May 12
15-27,30
Sep 24
May 12
May 12
Sep 24 | | 677
1838
69.3
8960
13
13
9200
28.33
13
10.65
1600
392
32 | Jan 1
Jan 1
Jul 1
Jul 1 | 1993
1989
8 1982
1 1977
1 1977
8 1982
8 1982
1 1977 | e Estimated a Minimum recorded, may have been less during period of estimated discharge. ### CHARITON RIVER BASIN 161 ### 06904500 CHARITON RIVER AT NOVINGER, MO LOCATION.--Lat $40^{\circ}14^{\circ}05^{\circ}$, long $92^{\circ}41^{\circ}14^{\circ}$, on south line of SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.28, T.63 N., R.16 W., Adair County, Hydrologic Unit 10280202, on downstream side of center pier of bridge on State Highway 6, 0.6 mi east of Novinger, 1.0 mi downstream from Rye Creek, 2.0 mi upstream from Spring Creek, and at mile 73.1. DRAINAGE AREA. -- 1,370 mi² PERIOD OF RECORD.--October 1930 to September 1952, October 1954 to current year. Prior to February 1931 monthly discharge only, published in WSP 1310. REVISED RECORDS. -- WSP 896: 1939. WSP 1116: 1932(M). GAGE.--Water-stage recorder. Datum of gage is 737.65 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 20, 1939, nonrecording gage at bridge over old channel, 500 ft east, at the same datum; Dec. 20, 1939, to Sept. 30, 1952, and Oct. 1, 1954, to Aug. 1, 1956, water-stage recorder, supplemented by nonrecording gage, at same site and datum; Aug. 3, 1956, to May 16, 1957, nonrecording gage at present site and datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. Some regulation by Rathbun Lake (Iowa station 06903880). U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage known, 28.6 ft, discharge, $27,000 \text{ ft}^3/\text{s}$, June 1917. | | | DISCHAR | GE, CUBI | C FEET PER | R SECOND, W | VATER YEZ
MEAN VAI | | 2001 TO | SEPTEMBE | R 2002 | | | |--|--|----------------------------|---|-----------------------------------|-------------------------|---
--|--|---|--------------------------------------|---|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 52 | 446 | 55 | e45 | e95 | e80 | 314 | 811 | 2010 | 308 | 64 | 30 | | 2 | 49 | 432 | 55 | e40 | e75 | e60 | 242 | 617 | 1910 | 327 | 51 | 30 | | 3 | 49 | 422 | 51 | e37 | e65 | e50 | 197 | 485 | 1840 | 1270 | 46 | 29 | | 4 | 50 | 303 | 50 | e40 | e55 | e70 | 163 | 399 | 1790 | 553 | 46 | 28 | | 5 | 75 | 116 | 50 | e50 | e50 | e90 | 138 | 337 | 1740 | 197 | 44 | 28 | | 6 | 74 | 76 | 50 | e55 | e55 | e150 | 123 | 6570 | 1630 | 178 | 42 | 27 | | 7 | 139 | 69 | 49 | e50 | e60 | 194 | 121 | 2860 | 1260 | 225 | 41 | 26 | | 8 | 94 | 68 | 891 | e50 | e70 | 991 | 150 | 1090 | 1130 | 132 | 39 | 26 | | 9 | 76 | 66 | 1260 | e70 | 96 | 1450 | 1750 | 5150 | 844 | 119 | 38 | 27 | | 10 | 68 | 62 | 1240 | e70 | 214 | 680 | 1380 | 1950 | 826 | 120 | 38 | 34 | | 11 | 65 | 58 | 1240 | e75 | 197 | 396 | 637 | 11000 | 848 | 953 | 36 | 34 | | 12 | 61 | 54 | 1180 | 87 | 230 | 310 | 709 | 22900 | 864 | 1010 | 35 | 34 | | 13 | 74 | 53 | 807 | 83 | 205 | 263 | 903 | 12700 | 2670 | 328 | 45 | 33 | | 14 | 66 | 51 | 725 | 80 | 188 | 229 | 529 | 6250 | 2590 | 258 | 42 | 34 | | 15 | 84 | 50 | 690 | 76 | 214 | 199 | 361 | 2730 | 1260 | 306 | 36 | 35 | | 16 | 123 | 52 | 675 | 74 | 201 | 169 | 270 | 1480 | 983 | 286 | 42 | 36 | | 17 | 78 | 50 | 654 | e50 | 179 | 148 | 211 | 1090 | 864 | 276 | 44 | 35 | | 18 | 72 | 49 | 626 | e45 | 166 | 149 | 170 | 917 | 803 | 264 | 43 | 34 | | 19 | 68 | 50 | 605 | e50 | 330 | 150 | 144 | 2010 | 768 | 258 | 49 | 36 | | 20 | 66 | 50 | 416 | e50 | 771 | 133 | 120 | 2100 | 783 | 199 | 90 | 43 | | 21 | 66 | 49 | 216 | e55 | 579 | 117 | 1960 | 1990 | 891 | 106 | 157 | 36 | | 22 | 642 | 49 | 112 | e60 | 380 | 103 | 564 | 1910 | 875 | 77 | 104 | 35 | | 23 | 1450 | 51 | 91 | 73 | 282 | 103 | 393 | 1870 | 865 | 73 | 138 | 34 | | 24 | 870 | 53 | e60 | 64 | 231 | 99 | 397 | 2170 | 858 | 68 | 138 | 31 | | 25 | 807 | 53 | e55 | 61 | 191 | 104 | 994 | 5950 | 847 | 63 | 94 | 28 | | 26
27
28
29
30
31 | 672
527
470
445
434
424 | 55
57
55
55
57 | e50
e45
e50
e55
e47
e47 | 70
85
81
78
55
e65 | 150
e120
e110
 | 111
117
127
174
536
446 | 394
5230
7030
2950
1290 | 4110
1940
4340
4090
2880
2270 | 836
827
779
435
325 | 64
61
60
66
66
67 | 69
49
40
37
35
32 | 29
29
31
32
30 | | MEAN | 267 | 104 | 394 | 62.1 | 198 | 258 | 994 | 3773 | 1165 | 269 | 58.2 | 31.8 | | MAX | 1450 | 446 | 1260 | 87 | 771 | 1450 | 7030 | 22900 | 2670 | 1270 | 157 | 43 | | MIN | 49 | 49 | 45 | 37 | 50 | 50 | 120 | 337 | 325 | 60 | 32 | 26 | | IN. | 0.23 | 0.08 | 0.33 | 0.05 | 0.15 | 0.22 | 0.81 | 3.18 | 0.95 | 0.23 | 0.05 | 0.03 | | MEAN | 758 | 716 | 864 | 561 | 978 | 1554 | 1612 | 1875 | 1367 | 1485 | 767 | 728 | | MAX | 3352 | 2403 | 3318 | 2686 | 2652 | 4105 | 5302 | 5447 | 4482 | 9877 | 2770 | 3232 | | (WY) | 1974 | 1993 | 1983 | 1993 | 2001 | 1993 | 1973 | 1995 | 2001 | 1993 | 1993 | 1993 | | MIN | 25.6 | 30.2 | 20.0 | 13.6 | 28.0 | 73.8 | 35.8 | 43.0 | 46.1 | 32.2 | 28.1 | 31.8 | | (WY) | 1972 | 1990 | 1977 | 1977 | 1989 | 2000 | 1989 | 2000 | 1988 | 1970 | 1971 | 2002 | | SUMMARY STATISTICS | | | FOR : | 2001 CALEN | NDAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEARS 1970 - 2002 ^a | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | 1495
15600
42
47

14.82
3400
807
51 | Feb 9
Jan 1
Jan 1 | | 635
22900
26
27
24200
24.68
24
6.30
1460
117
38 | May 12
Sep 7,8
Sep 3
May 12
May 12
Jan 30 | | 1106
3299
107
22900
11
12
24200
25.71
11
Jan 1
10.97
2350
533
41 | May 1
Jul 2 | 1 1970
6 1970
2 2002
4 1993
1 1970, | | e Estimated a Post-regulation period. 162 CHARITON RIVER BASIN ### 06905500 CHARITON RIVER NEAR PRAIRIE HILL, MO LOCATION.--Lat 39°32'25", long 92°47'23", in NW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.26, T.55 N., R.17 W., Chariton County, Hydrologic Unit 10280202, on right bank on downstream side of road at bridge on State Highway 129, 3.2 mi northwest of Prairie Hill, 13.5 mi upstream from Puzzle Creek, and at mile 19.6. DRAINAGE AREA.--1,870 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1928 to current year. Prior to Oct. 1, 1953, published as Chariton River near Keytesville (06905600). Prior to May 1929, monthly discharge only, published in WSP 1309. GAGE.--Water-stage recorder. Datum of gage is 632.05 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). Prior to Oct. 1, 1953, nonrecording gage at site 8.2 mi downstream at datum 13.68 ft lower; Oct. 1, 1953, to July 2, 1958, nonrecording gage at present site and datum. REMARKS.--Water-discharge records fair except for estimated daily discharges, which are poor. Some regulation by Rathbun Lake (Iowa station 06903880), 122 mi upstream, since 1970. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | DISCHAR | GE, CUBI | C LEEI PEI | | MEAN VA | | R 2001 10 | SELIEMBE | JR 2002 | | | |---|-----------------------------|-------------------------------------|------------|--------------------------|--------------------------|---------------------------------|-------------------|----------------|--|-------------|-----------|--------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 86 | 497 | 55 | e60 | 600 | e120 | 667 | 1560 | 2420 | 458 | 137 | 78 | | 2 | 80 | 504 | 57 | e55 | 311 | e100 | 511 | 1060 | 2180 | 406 | 123 | 69 | | 3 | 75 | 544 | 52 | e55 | 233 | e80 | 382 | 792 | 2060 | 383 | 122 | 63 | | 4 | 72 | 549 | 50 | e65 | 209 | e90 | 300 | 606 | 1990 | 1250 | 107 | 60 | | 5 | 490 | 492 | 48 | e55
e55
e65
e70 | 175 | e120 | 247 | 475 | 1940 | 1050 | 90 | 58 | | 6 | 292 | 332 | 4 / | e65 | 108 | 165 | 207 | 4800 | 1890 | 545 | 84 | 55 | | 7 | 189 | 218 | 43 | e60 | 142 | 226 | 183 | 11400 | 1790 | 352 | 81 | 54 | | 8 | 147 | 176 | 44 | e90 | 131 | 309 | 193 | 4210 | 1440 | 412 | 75 | 51 | | 9 | 179 | 151 | 437 | e115 | 136 | 1010 | 224 | 10300 | 1360 | 359 | 68 | 48 | | 10 | 168 | 125 | 1220 | 130 | 181 | 1910 | 1680 | 6420 | 1100 | 289 | 67 | 45 | | 11 | 155 | 122 | 1230 | 113 | 365 | 1050 | 1590 | 12500 | 1130 | 294 | 64 | 44 | | 12
13 | 119
108 | 100 | 1250 | 99
89 | 367
364 | 733 | 939
853 | 32200
35600 | 2420
1580 | 753
1500 | 62
71 | 49
56 | | 13 | 108 | 89
86 | 1230 | 101 | 339 | 3/1
47E | 1170 | 18600 | 3140 | 701 | 88 | 56 | | 15 | 148 | 70 | 977
856 | 89
101
91 | 307 | 571
475
400 | 801 | 9090 | 2640 | 479 | 81 | 62 | | | | 70 | | | | | | | | | | | | 16
17 | 382
380 | 65
63 | 819 | 93
72
52
83 | 330
328
277
255 | 340
293
259
239 | 597
470
383 | 3910
2270 | 1560
1190 | 458
466 | 93
108 | 60
65 | | 18 | 239 | 61 | 802
785 | 7.2
5.2 | 328
277 | 293
250 | 383 | | 996 | 449 | 96 | 73 | | 19 | 135 | 63 | 772 | 83 | 255 | 239 | 365 | 1400 | 895 | 440 | 118 | 77 | | 20 | 97 | 61 | 761 | 88 | 973 | 238 | 581 | 2290 | 872 | 427 | 108 | 69 | | 21 | 79 | 58 | 632 | 75 | 1500 | 227 | 1640 | 2400 | 888 | 410 | 110 | 66 | | 22 | 66 | 52 | 438 | 67 | 943 | 198 | 3580 | 2290 | 998 | 320 | 189 | 72 | | 23 | 355 | 53 | 280 | 71 | 645 | 175 | 1200 | 2280 | 1010 | 227 | 405 | 66 | | 24 | 1510 | 64 | 165 | 79 | 473 | 164 | 741 | 3060 | 1010
998 | 183 | 286 | 55 | | 25 | 1040 | 71 | e120 | 85 | 366 | 164 | 900 | 9450 | 992 | 164 | 278 | 49 | | 26 | 908 | 78
80
64
62
58 | e90 | 58 | 288 | 165
171
178
188
198 | 1330 | 8050 | 992 | 211 | 251 | 48 | | 27 | 794 | 80 | e85 | 67 | e200 | 171 | 2560 | 4120 | 992 | 161 | 182 | 45 | | 28 | 632 | 64 | e75 | 74 | e130 | 178 | 9290 | 2490 | 970 | 139 | 140 | 42 | | 29 | 559 | 62 | e80 | 95 | | 188 | 5300 | 5160 | 959 | 299 | 111 | 41 | | 30 | 520 | 58 | e90 | 172 | | 198 | 2880 | 3790 | 712 | 229 | 93 | 39 | | 31 | 501 | | e85 | 774 | | 521 | | 2940 | | 152 | 82 | | | MEAN | 342 | 167 | 441 | 105 | 381 | 357 | 1392 | 6685 | 1470 | 450 | 128 | 57.2 | | MAX | 1510 | 549 | 1250 | 774 | 1500 | 1910 | 9290 | 35600 | 3140 | 1500 | 405 | 78 | | MIN | 66 | 52 | 43 | 52 | 108 | 80 | 183 | 475 | 712 | 139 | 62 | 39 | | IN. | 0.21 | 0.10 | 0.27 | 0.06 | 0.21 | 0.22 | 0.83 | 4.12 | 0.88 | 0.28 | 0.08 | 0.03 | | STATIST | ICS OF MC | NTHLY MEA | N DATA F | OR WATER Y | YEARS 1929 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN | 736 | 814 | 747 | 723 | 1137 | 1896 | 2076 | 2122 | 2034 | 1432 | 717 | 714 | | MAX | 5695 | 6574 | 5449 | 4516 | 4102 | 5724 | 8981 | 9560 | 14830 | 15980 | 4856 | 5203 | | (WY) | 1974 | 1962 | 1983 | 1946 | 1937 | 1973 | 1973 | 1995 | 1947 | 1993 | 1932 | 1993 | | MIN | 9.59 | 9.77 | 13.0 | 12.9 | 18.1 | 37.3 | 45.9 | 69.8 | 25.8 | 13.4 | 7.97 | 13.6 | | (WY) | 1957 | 814
6574
1962
9.77
1957 | 1957 | 1957 | 1957 | 1957 | 1956 | 2000 | 1934 | 1934 | 1936 | 1953 | | SUMMARY STATISTICS | | | FOR | 2001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1929 | - 2002 | | ANNUAL MEAN | | | 1747 | | | 1006 | | | 1260 | | | | |
 'ANNUAL ME | | | | | | | | | 4320
159 | | 1993
2000 | | | | | | 22300 Jun 6 | | | 35600 | May 13 | | 32600 | Marr | L3 2002 | | HIGHEST DAILY MEAN
LOWEST DAILY MEAN | | | 43 | Dec 7 | | 39 | a - 20 | | 4 6 | Aug . | 7 1934 | | | ANNUAL SEVEN-DAY MINIMUM | | | 49 | Dec 2 | | 46 | Sep 24 | | 159
35600
4.6
4.8 | Aug | 4 1934 | | | MAXIMUM PEAK FLOW | | | | | | 37100 May 13 | | | 37100 May 13 200 | | | | | MAXIMUM PEAK STAGE | | | | | 23.01 May 13 | | | | 4.6 Aug 7 1934
4.8 Aug 4 1934
37100 May 13 2002
23.01 May 13 2002
4.6 Aug 7 1934 | | | | | | 'ANEOUS LO | W FLOW | | | | | 22 ^a | Jan 18 | | 4.6 | Aug | 7 1934 | | ANNUAL RUNOFF (INCHES) | | | | 12.68 | | | 7.30 | | | 9.16 | | | | 10 PERCENT EXCEEDS | | | 4050 | | | 1960 | | | 3120 | | | | | 50 PERCENT EXCEEDS | | | | 1010 | | | 233 | | | 362 | | | | 90 PERC | 90 PERCENT EXCEEDS 75 60 40 | | | | | | | | | | | | e Estimated Minimum recorded, may have been less during period of estimated record. # 06905500 CHARITON RIVER NEAR PRAIRIE HILL, MO--Continued (Ambient Water-Quality Monitoring Network) # WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1962 to June 1963, August 1967 to July 1975, January 1978 to September 1986, November 1992 to current year. REMARKS.--National Stream-Quality Accounting Network station January 1978 to September 1986 and an Ambient Water-Quality Monitoring Network station November 1992 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------------|--|---|--|---|--|---|--|---|--|---|--|---|---| | NOV
05
05 | 1345
1346 | ENVIRONM
REPLICAT | | 481
 | 10.2 | 102 | 7.6 | 281 | 14.7 | 130
130 | 39.3
39.4 | 8.45
8.48 | 4.65
4.71 | | JAN
07 | 1525 | ENVIRONM | ENTAL | e60 | 13.3 | 94 | 7.5 | 380 | .6 | | | | | | MAR
05 | 1420 | ENVIRONM | ENTAL | e120 | 13.6 | 108 | 8.0 | 521 | 4.9 | | | | | | MAY
06
06 | 1610
1615 | ENVIRONM
BLANK | ENTAL | 5920
 | 7.5 | 83 | 7.4 | 207 | 18.6 | 90 | 27.2
.08 | 5.27
.010 | 2.30
<.10 | | JUL
15 | 1350 | ENVIRONM | ENTAL | 965 | 8.8 | 116 | 8.1 | 273 | 28.7 | | | | | | SEP
04 | 1050 | ENVIRONM | ENTAL | 61 | 7.7 | 94 | 8.0 | 422 | 24.1 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV | | | | | | | | | | | | | | | 05
05 | 7.25
7.12 | 102 | 103 | 126 | 0 | 13.8
8.61 | .2 | 30.5
30.1 | 64
58 | 190
188 | E.02 | .56
.61 | .26
.32 | | JAN
07 | | 176 | 176 | 215 | 0 | | | | <10 | | .19 | .56 | .48 | | MAR
05 | | 167 | 168 | 205 | 0 | | | | 38 | | .07 | .49 | .65 | | MAY
06 | 4.01 | 65 | 63 | 77 | 0 | 4.29 | . 2 | 27.1 | 241 | 167 | .12 | 4.1 | 2.16 | | 06
JUL | .47 | | | | | <.30 | <.1 | E.1 | <10 | <10 | <.04 | <.10 | <.05 | | 15 | | 93 | 92 | 113 | 0 | | | | E196 | | <.04 | 1.0 | 1.16 | | SEP
04 | | 163 | 162 | 198 | 0 | | | | 38 | | <.04 | .69 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
05
05
JAN | .039 | E.05
E.05 | <.02
E.02 | .15 | K34
 | 60
 | K27
 | 70
68 | 721
743 | .9
1.0 | E.02 | <.1
<.1 | <6
<6 | | 07 | <.008 | <.06 | <.02 | <.06 | <1 | K1 | K8 | | | | | | | | MAR
05 | E.005 | <.06 | E.01 | .06 | К2 | к3 | K19 | | | | | | | | MAY
06
06
JUL | .044 | .13 | .11
<.02 | 1.54
<.06 | 6800 | K15200
 | K20400
 | 406
<1 | 13700
2 | 1.2 | .05
<.04 | .8
<.1 | <6
<6 | | 15 | .028 | E.06 | .04 | .23 | 180 | 520 | 100 | | | | | | | | SEP
04 | <.008 | <.06 | .02 | .14 | 72 | 140 | 84 | | | | | | | # 06905500 CHARITON RIVER NEAR PRAIRIE HILL, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 05 | 109 | .12 | 2 | 23.6 | <.01 | <.3 | 10 | 9 | | 05 | 114 | .09 | 1 | 23.5 | <.01 | <.3 | 4 | 7 | | JAN | | | | | | | | | | 07 | | | | | | | | | | MAR | | | | | | | | | | 05 | | | | | | | | | | MAY | | | | | | | | | | 06 | 409 | 1.06 | 32 | 70.9 | .07 | .5 | 32 | 91 | | 06 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | <1 | 1 | | JUL | | | | | | | | | | 15 | | | | | | | | | | SEP | | | | | | | | | | 04 | | | | | | | | | e--Estimated discharge value. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 06905725 MUSSEL FORK NEAR MYSTIC, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $40^{\circ}09^{\circ}38^{\circ}$, long $92^{\circ}53^{\circ}25^{\circ}$, in NE $^{1}\!\!/_{4}$ NW $^{1}\!\!/_{4}$ sec.23, T.62 N., R.18 W., Sullivan County, Hydrologic Unit 10280202, access is approximately 2 mi east of Mystic on the left bank on upstream side of bridge on County Highway H. DRAINAGE AREA. -- 24.0 mi². PERIOD OF RECORD. -- November 1997 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|---
---|---|--|---|--|---|--|---|--|---|---| | OCT | | | | | | | | | | | | | | | 24
NOV | 1450 | ENVIRONM | ENTAL | 3.5 | 7.3 | 76 | 7.5 | 216 | 15.0 | | | | | | 29
DEC | 0835 | ENVIRONM | ENTAL | .17 | 10.4 | 81 | 8.0 | 411 | 3.5 | 170 | 49.7 | 11.9 | 7.62 | | 13
JAN | 0950 | ENVIRONM | ENTAL | .83 | 10.0 | 80 | 7.9 | 408 | 4.5 | | | | | | 09 | 1335 | ENVIRONM | ENTAL | .20 | 12.5 | 90 | 7.8 | 618 | .5 | 260 | 75.2 | 17.8 | 8.59 | | FEB 28 | 0855 | ENVIRONM | ENTAL | 1.4 | 14.8 | 106 | 8.2 | 404 | .5 | | | | | | MAR
20 | 1405 | ENVIRONM | ENTAL | .97 | 14.5 | 137 | 8.6 | 395 | 11.5 | | | | | | APR
18 | 0900 | ENVIRONM | ENTAL | 1.6 | 6.9 | 80 | 7.9 | 416 | 20.5 | | | | | | MAY
22 | 0915 | ENVIRONM | ENTAL | 2.2 | 9.3 | 92 | 7.9 | 351 | 13.5 | 150 | 43.2 | 9.33 | 3.57 | | JUN
27 | 1515 | ENVIRONM | ENTAL. | .06 | 10.2 | 140 | 7.9 | 367 | 30.0 | | | | | | 27
AUG | 1516 | REPLICAT | | | | | | | | | | | | | 22 | 0855 | ENVIRONM | ENTAL | .17 | 5.0 | 61 | 7.9 | 302 | 24.0 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
24
NOV | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT 24
NOV 29 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
66 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 50 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608)
E.02 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .80 <.05 | | OCT 24 NOV 29 DEC 13 JAN | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 68 166 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
66
167 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
81
204 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 50 <10 20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 E.04 E.02 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.6 .92 .63 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .80 <.05 | | OCT 24 NOV 29 DEC 13 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
66 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 50 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608)
E.02 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .80 <.05 | | OCT 24
NOV 29
DEC 13
JAN 09 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 68 166 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
66
167 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
81
204 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 50 <10 20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 E.04 E.02 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.6 .92 .63 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .80 <.05 | | OCT 24 NOV 29 DEC 13 JAN 09 FEB 28 MAR 20 | DIS-
SOLVED
(mg/L
as Na)
(00930)

18.1

30.4 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
68
166
159
220 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
66
167
157 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
81
204
191
270 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.5 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) 28.0 55.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 50 <10 20 10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 E.04 E.02 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
1.6
.92
.63 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .80 <.05 <.05 | | OCT 24 NOV 29 DEC 13 JAN 09 FEB 28 MAR 20 APR 18 | DIS-
SOLVED
(mg/L
as Na)
(00930)

18.1

30.4 | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCC ₃)
(00410)
68
166
159
220 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
66
167
157
221
134 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
81
204
191
270 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.5

33.2 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) 28.0 55.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 50 <10 20 10 18 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 E.04 E.02 .07 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.6 .92 .63 .92 .83 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .80 <.05 <.05 .05 | | OCT 24 NOV 29 DEC 13 JAN 09 FEB 28 MAR 20 APR 18 MAY 22 | DIS-
SOLVED (mg/L as Na) (00930)

18.1
30.4 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 68 166 159 220 132 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 66 167 157 221 134 135 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃)
(00450)
81
204
191
270
163
159 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 3 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.5

33.2 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

.2

.2 | DIS-
SOLVED (mg/L as SO ₄) (00945)
28.0
55.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 50 <10 20 10 18 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 E.04 E.02 .07 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.6 .92 .63 .92 .83 .60 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .80 <.05 <.05 .55 <.05 | | OCT 24 NOV 29 DEC 13 JAN 09 FEB 28 MAR 20 APR 18 | DIS-
SOLVED
(mg/L
as Na)
(00930)

18.1

30.4
 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 68 166 159 220 132 135 146 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 66 167 157 221 134 135 148 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
81
204
191
270
163
159 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.5

33.2 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) 28.0 55.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 50 <10 20 10 18 <10 17 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.02 E.04 E.02 .07 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) 1.6 .92 .63 .92 .83 .60 .77 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .80 <.05 <.05 .55 <.05 <.05 | # 06905725 MUSSEL FORK NEAR MYSTIC, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |-----------|--|--|--|--|--|--|--|---|---|--|--|--|---| | OCT | | | | | | | | | | | | | | | 24
NOV | .022 | .17 | .14 | .42 | 5900 | 5300 | 8600 | | | | | | | | 29
DEC | <.008 | <.06 | <.02 | E.06 | K2800 | K2100 | 110 | 3 | 164 | 1.0 | <.04 | <.1 | <6 | | 13
JAN | <.008 | <.06 | <.02 | E.05 | 1400 | 620 | 2600 | | | | | | | | 09
FEB | <.008 | <.06 | <.02 | E.05 | 45 | K24 | 250 | 5 | 115 | 1.1 | E.02 | <.1 | <6 | | 28
MAR | .010 | <.06 | <.02 | .09 | К9 | K10 | K20 | | | | | | | | 20 | <.008 | <.06 | <.02 | E.04 | К7 | K1 | К8 | 9 | | | | | | | APR
18 | <.008 | <.06 | E.01 | .07 | K71 | 69 | K59 | | | | | | | | MAY
22 | <.008 | <.06 | <.02 | .12 | 630 | 370 | 510 | 2 | 245 | 1.0 | <.04 | <.1 | <6 | | JUN
27 | E.005 | <.06 | <.02 | E.04 | 110 | 92 | K15 | | | | | | | | 27
AUG | E.005 | <.06 | <.02 | E.04 | | | | | | | | | | | 22 | <.008 | <.06 | <.02 | .08 | 240 | 330 | 870 | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT | | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV | 4 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV | 4
9 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV
2
DEC
1 | 4
9
3 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV
2
DEC
1
JAN
0 | 4
9
3 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED (µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV
2
DEC
1
JAN
0
FEB | 4
9
3
9 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED (µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | | | | | | OCT
2
NOV
2
DEC
1
JAN
0
FEB
2
MAR
2 | 4
9
3
9
8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

37

35 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.04 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

755 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Zn)
(01145)

.3
 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

4 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | | | | | | OCT
2
NOV
2
DEC
1
JAN
0
FEB
2
MAR
2 | 4
9
3
9
8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

37

35 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.04 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

755

1550 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145)

.3

.6 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

4 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | | | | | | OCT
22
NOVV
2
DEC
1
JAN
0
FEB
2
MAR
2
APR
1
MAY
2 | 4
9
3
9
8
0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

37

35 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.04 | TOTAL RECOV- REABLE (µg/L as Pb) (01051) M <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

755

1550 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145)

.3

.6 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

4 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 1 | | | | | | OCT 2 NOV 2 DEC 1 JAN 0 FEB 2 MAR 2 APR 1 MAY 2 JUN 2 | 4
9
3
9
8
0
8
2 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

37

35
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.04
 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 | NESE, DIS- SOLVED (μg/L as Mn) (01056) 755 1550 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145)

.3

.6 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

4
 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 1 | | | | | | OCT 2 NOV 2 DEC 1 JAN 0 FEB 2 MAR 2 APR 1 MAY 2 JUN 2 AUG | 4
9
3
9
8
0
2 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

37

35
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.04
 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 M M | NESE, DIS- SOLVED (μg/L as Mn) (01056) 755 1550 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Zn)
(01145)

.3

.6 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2

4
 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 1 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. # 06906150 LONG BRANCH CREEK AT ATLANTA, MO LOCATION.--Lat 39°53'51", long 92°29'34", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.20, T.59N., R.14W., Macon County, Hydrologic Unit 10280203, at right upstream end of bridge on Marion Street, 0.65 mi east of Highway RA, and 0.3 mi west of Atlanta. DRAINAGE AREA.--23.0 \min^2 . PERIOD OF RECORD.--July 1995 to current year. Published as "near Atlanta" 1995 to 2000. GAGE.--Water-stage recorder. Datum of gage is 814.75 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair except for period Nov. 25 to Dec. 13 and estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO S | EPTEMBER | 2002 | | | |------------------------------------|--|--------------------------------------|--|--|--------------------------------------|--------------------------------------|---|---|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.17
0.09
0.08
0.17
4.2 | 0.10
0.09
0.07
0.10
0.09 | 0.78
0.84
0.79
0.68
2.4 | 0.03
0.00
0.00
0.00
e0.25 | 6.9
e5.0
e6.0
e7.0
e4.0 | 0.77
0.74
0.77
0.69
0.74 | 1.2
1.0
0.80
0.74
0.60 | 9.3
6.6
5.1
3.7 | 1.4
0.85
0.59
0.42
0.34 | 0.02
0.02
0.02
0.01
0.0 | 0.26
0.15
0.19
0.17
0.11 | 0.13
0.09
0.08
0.05
0.04 | | 6
7
8
9
10 | 9.0
3.3
1.3
0.58
0.47 | 0.09
0.08
0.11
0.10
0.12 | 1.2
0.47
0.60
0.46
0.63 | | e5.0
4.0
1.5
33
172 | 2.6
6.9
7.1
240
58 | 0.52
0.55
1.9
11
8.0 | 425
339
53
555
69 | 0.27
0.22
0.18
0.16
0.13 | 0.0
0.02
0.02
0.0
0.03 | 0.08
0.07
0.05
0.03
0.38 | 0.02
0.02
0.0
0.00
0.00 | | | | 0.18 | 0.29
0.36
0.63
1.6 | | 83
21
e9.5
e13
e6.0 | 12
7.1
5.4
4.5
3.6 | 3.2
1.9
1.3
0.96
0.80 | 786
2060
613
46
24 | 0.16
0.37
3.8
15
2.1 | | | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 147
17
2.4
0.51
0.16 | 0.24
0.30
0.31
0.38
0.27 | 1.6
1.2
0.72
0.58
0.48 | 0.10
0.06
0.04
0.04
0.04 | e3.0
e2.0
e8.0
e48
e115 | 2.8
2.4
1.9
1.9
2.4 | 0.61
0.51
0.36
25
7.5 | 17
12
9.8
7.7
4.8 | 1.3
0.59
0.36
0.20
0.14 | 0.22
0.12
0.09
0.08
0.06 | 0.16
0.15
0.15
0.42
0.23 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | | 0.31
0.27
0.36
0.51
0.60 | | | | | 449
136
24
59
129 | 2.9
1.7
1.9
35
508 | 0.10
0.09
0.07
0.06
0.06 | 0.04
0.04
0.02
0.01
0.00 | 0.17
0.14
0.54
0.36
0.46 | 0.02
0.04
0.02
0.03
0.02 | | 26
27
28
29
30
31 | 0.05
0.04
0.04
0.07
0.09 | 1.0
0.98
0.96
0.78
0.89 | 0.22
0.16
0.14
0.09
0.06
0.04 | 0.04
0.04
0.04
0.09
0.74
5.0 | 3.7
3.4
2.3
 | 1.6
1.5
1.5
1.8
1.6 | 19
293
681
61
23 | 163
12
6.7
120
11
3.9 | 0.05
0.04
0.03
0.03
0.02 | 0.02
0.02
0.00
0.07
0.09
0.56 | 2.5
1.3
0.68
0.39
0.27
0.20 | 0.01
0.0
0.00
0.00
0.00 | | MEAN
MAX
MIN | 6.72
147
0.03 | 0.34
1.0
0.07 | 0.62
2.4
0.04 | 0.25
5.0
0.00 | 23.4
172
1.5 | 12.4
240
0.69 | 64.8
681
0.36 | 191
2060
1.7 | 0.97
15
0.02 | 0.41
4.8
0.00 | 0.38
2.5
0.03 | 0.02
0.13
0.00 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.9
87.7
1999
0.25
1997 | 11.1
68.9
1999
0.34
2002 | 5.68
26.5
1999
0.04
2001 | 19.0
61.7
1999
0.10
2000 | 34.0
84.1
1997
1.69
2000 | 25.9
81.8
1998
3.02
2000 | 42.9
86.7
1999
0.63
2000 | 64.6
191
2002
0.54
2000 | 25.8
71.0
1998
0.97
2002 | 11.3
60.9
1998
0.25
1999 | 6.01
25.0
1995
0.02
1999 | 1.68
4.71
1998
0.02
2002 | | SUMMAR | Y STATISTI | CS | FOR | 2001 CAI | LENDAR YE | AR | FOR 2002 | WATER YEAR | 1 | WATER YEA | RS 1995 - | - 2002 | | 50 PER | MEAN I ANNUAL ME ANNUAL ME I DAILY ME DAILY MEA SEVEN-DAY M PEAK FLO M PEAK STA TANEOUS LO CENT EXCEE CENT EXCEE | DS | | 818
0.00 Se
0.00

30
0.82
0.04 | Feb
everal Da
Jul | 9
ys
10 | 25.2
2060
0.00
0.00
3360
16.44
0.00
18
0.38
0.02 | May 12
Many Days
Sep 8
May 12
May 12
Many Days | 2
3
4
1
2
2 | 21.5
37.0
1.88
2060
0.00
0.00
3360
16.44
0.00
26
0.79
0.03 | May 12
Several
At
May 12
May 12
Several | 1999
2000
2 2002
Years
Times
2 2002
2 2002
Years | e Estimated #### LITTLE CHARITON RIVER BASIN #### 06906190 LONG BRANCH RESERVOIR NEAR MACON, MO LOCATION.--Lat $39^{\circ}45^{\circ}05^{\circ}$, long $92^{\circ}30^{\circ}20^{\circ}$, in NW $\frac{1}{4}$ sec.10, T.57 N., R.14 W., Macon County, Hydrologic Unit 10280203, in Administration Building at left end of dam on East Fork Little Chariton River, 2.0 mi west of junction of U.S. Highways 63 and 36 in Macon, and 2.0 mi below confluence with Long Branch. DRAINAGE AREA. -- 109 mi². PERIOD OF RECORD.--September 1978 to current year. Contents published 1982 to current year. Records collected at same site since 1978 are available from the U.S. Army Corps of Engineers. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). REMARKS.--Lake is formed by a rolled earthfill type dam. Closure began on Sept. 3, 1976. Storage began on Aug. 2, 1978. An uncontrolled limited service type spillway, 50 ft wide, is located at the right abutment. Capacity of surcharge pool 98,590 ac-ft (elevation 801.1 ft to 820.7 ft); of flood control pool 30,600 ac-ft (elevation 791.1 ft to 801.0 ft); and of multipurpose pool 34,640 ac-ft (elevation 751.1 ft to 791.0 ft). Lake is used for flood control, water supply, water-quality control and recreation. U.S. Army Corps of Engineers satellite telemeter at station. COOPERATION. -- Records furnished by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 70,500 ac-ft, May 13, 2002, elevation, 802.58 ft; minimum, 14,300 ac-ft, Dec. 5, 1980, elevation, 780.21 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 70,500 ac-ft, May 13, elevation, 802.58 ft; minimum, 26,800 ac-ft, Sept. 30, elevation, 787.69 ft. | | | | ELEVATI | ON, IN FE | | YEAR OCT | OBER 2001
T 0800 | . TO SEPTE | MBER 2002 | | | | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 788.99 | 788.88 | 788.45 | 788.08 | 787.96 | 788.84 | 789.40 | 792.88 | 796.40 | 791.77 | 790.36 | 788.81 | | 2 | 788.96 | 788.89 | 788.44 | 788.07 | 787.97 | 788.85 | 789.43 | 792.78 | 796.16 | 791.69 | 790.30 | 788.74 | | 3 | 788.93 | 788.89 | 788.42 | 788.05 | 787.99 | 788.87 | 789.40 | 792.69 | 795.89 | 791.61 | 790.24 | 788.70 | | 4 | 788.92 | 788.86 | 788.41 | 788.03 | 788.02 | 788.84 | 789.37 | 792.60 | 795.68 | 791.54 | 790.15 | 788.63 | | 5 | 789.03 | 788.85 | 788.38 | 788.01 | 788.03 | 788.84 | 789.33 | 792.51 | 795.45 | 791.48 | 790.09 | 788.55 | | 6 | 788.99 | 788.84 | 788.41 | 788.02 | 788.04 | 788.82 | 789.31 | 792.64 | 795.21 | 791.42 | 790.05 | 788.49 | | 7 | 788.98 | 788.82 | 788.40 | 788.01 | 788.05 |
788.84 | 789.28 | 794.12 | 794.97 | 791.41 | 789.98 | 788.43 | | 8 | 788.95 | 788.81 | 788.40 | 787.99 | 788.02 | 788.84 | 789.30 | 794.48 | 794.75 | 791.35 | 789.91 | 788.37 | | 9 | 788.93 | 788.78 | 788.37 | 787.98 | 788.04 | 789.03 | 789.36 | 795.18 | 794.53 | 791.29 | 789.84 | 788.32 | | 10 | 788.92 | 788.75 | 788.35 | 787.97 | 788.11 | 789.33 | 789.37 | 795.67 | 794.32 | 791.33 | 789.79 | 788.26 | | 11
12
13
14
15 | 788.93
788.95
788.92
788.92
788.90 | 788.75
788.72
788.71
788.69
788.67 | 788.33
788.32
788.36
788.33
788.32 | 787.96
787.95
787.95
787.93
787.92 | 788.24
788.39
788.41
788.42
788.45 | 789.42
789.46
789.47
789.48
789.50 | 789.38
789.41
789.39
789.39 | 795.98
798.04
802.58
802.52
802.05 | 794.12
794.11
793.87
793.66
793.51 | 791.31
791.32
791.29
791.24
791.18 | 789.71
789.65
789.61
789.55
789.52 | 788.20
788.13
788.07
788.00
788.00 | | 16 | 788.96 | 788.66 | 788.32 | 787.91 | 788.44 | 789.49 | 789.36 | 801.55 | 793.37 | 791.12 | 789.47 | 787.97 | | 17 | 789.14 | 788.66 | 788.33 | 787.89 | 788.43 | 789.47 | 789.36 | 801.05 | 793.23 | 791.06 | 789.46 | 787.95 | | 18 | 789.14 | 788.64 | 788.30 | 787.88 | 788.43 | 789.47 | 789.35 | 800.51 | 793.09 | 791.01 | 789.42 | 787.94 | | 19 | 789.13 | 788.64 | 788.30 | 787.87 | 788.43 | 789.47 | 789.40 | 799.97 | 792.95 | 790.96 | 789.40 | 787.91 | | 20 | 789.12 | 788.60 | 788.27 | 787.87 | 788.52 | 789.49 | 789.44 | 799.42 | 792.87 | 790.91 | 789.35 | 787.95 | | 21 | 789.11 | 788.57 | 788.27 | 787.86 | 788.76 | 789.55 | 789.59 | 798.88 | 792.75 | 790.85 | 789.28 | 787.93 | | 22 | 789.11 | 788.55 | 788.24 | 787.85 | 788.83 | 789.45 | 790.40 | 798.36 | 792.63 | 790.79 | 789.23 | 787.90 | | 23 | 789.03 | 788.53 | 788.24 | 787.84 | 788.85 | 789.42 | 790.62 | 797.91 | 792.52 | 790.75 | 789.24 | 787.88 | | 24 | 789.11 | 788.52 | 788.23 | 787.83 | 788.87 | 789.43 | 790.66 | 797.61 | 792.42 | 790.67 | 789.24 | 787.85 | | 25 | 789.06 | 788.54 | 788.20 | 787.81 | 788.89 | 789.46 | 790.79 | 797.74 | 792.32 | 790.60 | 789.19 | 787.82 | | 26
27
28
29
30
31 | 789.03
789.00
788.97
788.95
788.95 | 788.54
788.52
788.50
788.48
788.47 | 788.19
788.16
788.16
788.13
788.12
788.10 | 787.78
787.77
787.77
787.76
787.76
787.95 | 788.89
788.85
788.83
 | 789.44
789.41
789.38
789.40
789.39 | 790.95
791.01
792.04
792.91
792.94 | 798.02
797.75
797.44
797.16
796.93
796.67 | 792.21
792.12
792.03
791.93
791.84 | 790.56
790.49
790.44
790.52
790.47
790.42 | 789.14
789.09
789.04
788.97
788.92
788.87 | 787.80
787.77
787.75
787.73
787.69 | | MEAN | 789.00 | 788.68 | 788.30 | 787.91 | 788.40 | 789.27 | 789.98 | 797.22 | 793.70 | 791.06 | 789.55 | 788.12 | | MAX | 789.14 | 788.89 | 788.45 | 788.08 | 788.89 | 789.55 | 792.94 | 802.58 | 796.40 | 791.77 | 790.36 | 788.81 | | MIN | 788.90 | 788.47 | 788.10 | 787.76 | 787.96 | 788.82 | 789.28 | 792.51 | 791.84 | 790.42 | 788.87 | 787.69 | | (-) | 29400 | 28400 | 27600 | 27300 | 29200 | 30400 | 39100 | 49900 | 36300 | 32800 | 29300 | 26800 | | (=) | -300 | -1000 | -800 | -300 | +1900 | +1200 | +8700 | +10800 | -13600 | -3500 | -3500 | -2500 | CAL YR 2001....+7900 WTR YR 2002....-2900 ⁽⁻⁾ Contents, in acre-feet, at the end of the month. ⁽⁼⁾ Change in contents, in acre-feet. #### 06906200 EAST FORK LITTLE CHARITON RIVER NEAR MACON, MO LOCATION.--Lat 39°44'59", long 92°31'03", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.18, T.57 N., R.14 W., Macon County, Hydrologic Unit 10280203, on right bank 250 ft downstream from Long Branch Lake and 3.0 mi west of Macon. DRAINAGE AREA.--112 mi². PERIOD OF RECORD.--September 1971 to current year. Partial-record station May 1970 to August 1971. GAGE.--Water-stage recorder. Datum of gage is 741.43 ft above National Geodetic Vertical Datum of 1929. Sept. 8, 1971, to Aug. 1, 1985, water-stage recorder at site 400 ft downstream at same datum. REMARKS.--Records fair. Complete regulation by Long Branch Reservoir (06906190), 250 ft upstream. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 8,700 ft³/s, Apr. 21, 1973; gage height, 20.60 ft. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | | | | | | | | | |---|--|-------------------------------------|-------------------------------------|---|-------------------------------------|------------------------------------|--|--|------------------------------------|---|-------------------------------------|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 14
14
14
14 | 12
12
12
11
11 | 9.1
9.0
8.9
8.8
8.9 | 9.2
9.2
9.4
9.6
9.5 | 9.5
9.4
9.4
9.5 | 8.8
8.9
8.8
8.7
8.9 | 9.9
9.9
9.9
9.9 | 177
168
156
145
135 | 353
336
326
320
312 | 58
58
57
58
56 | 45
45
45
45
44 | 43
43
44
43
43 | | | 6
7
8
9
10 | 14
14
14
14 | 11
11
11
11
11 | 9.0
9.1
9.2
8.4
8.3 | 9.7
9.5
9.7
9.8
9.3 | 9.5
9.6
9.7
9.6
9.4 | 9.2
9.5
9.4
9.7
9.6 | 9.9
10
10
10 | 211
298
313
383
334 | 304
295
287
278
269 | 54
54
53
52
53 | 43
43
44
44
44 | 43
43
43
43
43 | | | 11
12
13
14
15 | 14
14
14
14 | 10
10
10
10
9.8 | 8.4
8.2
8.2
8.1
8.5 | 9.3
9.0
9.2
9.4
9.3 | 9.5
9.4
9.5
9.5
9.5 | 9.5
9.6
9.8
9.7
9.8 | 10
10
10
10 | 452
1030
1270
1240
1220 | 263
261
256
244
233 | 51
52
51
50
49 | 44
44
44
20
28 | 43
43
43
19
6.8 | | | 16
17
18
19
20 | 14
14
14
14 | 9.8
9.7
9.4
9.1
9.3 | 8.5
8.4
8.2
8.1
8.4 | 9.2
9.3
9.5
9.5
9.3 | 9.3
9.4
9.5
9.6
9.0 | 9.7
9.6
9.7
9.8
9.7 | 11
11
11
11 | 1220
1200
1190
1180
1140 | 221
203
188
174
163 | 48
48
48
48 | 43
43
43
43
43 | 6.9
7.0
6.9
6.9
7.1 | | | 21
22
23
24
25 | 13
13
13
13 | 9.2
9.3
8.6
8.7
8.4 | 8.4
8.4
8.5
8.7 | 9.2
9.5
9.8
9.8 | 8.7
8.7
8.7
8.8
8.7 | 9.9
9.9
9.9
9.8
9.8 | 11
11
11
11
12 | 1030
807
649
558
696 | 151
139
127
116
105 | 47
48
47
46
46 | 43
43
43
43
43 | 6.7
7.0
7.0
7.3
7.3 | | | 26
27
28
29
30
31 | 13
12
12
12
12
12 | 8.2
8.5
8.7
8.9
8.9 | 9.0
9.0
9.1
9.1
9.1 | 9.7
9.7
9.7
9.6
9.7
9.6 | 8.9
8.8
8.9
 | 9.7
9.8
9.7
9.8
9.9 | 12
19
72
145
161 | 696
612
504
456
416
380 | 93
82
73
64
60 | 46
46
47
46
45 | 43
43
43
43
43 | 7.1
7.2
7.4
7.1
5.3 | | | MEAN
MAX
MIN
IN. | 13.4
14
11
0.14 | 9.92
12
8.2
0.10 | 8.68
9.2
8.1
0.09 | 9.48
9.8
9.0
0.10 | 9.26
9.7
8.7
0.09 | 9.57
10
8.7
0.10 | 22.4
161
9.9
0.22 | 654
1270
135
6.73 | 210
353
60
2.09 | 50.2
58
45
0.52 | 42.3
45
20
0.44 | 23.0
44
5.3
0.23 | | | STATIST | ICS OF MO | NTHLY MEA | | R WATER | YEARS 1979 | - 2002 ^a | BY WATER | R YEAR (WY) | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 57.0
406
1987
0.16
1979 | 64.6
354
1986
0.27
1979 | 77.6
304
1993
0.00
1979 | 47.2
223
1993
0.00
1979 | 57.6
200
1999
0.00
1979 | 112
502
1985
7.30
1989 | 130
475
1983
7.27
1989 | 195
680
1995
7.21
1988 | 133
369
1995
5.45
1988 | 122
743
1993
5.52
1989 | 68.0
401
1981
2.48
1980 | 50.6
341
1981
7.06
1984 | | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1979 | - 2002 ^a | | | LOWEST A
HIGHEST
LOWEST I
ANNUAL S
MAXIMUM
MAXIMUM
INSTANTA
ANNUAL I
10 PERCI
50 PERCI | ANNUAL M
ANNUAL ME
DAILY ME
DAILY MEA | AN AN N MINIMUM GE W FLOW NCHES) DS | | 324
8.1 I
8.3
7.51
174
40
9.1 | Jun 8
Dec 14,19
Dec 13 | | 1270
5.3
6.9
1300
15.00
0.09
10.83
262
11
8.7 | May 13
Sep 30
Sep 15
May 13
May 13
Aug 14 | | 93.1
242
7.13
1380
0.00
0.00
1560
15.00
0.00
11.29
284
45
6.8 | Many
Many
May
May 1 | 1993
1989
8 1995
Years
Years
7 1996
3 2002
Years | | ^a Post-regulation period. #### 06906300 EAST FORK LITTLE CHARITON RIVER NEAR HUNTSVILLE, MO LOCATION.--Lat 39°27'18", long 92°34'07", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.26, T.54 N., R.15 W., Randolph County, Hydrologic Unit 10280203, on right bank downstream end of bridge on State Highway C, 1.0 mi downstream from Sugar Creek, and 1.5 mi northwest of Huntsville. DRAINAGE AREA. -- 220 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1962 to current year. Occasional
low-flow measurements, water years 1942-43, 1945-46. GAGE.--Water-stage recorder. Datum of gage is 655.86 ft above National Geodetic Vertical Datum of 1929 (levels by the Missouri State Highway and Transportation Commission). Oct. 29, 1962 to July 18, 1972, on former bridge, at same datum; July 18, 1972 to Sept. 23, 1974, at datum 0.63 ft higher. REMARKS.--Water-discharge records fair except for estimated daily discharges, which are poor. Some regulation by Long Branch Reservoir (station 06906190), 34 mi upstream since 1978. Low flow affected by operation of pumps 7 mi upstream. U.S. Army Corps of Engineers satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 30,000 ft³/s, Apr. 21, 1973; gage height, 20.78 ft, former datum. | | | DISCHA | RGE, CUBI | C FEET PER | | MEAN VA | | R 2001 10 | PELIEMBE | R 2002 | | | |---|---|-------------------------------------|---|---|------------------------------------|------------------------------------|---|---|------------------------------------|---|------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 15
14
14
13
259 | 16
17
18
18 | 12
11
11
12
12 | e9.0
e9.0
e9.0
e9.8
e10 | 332
102
73
49
35 | e20
e18
e16
e15
e20 | 19
18
19
17
17 | 236
226
190
165
148 | 479
444
420
406
393 | 80
78
80
78
74 | 60
60
58
57 | 51
51
51
51
51 | | 6
7
8
9
10 | 73
25
18
16
14 | 17
17
17
16
16 | 13
12
12
11
11 | e10
e10
e11
12
13 | 33
32
25
25
34 | 47
46
41
310
129 | 16
17
22
44
35 | 2170
2960
1610
5770
2340 | 378
360
344
328
317 | 71
68
67
65
74 | 54
52
52
52
52
53 | 51
51
51
51
50 | | 11
12
13
14
15 | 20
18
17
18
20 | 16
16
16
16
17 | 12
12
19
18
14 | 13
12
12
13
13 | 32
27
22
20
19 | 65
47
42
37
34 | 26
20
19
18
18 | 2970
3560
2230
1490
1340 | 408
581
429
348
285 | 77
97
68
63
60 | 52
52
55
54
33 | 49
49
50
50
31 | | 16
17
18
19
20 | 65
29
18
16
15 | 17
16
16
17
16 | 17
21
20
18
16 | 12
10
11
13
13 | 18
18
17
21
223 | 30
28
26
26
29 | 17
15
16
15
16 | 1280
1280
1250
1170
1130 | 254
229
206
182
166 | 58
57
56
58
57 | 33
56
64
62
58 | 12
11
11
16
19 | | 21
22
23
24
25 | 14
15
17
19 | 15
15
15
23
25 | 15
16
17
13
13 | 16
14
18
16
14 | 120
59
42
34
28 | 27
24
22
23
26 | 784
300
110
64
46 | 1070
943
797
769
1920 | 154
143
132
123
116 | 57
60
63
55
55 | 55
56
72
72
57 | 14
12
11
11
11 | | 26
27
28
29
30
31 | 18
17
17
17
17
16 | 20
18
17
12
12 | e11
e12
e12
e11
e10
e9.5 | 17
15
15
15
94
773 | 23
19
e18
 | 24
22
21
21
22
19 | 32
1250
1120
332
248 | 1160
862
724
634
575
522 | 107
99
95
90
84 | 162
60
56
120
69
61 | 55
54
52
52
52
51 | 11
11
14
14
13 | | MEAN
MAX
MIN
IN. | 28.5
259
13
0.15 | 16.8
25
12
0.09 | 13.7
21
9.5
0.07 | 39.7
773
9.0
0.21 | 53.6
332
17
0.25 | 41.2
310
15
0.22 | 156
1250
15
0.79 | 1403
5770
148
7.35 | 270
581
84
1.37 | 71.1
162
55
0.37 | 54.9
72
33
0.29 | 31.0
51
11
0.16 | | STATIST | CICS OF MO | NTHLY ME. | AN DATA F | OR WATER | YEARS 1979 | - 2002 ^a | , BY WATE | R YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 104
1019
1987
6.44
1981 | | 140
666
1983
4.95
1989 | 98.1
362
1993
6.48
1989 | 173
732
1985
7.59
1989 | 228
945
1985
10.6
1989 | 252
935
1983
10.2
1989 | 363
1403
2002
12.1
1988 | 228
562
1995
2.56
1988 | 227
1569
1993
5.34
1989 | 105
514
1993
3.64
1980 | 106
774
1993
2.70
1988 | | SUMMARY | STATISTI | CS | FOR | 2001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1979 | - 2002 ^a | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK FLO ANNOOFF (I RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS | | 3000
8.5
9.4

8.93
292
57
14 | Jun 6
Jan 1
Jan 1 | | 183
5770
9.0 ^b
9.5
6260
17.39
7.0 ^c
11.32
407
28
12 | May 9
Jan 1-3
Dec 30
May 9
May 9
Jan 17,18 | | 179
468
17.3
7760
0.00
0.40
10400
19.30
0.00
11.08
390
61
8.8 | Many
Oct
Jun 1
Sep | 1993
1989
3 1986
Y Years
9 1980
27 1981
2 1982
Y Years | Post-regulation period. Occurred during period of estimated record. Minimum recorded, may have been less during period of estimated record. 171 # 06906300 EAST FORK LITTLE CHARITON RIVER NEAR HUNTSVILLE, MO--Continued (Ambient Water-Quality Monitoring Network) WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|---|--|---|--|---|---| | NOV
05 | 1130 | ENVIRONM | ENTAL | 18 | 9.0 | 88 | 7.7 | 1070 | 13.2 | 490 | 116 | 48.4 | 5.70 | | JAN
07 | 1325 | ENVIRONM | ENTAL | e10 | 13.7 | 96 | 7.5 | 615 | .3 | | | | | | MAR
05 | 1215 | ENVIRONM | ENTAL | e20 | 15.1 | 110 | 7.8 | 695 | 1.7 | | | | | | MAY
06 | 1330 | ENVIRONM | ENTAL | 3170 | 8.4 | 89 | 7.4 | 320 | 16.7 | 160 | 43.3 | 11.7 | 3.57 | | JUL
15
SEP | 1145 | ENVIRONM | ENTAL | 61 | 7.3 | 89 | 7.8 | 383 | 24.5 | | | | | | 04 | 0910 | ENVIRONM | ENTAL | 51 | 6.8 | 81 | 7.3 | 249 | 23.5 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
05
JAN | 45.2 | 111 | 111 | 136 | 0 | 8.46 | .3 | 447 | 14 | 784 | <.04 | .46 | <.05 | | 07
MAR | | 243 | 241 | 294 | 0 | | | | <10 | | .09 | .57 | .35 | | 05
MAY | | 127 | 125 | 152 | 0 | | | | <10 | | .04 | .41 | .08 | | 06
JUL | 6.57 | 63 | 61 | 74 | 0 | 2.79 | .2 | 85.6 | 1280 | 242 | .09 | 2.7 | .60 | | 15
SEP | | 62 | 61 | 75 | 0 | | | | E98 | | <.04 | .73 | .40 | | 04 | | 54 | 55 | 67 | 0 | | | | 39 | | <.04 | .53 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) |
PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-PHORUS TOTAL (mg/L as P) (00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLIRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | . 000 | . 05 | | 0.0 | 26 | 7200 | 4.53 | 22 | 200 | - | п 02 | n 1 | | | 05
JAN
07 | <.008
E.005 | <.06
<.06 | <.02 | .06 | 36
K2 | K75
K13 | 47
27 | 33 | 280 | .7 | E.03 | E.1 | <6
 | | 07
MAR
05 | <.008 | <.06 | <.02 | <.06 | <2 | <2 | K8 | | | | | | | | MAY
06 | .039 | .23 | .15 | 1.12 | 2400 | K10300 | K18600 | 545 | 8140 | 1.1 | .12 | .8 | E3 | | JUL
15 | .013 | E.04 | .02 | .14 | 230 | 460 | 200 | | | | | | | | SEP
04 | <.008 | <.06 | <.02 | .09 | 160 | K332 | 380 | # 06906300 EAST FORK LITTLE CHARITON RIVER NEAR HUNTSVILLE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 05 | 70 | E.06 | <1 | 693 | <.01 | E.2 | | 6 | | JAN | | | | | | | | | | 07 | | | | | | | | | | MAR | | | | | | | | | | 05 | | | | | | | | | | MAY | | | | | | | | | | 06 | 824 | 1.66 | 20 | 433 | .05 | .7 | | 74 | | JUL | | | | | | | | | | 15 | | | | | | | | | | SEP | | | | | | | | | | 04 | | | | | | | | | e--Estimated discharge value. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### MISSOURI RIVER MAIN STEM 173 #### 06906500 MISSOURI RIVER AT GLASGOW, MO LOCATION.--Lat 39°13'20", long 92°51'00", in NE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.3, T.51 N., R.17 W., Howard County, Hydrologic Unit 10300102, at bridge on State Highway 240 in Glasgow, 75 ft downstream from Chicago and Alton Railway bridge, 1 mi downstream from Little Chariton River, and at mile 226.8. DRAINAGE AREA.--498,900 mi². The 3,959 mi² in Great Divide basin are not included. PERIOD OF RECORD.--October 2000 to current year. Gage-height records collected at site 1878-99 in reports of the Missouri River Commission. Gage-height records collected from January 1929 to August 1950 in files of the Corps of Engineers, Kansas City District. August 1950 to September 2000 gage-height records collected in files of the U.S.G.S. GAGE.--Water-stage recorder. Datum of gage 586.49 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except for discharges above $100,000 \text{ ft}^3/\text{s}$, which are poor. Some regulation from many upstream reservoirs. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 29, 1993 reached a stage of 39.50 ft. | | | DISCHAF | RGE, CUBI | C FEET PE | R SECOND,
DAILY | WATER Y | | ER 2001 TO |) SEPTEMBE | R 2002 | | | |----------------------------------|--|---|--|--|-----------------------------|--|---|---|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 53600 | 43500 | 43300 | 26800 | 39200 | 28800 | 39100 | 64600 | 63300 | 41800 | 35500 | 40000 | | 2 | 52600 | 43100 | 41700 | 25700 | 37800 | 28900 | 39600 | 57800 | 62100 | 40700 | 33500 | 39100 | | 3 | 54200 | 42300 | 41000 | 24500 | 33700 | 28600 | 38700 | 53700 | 59900 | 40100 | 32400 | 39100 | | 4 | 53900 | 42100 | 39500 | 24100 | 30500 | 28200 | 38500 | 51300 | 58600 | 39500 | 31700 | 38600 | | 5 | 53700 | 42500 | 37700 | 23400 | 28800 | 26700 | 38800 | 48500 | 56300 | 40300 | 31100 | 37500 | | 6 | 58400 | 42600 | 35900 | 22700 | 27000 | 25500 | 39900 | 54300 | 54900 | 40100 | 31000 | 37000 | | 7 | 53900 | 42800 | 34100 | 22600 | 25300 | 25600 | 40700 | 110000 | 55000 | 38800 | 30700 | 37000 | | 8 | 48600 | 42800 | 32500 | 22900 | 24700 | 25400 | 40700 | 135000 | 52700 | 38200 | 30700 | 37000 | | 9 | 46400 | 42800 | 32100 | 23300 | 24800 | 25400 | 40400 | 157000 | 51200 | 37900 | 30900 | 36600 | | 10 | 45000 | 42500 | 32800 | 24200 | 25300 | 28200 | 41500 | 149000 | 50000 | 37800 | 31500 | 36200 | | 11 | 44100 | 42100 | 33100 | 25200 | 27000 | 30700 | 46900 | 128000 | 52700 | 37700 | 33600 | 36000 | | 12 | 43800 | 41800 | 33300 | 26800 | 29700 | 31300 | 44900 | 151000 | 79400 | 38400 | 34600 | 36000 | | 13 | 44100 | 41900 | 33500 | 27900 | 30000 | 30600 | 43300 | 190000 | 83200 | 41600 | 33600 | 35800 | | 14 | 44900 | 41900 | 33200 | 27300 | 30800 | 29200 | 47400 | 209000 | 80100 | 40800 | 32900 | 35700 | | 15 | 44800 | 41900 | 33000 | 27000 | 31300 | 28200 | 46700 | 195000 | 70800 | 39400 | 34100 | 36100 | | 16 | 47400 | 41800 | 32300 | 28300 | 31000 | 27900 | 45200 | 162000 | 71700 | 39000 | 33700 | 36600 | | 17 | 56600 | 41500 | 31500 | 29700 | 30800 | 28000 | 43500 | 128000 | 67700 | 39100 | 34200 | 37200 | | 18 | 54900 | 41400 | 30900 | 30600 | 30900 | 29700 | 42000 | 98700 | 59700 | 37600 | 37400 | 37500 | | 19 | 49000 | 41400 | 30600 | 31400 | 31100 | 35800 | 41200 | 83200 | 55000 | 36300 | 36900 | 37900 | | 20 | 46000 | 41300 | 30400 | 31200 | 32500 | 38800 | 41600 | 76200 | 53400 | 35900 | 37600 | 38300 | | 21 | 44700 | 42000 | 29800 | 29900 | 42800 | 35200 | 49200 | 69900 | 51900 | 35400 | 38800 | 38100 | | 22 | 43900 | 42400 | 29500 | 28800 | 44500 | 31500 | 80400 | 63500 | 50200 | 35000 | 39300 | 36900 | | 23 | 43500 | 42300 | 29800 | 29400 | 38800 | 30000 | 81700 | 58700 | 49100 | 34100 | 42500 | 36400 | | 24 | 43700 | 42500 | 31000 | 30400 | 35300 | 29800 | 62900 | 59200 | 47700 | 33400 | 45800 | 36700 | | 25 | 45100 | 42400 | 31800 | 29900 | 33700 | 30300 | 54500 | 75800 | 47000 | 32600 | 44200 | 36500 | | 26
27
28
29
30
31 | 45300
44700
43600
43100
42800
43000 | 42900
43900
44700
45600
45300 | 31500
30800
30600
30300
29300
27900 | 28800
28000
27700
27100
27400
33200 | 32200
30700
29400
 | 32700
36500
39600
41000
39800
37800 | 50600
51900
77900
92600
77600 | 103000
93500
78200
73100
68300
64200 | 46900
46500
45700
45300
44800 | 32100
32400
31900
33200
35300
36500 | 50200
58300
50400
46700
44100
41600 | 35400
34400
33700
33400
33500 | | MEAN | 47720 | 42600 | 33050 | 27300 | 31770 | 31150 | 50660 | 100300 | 57090 | 37190 | 37730 | 36670 | | MAX | 58400 | 45600 | 43300 | 33200 | 44500 | 41000 | 92600 | 209000 | 83200 | 41800 | 58300 | 40000 | | MIN | 42800 | 41300 | 27900 | 22600 | 24700 | 25400 | 38500 | 48500 | 44800 | 31900 | 30700 | 33400 | | STATIS | TICS OF M | ONTHLY MEA | AN DATA F | OR WATER | YEARS 2001 | - 2002 | , BY WATER | R YEAR (W | ď) | | | | | MEAN | 45770 | 43730 | 29230 | 28180 | 45380 | 64060 | 71850 | 103200 | 106100 | 54940 | 43630 | 46210 | | MAX | 47720 | 44860 | 33050 | 29060 | 58990 | 96960 | 93040 | 106000 | 155200 | 72690 | 49530 | 55750 | | (WY) | 2002 | 2001 | 2002 | 2001 | 2001 | 2001 | 2001 | 2001 | 2001 | 2001 | 2001 | 2001 | | MIN | 43820 | 42600 | 25410 | 27300 | 31770 | 31150 | 50660 | 100300 | 57090 | 37190 | 37730 | 36670 | | (WY) | 2001 | 2002 | 2001 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | : | FOR 2002 T | WATER YEAR | 3 | WATER YE | ARS 2001 | - 2002 | | LOWEST
HIGHES
LOWEST | T ANNUAL !
ANNUAL M
T DAILY M
DAILY ME | | | 261000
23900
24100

124000
55500
30700 | Jun 8
Jan 1
Jan 1 | | 209000
22600
23300
213000
28.28
22500
63100
39000
28300 | May 14
Jan 4
Jan 4
May 14
May 14
Jan 7 | 4
7
4
4
4
7 | 56840
69160
44520
261000
18400
19900
272000
31.66
18300
107000
43500
28000 | Jun
Dec
Dec
Jun
Jun
Dec | 2001
2002
8 2001
20 2000
19 2000
7 2001
7 2001
7 2000 | 174 LAMINE RIVER
BASIN # 06906800 LAMINE RIVER NEAR OTTERVILLE, MO LOCATION.--Lat $38^{\circ}42^{\circ}09^{\circ}$, long $92^{\circ}58^{\circ}42^{\circ}$, in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.2, T.45 N., R.19 W., Cooper County, Hydrologic Unit 10300103, on left bank at the left downstream end of Highway A, 7.2 mi downstream from confluence of Flat Creek and Richland Creek, 2.2 mi upstream from Otter Creek, and 1.1 mi east of Otterville. DRAINAGE AREA. -- 543 mi². PERIOD OF RECORD. -- October 1987 to current year. GAGE.--Water-stage recorder. Datum of gage is 652.87 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except for estimated daily discharges, which are poor. U.S.G.S satellite telemeter at station. | | | DISCHARO | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|---|---|-------------------------------------|---|-------------------------------------|-------------------------------------|---|--|-------------------------------------|---|------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 11
10
9.7
9.2
17 | 14
39
33
63
38 | 39
39
37
36
36 | 31
30
28
27
27 | 2660
900
485
341
255 | 57
e65
e80
e100
151 | 177
136
138
113
93 | 331
259
194
146
116 | 115
97
82
65
59 | 16
16
16
16
15 | 7.9
7.5
7.0
6.8
6.5 | 9.7
8.6
7.8
7.3
6.7 | | 6
7
8
9
10 | 142
160
57
30
571 | 28
23
20
18
17 | 35
34
34
33
33 | 28
28
28
29
30 | 205
172
143
123
113 | 320
360
308
312
501 | 77
70
73
87
87 | 159
2080
15400
20200
4790 | 57
55
54
50
47 | 16
16
15
14 | 6.5
6.4
6.0
5.9
5.6 | 6.0
5.6
5.4
5.4
5.2 | | 11
12
13
14
15 | 341
106
84
60
52 | 16
16
15
15 | 32
34
39
45
57 | 30
31
30
30
30 | 99
87
77
69
64 | 329
247
196
160
142 | 75
67
61
56
53 | 859
809
3410
1150
545 | 46
395
745
324
159 | 14
35
110
57
32 | 5.4
5.5
6.9
8.8
14 | 4.7
4.3
4.2
4.9
5.9 | | 16
17
18
19
20 | 145
277
139
68
44 | 14
14
15
18
38 | 98
150
163
132
101 | 29
28
27
28
28 | 58
54
50
57
208 | 122
105
95
91
91 | 49
45
42
42
1560 | 428
2520
4040
911
495 | 92
64
48
40
36 | 24
19
17
16
14 | 12
9.9
11
10
9.0 | 5.5
5.1
4.9
5.3
6.6 | | 21
22
23
24
25 | 34
29
25
22
19 | 36
30
27
58
306 | 80
69
59
52
46 | 28
27
27
28
28 | 314
224
150
117
96 | 88
77
68
65
75 | 2000
1070
513
323
218 | 355
274
223
347
1170 | 33
30
28
25
24 | 13
12
12
11
11 | 8.4
13
30
70
46 | 7.1
6.5
5.7
5.5
5.5 | | 26
27
28
29
30
31 | 17
16
15
15
14
14 | 140
76
51
43
41 | 43
41
40
37
35
33 | 27
26
26
25
64
7430 | 80
68
59
 | 78
71
65
70
294
284 | 151
2810
4990
933
467 | 781
381
266
214
177
141 | 24
21
19
18
17 | 12
11
9.8
9.4
8.9
8.3 | 37
23
17
14
12 | 5.3
5.0
4.6
4.3
4.1 | | MEAN
MAX
MIN | 82.4
571
9.2 | 42.5
306
14 | 56.2
163
32 | 268
7430
25 | 262
2660
50 | 164
501
57 | 552
4990
42 | 2038
20200
116 | 95.6
745
17 | 19.7
110
8.3 | 14.2
70
5.4 | 5.76
9.7
4.1 | | MEAN
MAX
(WY)
MIN
(WY) | 195
2130
1999
7.73
1993 | 526
3347
1993
7.43
2000 | 317
1564
1993
11.1
1990 | 332
956
1999
16.1
2000 | 640
2422
1997
35.0
1996 | 576
2174
1998
46.4
1996 | 925
3809
1994
22.2
2000 | 1356
4718
1990
38.8
1992 | 671
3176
1998
10.5
1988 | 656
4077
1993
11.0
1988 | 150
850
1995
3.40
1991 | 293
3689
1993
4.03
1999 | | SUMMAR | Y STATISTI | CS | FOR | 2001 CAL | ENDAR YEAR | ? | FOR 2002 1 | WATER YEA | R | WATER YE | ARS 1987 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANTANNUAL
10 PERC
50 PERC | MEAN F ANNUAL ME ANNUAL ME T DAILY MEA SEVEN-DAY M PEAK STA FANEOUS LO RUNOFF (I CENT EXCEE CENT EXCEE | AN AN AN AN MINIMUM W GE WW FLOW NCHES) CDS | | 19100
8.0
8.9

14.54
824
62
14 | Apr 4
Jan 3,
Jan 1 | 4 | 301
20200
4.1
4.9
22200
21.25
3.9
7.54
343
39
7.1 | | 0
8
9
9 | 552
1464
155
47000
1.3
1.4
84900
29.43
1.2
13.81
781
74
9.1 | Aug 2
Aug 2
May 1
May 1 | 1993
1992
18 1995
26 1991
23 1991
18 1995
18 1995
28 1991 | e Estimated 175 # 06907300 LAMINE RIVER NEAR PILOT GROVE, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $38^{\circ}53^{\circ}32^{\circ}$, long $93^{\circ}02^{\circ}00^{\circ}$, in SE $\frac{1}{4}$ NW $\frac{1}{4}$ New $\frac{1}{4}$ sec.32, T.48 N., R.19 W., Cooper County, Hydrologic Unit 10300102, located approximately 2 mi southeast of County Highway Z on Shackleford Road. DRAINAGE AREA.--949 mi². PERIOD OF RECORD.--November 1999 to current year. | DATE | TIME | SAMPL:
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|--|--|---|--|---|---|--|--|---|---|---|---| | NOV
06 | 1350 | ENVIRONM | ENTAL | 87 | 8.0 | 79 | 7.2 | 332 | 13.7 | 160 | 38.7 | 15.9 | 4.77 | | JAN
08 | 1355 | ENVIRONM | ENTAL | 51 | 15.6 | 113 | 7.9 | 361 | 1.1 | | | | | | FEB
04
04 | 1430
1431 | ENVIRONM
REPLICAT | | 526
 | 13.0 | 97
 | 7.5 | 247 | 2.9 | | | | | | MAR
06 | 1700 | ENVIRONM | ENTAL | 234 | 17.5 | 142 | 8.9 | 376 | 5.2 | | | | | | APR
10 | 1205 | ENVIRONM | ENTAL | 128 | 11.3 | 111 | 8.4 | 414 | 14.1 | | | | | | MAY
07 | 1550 | ENVIRONM | ENTAL | 2030 | 6.7 | 73 | 7.6 | 248 | 18.5 | 110 | 29.3 | 8.41 | 4.70 | | JUN
11 | 0845 | ENVIRONM | ENTAL. | 98 | 7.9 | 99 | 7.9 | 410 | 25.1 | | | | | | JUL
16 | 1330 | ENVIRONM | | 94 | 6.4 | 81 | 7.7 | 250 | 26.6 | 110 | 27.8 | 10.3 | 5.18 | | SEP
05 | 0910 | ENVIRONM | | 17 | 4.3 | 54 | 7.8 | 425 | 25.7 | | | | | | 03 | 0,10 | DIVV INCOME | DIVITIE | Ξ, | 1.5 | 31 | 7.0 | 123 | 23.7 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV |
DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
06
JAN | DIS-
SOLVED
(mg/L
as Na) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
06
JAN
08
FEB | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
06
JAN
08 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
06
JAN
08
FEB
04
04 | DIS-
SOLVED
(mg/L
as Na)
(00930)
7.04 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 142 186 74 | WATER UNFLITCH IT FIELD (mg/L as CaCO ₃) (00419) 142 189 73 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
173
231
89 | CAR-BONATE IT FIELD (mg/L as CO ₃)(00447) 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)
12.4 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530)
74
<10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .12 .10 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
E.02
2.26
2.26
2.27 | | NOV
06
JAN
08
FEB
04
04
MAR
06 | DIS-
SOLVED
(mg/L
as Na)
(00930)
7.04 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
142
186
74
 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
142
189
73

152 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 173 231 89 162 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
E.1 | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 74 <10 68 68 26 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .12 .10 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .53 .39 1.1 1.1 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) E.02 2.26 2.26 2.27 E.04 | | NOV 06 JAN 08 FEB 04 04 MAR 06 APR 10 MAY | DIS-
SOLVED
(mg/L
as Na)
(00930)
7.04 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 142 186 74 152 148 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 142 189 73 152 149 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
173
231
89

162
177 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 12 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
12.4 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)
E.1 | DIS-
SOLVED (mg/L as SO ₄) (00945)
14.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 74 <10 68 68 26 28 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .12 .10 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .53 .39 1.1 1.1 .99 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
E.02
2.26
2.26
2.27
E.04 | | NOV
06
JAN
08
FEB
04
04
MAR
06
APR
10
MAY
07 | DIS-
SOLVED
(mg/L
as Na)
(00930)
7.04 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 142 186 74 152 148 97 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 142 189 73 152 149 97 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
173
231
89

162
177
118 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 12 2 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
12.4 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
E.1 | DIS-
SOLVED (mg/L as SO ₄) (00945)
14.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 74 <10 68 68 26 28 395 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .12 .10 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .53 .39 1.1 1.1 .99 .72 2.1 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
E.02
2.26
2.27
E.04
E.04
1.35 | | NOV
06
JAN
08
FEB
04
04
MAR
06
APR
10
MAY
07
JUN
11 | DIS-
SOLVED
(mg/L
as Na)
(00930)
7.04

5.49 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 142 186 74 152 148 97 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 142 189 73 152 149 97 157 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 173 231 89 162 177 118 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 12 2 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
12.4

7.04 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)
E.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945)
14.0 11.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 74 <10 68 68 26 28 395 26 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .12 .10 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .53 .39 1.1 1.1 .99 .72 2.1 .70 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) E.02 2.26 2.26 2.27 E.04 E.04 1.35 1.65 | | NOV
06
JAN
08
FEB
04
04
MAR
06
APR
10
MAY
07
JUN
11 | DIS-
SOLVED
(mg/L
as Na)
(00930)
7.04

5.49 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 142 186 74 152 148 97 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 142 189 73 152 149 97 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
173
231
89

162
177
118 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 12 2 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
12.4

7.04 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
E.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
14.0

11.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 74 <10 68 68 26 28 395 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 192 186 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .12 .10 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .53 .39 1.1 1.1 .99 .72 2.1 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
E.02
2.26
2.27
E.04
E.04
1.35 | #### LITTLE CHARITON RIVER BASIN # 06907300 LAMINE RIVER NEAR PILOT GROVE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as
Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |------------------|--|--|--|---|--|--|--|--|---|--|---|--|---| | NOV
06 | E.006 | .10 | .07 | .20 | 62 | 58 | 48 | 80 | 348 | 1.2 | <.04 | <.1 | <6 | | JAN
08 | E.004 | 1.16 | 1.15 | 1.33 | <1 | K2 | К5 | | | | | | | | FEB
04
04 | .020 | .24 | .20 | .35
.36 | K180 | 900 | K2260 | | | | | | | | MAR
06 | .011 | .08 | .08 | .28 | K2 | K7 | 48 | | | | | | | | APR
10 | E.005 | .25 | .23 | .35 | 59 | 64 | K18 | | | | | | | | MAY
07
JUN | .052 | . 29 | .25 | .72 | 31000 | K70000 | 78000 | 348 | 3430 | 1.5 | E.03 | E.1 | E3 | | JUL
JUL | .012 | . 29 | .27 | .39 | 43 | 49 | 42 | | | | | | | | 16
SEP | <.008 | E.05 | .04 | .21 | 160 | 400 | 220 | 3 | 1300 | 2.2 | <.04 | E.1 | <6 | | 05 | <.008 | .09 | .07 | .17 | K66 | 100 | 160 | | | | | | | | | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | NOV
0
JAN | 6 | 138 | .12 | 1 | 76.7 | <.01 | <.3 | 5 | 7 | | | | | | | 8 | | | | | | | | | | | | | | 0 | 4 | | | | | | | | | | | | | | MAR
0
APR | 6 | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | 7 | 338 | 1.05 | 7 | 23.1 | .02 | E.2 | 13 | 22 | | | | | | | 1 | | | | | | | | | | | | | | SEP | | E7 | <.08 | 3 | 74.0 | .01 | <.3 | 2 | 9 | | | | | | U | 5 | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. #### LAMINE RIVER BASIN 177 #### 06908000 BLACKWATER RIVER NEAR BLUE LICK, MO LOCATION.--Lat 38°59'32", long 93°11'48", in SW $\frac{1}{4}$ SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.26, T.49 N., R.21 W., Saline County, Hydrologic Unit 10300104, on left bank at upstream side of bridge on northbound lane of U.S. Highway 65, 1.2 mi downstream from Finney Creek, 1.8 mi southeast of Blue Lick, and at mile 30.3. DRAINAGE AREA.--1,120 mi². PERIOD OF RECORD.--June 1922 to September 1933, May 1938 to current year. Published as "at Blue Lick" for periods of record from 1922 to 2000. REVISED RECORDS. -- WSP 1006: 1929. WDR MO-84-1: 1982(M). GAGE.--Water-stage recorder. Datum of gage is 593.79 ft above National Geodetic Vertical Datum of 1929. Prior to July 25, 1925, nonrecording gage at site 75 ft downstream at datum 0.10 ft lower; July 25 to Sept. 30, 1933, and May 23, 1938 to Dec. 3, 1956, nonrecording gage at site 25 ft downstream at same datum; Dec. 4, 1956, to Oct. 1, 1986, at site 0.5 mi upstream at present datum. REMARKS.--Records good except for estimated daily discharges in December and January, which are fair, and those in March, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. Published as "Blackwater River at Blue Lick" for periods of record from 1922 to 2000. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | DIBCINK | on, cobic | . I DDI I DIK | DAILY | MEAN VA | LUES | . 2001 10 | ODI IDIIDDI | 2002 | | | |--|---|-------------------------------------|-------------------------------------|--|-------------------------------------|--------------------------------------|---|--|--------------------------------------|--|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 30
26
21
18
897 | 15
14
13
14
15 | 17
15
13
14
16 | 13
e12
11
e11
11 | 3280
1860
669
410
287 | 45
e45
e46
e48
e50 | 42
49
41
36
30 | 897
508
356
259
212 | 395
296
234
204
823 | 25
22
20
27
129 | 38
26
17
13
11 | 7.2
6.8
6.1
5.5
5.1 | | 6
7
8
9 | 1350
581
173
104
79 | 14
16
17
17
17 | 15
17
21
21
17 | 11
11
11
12
14 | 201
158
138
124
113 | 58
73
88
119
130 | 27
25
27
34
46 | 1900
9050
9500
12600
14500 | 1230
588
264
172
140 | 47
20
17
63
68 | 10
9.5
8.7
8.6
7.9 | 4.8
4.7
4.6
4.5
4.5 | | 11
12
13
14
15 | 114
147
124
84
100 | 18
21
18
17
17 | 17
19
30
51
72 | 15
18
21
22
22 | 103
91
81
76
72 | 107
93
81
72
66 | 66
64
54
83
90 | 18500
19300
18200
16000
13400 | 137
6340
5230
2810
1180 | 50
302
254
255
178 | 7.3
6.8
7.2
7.1
7.7 | 5.9
5.8
5.4
5.3
8.3 | | 16
17
18
19
20 | 654
612
250
124
87 | 17
19
18
19
20 | 62
53
44
38
33 | 22
23
22
24
25 | 68
64
61
61
82 | 60
56
51
50
50 | 70
58
50
58
167 | 10900
6520
3340
2410
1390 | 590
301
195
146
123 | 97
59
38
25
22 | 7.4
7.1
27
21
363 | 6.5
5.8
10
15 | | 21
22
23
24
25 | 67
54
44
37
28 | 24
31
28
25
22 | 29
26
24
e20
19 | 24
25
30
30
33 | 306
285
162
115
93 | 49
46
42
38
36 | 1990
3120
1340
452
252 | 744
498
372
335
2560 | 109
91
74
62
54 | 17
18
17
14
13 | 155
38
16
79
54 | 11
9.3
9.2
13
12 | | 26
27
28
29
30
31 | 22
20
21
20
16
15 | 20
21
21
20
20 | 17
16
15
14
e14
e13 | 33
30
26
23
89
2270 | 77
64
51

 | 36
39
41
40
40 | 168
2230
5580
4870
2620 | 5190
6200
4980
1830
951
579 | 48
43
37
33
28 | 11
10
52
82
55 | 32
19
13
11
9.0
7.8 | 10
8.7
7.6
7.4
6.5 | | MEAN
MAX
MIN
IN. | 191
1350
15
0.20 | 18.9
31
13
0.02 | 25.6
72
13
0.03 | 95.0
2270
11
0.10 | 327
3280
51
0.30 | 59.2
130
36
0.06 | 791
5580
25
0.79 | 5935
19300
212
6.11 | 733
6340
28
0.73 | 65.1
302
10
0.07 | 33.7
363
6.8
0.03 | 7.65
15
4.5
0.01 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | R PERIOD | OF RECORI | O, BY WAT | ER YEAR (| WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 563
9500
1987
0.13
1957 | 607
6100
1929
0.32
1957 | 458
3359
1983
1.66
1957 | 464
2326
1974
1.55
1957 | 762
5206
1985
5.54
1954 | 1038
4706
1973
9.50
1956 | 1455
8473
1973
29.6
1977 | 1317
8090
1995
9.93
1932 | 1291
6235
2001
18.4
1956 | 835
8855
1951
1.78
1933 | 298
1835
1998
1.61
1930 | 614
5979
1961
0.13
1956 | | SUMMARY | STATISTI | CS | FOF | 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YE | AR | FOR 1 | PERIOD OF | RECORD | | LOWEST ANGUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL ANNUAL 10 PERC. | MEAN ANNUAL ME DAILY ME DAILY ME DAILY MEA SEVEN-DAY PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS | | 1419
19300
9.5
10
17.20
5640
161
17 | Jun
Jan 1,
Jan | , 2 | 19300
4.5
4.8
19700
34.84
4.1
8.44
1040
38
9.8 | Sep 9,
Sep
May
May
Sep | 10
4
11
11 | 810
2540
95.8
48400
0.00
54000
41.53
0.00
9.83
2430
90 | Nov
Jul 17-
Jul
Nov
Oct | 17 1980
18 1928
3 1986 | e Estimated 178 MISSOURI RIVER MAIN STEM #### 06909000 MISSOURI RIVER AT BOONVILLE, MO LOCATION.--Lat 38°58'42", long 92°45'13", sec.35, T.49 N., R.17 W., Cooper County, Hydrologic Unit 10300102, on downstream side of second pier from right abutment of Missouri-Kansas-Texas Railroad Company Bridge at Boonville and at mile 196.6. DRAINAGE AREA.--500,700 mi^2 . The 3,959 mi^2 in Great Divide basin are not included. PERIOD OF RECORD.--October 1925 to current
year. Gage-height records collected at same site 1893-99 are in reports of the Missouri River Commission; since 1900 in reports of the National Weather Service. REVISED RECORDS.--WDR MO-76-1: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 565.42 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1928, nonrecording gage at site 0.4 mi downstream at datum 3.14 ft lower; Oct. 1, 1928, to May 9, 1931, nonrecording gage at site 50 ft upstream from present site at present datum; May 10, 1931, to Apr. 12, 1934, water-stage recorder at site 0.4 mi downstream at datum 3.14 ft lower. REMARKS.--Records fair except for period May 1 to Aug. 30 and estimated daily discharges, which are poor. Some regulation from many upstream reservoirs. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 21, 1844, reached a stage of 32.7 ft, discharge, about 710,000 ft³/s, computed by the U.S. Army Corps of Engineers. Flood of June 6, 1903, reached a stage of 30.5 ft, discharge, about 612,000 ft³/s, computed by the U.S. Army Corps of Engineers. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | , | | DAIL | Y MEAN V | ALUES | | | | | | |----------|-------------------|---|----------------|----------------|---------------------------|----------------|---|---|----------------|----------------|----------------|-----------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 53700 | 43700 | 44800 | 28700 | 49700 | 30800 | 38700 | 66500 | 62800 | 42600 | 36400 | 40600 | | 2 | 52300 | 43400 | 42800 | 28100 | 45000 | 30700 | 40000 | | 62300 | 40600 | 34800 | 39600 | | 3
4 | 52900
54000 | 42600
42200 | 41800
40500 | 27100
26300 | 37700
33600 | 30500
30200 | 39300
39000 | 52800
50100 | 60500
59300 | 40200
39600 | 33500
32800 | 39200
39200 | | 5 | e54500 | 42500 | 38400 | 26100 | 31600 | 29700 | 39000 | 47800 | 57300 | 39700 | 32200 | 38400 | | | 051500 | | 30100 | 20100 | | 25700 | 33000 | 1,000 | 37300 | 33700 | 32200 | | | 6 | 59800 | 42700 | 36500 | 25600 | 30200 | 28600 | 39800 | 52600 | 56300 | 40300 | 31700 | 37700 | | 7
8 | 57100
50500 | 42700
42800 | 35000
33300 | 25100
25200 | 28800
27800 | 27700
28700 | 40700
41200 | 116000
156000 | 56100
54800 | 39300
38500 | 31500
31200 | 37600
37700 | | 9 | 47000 | 42600 | 32400 | 25500 | 27600 | 28400 | 41000 | | 52600 | 38300 | 31300 | 37500 | | 10 | 45300 | 42500 | 32500 | 25800 | 27800 | 29300 | 41000 | 189000 | 51700 | 38200 | 31600 | 37100 | | | 44500 | 40000 | 22000 | 05400 | 00000 | 21.000 | 44000 | 150000 | 51500 | 20100 | 20000 | 25500 | | 11
12 | 44500
44200 | 42200
42000 | 33200
33200 | 26400
27200 | 28200
30100 | 31900
32800 | 44900
46200 | 170000
176000 | 51500
90200 | 38100
39000 | 32700
34100 | 36600
36600 | | 13 | 44100 | 42000 | 33500 | 28300 | 31000 | 32500 | 43800 | 206000 | 100000 | 40300 | 34000 | 36600 | | 14 | 44400 | 42000 | 33400 | 28500 | 31400 | 31500 | 45500 | 228000 | 91400 | 41900 | 33000 | 36400 | | 15 | e45000 | 42100 | 33300 | 28100 | 32000 | 30600 | 47400 | 222000 | 75000 | 39800 | 33200 | 36600 | | 16 | 47400 | 41900 | 33000 | 28500 | 32000 | 30200 | 45400 | 191000 | 70300 | 39000 | 33800 | 37000 | | 17 | 56100 | 41600 | 32200 | 29500 | 31800 | 30100 | 43400 | 151000 | 68800 | 38700 | 33400 | 37600 | | 18 | 59500 | 41400 | 31600 | 30300 | 31800 | 30500 | 41700 | 115000 | 61200 | 38100 | 37400 | 38100 | | 19 | 54000 | 41400 | 31300 | 31000 | 32000 | 33600 | 41100 | 90500 | 55600 | 36600 | 39500 | 38200 | | 20 | 49600 | 41200 | 31100 | 31300 | 32300 | 38200 | 41200 | 78600 | 53400 | 36100 | 38800 | 38500 | | 21 | 47800 | 41500 | 30800 | 30600 | 38000 | 37300 | 49100 | 72100 | 52200 | 35900 | e40300 | 38600 | | 22 | 46600 | 42200 | 30300 | 29500 | 45100 | 33900 | 75400 | 66200 | 50500 | 35600 | e39700 | 37100 | | 23 | 45900 | 42600 | 30100 | 29300 | 41400 | 31800 | 90200 | | 49300 | 35100 | e40700 | 35700 | | 24 | 45700 | 42600 | 30700 | 30000 | 37200 | 31400 | 67400 | 59000 | 48000 | 34500 | e43700 | 35800 | | 25 | 46500 | 42600 | 31600 | 30300 | 35300 | 31500 | 56300 | 67700 | 46800 | 33700 | e44300 | 36300 | | 26 | 47200 | 43100 | 31600 | 29800 | 33700 | 32600 | 51300 | 99600 | 46500 | 33100 | e45100 | 36100 | | 27 | 47000 | 43700 | 31200 | 29200 | 32400 | 35300 | 53400 | 101000 | 46200 | 33200 | e58000 | 35500 | | 28 | 45800 | 44800 | 30900 | 28900 | 31400 | 38300 | 80900 | 80600 | 45400 | 32900 | e52300 | 35400 | | 29 | 44900 | 46100 | 30800 | 28700 | | 40400 | 103000 | | 44900 | 33200 | e46900 | 35600 | | 30 | 44200 | 46400 | 30300 | 29100 | | 40500 | 83800 | | 44600 | 34800 | e44600 | 35900 | | 31 | 43600 | | 29400 | 36300 | | 38900 | | 64400 | | 36400 | 42300 | | | MEAN | 49070 | 42700 | 33600 | 28530 | 33820 | 32530 | 51700 | 110000 | 58850 | 37530 | 37900 | 37290 | | MAX | 59800 | 46400 | 44800 | 36300 | 49700 | 40500 | 103000 | 228000 | 100000 | 42600 | 58000 | 40600 | | MIN | 43600 | 41200 | 29400 | 25100 | 27600 | 27700 | 38700 | | 44600 | 32900 | 31200 | 35400 | | IN. | 0.11 | 0.09 | 0.08 | 0.07 | 0.07 | 0.07 | 0.12 | 0.25 | 0.13 | 0.09 | 0.09 | 0.08 | | STATIS | STICS OF N | MONTHLY ME | AN DATA I | FOR WATER | YEARS 195 | 8 - 2002 | a, BY WAT | TER YEAR (V | TY) | | | | | MEAN | 65810 | 61960 | 45270 | 36020 | 49610 | 71030 | 90920 | 93650 | 95120 | 84470 | 63960 | 66300 | | MAX | 187800 | 139100 | 106200 | 90150 | 106300 | 183900 | 212700 | | 201100 | 375200 | 213600 | 165900 | | (WY) | 1974 | 1999 | 1983 | 1973 | 1982 | 1973 | 1973 | | 1984 | 1993 | 1993 | 1993 | | MIN | 36280 | | 13840 | 14770 | 17620 | 19460 | 39060 | | 41990 | 37530 | 36570 | 36730 | | (WY) | 1965 | | 1964 | 1963 | 1964 | 1964 | 1989 | 1989 | 1988 | 2002 | 1991 | 1991 | | SUMMAF | RY STATIST | rics | FOR | 2001 CALI | ENDAR YEAR | | FOR 2002 | WATER YEAR | 2 | WATER Y | ZEARS 1958 | 3 - 2002 ^a | | ANNUAI | MEAN | | | 73440 | | | 46210 | | | 68710 |) | | | UTCUEC | ד א דודאדא א ידיב | MEAN | | | | | 10210 | | | 1/0500 | 1 | 1993 | | LOWEST | C ANNUAL N | MEAN | | | | | | | | 39070 |) | 1963 | | HIGHES | ST DAILY N | MEAN | | 294000 | Jun 8 | | 228000 | May 1 | 1 | 721000 |) Jul | 30 1993 | | LOWEST | DAILY ME | EAN | | 26300 | Jan 6,7 | | 25100 | Jan ' | 7 | 5000 |) Dec | 21 1963 | | ANNUAL | SEVEN-DA | AY MINIMUM | | 26600 | Jun 8
Jan 6,7
Jan 5 | | 228000
25100
25700
233000
26.74 | Jan 4 | 1 | 5730 | Dec | 19 1963 | | MAXIMU | IM PEAK FI | LOW
PACE | | | | | 26.74 | May 1 | ±
1 | 755000 |) Jul | 29 1993 | | TNSTAN | TANEOUS I | OM ELOM | | | | | 25000 | May 1.
Jan .
Jan .
May 1.
May 1.
Jan . | 7 | 57.10 |) Jan 22 | 24 1963 | | ANNUAL | RUNOFF | (INCHES) | | 1.99 | | | 1.25 | 0011 | | 1.86 |) Jan 22, | | | 10 PEF | CENT EXC | EEDS | | 131000 | | | 63400 | | | 124000 | | | | 50 PEF | RCENT EXC | LOW FAGE LOW FLOW (INCHES) EEDS EEDS EEDS | | 57100 | | | 39300 | | | 55100 | | | | 90 PEF | RCENT EXC | EEDS | | 31600 | | | 29900 | | | 29400 |) | | | | | | | | | | | | | | | | e Estimated a Post-regulation period. #### MOREAU RIVER BASIN 179 #### 06910750 MOREAU RIVER NEAR JEFFERSON CITY, MO LOCATION.--Lat 38°31'44", long 92°11'31", SE $\frac{1}{4}$ NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.25, T.44 N., R.11 W., Cole County, Hydrologic Unit 10300102, near right bank on downstream side of right pier of bridge on Tanner Bridge Road, 3 mi south of Jefferson City, 15.8 mi downstream from confluence of North and South Moreau Creeks, and at mile 17. DRAINAGE AREA.--561 mi². PERIOD OF RECORD.--December 1947 to September 1974, November 13, 2000 to current year. Published as Moureau River near Jefferson City (06910500), 1948 to 1974. Discharge measurements only October 1956 to September 1957. GAGE.--Water-stage recorder. Datum of gage is 546.33 ft above National Geodetic Vertical Datum of 1929. Prior to Aug. 17, 1958, nonrecording gage, and Aug. 17, 1958, to May 21, 1969, water-stage recorder at site 10 mi upstream and at datum 16.4 ft higher, drainage area 531 mi². REMARKS.--Records good. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1905 reached a stage of 38.2 ft, flood of 1929 reached a stage of 32.91 ft, and flood of 1943 reached a stage of 35.1 ft, present site, from information and floodmarks by local residents | | | DISCHARG | E, CUBIC | FEET PER | SECOND, W | | | ER 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|-------------------------------------|-------------------------------------|-------------------------------------|--|---|--|-------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 22
20
20
18
45 | 55
135
151
134
108 | 73
72
76
80
77 | 65
61
57
54
51 | 8100
1230
652
471
361 | 87
134
319
352
283 | 320
255
285
227
192 | 373
291
238
199
170 | 234
185
153
129
254 | 38
33
32
181
154 | 18
16
16
14
13 | 26
22
18
16
12 | |
6
7
8
9
10 | 52
74
107
103
3600 | 103
87
75
67
60 | 71
67
63
59
57 | 52
53
54
56
58 | 298
262
236
213
193 | 434
615
407
319
286 | 164
148
197
534
379 | 154
1410
9310
17200
16600 | 264
186
148
116
103 | 94
64
47
37
134 | 13
12
11
10
9.3 | 11
11
9.1
7.9
7.2 | | 11
12
13
14
15 | 6230
972
811
474
327 | e57
e53
51
49
47 | 55
94
192
229
198 | 58
60
61
60
58 | 176
164
152
140
131 | 254
230
204
186
169 | 272
212
177
158
145 | 2300
1010
9230
5640
924 | 93
1230
4840
1850
487 | 58
2870
1520
396
219 | 10
13
17
27
23 | 6.4
6.2
5.8
6.4
8.3 | | 16
17
18
19
20 | 321
514
315
210
158 | 45
43
44
50
58 | 289
628
549
372
260 | 55
53
51
51
50 | 123
118
111
110
154 | 157
146
135
139
173 | 134
121
111
105
1160 | e732
820
6030
1280
656 | 304
212
157
121
98 | 136
93
72
59
50 | 18
15
147
57
572 | 7.3
8.7
9.4
8.5 | | 21
22
23
24
25 | 125
103
88
227
241 | 118
119
91
80
71 | 198
162
141
127
115 | 50
50
51
55
54 | 177
151
144
129
118 | 194
164
148
134
156 | 2740
2250
723
431
305 | 459
360
299
1300
2890 | 83
71
63
56
50 | 44
39
37
34
32 | 92
40
34
58
221 | 11
13
12
14
16 | | 26
27
28
29
30
31 | 136
98
82
72
64
58 | 90
139
106
86
79 | 102
93
88
83
77
72 | 55
55
54
53
166
6450 | 107
98
91
 | 270
408
317
362
809
526 | 235
632
5250
1180
530 | 840
503
354
330
425
309 | 46
42
51
63
46 | 30
29
26
22
20
20 | 159
89
61
46
37
31 | 14
11
11
8.3
7.5 | | MEAN
MAX
MIN
IN. | 506
6230
18
1.04 | 81.7
151
43
0.16
NTHLY MEAN | 156
628
55
0.32 | 265
6450
50
0.54 | 515
8100
91
0.96 | 275
809
87
0.56 | 652
5250
105
1.30 | 2666
17200
154
5.48 | 391
4840
42
0.78 | 214
2870
20
0.44 | 61.3
572
9.3
0.13 | 11.2
26
5.8
0.02 | | MEAN
MAX
(WY)
MIN
(WY) | 322
2076
1970
0.81
1954 | 218
1298
1973
1.03
1954 | 212
1040
1969
4.29
1954 | 351
1591
1949
5.57
1964 | 457
1866
1951
7.75
1954 | 626
3169
1973
11.9
1954 | 564
2256
1973
9.36
1956 | 612
2815
1970
29.7
1965 | 637
2548
1948
13.2
1952 | 320
2237
1951
4.41
1959 | 113
534
1950
1.78
1953 | 270
2987
1965
1.35
1960 | | SUMMARY | STATISTIC | CS | FOR 2 | 001 CALEN | DAR YEAR | : | FOR 2002 V | WATER YEAR | | FOR F | ERIOD OF | RECORD | | LOWEST ANIGHEST LOWEST ANNUAL SMAXIMUM MAXIMUM INSTANTANTANTANIGHT ANNUAL SO PERCE | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK STAG ANNEOUS LOI RUNOFF (II ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 486 14100 7.1 9.3 11.78 667 98 20 | Feb 25
Aug 22
Aug 18 | | 17200
5.8
6.8
19100
26.13
5.4
11.73
654
107 | May 9
Sep 13
Sep 10
May 9
May 9
Sep 13,14 | | 384
881
50.4
20800
0.10
0.21
24400
28.60
0.10
9.32
671
68
6.2 | Jun
Sep
Sep
Oct
Oct
Sep | 1973
1954
23 1948
30 1956
24 1956
14 1969
14 1969
30 1956 | e Estimated # 06916675 MIAMI CREEK NEAR BUTLER, MO LOCATION.--Lat 38°12'41", long 94°22'40", in NW $\frac{1}{4}$ SW $\frac{1}{4}$ SEC.6, T.39 N., R.31 W., Bates County, Hydrologic Unit 10290102, on right downstream pier on county road bridge, 2.25 mi southwest of junction of Highways 71 and 52. DRAINAGE AREA.--137 mi². PERIOD OF RECORD.--October 2001 to current year. SUMMARY STATISTICS 90 PERCENT EXCEEDS GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records fair except for discharges below 5 $\mathrm{ft}^3/\mathrm{s},$ which are poor. | | | DISCHAF | RGE, CUBI | C FEET PE | | WATER YE
Y MEAN V | EAR OCTOBER
ALUES | R 2001 TO | SEPTEMBE: | R 2002 | | | |----------------------------------|---------------------------------|-----------------------------------|---|---------------------------------------|-------------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|---|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.0
3.2
2.9
89
1580 | 1.9
1.9
1.9
1.6 | 0.93
0.84
0.75
0.82
0.89 | 0.74
0.68
0.61
0.54
0.50 | 385
126
70
51
36 | 8.4
9.5
11
11
11 | 3.8
3.9
3.7
3.2
3.0 | 56
44
34
27
20 | 35
28
24
20
29 | 1.0
0.69
0.53
0.40
0.39 | 1.4
0.93
0.76
0.62
0.52 | 0.02
0.02
0.02
0.05
0.11 | | 6
7
8
9
10 | 626
66
32
18
16 | 1.9
2.8
2.5
2.1 | 0.86
1.2
1.8
1.6 | 0.76
0.94
0.93
1.1 | 26
22
20
18
15 | 13
23
36
28
21 | 2.7
2.7
2.7
3.2
4.3 | 15
240
1680
2140
1420 | 32
22
19
17
18 | 0.29
0.13
0.09
0.06
0.07 | 0.49
0.24
0.04
0.02
0.02 | 0.04
0.02
0.02
0.03
0.02 | | 11
12
13
14
15 | 16
9.9
6.4
3.0
8.5 | 2.1
2.2
2.2
2.4
2.2 | 1.0
3.0
4.0
4.6
4.5 | 1.3
1.6
1.8
1.9 | 13
12
11
9.7
8.9 | 18
15
13
12 | 4.0
36
134
52
29 | 203
138
682
313
106 | 18
32
105
52
26 | 0.19
0.73
1.3
1.3
0.66 | 0.02
0.05
0.10
0.10
0.08 | 0.02
0.02
0.02
0.10
1.7 | | 16
17
18
19
20 | 103
61
22
11
7.1 | 2.0
1.5
4.2
5.2
2.8 | 3.8
4.2
3.7
3.3
3.1 | 1.7
1.7
1.5
1.6 | 8.1
7.7
7.4
12
26 | 9.6
8.8
8.2
7.3
6.4 | 19
14
11
9.4
9.5 | 75
100
138
71
44 | 18
14
11
9.5
8.2 | 0.35
0.16
0.08
0.08
0.09 | 0.19
0.42
1.1
1.4
1.3 | 2.7
1.1
0.48
1.1
1.9 | | 21
22
23
24
25 | 4.7
3.4
2.2
2.1
1.9 | 1.2
1.5
1.3
1.5 | 3.3
3.0
2.4
1.8
1.6 | 1.8
1.8
2.0
1.8
2.3 | 57
41
24
18
15 | 5.7
5.7
6.2
5.7 | 106
289
82
36
23 | 34
28
23
435
1820 | 6.7
5.7
4.3
3.3
2.6 | 0.08
0.08
0.13
0.51
0.58 | 1.2
0.94
0.75
0.56
0.59 | 2.0
2.0
1.7
1.4
1.2 | | 26
27
28
29
30
31 | 1.4
1.3
1.4
1.5
2.0 | 2.0
1.6
1.2
0.96
0.98 | 1.5
1.4
1.5
1.4
1.1
0.92 | 1.9
1.7
1.5
1.4
25
458 | 11
8.9
8.7
 | 5.4
5.2
5.2
5.4
5.4 | 17
261
1320
211
85 | 1320
195
185
93
61
46 | 2.2
1.5
1.9
2.9
1.7 | 0.51
0.38
0.31
1.7
2.8
2.1 | 0.42
0.42
0.37
0.31
0.15
0.02 | 0.81
0.55
0.75
0.77
0.63 | | MEAN
MAX
MIN | 87.3
1580
1.3 | 2.01
5.2
0.96 | 2.13
4.6
0.75 | 16.9
458
0.50 | 38.2
385
7.4 | 11.0
36
4.6 | 92.7
1320
2.7 | 380
2140
15 | 19.0
105
1.5 | 0.57
2.8
0.06 | 0.50
1.4
0.02 | 0.71
2.7
0.02 | FOR 2002 WATER YEAR 0.19 | ANNUAL MEAN | 54.7 | | |--------------------------|-------|---------------| | HIGHEST DAILY MEAN | 2140 | May 9 | | LOWEST DAILY MEAN | 0.02 | Several Days | | ANNUAL SEVEN-DAY MINIMUM | 0.02 | Sep 7 | | MAXIMUM PEAK FLOW | 2180 | May 9 | | MAXIMUM PEAK STAGE | 19.38 | May 9 | | INSTANTANEOUS LOW FLOW | 0.01 | Aug 31-Sep 4, | | | | Sep 7-9,13,14 | | 10 PERCENT EXCEEDS | 68 | | | 50 DEPCENT EXCEEDS | 2 7 | | # 06917060 LITTLE OSAGE RIVER AT HORTON, MO LOCATION.--Lat $37^{\circ}59^{\circ}38^{\circ}$, long $94^{\circ}22^{\circ}07^{\circ}$, in SW $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 17, T.37 N., R.31 W., Vernon County, Hydrologic Unit 10290103, on left bank at the upstream side of the southbound bridge of U.S. Highway 71, 4 mi above Marmaton River, and 1 mi north of Horton. DRAINAGE AREA. -- 498 mi². PERIOD OF RECORD.--October 2000 to current year. Nov. 18, 1988 to Sept. 30, 2000, stage only. GAGE.--Water-stage recorder. Datum of gage is 700.00 ft above sea level. REMARKS.--Records poor. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of October 1986 reached a stage of 59.4 ft (by U.S. Army Corps of Engineers). | | | DISCHAR | GE, CUBIC | FEET PER | | WATER Y | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|--|--|--|---|-------------------------------------|------------------------------------|--|--|--------------------------------------|---|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN |
FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.7
3.3
3.2
4.5
24 | 4.1
3.8
13
9.3
7.2 | 9.7
8.7
7.9
7.3
6.5 | 5.2
4.7
4.4
4.0
3.9 | 989
e461
e278
e184
e149 | 36
37
36
37
41 | 18
16
14
13
11 | e482
259
199
161
134 | 617
305
201
164
e141 | 60
40
30
25
23 | 0.80
1.8
1.9
0.60
0.02 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 124
209
133
89
211 | 5.4
4.5
4.2
4.5
4.6 | 6.3
6.2
5.8
5.4
5.0 | 4.2
4.3
4.2
4.2
4.5 | e113
e94
e79
e65
e56 | 44
52
61
71
67 | 10
9.7
9.8
10 | e239
e511
e2100
e4500
6150 | 130
142
155
148
601 | 19
17
16
11 | 0.01
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 215
157
90
47
31 | 4.2
3.8
3.7
3.5
3.2 | 4.9
5.9
8.3
9.8 | 5.0
5.4
5.6
5.7
5.7 | e50
e46
e42
e38
e35 | 62
65
66
63
61 | 11
11
11
21
27 | e2400
e1250
2930
e1440
e950 | 442
711
e1380
2280
e1350 | 23
28
64
26
13 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 33
60
90
60
34 | 3.0
2.8
3.4
4.5
4.4 | 14
17
18
17
16 | 5.8
5.8
5.8
6.2 | e31
e28
26
25
29 | 56
52
48
45
42 | 26
21
18
16
18 | e1310
1740
e1110
e725
e511 | e726
328
215
172
143 | 8.6
6.2
5.0
9.1
9.0 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 20
13
11
9.4
8.2 | 4.3
4.6
6.4
6.8
6.4 | 14
13
11
9.8
9.0 | 6.3
6.4
6.8
7.2
7.6 | 40
65
74
58
50 | 40
38
35
32
30 | 449
707
362
223
163 | e364
295
215
e436
e944 | 121
103
88
76
64 | 5.3
3.1
3.0
2.2
0.60 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 7.2
6.4
6.0
5.6
5.1
4.6 | 6.1
5.1
4.5
5.4
10 | 8.1
7.4
6.8
6.5
6.4
5.7 | 8.1
8.4
7.8
7.3
42
e417 | 46
42
38
 | 28
26
24
23
21
19 | 128
514
e1780
2140
e861 | e2690
4500
e3210
e2240
e2380
1050 | 55
47
40
76
91 | 0.69
0.20
0.02
0.01
0.04
1.0 | 0.00
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN | 55.4
215
3.2 | 5.22
13
2.8 | 9.30
18
4.9 | 20.2
417
3.9 | 115
989
25 | 43.8
71
19 | 254
2140
9.7 | 1530
6150
134 | 370
2280
40 | 14.8
64
0.01 | 0.16
1.9
0.00 | 0.00
0.00
0.00 | | STATIST | rics of Mc | NTHLY MEA | N DATA FO | R WATER Y | EARS 2001 | - 2002 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 38.4
55.4
2002
21.3
2001 | 8.57
11.9
2001
5.22
2002 | 6.91
9.30
2002
4.52
2001 | 50.6
80.9
2001
20.2
2002 | 338
561
2001
115
2002 | 316
588
2001
43.8
2002 | 352
450
2001
254
2002 | 852
1530
2002
174
2001 | 592
812
2001
370
2002 | 60.3
106
2001
14.8
2002 | 9.20
18.2
2001
0.17
2002 | 2.82
5.64
2001
0.00
2002 | | SUMMARY | STATISTI | CS | FOF | 2001 CAL | ENDAR YEA | AR. | FOR 2002 | WATER YEA | AR. | WATER YE | ARS 2001 - | 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
10 PERC
50 PERC | MEAN T ANNUAL ME ANNUAL ME T DAILY MEA SEVEN-DAY M PEAK FLC APEAK STA TANEOUS LC TENT EXCEE TENT EXCEE | CAN CAN IN MINIMUM OGE OW FLOW CDS CDS | | 4330
0.62
1.6

622
40
3.6 | Jun
Aug 2
Aug 1 | 23 | 203
6150
0.00
0.00
Unknown
44.92
0.00
454
11 | May 1
Many Day
At Time
May 1
May 1
Many Day | es
.1
.1 | 0.00
Unknown
44.92 | May 10
Many Days
At Times
May 11
May 11
Many Days | 2002
2002
2002
2002 | e Estimated # 06917680 DRY WOOD CREEK NEAR DEERFIELD, MO LOCATION.--Lat 37°47'52", long 94°30'54", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.24, T.35 N., R.33 W., Vernon County, Hydrologic Unit 10290104, on left downstream pier on State Highway KK bridge, 7.2 mi southwest of Nevada. DRAINAGE AREA.--358 mi². PERIOD OF RECORD.--October 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.- | SReco | ords good. | U.S.G.S. | satellit | e telemet | er at stat | tion. | | | | | | | |----------------------------------|--|-----------------------------|----------------------------------|------------------------------------|----------------------------------|----------------------------------|-----------------------------------|---|------------------------------------|--|---------------------------------|---------------------------------| | | | DISCHAF | RGE, CUBI | IC FEET PEI | | WATER YEA
Y MEAN VAI | | R 2001 TO | SEPTEMBE | R 2002 | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.1
4.1
3.9
3.9
9.5 | 7.5
57
89
81
44 | 11
10
9.6
9.2
8.8 | 11
9.7
8.7
8.2
8.2 | 2300
521
232
167
127 | 26
30
38
56
59 | 27
26
24
23
20 | 197
150
114
92
76 | 176
139
113
96
83 | 33
25
22
20
20 | 8.2
8.0
7.0
6.2
5.4 | 2.1
2.0
2.2
2.8
5.0 | | 6
7
8
9
10 | 121
86
38
26
1020 | 29
22
18
15
15 | 8.4
8.1
7.8
7.6
7.4 | 8.5
9.1
9.6
10 | 108
98
92
82
74 | 82
142
117
96
83 | 19
19
20
22
26 | 66
1020
7830
10400
7790 | 81
77
67
84
1190 | 19
18
16
15
14 | 4.8
4.4
4.0
3.7
3.9 | 8.8
12
6.7
4.7
3.7 | | 11
12
13
14
15 | 531
94
50
34
25 | 16
14
13
12
11 | 7.2
7.0
7.2
28
53 | 11
12
13
14
12 | 64
56
51
47
44 | 76
65
59
54
51 | 29
35
32
28
26 | 4860
2310
3580
2130
605 | 329
2110
2280
1080
352 | 13
22
19
16
14 | 4.3
3.8
3.6
3.4
3.4 | 3.1
3.0
2.9
3.7
7.0 | | 16
17
18
19
20 | 20
18
16
15 | 11
12
13
14
23 | 49
40
45
50
38 | 11
11
10
10 | 42
39
44
46
51 | 45
40
37
37
39 | 24
23
21
22
62 | 373
1770
3620
1290
468 | 172
132
106
90
74 | 12
11
10
9.9 | 3.4
4.6
5.2
4.7
4.2 | 27
19
11
9.7
9.6 | | 21
22
23
24
25 | 13
12
10
9.6
7.9 | 26
23
19
17
15 | 29
24
21
19
16 | 11
12
13
14
16 | 59
56
46
40
36 | 43
42
36
33
33 | 469
251
119
83
62 | 313
235
186
1640
4670 | 61
52
44
39
34 | 12
11
9.3
8.4
8.2 | 4.5
4.4
3.9
3.1
2.9 | 19
14
9.6
7.1
5.7 | | 26
27
28
29
30
31 | 7.3
7.4
8.5
8.9
8.3
7.7 | 15
14
14
13
12 | 14
13
13
12
12
12 | 17
17
16
14
25
2280 | 33
29
27
 | 33
34
32
31
30
29 | 51
1290
4090
2040
412 | 3560
1760
1570
577
316
228 | 31
29
26
53
50 | 8.1
7.3
6.3
6.9
6.9
9.0 | 2.9
2.7
2.3
2.2
2.2 | 4.6
4.1
3.5
3.0
2.8 | | MEAN
MAX
MIN | 72.1
1020
3.9 | 22.8
89
7.5 | 19.3
53
7.0 | 85.2
2280
8.2 | 165
2300
27 | 51.9
142
26 | 313
4090
19 | 2058
10400
66 | 308
2280
26 | 14.0
33
6.3 | 4.18
8.2
2.2 | 7.31
27
2.0 | | SUMMARY STATISTICS | FOR 2002 W | ATER YEAR | |--|---|---| | ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 262
10400
2.0
2.2
11100
22.56
1.9
321
20
4.4 | May 9
Sep 2
Aug 28
May 9
May 9
Sep 2 | | 90 PERCENT EXCEEDS | 4.4 | | # 06918065 MARMATON RIVER BELOW NEVADA, MO LOCATION.--Lat $37^{\circ}55^{\circ}07^{\circ}$, long $94^{\circ}21^{\circ}39^{\circ}$, in NE $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.8, T.36 N., R.31 W., Vernon County, Hydrologic Unit 10290104, on right bank at the upstream side of the southbound bridge of U.S. Highway 71, 21 mi above Osage River, and 4.2 mi north of Nevada. DRAINAGE AREA. -- 1,090 mi². PERIOD OF RECORD.--October 2000 to current year. Nov. 17, 1988, to Sept. 30, 2000, stage only station. GAGE.--Water-stage recorder. Datum of gage is 700.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records poor. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of October 1986 reached a stage of 62.2 ft (by U.S. Army Corps of Engineers). | | | DISCHARG | E, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TC | SEPTEMBER | R 2002 | | | |--
---|---|--------------------------------------|---|-------------------------------------|------------------------------------|---|--|--------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 14
14
14
14
28 | 19
43
136
109
93 | 16
15
14
13
13 | 16
15
15
13 | 3960
2950
1300
676
461 | 72
79
84
97
124 | 87
69
58
54
51 | 2170
941
632
479
350 | e1200
842
468
332
270 | 100
76
65
58
61 | e18
e16
e14
e13
e12 | 8.9
9.2
9.5
6.9
5.4 | | 6
7
8
9
10 | 46
159
129
64
1080 | 73
58
45
35
29 | 13
13
27
37
29 | e13
e14
e16
e17
e18 | 364
277
238
213
191 | 155
227
325
276
239 | 42
40
42
44
41 | 265
1100
6660
15500
21800 | 266
275
238
232
1110 | 53
50
48
46
46 | e12
e14
14
12
11 | 4.0
4.4
11
18
14 | | 11
12
13
14
15 | 2240
887
256
131
89 | 25
23
22
20
18 | 23
22
28
28
37 | e20
e20
e19
e18
e17 | 168
145
121
107
97 | 211
188
165
153
142 | 44
51
54
52
50 | e12000
e5000
e8000
e5000
e2600 | 1580
2460
5000
5100
4020 | e54
e71
e94
e75
e50 | 12
11
11
13
11 | 12
9.9
8.1
9.0
15 | | 16
17
18
19
20 | 68
52
43
36
31 | 17
16
17
22
22 | 60
62
56
57
63 | e17
e16
e16
e15
e14 | 89
83
77
81
91 | 131
111
101
95
95 | 52
51
45
48
66 | e2000
e2800
e4500
e3000
e1800 | 2310
954
526
376
287 | e49
e48
e44
e46
e43 | 11
11
13
12 | 14
19
33
29
25 | | 21
22
23
24
25 | 28
26
25
22
19 | 23
30
28
26
23 | 56
46
38
32
29 | e15
e16
e18
e20
e24 | 98
110
122
122
106 | 91
92
92
85
78 | 302
1020
730
420
279 | e1000
e750
e600
2220
5320 | 228
187
156
131
108 | e40
e36
e32
e28
e26 | 12
13
13
13
13 | 24
27
28
22
17 | | 26
27
28
29
30
31 | 17
16
15
16
15 | 21
19
17
17
16 | 25
22
21
19
17
16 | e24
e22
e20
e18
30
1500 | 96
81
75
 | 75
73
74
72
87
103 | 209
1450
5040
5380
4400 | 5800
6160
e5200
e4200
e2800
e2000 | 95
84
79
95
118 | e24
e22
e20
e18
e22
e20 | 12
11
11
8.4
7.7
8.3 | 15
12
11
9.5
9.2 | | MEAN
MAX
MIN | 181
2240
14 | 35.4
136
16 | 30.6
63
13 | 65.5
1500
13 | 446
3960
75 | 129
325
72 | 676
5380
40 | 4279
21800
265 | 971
5100
79 | 47.3
100
18 | 12.1
18
7.7 | 14.7
33
4.0 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FO | R WATER Y | EARS 200 | 1 - 2002, | BY WATER | YEAR (WY | ") | | | | | MEAN
MAX
(WY)
MIN
(WY) | 119
181
2002
57.3
2001 | 43.9
52.5
2001
35.4
2002 | 28.8
30.5
2002
27.1
2001 | 193
321
2001
65.5
2002 | 1219
1992
2001
446
2002 | 643
1157
2001
129
2002 | 603
676
2002
530
2001 | 2299
4279
2002
319
2001 | 1288
1604
2001
971
2002 | 167
287
2001
47.3
2002 | 25.3
38.5
2001
12.1
2002 | 17.9
21.1
2001
14.7
2002 | | SUMMARY | STATISTI | CS | FOR | 2001 CALE | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 2001 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY PEAK STA 'ANNEOUS LOO' ENT EXCEE ENT EXCEE | AN
AN
N
MINIMUM
W
GE
W FLOW
DS | | 531
5070
13
14

1950
59
18 | Feb Dec 4 | -7 | 577
21800
4.0
6.9
22400
52.57
4.0
1360
46 | May
Sep
Sep
May
May
Sep | 6
1
10
10 | 549
577
522
21800
4.0
6.9
22400
52.57
0.00
1790
48
15 | Sep
Sep
May 1
May 1 | 2002
2001
10 2002
6 2002
1 2002
10 2002
10 2002
10 2000 | e Estimated #### 06918070 OSAGE RIVER ABOVE SCHELL CITY, MO LOCATION.--Lat 38°03'20", long 94°08'44", in SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.20, T.38 N., R.29 W., Bates County, Hydrologic Unit 10290105, on downstream side of left pier of bridge on State Highway M, 0.8 mi downstream from Shaw Branch, 0.2 mi upstream from McKenzie Creek, and 3.0 mi northwest of Schell City. DRAINAGE AREA.--5,410 mi², by U.S. Army Corps of Engineers. WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1981 to current year. GAGE.--Water-stage recorder and slope gage 1.7 mi downstream. Datum of gage is 700.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records poor. Discharge is calculated using fall computations due to backwater from Harry S. Truman Reservoir. U.S. Army Corps of Engineers satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 EXTREMES FOR PERIOD OF RECORD.--Maximum daily discharge, $133,000 \text{ ft}^3/\text{s}$, Oct. 5, 1986. | | | 2100111 | 102, 0021 | 0 1 2 2 1 2 2 | DAILY | MEAN VA | LUES | 2001 10 | , 521 121 1221 | . 2002 | | | |----------------------------------|--|--------------------------------------|--|---|-----------------------|--|--|--|----------------------------------|--|--|-----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 622 | 177 | e900 | 337 | 4760 | 498 | 201 | 7670 | 11200 | 617 | 165 | 128 | | 2 | 572 | 192 | e1000 | 346 | 5060 | 482 | 205 | 3730 | 7600 | 546 | 171 | 119 | | 3 | 564 | 199 | e1050 | 332 | 3220 | 498 | 182 | 2260 | 5870 | 499 | 162 | e115 | | 4 | 545 | 225 | 1000 | 317 | 1830 | 509 | 165 | 1720 | 3820 | 496 | 156 | e110 | | 5 | 2210 | 238 | 975 | 314 | 1320 | 514 | 156 | 1340 | 3680 | 521 | 156 | e105 | | 6 | 3290 | 222 | 987 | 316 | 1080 | 549 | 149 | 1060 | 4850 | 478 | 164 | e95 | | 7 | 1950 | 208 | 999 | 310 | 928 | 547 | 148 | 2380 | 5260 | 467 | 166 | 89 | | 8 | 1090 | 208 | 916 | 302 | 810 | 599 | 144 | 12000 | 5480 | 446 | 164 | 87 | | 9 | 691 | 192 | 853 | 291 | 709 | 641 | 156 | 17800 | 5570 | 437 | 164 | 86 | | 10 | 1740 | 187 | 721 | 248 | 612 | 620 | 157 | 23200 | 6350 | 415 | 168 | 78 | | 11 | 2260 | 192 | 539 | 233 | 549 | 612 | 170 | 31900 | 7720 | 391 | 163 | 88 | | 12 | 2040 | 193 | 522 | 267 | 500 | 591 | 214 | 34300 | 8130 | 397 | 166 | 86 | | 13 | 1030 | 187 | 505 | 467 | 476 | 560 | 303 | 34900 | 11400 | 655 | 173 | 87 | | 14 | 673 | 187 | 425 | 486 | 456 | 710 | 387 | 35500 | 13400 | 588 | 170 | 92 | | 15 | 638 | 186 | 381 | 488 | 427 | 533 | 756 | 32400 | 13800 | 750 | 165 | 97 | | 16 | 585 | 189 | 356 | 473 | 422 | 507 | 820 | 23400 | 10300 | 770 | 184 | 99 | | 17 | 572 | 193 | 365 | 489 | 411 | 479 | 555 | 15700 | 5780 | 704 | 178 | 106 | | 18 | 507 | 198 | 392 | 478 | 392 | 455 | 431 | 12200 | 3770 | 624 | 171 | 102 | | 19 | 545 | 206 | 396 | 461 | 399 | 426 | 341 | 10800 | 2990 | 518 | 172 | 113 | | 20 | 491 | 205 | 378 | 385 | 432 | 405 | 368 | 9660 | 2710 | 413 | 193 | 116 | | 21 | 453 | 206 | 373 | 341 | 546 | 375 | 1490 | 6960 | 2480 | 291 | 177 | 119 | | 22 | 425 | 211 | 349 | 340 | 779 | 335 | 2430 | 5670 | 1990 | 236 | 159 | 123 | | 23 | 374 | 227 | 360 | 329 | 847 | 312 | 3530 | 4500 | 1760 | 231 | 146 | 115 | | 24 | 321 | e215 | 364 | 349 | 882 | 322 | 4440 | 8200 | 1500 | 229 | 127 | 118 | | 25 | 271 | e205 | 371 | 350 | 807 | 328 | 2620 | 17800 | 1220 | 213 | 129 | 112 | | 26
27
28
29
30
31 | 242
199
196
195
185
183 | e195
e190
e185
e185
e400 | 372
356
349
358
358
344 | 313
248
225
221
270
2160 | 687
606
533
 | 291
255
231
222
210
208 | 1490
2970
9380
11000
11000 | 23600
28000
31100
32200
29000
19600 | 1090
939
737
532
647 | 197
170
167
169
170
158 | 129
128
128
130
129
128 | 105
97
97
95
93 | | MEAN | 828 | 207 | 568 | 403 | 1089 | 446 | 1879 | 16790 | 5086 | 418 | 158 | 102 | | MAX | 3290 | 400 | 1050 | 2160 | 5060 | 710 | 11000 | 35500 | 13800 | 770 | 193 | 128 | | MIN | 183 | 177 | 344 | 221 | 392 | 208 | 144 | 1060 | 532 | 158 | 127 | 78 | e Estimated # 06918070 OSAGE RIVER ABOVE SCHELL CITY, MO--Continued (Ambient Water-Quality Monitoring Network) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--March 1979 to September 1993, November 1994 to current year. Formerly published as Osage River near Schell City (06918080). PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: March 1979 to September 1981. WATER TEMPERATURE: March 1979 to September 1981. SUSPENDED-SEDIMENT: February 1991 to September 1999. EXTREMES FOR PERIOD OF DAILY RECORD.-SPECIFIC
CONDUCTANCE: Maximum daily, 1,950 microsiemens per centimeter, Oct. 11, 1980; minimum daily, 114 microsiemens per centimeter, June 12, 1981. Centimeter, June 12, 1981. WATER TEMPERATURE: Maximum daily, 32.0 °C, July 11, 1980; minimum daily, 0.0 °C, Feb. 5, 1980, and Feb. 11-14, 1981. SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean, 4,020 mg/L, Feb. 21, 1997; minimum daily mean, 8 mg/L, Aug. 4 and 5, 1002, and Ten. 10.12, 1005. 1993, and Jan. 10-12, 1995. SUSPENDED-SEDIMENT LOAD: Maximum daily, 160,000 tons, Feb. 21, 1997; minimum daily, 1.7 tons, Nov. 7-13, 1991. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV 28 | 1310 | ENVIRONM | ENTAL | 185 | 8.6 | 73 | 8.0 | 521 | 7.6 | 210 | 62.7 | 14.1 | 5.00 | | MAR
11 | 1345 | ENVIRONM | ENTAL | 612 | 11.3 | 97 | 8.3 | 606 | 7.7 | | | | | | APR
15 | 1610 | ENVIRONM | ENTAL | 949 | 9.9 | 113 | 8.1 | 522 | 20.0 | | | | | | MAY
22 | 1430 | ENVIRONM | | 6400 | 6.5 | 72 | 7.9 | 370 | 18.7 | 170 | 54.5 | 7.51 | 3.55 | | JUN | | | | | | | | | | | | | | | 17
JUL | 1245 | ENVIRONM | | 5600 | 4.7 | 58 | 7.4 | 300 | 24.0 | | | | | | 24 | 1320 | ENVIRONM | ENTAL | 229 | 1.6 | 22 | 8.0 | 446 | 31.4 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
28 | 24.7 | 151 | 151 | 184 | 0 | 19.1 | .3 | 91.2 | 24 | 332 | <.04 | .75 | <.05 | | MAR
11 | | 126 | 125 | 143 | 5 | | | | 50 | | <.04 | .73 | .09 | | APR
15 | | 176 | 178 | 217 | 0 | | | | 183 | | <.04 | 1.1 | .09 | | MAY | 9.32 | 124 | 124 | 152 | 0 | 5.97 | .2 | 22.6 | 49 | 194 | | .86 | | | 22
JUN | | | | | | 5.97 | | 33.6 | | | E.02 | | .65 | | 17
JUL | | 107 | 106 | 129 | 0 | | | | 252 | | <.04 | 1.5 | .35 | | 24 | | 137 | 137 | 167 | 0 | | | | E90 | | <.04 | .75 | . 49 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | | | | | | | | | | | | | | | 28
MAR | <.008 | E.03 | <.02 | .09 | K32 | K43 | K14 | 33 | 423 | .8 | <.04 | <.1 | <6 | | 11
APR | E.006 | <.06 | <.02 | .09 | K4 | K16 | K38 | | | | | | | | 15
MAY | .015 | E.04 | E.01 | .26 | 160 | 164 | 164 | | | | | | | | 22 | .026 | .10 | .06 | .16 | 71 | 88 | 152 | 108 | 760 | 1.6 | E.02 | E.1 | <6 | | JUN
17 | .084 | .10 | E.01 | .35 | 54 | 290 | 450 | | | | | | | | JUL
24 | .009 | E.06 | .05 | .17 | K8 | K14 | 104 | | | | | | | # 06918070 OSAGE RIVER ABOVE SCHELL CITY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | |------------------|---|---|--|--|--|---|--|--|---|--|---|---|---| | NOV
28
MAR | 66 | .09 | 1 | 97.1 | E.01 | <.3 | 38 | 9 | <.002 | <.004 | <.002 | <.005 | .304 | | 11
APR | | | | | | | | | <.006 | <.006 | <.004 | <.005 | .471 | | 15 | | | | | | | | | <.006 | .064 | <.004 | <.005 | .831 | | MAY
22
JUN | 240 | .32 | 2 | 61.6 | E.01 | 1.1 | 49 | 6 | <.006 | .110 | .044 | <.005 | 2.38 | | 17 | | | | | | | | | <.006 | .196 | .294 | <.005 | 3.77 | | JUL
24 | | | | | | | | | <.006 | .050 | .095 | <.005 | .852 | | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | | NOV
28
MAR | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.054 | <.005 | <.005 | <.02 | <.002 | <.009 | | 11 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.068 | <.005 | <.005 | <.02 | <.002 | <.009 | | APR
15 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.081 | <.005 | <.005 | <.02 | <.002 | <.009 | | MAY
22 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.218 | <.005 | <.005 | <.02 | <.002 | <.009 | | JUN
17 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.265 | <.005 | <.005 | <.02 | <.002 | <.009 | | JUL
24 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.135 | <.005 | <.005 | <.02 | <.002 | <.009 | | DATE | ETHO-
PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | METHYL
PARA-
THION
WAT
FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | NOV 28 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | .042 | <.006 | <.002 | <.007 | <.003 | <.007 | | MAR
11 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | .019 | <.006 | <.002 | <.007 | <.003 | <.010 | | APR
15 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | .088 | <.006 | <.002 | <.007 | <.003 | <.010 | | MAY
22 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | . 295 | <.006 | <.002 | <.007 | <.003 | <.010 | | JUN
17 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | .613 | .035 | <.002 | <.007 | <.003 | <.010 | | JUL 24 | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | .197 | <.006 | <.002 | <.007 | <.003 | <.010 | # 06918070 OSAGE RIVER ABOVE SCHELL CITY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 μ
GF, REC
(μ g/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | |-----------|---|---|--|--|---|---|---|--|--|---|---|--|--| | NOV | | | | | | | | | | | | | | | 28 | <.002 | <.010 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.30 | E.009 | <.02 | <.034 | <.02 | | MAR | | | | | | | | | | | | | | | 11 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .009 | <.02 | <.034 | <.02 | | APR | | | | | | | | | | | | | | | 15 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .013 | <.02 | <.034 | <.02 | | MAY | . 004 | . 000 | . 006 | . 011 | . 01 | . 004 | . 010 | . 011 | . 00 | 010 | . 00 | . 024 | . 00 | | 22 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .012 | <.02 | <.034 | <.02 | | JUN | . 004 | . 000 | . 000 | . 011 | . 01 | - 004 | - 010 | - 011 | . 00 | - 005 | . 00 | . 024 | - 00 | | 17
JUL | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | 24 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .010 | <.02 | <.034 | <.02 | | | | | | | | | | | | | | | | | DATE | THIO-
BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | 0.7 μ
GF, REC
(μg/L) | 0.7 μ
GF, REC
(μg/L) | |------------------|--|----------------------------|----------------------------| | | (82681) | (82678) | (82661) | | NOV 28 | <.005 | <.002 | <.009 | | MAR
11
APR | <.005 | <.002 | <.009 | | 15 | <.005 | <.002 | <.009 | | MAY
22
JUN | <.005 | <.002 | <.009 | | 17 | <.005 | <.002 | <.009 | | JUL
24 | <.005 | <.002 | <.009 | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 06918440 SAC RIVER NEAR DADEVILLE, MO LOCATION.--Lat $37^{\circ}26'35"$, long $93^{\circ}41'05"$, in NE $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.9, T.31 N., R.25 W., Dade County, Hydrologic Unit 10290106, on downstream side of bridge on State Highway 245, 2 mi upstream from Cave Spring Branch, and 2 mi south of Dadeville. DRAINAGE AREA. -- 257 mi². PERIOD OF RECORD.--June 1966 to current year. Annual maximum only, for water years 1965-66. GAGE.--Water-stage recorder. Datum of gage is 869.78 ft above National Geodetic Vertical Datum of 1929 (levels by the Missouri State Highway and Transportation Commission). Prior to June 1966, crest-stage gage at same site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHARO | E, CUBIC | FEET PER | | IATER Y
MEAN V | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|----------------------------------|----------------------------|---|------------------------------------|---------------------------------|---|---|--|---|----------------------------------|---|-----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 16 | 55 | 87 | 166 | 1030 | 160 | 349 | 285 | e940 | 134 | 51 | 25 | | 2 | 16 | 84 | 92 | 156 | 751 | 190 | 329 | 268 | e850 | 132 | 46 | 24 | | 3 | 15 | 105 | 92 | 148 | 612 | 197 | 302 | 250 | e750 | 142 | 42 | 24 | | 4 | 15 | 103 | 91 | 142 | 519 | 196 | 281 | 234 | e680 | 133 | 39 | 23 | | 5 | 25 | 92 | 86 | 138 | 458 | 207 | 265 | 221 | e600 | 125 | 37 | 21 | | 6
7
8
9
10 | 26
25
23
23
1850 | 84
77
70
66
61 | 80
74
69
63
59 | 135
128
122
120
116 | 420
388
356
334
311 | 247
271
278
280
262 | 251
241
252
248
231 | 211
285
4840
4800
2730 | e530
e485
e436
e400
e360 | 119
113
108
104
101 | 34
33
33
31
31 | 19
19
19
17 | | 11 | 432 | 57 | 56 | 111 | 288 | 253 | 218 | 1580 | e323 | 99 | 34 | 17 | | 12 | 414 | 53 | 97 | 107 | 273 | 246 | 209 | 1720 | e295 | 102 | 35 | 17 | | 13 | 324 | 49 | 161 | 104 | 256 | 235 | 201 | 3510 | e267 | 109 | 32 | 16 | | 14 | 252 | 47 | 183 | 101 | 243 | 227 | 289 | 2490 | e245 | 102 | 38 | 16 | | 15 | 207 | 45 | 180 | 95 | 232 | 219 | 269 | 2110 | e223 | 95 | 34 | 19 | | 16 | 185 | 41 | 272 | 92 | 219 | 213 | 244 | 2010 | e208 | 89 | 31 | 24 | | 17 | e163 | 39 | 722 | 89 | 208 | 205 | 230 | 2610 | e190 | 88 | 30 | 22 | | 18 | 142 | 38 | 700 | 87 | 198 | 195 | 214 | 3270 | e177 | 89 | 36 | 21 | | 19 | 128 | 43 | 548 | 89 | 203 | 220 | 206 | e1800 | e165 | 125 | 44 | 22 | | 20 | 111 | 45 | 452 | 85 | 218 | 283 | 367 | e1230 | 153 | 124 | 49 | 23 | | 21 | 102 | 41 | 394 | 84 | 205 | 311 | 740 | 872 | e142 | 117 | 39 | 19 | | 22 | 95 | 39 | 359 | 81 | 194 | 314 | 577 | e1020 | e133 | 96 | 32 | 17 | | 23 | 84 | 40 | 328 | 81 | 189 | 313 | 488 | e1340 | e125 | 89 | 31 | 14 | | 24 | 85 | 89 | 296 | 85 | 185 | 304 | 438 | e1800 | e118 | 79 | 41 | 12 | | 25 | 90 | 82 | 270 | 87 | 179 | 595 | 388 | 2860 | e112 | 73 | 49 | 11 | | 26
27
28
29
30
31 | 83
77
72
68
64
59 | 73
65
60
61
70 | 250
233
217
203
187
176 | 87
85
84
83
189
828 | 172
166
162
 | 624
546
496
454
412
377 | 370
359
343
312
295 | e2400
e2000
e1650
e1430
e1240
e1100 | 176
163
157
149
141 | 68
64
59
56
56 | 35
33
30
28
26
25 | 11
10
10
10
9.9 | | MEAN | 170 | 62.5 | 228 | 132 | 320 | 301 | 3167 | 1747 | 323 | 98.2 | 35.8 | 17.6 | | MAX | 1850 | 105 | 722 | 828 | 1030 | 624 | 740 | 4840 | 940 | 142 | 51 | 25 | | MIN | 15 | 38 | 56 | 81 | 162 | 160 | 201 | 211 | 112 | 54 | 25 | 9.9 | | IN. | 0.76 | 0.27 | 1.02 | 0.59 | 1.30 | 1.35 | 1.38 | 7.84 | 1.40 | 0.44 | 0.16 | 0.08 | | MEAN | 138 | 290 | 295 | 232 | 291 | 428 | 396 | 392 | 216 | 114 | 61.7 | 108 | | MAX | 780 | 1139 | 1058 | 743 | 918 | 1170 | 1427 | 1747 | 820 | 392 | 205 | 1545 | | (WY) | 1987 | 1986 | 1993 | 1991 | 1985 | 1975 | 1994 | 2002 | 1995 | 1993 | 1968 | 1993 | | MIN | 16.6 | 16.8 | 19.7 | 14.0 | 23.5 | 29.2 | 30.1 | 30.1 | 39.2 | 22.1 | 10.1 | 6.78 | | (WY) | 1992 | 1981 | 1977 | 1981 | 1981 | 1996 | 1981 | 1977 | 1972 | 1980 | 1980 | 1980 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALEN | DAR YEAR |
| FOR 2002 WA | TER YEAR | | WATER YEA | ARS 1966 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 3310
15
16

7.61
272
77
24 | Feb 25
Oct 3,4
Sep 28 | | 314
4840
9.9
11
8080
18.17
9.4
16.60
617
135
25 | May 8
Sep 30
Sep 24
May 8
May 8
Sep 30 | | 246
560
50.2
23300
4.5
5.3
36100
27.56
3.8
13.05
537
112
24 | Sep 1
Sep 1
Sep 2
Sep 2 | 1993
1977
25 1993
4 1980
1 1980
15 1993
25 1993
8 1996 | | e Estimated #### 06918460 TURNBACK CREEK ABOVE GREENFIELD, MO LOCATION.--Lat 37°24'09", long 93°48'06", on line between secs.21 and 28, T.31 N., R.26 W., Dade County, Hydrologic Unit 10290106, on left downstream side of bridge pier on State Highway O, 1.5 mi downstream from Limestone Creek, and 2.0 mi southeast of Greenfield. DRAINAGE AREA. -- 252 mi². PERIOD OF RECORD. -- September 1965 to current year. REVISED RECORDS.--WDR MO-84-1: 1968, 1970, 1972-74, 1976, 1978-79, 1983 (M). WDR MO-93-1: 1987 (M). GAGE.--Water-stage recorder. Datum of gage is 870.49 ft above National Geodetic Vertical Datum of 1929 (levels by the Missouri State Highway and Transportation Commission). REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHARO | E, CUBIC | C FEET PER | | WATER Y | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---------------------------------------|--|---|-------------------------------------|--|--|---|--------------------------------------|--|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 20
20
19
18
29 | 67
76
84
86
81 | 83
87
88
86
84 | e150
e139
e131
e124
e118 | 1030
806
674
570
496 | 138
174
194
193
196 | 357
331
301
279
262 | 295
273
255
240
226 | e820
e750
e675
e610
e550 | 113
112
119
114
110 | 103
97
90
84
79 | 25
24
23
20
19 | | 6
7
8
9
10 | 33
34
30
33
2420 | 77
75
72
68
66 | 81
78
75
71
68 | e112
e106
102
97
95 | 446
406
368
339
308 | 278
294
307
303
277 | 248
242
264
267
251 | 215
263
8210
3680
1730 | e502
e460
e420
e387
e355 | 103
98
93
89
86 | 74
72
70
66
63 | 18
16
15
13 | | 11
12
13
14
15 | 587
444
334
263
219 | 64
61
59
56
55 | 66
92
148
168
185 | 91
88
86
82
79 | 282
264
241
223
208 | 261
248
234
223
210 | 241
231
221
297
279 | 1210
1500
2920
e1650
e1000 | e325
e300
e278
e258
e242 | 98
92
257
154
126 | 70
60
56
58
53 | 12
13
16
21
26 | | 16
17
18
19
20 | 189
167
152
136
123 | 52
51
51
54
52 | 273
705
690
564
464 | 76
75
73
73
71 | 192
180
170
180
219 | 203
188
179
217
332 | 254
241
226
216
453 | e1200
e1600
2140
e1400
e1040 | e228
e213
197
185
174 | 111
112
1320
699
483 | 49
47
69
65
53 | 33
34
32
42
46 | | 21
22
23
24
25 | 114
105
100
117
105 | 50
50
48
80
82 | 399
353
310
279
253 | 70
70
69
71
73 | 186
174
169
164
158 | 328
320
314
302
700 | 765
596
503
446
390 | e830
695
e620
2140
e1900 | 164
157
151
144
139 | 314
246
297
222
190 | 46
40
38
39
44 | 22
18
17
17
17 | | 26
27
28
29
30
31 | 93
84
79
75
71
69 | 80
78
78
77
79 | 233
217
201
186
171
160 | 71
69
68
67
216
1090 | 152
144
139
 | 637
580
531
484
434
391 | 373
362
341
306
288 | e1680
e1470
e1300
e1180
e1020
e930 | 144
139
133
125
119 | 168
151
138
125
118
111 | 38
35
32
29
28
26 | 16
16
16
15
15 | | MEAN
MAX
MIN
IN. | 203
2420
18
0.93 | 67.0
86
48
0.30 | 223
705
66
1.02 | 126
1090
67
0.58 | 317
1030
139
1.31 | 312
700
138
1.43 | 328
765
216
1.45 | 1446
8210
215
6.62 | 312
820
119
1.38 | 212
1320
86
0.97 | 57.2
103
26
0.26 | 21.0
46
12
0.09 | | | | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 151
921
1987
23.4
1979 | 306
1385
1986
21.7
1981 | 291
982
1988
20.2
1990 | 242
765
1973
19.9
1981 | 319
1020
1985
27.5
1981 | 455
1377
1973
27.1
1996 | 433
1410
1994
39.3
1981 | 398
1797
1990
93.9
1981 | 249
874
1993
44.3
1972 | 156
636
1992
24.2
1972 | 88.2
354
1982
14.4
1980 | 129
1579
1993
11.6
1980 | | SUMMARY | Y STATISTI | CS | FOF | R 2001 CAL | ENDAR YEA | AR. | FOR 2002 | WATER YE | AR | WATER YE | ARS 1965 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN INSTANT ANNUAL 10 PERC | MEAN F ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY M PEAK FLO M PEAK STA FANEOUS LO RUNOFF (I CENT EXCEE CENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 3550
18
20

8.97
324
95
26 | Feb 2
Oct
Sep 2 | 4 | 303
8210
12
14
15500
20.75
11
16.33
674
148
33 | May
Sep
Sep
May
May
Sep | 11
7
8
8 | 267
612
84.1
23700
9.4
10
44000
26.34
9.4
14.42
575
129
32 | Oct 1
Oct
Oct
Sep 2 | 1993
1981
25 1993
12 1980
8 1980
1 1986
25 1993
12 1980 | e Estimated # 06918493 SOUTH DRY SAC RIVER NEAR SPRINGFILED, MO LOCATION.--Lat 37°15'58", long 93°14'56", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.5, T.29 N., R.21 W., Greene County, Hydrologic Unit 10290106, on downstream side of right wingwall on Barnes Road and 1 mile north of Springfield. DRAINAGE AREA.--13.7 \min^2 . PERIOD OF RECORD.--August 30, 1996 to present. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YEA
MEAN VAI | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|--------------------------------------|--------------------------------------|---|---------------------------------------|--------------------------------------|--|---|--------------------------------------|---|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.8
2.7
2.6
2.6
6.5 | 4.7
13
12
9.2
7.8 | | 7.9
7.3
6.9
6.7
6.4 | 71
45
36
30
26 | 8.6
22
20
18
17 | 30
31
25
10
16 | 18
17
14
13
12 | 25
23
22
20
19 | 4.1
4.1
4.2
4.2
3.9 | 3.3
3.3
3.2
3.1
3.0 | 3.0
2.8
2.8
2.7
3.2 | | 6
7
8
9
10 | 4.4
4.5
4.5
4.5
18 | 7.0
6.4
6.1
5.5
5.3 | 4.7
4.3
4.2
3.9
3.7 | 6.2
6.0
5.8
5.8 | 24
22
19
17
16 | 17
16
15
14
14 | 19
13
23
23
18 | 12
72
436
134
78 | 19
17
16
15
14 | 3.8
3.8
3.8
3.6
3.9 | 3.0
2.9
2.8
2.8
2.8 | 2.7
2.6
2.4
2.4
2.4 | | 11
12
13
14
15 | 21
15
12
11
9.5 | 5.1
5.0
4.8
4.5
4.3 | 3.6
7.2
12
12
11 | 5.5
5.5
5.4
5.3
5.2 | 14
13
12
12
11 | 12
12
11
11
10 | 16
14
12 | 63
59
102
71
58 | 13
19
15
13 | 5.4
11
10
7.4
7.2 | 2.7
2.8
3.7
3.4
3.0 | 2.4
2.4
2.3
2.4
2.6 | | 16
17
18
19
20 | 9.7
8.4
7.3
6.6
6.1 | 4.2
4.2
4.0
4.0
4.0 | 87
94
48
36
29 | 5.1
5.1
5.1
5.1
5.1 | 11
9.7
9.4
11
14 | 9.7
9.2
9.1
24
32 | | 51
338
122
96
77 | 10
9.4
8.6
7.8
7.2 | 5.2
4.5
6.2
9.0
8.6 | 2.8
8.7
8.9
4.6
3.8 | 2.3
2.4
2.3
3.0
3.6
| | 21
22
23
24
25 | | | | 5.0
5.0
5.5
7.0
7.4 | 13
12
11
10
9.4 | 24
21
20
19
113 | e40
32
e27
e22
20 | 66
56
50
48
43 | 7.2
6.5
5.6
5.1
4.7 | 7.1
5.4
5.3
4.7
4.3 | 3.4
3.1
3.8
10
9.1 | 2.6
2.2
2.1
2.0
1.9 | | 26
27
28
29
30
31 | 6.8
6.0
5.5
5.3
5.1 | 3.7
3.6
3.6
3.8
6.4 | 13
12
11
10
9.1
8.4 | 6.9
6.5
6.3
6.4
31
185 | 9.2
8.8
8.2
 | 50
49
47
28
15
25 | 22
24
24
20
18 | 39
35
33
32
29
27 | 4.7
4.5
4.4
4.3
4.2 | 4.2
4.0
4.0
3.9
3.5
3.4 | 5.5
4.1
4.1
3.5
3.4
3.1 | 1.8
1.7
1.7
1.7 | | MEAN
MAX
MIN | 7.41
21
2.6 | 5.38 | 17.7
94
3.6 | 12.6
185
5.0 | 18.0
71
8.2 | 23.0
113
8.6 | 19.2
40
8.3 | 74.2
436
12 | 11.9
25
4.2 | 5.28
11
3.4 | 4.12
10
2.7 | 2.41
3.6
1.7 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.23
11.2
1999
1.60
2000 | 13.6
58.3
1997
1.78
1998 | 10.8
21.5
1997
2.96
2001 | 10.1
15.7
1998
2.97
2000 | 22.1
35.3
2001
4.16
2000 | 27.7
57.3
1998
5.78
2000 | 18.5
51.3
1999
3.85
2000 | 24.5
74.2
2002
2.19
2000 | 9.94
17.0
1999
5.94
1997 | 17.1
63.2
2000
2.08
1997 | 4.98
8.83
1998
2.83
1999 | 4.21
8.17
1996
1.72
1999 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALENI | DAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEA | ARS 1996 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 241
1.6
1.9

19
6.0
3.5 | Feb 24
Jan 5
Jan 1 | | 16.8
436
1.7 Se
1.8
1140
5.87
1.6 Se
32
7.8
2.9 | May 8
ep 27-29
Sep 24
May 8
May 8
ep 29,30 | | 14.1
18.2
9.17
1320
0.54
0.68
Unknown
9.80
0.00
29
5.8
1.9 | Jul 1
Jul 1 | 1999
2001
.2 2000
80 1996
.12 2000
.12 2000
.15 1997 | | e Estimated # 06918600 LITTLE SAC RIVER NEAR WALNUT GROVE, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°23'55", long 93°24'36", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.24, T.31 N., R.23 W., Greene County, Hydrologic Unit 10290106, approximately 7.5 mi east of Walnut Grove at bridge on Highway BB. DRAINAGE AREA. -- 119 mi². PERIOD OF RECORD.--Water years 1974 to 1978, 1984 to 1986, 1988 to 1990, 1994 to 1996, October 1999 to current year. Published as "at Walnut Grove", for periods of record from 1994 to 2000. | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|---|--|--|---|---|--|--|---|--|--|---| | OCT
04 | 1550 | ENVIRONMENTAL | 8.1 | 10.4 | 117 | 8.1 | 671 | 19.7 | | | | | | NOV
26
26 | 1430
1500 | BLANK
ENVIRONMENTAL |
22 |
10.6 | 103 |
7.9 |
601 |
11.9 |
230 |
78.4 |
9.39 | 4.00 | | DEC 10 | 1130 | ENVIRONMENTAL | 18 | 12.7 | 105 | 8.0 | 619 | 5.9 | | | | | | JAN
08
08 | 1415
1420 | ENVIRONMENTAL
REPLICATE | 36
 | 16.6 | 134 | 8.1 | 509
 | 4.5 | 240
230 | 83.4
79.5 | 8.00
7.64 | 3.29
3.11 | | FEB
12 | 1215 | ENVIRONMENTAL | 78 | 12.6 | 106 | 7.9 | 466 | 6.5 | | | | | | MAR
13 | 0950 | ENVIRONMENTAL | 78 | 12.4 | 113 | 8.2 | 452 | 9.0 | | | | | | APR
15
15 | 1230
1231 | ENVIRONMENTAL
REPLICATE | 111 | 10.1 | 112 | 8.2 | 443 | 18.6 | | | | | | MAY
20 | 1520 | ENVIRONMENTAL | 526 | 10.8 | 113 | 8.0 | 427 | 16.3 | 200 | 72.2 | 5.09 | 1.62 | | JUN
19 | 0845 | ENVIRONMENTAL | 51 | 6.4 | 75 | 8.1 | 509 | 21.2 | | | | | | JUL
22 | 1425 | ENVIRONMENTAL | 24 | 8.7 | 116 | 8.1 | 521 | 27.7 | 210 | 73.9 | 6.27 | 4.29 | | AUG
27 | 1010 | ENVIRONMENTAL | 26 | 5.9 | 72 | 7.8 | 485 | 23.0 | | | | | | SEP
11 | 0930 | ENVIRONMENTAL | 8.0 | 4.8 | 59 | 7.9 | 668 | 23.1 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC ANC WATER WATER UNFLITRD UNFLIT FET IT FIELD FIELL (mg/L as (mg/L CaCO ₃) CaCC (00410) (00415) | RD BONATE IT FIELD as (mg/L as 3) HCO3) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
04 | DIS-
SOLVED
(mg/L
as Na) | WATER WATER UNFLTRD UNFLTR FET IT FIELD FIELD (mg/L as (mg/L CaCO ₃) CaCO | R BICAR-
RD BONATE
IT
O FIELD
as (mg/L as
0 ₃) HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N) | | OCT | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER WATER UNFLITED UNFLIT FET IT FIELD FIELD (mg/L as (mg/L CaCO ₃) CaCC (00410) (00419 | R BICAR-
RD BONATE
IT
FIELD
as (mg/L as
0_3) HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) |
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
04
NOV
26 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITED UNFLIT FET ILLL (mg/L as (mg/L CaCO ₃) CaCC (00410) (00415) 201 201 201 | R BICAR-
BONATE IT FIELD as (mg/L as (3) HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
04
NOV
26
26
DEC
10
JAN
08 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTR UNFLTR UNFLTR UNFLTR UNFLT IT FIELD (mg/L as (mg/L CaCO ₃) CaCC (00410) (0041: 201 201 201 232 233 | R BICAR- RD BONATE IT D FIELD as (mg/L as 3) HCO3) 0 (00450) 245 284 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .66 <.05 .91 | | OCT
04
NOV
26
26
DEC
10
JAN
08
08
FEB
12 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITE | R BICAR- RD BONATE | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

49.0 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) 16.4 14.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.34
<.10
.36 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .666 <.05 .91 1.03 1.30 | | OCT
04
NOV
26
26
DEC
10
JAN
08
88
FEB
12
MAR
13 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITE UNFLITE TET UNFLITE TET UNFLITE CACO_3 CACC (00410) (0041) 201 201 201 232 233 232 235 224 226 | R BICAR- RD BONATE | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

49.0 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

16.4

14.2
14.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 E.02 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .34 <.10 .36 .25 23 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .66 <.05 .91 1.03 1.30 1.28 | | OCT
04
NOV
26
26
DEC
10
JAN
08
FEB
12
MAR
13
APR
15 | DIS-
SOLVED
(mg/L
as Na)
(00930)

31.9

17.4
17.1 | WATER UNFLITE UNFLITE CACO. 1 CACO. 1 CACO. 1 CACO. 2 | R BICAR- RD BONATE | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

49.0

30.1
29.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945)
16.4
14.2 14.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .34 <.10 .36 .2523 | GEN, NO ₂ +NO ₃ D1S-SOLVED (mg/L as N) (00631) .66 <.05 .91 1.03 1.30 1.28 E1.82 | | OCT
04
NOV
26
26
DEC
10
JAN
08
FEB
12
MAR
13
APR
15
15
MAY
20 | DIS-
SOLVED
(mg/L
as Na)
(00930)

31.9

17.4
17.1 | WATER UNFLITE UNFLITE FET IT FIELD (mg/L as (mg/L (00410)) (00419) 201 201 201 232 233 232 235 224 226 192 194 176 176 189 189 | R BICAR- RD BONATE | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

49.0

30.1
29.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) 16.4 14.2 14.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .34 <.10 .36 .2523 .16 .23 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .666 <.05 .91 1.03 1.30 1.28 E1.82 .99 .85 | | OCT 04 NOV 26 26 DEC 10 JAN 08 08 FEB 12 MAR 15 15 15 MAY 20 JUN 19 | DIS-
SOLVED
(mg/L
as Na)
(00930)

31.9

17.4
17.1 | WATER UNFLITE UNFLITE FET IT FIELD (mg/L as (mg/L CaCO ₃) CaCC (00410) (00419) 201 201 201 232 233 232 235 224 226 192 194 176 176 189 189 189 | R BICAR- RD BONATE | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

49.0

30.1
29.5 | RIDE,
DIS-
SOIVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 <10 <11 18 13 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 274 300 296 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .34 <.10 .36 .2523 .16 .23 .42 .42 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .666 <.05 .91 1.03 1.30 1.28 E1.82 .99 .85 .84 | | OCT 04 NOV 26 26 10 JAN 08 FEB 12 MAR 13 APR 15 MAY 20 JUN 19 JULL 22 | DIS-
SOLVED
(mg/L
as Na)
(00930)

31.9

17.4
17.1

7.26 | WATER UNFLITE UNFLITE FET UNFLITE FET UNFLITE FIELD (mg/L as (mg/L CaCO ₃) (cacCo (00410)) (0041s) 201 201 201 232 233 232 235 224 226 192 194 176 176 176 189 189 178 180 | R BICAR- RD BONATE IT O FIELD as (mg/L as 2) (00450) 245 284 287 276 237 215 230 219 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 00 0 0 00 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

49.0

30.1
29.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.2

.2

E.1
.1

.2 | DIS-
SOLVED (mg/L as SO ₄) (00945) 16.4 14.2 14.1 9.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L)(70300) 274 300 296 243 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 E.02 <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .34 <.10 .36 .2523 .16 .23 .42 .42 .27 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .66 <.05 .91 1.03 1.30 1.28 E1.82 .99 .85 .84 1.34 | | OCT
04
NOV
26
26
DEC
10
JAN
08
FEB
12
MAR
13
APR
15
15
MAY
20
JUN
19 | DIS-
SOLVED
(mg/L
as Na)
(00930)

31.9

17.4
17.1

7.26 | WATER UNFLITE UNFLITE FET IT FIELD (mg/L as (mg/L cacco) (00410) (0041) 201 201 | R BICAR- RD BONATE | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940)

49.0
30.1
29.5

12.7 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

-2

.2

E.1
.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 16.4 14.2 14.1 9.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 274 300 296 243 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 E.02 <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .34 <.10 .36 .2523 .16 .23 .42 .42 .42 .27 .26 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .666 <.05 .91 1.03 1.30 1.28 E1.82 .99 .85 .84 1.34 2.11 | # 06918600 LITTLE SAC RIVER NEAR WALNUT GROVE, MO--Continued (Ambient Water-Quality Monitoring Network) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |-----------------
--|--|--|---|--|--|--|--|---|--|---|--|---| | OCT
04 | E.005 | .16 | .13 | .16 | 42 | 86 | 48 | | | | | | | | NOV
26
26 | <.008
E.006 | <.06
.06 | <.02 | <.06
.07 |
K5 |
140 |
41 |
14 |
52 | .3 |
.06 |
<.1 |
<6 | | DEC 10 | E.004 | .09 | .08 | .11 | K18 | 24 | 26 | | | | .00 | | | | JAN
08 | E.007 | <.06 | <.02 | <.06 | K1 | K16 | K15 | 13 | 30 | .3 | .03 | <.1 | <5 | | 08
FEB | .013 | <.06 | <.02 | <.06 | | | | 15 | 30 | .3 | E.03 | <.1 | <6 | | 12
MAR | <.006 | <.06 | E.02 | E.04 | К2 | K10 | K10 | | | | | | | | 13
APR | E.004 | <.06 | <.02 | <.06 | K18 | К6 | K7 | | | | | | | | 15
15 | E.007
.008 | E.05
E.05 | .03 | .06
.08 | 160
140 | K755
K795 | 180
160 | | | | | | | | MAY
20 | .015 | .07 | .04 | .08 | 98 | 290 | 92 | 23 | 113 | <.2 | <.04 | <.1 | E4 | | JUN
19 | .013 | .10 | .07 | .10 | 120 | 130 | 155 | | | | | | | | JUL
22 | .011 | .20 | .18 | .21 | 49 | 130 | 96 | 2 | 156 | .8 | .08 | <.1 | E4 | | AUG
27 | E.004 | .21 | .17 | .21 | K30 | 240 | 280 | | | | | | | | SEP
11 | E.004 | .34 | .33 | .37 | 110 | 240 | 360 | | | | | | | | | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
0 | 4 | | | | | | | | | | | | | | NOV
2 | 6 | | | | | | | | | | | | | | | 6 | 22 | .22 | <1 | 17.5 | E.01 | <.3 | | 18 | | | | | | | 0 | | | | | | | | | | | | | | 0 | 8 | 27 | .14 | <1 | 8.8 | <.01 | . 2 | | 7 | | | | | | FEB | | 28 | .14 | <1 | 8.4 | <.01 | . 4 | | 7 | | | | | | 1
MAR | 2 | | | | | | | | | | | | | | 1
APR | 3 | | | | | | | | | | | | | | 1 | 5
5 | | | | | | | | | | | | | | MAY
2 | 0 | 19 | E.07 | <1 | 13.0 | <.01 | E.2 | | 4 | | | | | | | 9 | | | | | | | | | | | | | | JUL
2 | 2 | <10 | .18 | 1 | 16.8 | <.01 | <.3 | 8 | 9 | | | | AUG 27... SEP 11... K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. # 06918740 LITTLE SAC RIVER NEAR MORRISVILLE, MO LOCATION.--Lat $37^{\circ}28^{\circ}58^{\circ}$, long $93^{\circ}29^{\circ}07^{\circ}$, in SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.20, T.32 N., R.23 W., Polk County, Hydrologic Unit 10290106, on downstream side of center pier of Hamilton Bridge on State Highway 215, 0.7 mi upstream from Slagle Creek, and 3 mi west of Morrisville. DRAINAGE AREA. -- 237 mi². PERIOD OF RECORD. -- October 1968 to current year. REVISED RECORDS.--WDR MO-84-1 1969-70, 1972-75, 1977-79, 1981, 1983 (M). GAGE.--Water-stage recorder. Elevation of gage is 881 ft above National Geodetic Vertical Datum of 1929, from topographic map. REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHARG | E, CUBIC | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|------------------------------------|-------------------------------------|---|-------------------------------------|-------------------------------------|--|--|--|--|-------------------------------------|--|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 7.2
6.8
5.9
5.7 | 34
70
126
120
107 | 117
110
100
89
83 | e109
e101
e95
e89
e84 | 1460
768
561
442
377 | 101
185
235
215
224 | 258
247
224
206
188 | 258
232
213
194
180 | 257
238
218
207
244 | 37
36
39
42
43 | 15
14
13
14
14 | 13
14
13
11 | | 6
7
8
9
10 | 20
27
19
15
2200 | 93
80
65
61
55 | 74
64
55
48
43 | e79
74
71
66
63 | 343
315
281
259
243 | 280
254
236
223
199 | 178
180
201
213
196 | 168
862
6890
3470
1530 | 208
182
166
165
162 | 37
35
33
32
33 | 13
11
10
11
9.9 | 9.5
8.7
8.6
7.9
6.5 | | 11
12
13
14
15 | 423
415
273
206
166 | 46
40
37
35
33 | 39
95
274
234
203 | 59
57
55
52
49 | 220
205
187
174
162 | 186
176
163
154
156 | 177
163
155
490
273 | 964
1830
4400
1330
859 | 148
148
157
131
115 | 40
39
68
60
51 | 11
13
21
16
16 | 5.6
5.8
6.6
10
e13 | | 16
17
18
19
20 | 154
137
122
108
97 | 32
32
30
33
37 | 906
1810
839
516
388 | 45
45
44
49
49 | 149
140
133
140
167 | 144
135
126
208
439 | 216
195
182
177
759 | 663
3680
2280
1200
848 | 105
95
86
78
69 | 44
44
40
53
57 | 13
12
16
54
38 | 17
e14
17
e14
e12 | | 21
22
23
24
25 | 88
80
74
84
89 | 38
35
34
38
42 | 321
278
241
212
188 | 46
45
50
72
104 | 150
138
130
124
119 | 357
290
260
242
942 | 1140
588
437
371
319 | 683
571
487
756
658 | 64
60
55
51
50 | 57
34
29
26
23 | 23
e20
e18
e16
e15 | 18
17
11
7.6
5.8 | | 26
27
28
29
30
31 | 69
54
46
41
38
38 | 39
38
38
41
66 | 172
160
146
132
123
116 | 97
88
83
91
612
2400 | 110
103
101
 | 702
511
436
378
318
275 | 312
329
320
274
254 | 481
404
362
355
320
285 | 58
51
46
41
39 | 21
19
17
16
14
15 | 36
28
24
20
16
15 | 6.2
5.9
5.6
5.2
4.3 | | MEAN
MAX
MIN
IN. | 165
2200
5.7
0.80 | 52.5
126
30
0.25 | 264
1810
39
1.28 | 162
2400
44
0.79 | 275
1460
101
1.21 | 282
942
101
1.37 | 307
1140
155
1.45 | 1207
6890
168
5.87 | 123
257
39
0.58 | 36.6
68
14
0.18 | 18.2
54
9.9
0.09 | 10.1
18
4.3
0.05 | | MEAN
MAX
(WY)
MIN
(WY) | 125
809
1987
10.2
1996 | 306
1256
1986
10.5
2000 | 279
1045
1988
10.7
1990 | 226
752
1991
9.05
1981 | 287
1139
1985
29.4
1996 | - 2002,
450
1290
1973
29.2
1996 | 405
1409
1994
32.7
1981 | 349
1359
1990
23.7
2000 | 200
968
1995
20.7
1972 | 85.6
387
2000
11.6
1980 | 36.1
145
1988
4.90
1980 | 120
1691
1993
3.15
1980 | | SUMMAR | Y STATISTI | CS | FOF | R 2001 CAL | ENDAR YEA | R | FOR 2002 | WATER YEA | R | WATER Y | EARS 1969 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 6330
5.7
7.3

8.65
272
73
18 | Feb 2
Oct
Sep 2 | 4 | 243
6890
4.3
5.8
10600
17.03
3.0
13.92
483
91 | May
Sep 3
Sep 2
May
May
Sep 3 | 0
4
8
8 | 238
516
58.6
18600
0.60
1.6
29100
23.33
0.30
13.67
517
81 | Sep
Aug
Sep
Sep | 1973
1977
25 1993
15 1980
27 1980
25 1993
25 1993
15 1980 | | e Estimated #### 06918990 STOCKTON LAKE NEAR STOCKTON, MO LOCATION.--Lat 37°41'38", long 93°45'55", SW $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.10, T.34 N., R.26 W., Cedar County, Hydrologic Unit 10290106, in power house at dam on Sac River, 2 mi east of Stockton. DRAINAGE AREA. -- 1,160 mi². PERIOD OF RECORD. -- October 1969 to current year. GAGE.--Water-stage recorder. Nonrecording gage prior to May 30, 1973. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). REMARKS.--Lake is formed by a rock shell earthfill type dam. Spillway is equipped with 4 tainter gates, 40 ft by 30.5 ft, crest
elevation, 861.5 ft. Embankment closed and river diverted on Sept. 23, 1968. Gates closed and storage began on Dec. 12, 1969; minimum power elevation 830.0 ft reached on May 1, 1970. Gross storage at top of flood control pool is 1,666,659 ac-ft at elevation 892.0 ft, of which 779,550 ac-ft between elevations 867.0 ft and 892.0 ft is used for flood control, and 887,109 ac-ft between elevations 760.0 ft and 867.0 ft is used for multipurpose and power. Sedimentation reserve is 25,000 ac-ft. Lake is used for flood control, power, and recreational purposes. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,450,000 ac-ft, Apr. 28, 1973, elevation, 885.94 ft; minimum, since initial filling to minimum power pool level, 352,000 ac-ft, Aug. 27 to Sept. 4, 1970, elevation, 839.60 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,269,000 ac-ft, May 25 and 26, elevation, 881.05 ft; minimum, 765,000 ac-ft, Oct. 3, elevation, 862.36 ft. ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 2400 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 862.40
862.38
862.36
862.42
862.57 | 864.25
864.34
864.36
864.37
864.39 | 864.51
864.53
864.56
864.59
864.59 | 865.47
865.49
865.56
865.56 | 867.31
867.58
867.75
867.86
867.97 | 867.87
867.93
867.99
868.07
868.13 | 870.46
870.45
870.41
870.35
870.33 | 870.75
870.73
870.66
870.60
870.57 | 880.01
879.74
879.48
879.29
879.04 | 872.44
872.26
872.07
871.88
871.77 | 868.87
868.83
868.73
868.63
868.47 | 866.23
866.21
866.07
865.93
865.80 | | 6
7
8
9
10 | 862.56
862.56
862.55
862.78
863.57 | 864.40
864.41
864.40
864.42
864.41 | 864.56
864.47
864.47
864.49
864.37 | 865.59
865.63
865.65
865.65 | 868.08
868.19
868.30
868.41
868.52 | 868.22
868.34
868.45
868.51
868.59 | 870.39
870.45
870.42
870.43 | 870.48
871.01
873.56
874.89
875.47 | 878.77
878.48
878.17
877.96
877.75 | 871.79
871.69
871.50
871.29
871.10 | 868.40
868.26
868.09
867.94
867.96 | 865.63
865.63
865.60
865.53 | | 11
12
13
14
15 | 863.76
863.89
863.98
864.03
864.09 | 864.41
864.41
864.41
864.41 | 864.25
864.27
864.17
864.21
864.27 | 865.69
865.69
865.72
865.71 | 868.62
868.58
868.56
868.53
868.46 | 868.65
868.71
868.72
868.77
868.83 | 870.40
870.37
870.43
870.48
870.40 | 875.79
877.29
878.43
878.85
879.04 | 877.47
877.24
877.02
876.71
876.37 | 870.88
870.70
870.73
870.73 | 867.93
867.80
867.71
867.73 | 865.31
865.24
865.23
865.22
865.28 | | 16
17
18
19
20 | 864.10
864.13
864.14
864.16
864.19 | 864.42
864.42
864.45
864.44
864.45 | 864.41
864.57
864.77
864.86
864.97 | 865.71
865.74
865.79
865.80
865.81 | 868.44
868.49
868.55
868.55
868.47 | 868.88
868.93
869.01
869.09
869.10 | 870.43
870.29
870.23
870.23
870.41 | 879.32
880.17
880.65
880.93
881.00 | 876.09
875.77
875.47
875.13
874.77 | 870.40
870.29
870.28
870.19
870.10 | 867.56
867.54
867.48
867.36
867.22 | 865.21
865.19
865.10
865.11
865.11 | | 21
22
23
24
25 | 864.20
864.23
864.25
864.25
864.24 | 864.44
864.44
864.49
864.47
864.49 | 865.08
865.12
865.18
865.22
865.27 | 865.82
865.84
865.84
865.86
865.84 | 868.37
868.27
868.30
868.29
868.19 | 869.11
869.13
869.21
869.33
869.54 | 870.62
870.68
870.69
870.67 | 880.89
880.73
880.56
880.86
881.05 | 874.45
874.11
873.77
873.40
873.20 | 870.00
869.91
869.83
869.71
869.56 | 867.09
866.96
866.84
866.87
866.88 | 865.04
865.06
865.03
865.01
864.99 | | 26
27
28
29
30
31 | 864.23
864.24
864.24
864.23
864.24
864.25 | 864.48
864.47
864.47
864.49
864.51 | 865.33
865.36
865.37
865.40
865.43 | 865.85
865.86
865.87
865.88
866.22
866.89 | 868.00
868.01
867.90
 | 869.73
869.92
870.04
870.17
870.26
870.35 | 870.69
870.73
870.80
870.79
870.87 | 881.05
880.96
880.82
880.63
880.45
880.24 | 873.01
872.83
872.64
872.66
872.65 | 869.46
869.47
869.48
869.28
869.19
869.07 | 866.71
866.57
866.47
866.35
866.24
866.23 | 864.97
864.96
864.95
864.94
864.83 | | MAX
MIN | 864.25
862.36 | 864.51
864.25 | 865.46
864.17 | 866.89
865.47 | 868.62
867.31 | 870.35
867.87 | 870.87
870.23 | 881.05
870.48 | 880.01
872.64 | 872.44
869.07 | 868.87
866.23 | 866.23
864.83 | | (-)
(=) | 809000
+43000 | 815000
+6000 | 838000
+23000 | 872000
+34000 | 897000
+25000 | 960000
+63000 | 974000
+14000 | 1243000
+269000 | 1021000
-222000 | 927000
-94000 | 856000
-71000 | 822000
-34000 | CAL YR 2001....+111000 WTR YR 2002....+ 56000 ⁽⁻⁾ Contents, in acre-feet, at the end of the month.(=) Change in contents, in acre-feet. #### 06919020 SAC RIVER AT HIGHWAY J BELOW STOCKTON, MO LOCATION.--Lat $37^{\circ}44^{\circ}07^{\circ}$, long $93^{\circ}46^{\circ}47^{\circ}$, in NW $\frac{1}{4}$ sec.4, T.34 N., R.26 W., Cedar County, Hydrologic Unit 10290106, on right bank on downstream side of bridge on State Highway J, 4.5 mi downstream from Bear Creek, 6.3 mi downstream from Stockton Lake, 3.0 mi north of Stockton, and at mile 44.9. DRAINAGE AREA. -- 1,292 mi². PERIOD OF RECORD. -- October 1973 to current year. Occasional discharge measurements in 1973 water year. GAGE.--Water-stage recorder. Datum of gage is 750.19 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair. Considerable regulation by Stockton Lake (06918990), 6.3 mi upstream. U.S. Army Corps of Engineers satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV JAN FEB AUG 127 102 120 154 1640 994 1480 734 1070 121 1500 1590 ---MEAN MAX MIN 0.09 0.45 1.43 0.43 IN. 0.14 0.17 0.63 0.31 0.90 2.30 3.58 0.97 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1974 - 2002, BY WATER YEAR (WY) MEAN MAX 1974 (WY) 66.7 51.1 60.1 98.8 60.5 71.6 MIN 61.9 64.8 80.4 (WY) SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1974 - 2002 ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Feb 28 May 13 Sep 27-29 Sep 25 1993 LOWEST DAILY MEAN Sep 29 Mar 25 1977 ANNUAL SEVEN-DAY MINIMUM Sep 23 Apr 30 Oct 20 1973 MAXIMUM PEAK FLOW 1 1986 May 13 Oct MAXIMUM PEAK STAGE ___ 21.19 May 13 24.91 Feb 23 1985 INSTANTANEOUS LOW FLOW Sep 29 2.4 Mar 25 1977 ANNUAL RUNOFF (INCHES) 11.38 6.35 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS #### 06919500 CEDAR CREEK NEAR PLEASANT VIEW, MO LOCATION.--Lat $37^{\circ}50^{\circ}03^{\circ}$, long $93^{\circ}52^{\circ}31^{\circ}$, in NE $\frac{1}{4}$ sec.2, T.35 N., R.27 W., Cedar County, Hydrologic Unit 10290106, on downstream side of right pier of bridge on State Highway 39, 1.5 mi north of Pleasant View, 1.8 mi downstream from Alder Creek, and 5.8 mi upstream from mouth. DRAINAGE AREA. -- 420 mi². PERIOD OF RECORD.--April 1923 to September 1926, October 1948 to current year. REVISED RECORDS.--WSP 1146: 1923-26, drainage area. WSP 1176: 1924(M). GAGE.--Water-stage recorder. Datum of gage is 739.46 ft above National Geodetic Vertical Datum of 1929. Apr. 22, 1923, to Sept. 30, 1926 and Oct. 1, 1948, to May 10, 1950, nonrecording gage at site 50 ft downstream at same datum; May 11, 1950, to Dec. 17, 1952, nonrecording gage, at present site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 27.7 ft, July 20, 1909, from floodmark. | | | DISCHAR | GE, CUBIC | C FEET PEF | SECOND, W | | | BER 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---|-------------------------------------|---|-------------------------------------|--|---|---|-------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 |
1.0
0.98
0.93
1.0
7.3 | 13
17
19
72
95 | 16
15
14
15 | e38
e36
e34
e33
e32 | 3600
1210
653
467
349 | 99
127
214
248
252 | 103
95
87
81
75 | 346
275
214
174
148 | 197
159
131
109
93 | 42
28
21
20
18 | 6.6
5.9
5.1
4.3
3.6 | 1.5
1.4
1.4
1.7 | | 6
7
8
9
10 | 6.4
65
45
21
980 | 63
50
40
34
28 | 15
16
15
15 | e31
e30
e29
28
28 | 289
255
230
206
185 | 605
845
554
411
340 | 71
69
73
77
79 | 129
1340
8470
10600
8400 | 84
76
68
64
74 | 13
13
27
21
15 | 3.1
2.7
2.4
16
32 | 1.4
1.1
0.98
0.86
0.76 | | 11
12
13
14
15 | 1420
330
e230
e175
e130 | 26
24
23
22
20 | 14
18
21
27
54 | 28
29
29
29
28 | 162
147
137
128
122 | 289
255
228
206
185 | 77
74
70
71
72 | 3740
960
5450
4360
1150 | 142
127
117
148
107 | 13
13
14
13
78 | 17
12
8.3
6.7
6.1 | 0.67
0.61
0.55
0.49
0.46 | | 16
17
18
19
20 | 88
78
68
58
51 | 19
17
17
19
18 | 84
97
149
210
149 | 27
26
25
26
26 | 118
113
108
111
142 | 164
150
142
139
143 | 72
70
66
62
555 | 663
2120
4900
2090
772 | 76
59
52
43
37 | 69
39
30
27
20 | 5.1
3.9
3.3
2.9
2.5 | 0.42
0.38
0.36
0.61
1.7 | | 21
22
23
24
25 | 45
38
34
30
25 | 18
17
17
17
17 | 111
91
77
66
59 | 26
28
29
30
30 | 210
179
153
139
129 | 160
163
141
127
123 | 2190
1040
508
336
243 | 567
436
338
1260
2650 | 32
28
25
22
21 | 15
13
25
17
12 | 2.2
2.1
1.9
1.7
1.6 | 3.1
3.2
2.4
1.6
1.3 | | 26
27
28
29
30
31 | 22
19
18
16
16 | 16
15
15
15
16 | 55
50
47
44
e42
e40 | 32
34
35
36
66
3050 | 120
109
102
 | 146
222
164
139
125
112 | 196
719
1510
749
450 | 1050
591
736
440
317
248 | 19
18
51
98
83 | 21
33
20
13
9.8
7.6 | 1.4
1.2
1.1
1.0
1.1
1.3 | 4.1
4.6
4.1
3.6
3.5 | | MEAN
MAX
MIN
IN. | 130
1420
0.93
0.36 | 26.6
95
13
0.07 | 53.4
210
14
0.15 | 129
3050
25
0.35 | 353
3600
102
0.87 | 233
845
99
0.64 | 331
2190
62
0.88 | 2095
10600
129
5.75 | 78.7
197
18
0.21 | 23.2
78
7.6
0.06 | 5.36
32
1.0
0.01 | 1.68
4.6
0.36
0.00 | | | STICS OF MO | | | | • | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 194
3055
1987
0.00
1954 | 338
1923
1993
0.00
1954 | 285
1490
1993
0.06
1954 | 260
1063
1949
0.12
1954 | 407
2307
1985
0.14
1954 | 564
2275
1973
0.23
1954 | 542
2766
1994
4.09
1956 | 535
2969
1961
39.1
1988 | 372
1753
1981
4.52
1991 | 230
2229
1958
0.03
1954 | 78.8
641
1950
0.00
1954 | 172
2033
1993
0.00
1953 | | SUMMA | RY STATIST | ICS | FOR 2 | 2001 CALEN | IDAR YEAR | | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | RECORD | | HIGHE LOWES HIGHE LOWES ANNUA MAXIM MAXIM INSTA ANNUA 10 PE 50 PE | L MEAN ST ANNUAL N T ANNUAL N T ANNUAL M T DAILY ME L SEVEN-DA UM PEAK ST NTANEOUS L L RUNOFF (: L RUNOFF (: RCENT EXCEI RCENT EXCEI RCENT EXCEI | EAN EAN AN Y MINIMUM OW AGE OW FLOW INCHES) EDS EDS | | 8300
0.93
1.0

7.83
492
52
2.1 | Feb 25
Oct 3
Sep 28 | | 10600
0.36
0.47
12000
22.65
0.28
9.37
483
40
2.2 | May 9
Sep 18
Sep 12
May 9
May 9
Sep 19 | | 330
807
16.0
26200
0.00
0.00
37000
27.36
0.00
10.69
669
72 | Man
Man
Jul
Apr | 1993
1954
17 1958
y Years
y Years
17 1958
12 1994
y Years | e Estimated # 06919900 SAC RIVER NEAR CAPLINGER MILLS, MO LOCATION.--Lat $37^{\circ}52'12"$, long $93^{\circ}48'11"$, in NW $\frac{1}{4}$ NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.21, T.36 N., R.26 W., St. Clair County, Hydrologic Unit 10290106, on right downstream wingwall of bridge on State Highway W, 1.5 mi downstream from Cedar Creek, and 5.0 mi north of Caplinger Mills. DRAINAGE AREA. -- 1,810 mi². PERIOD OF RECORD. -- October 1974 to current year. GAGE.--Water-stage recorder. Datum of gage is 720.82 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good. Some regulation from Stockton Lake (06918990). U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | VATER YE
MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|-------------------------------------|---------------------------------|--|---|-----------------------------|--|---|--|--|--|--|-----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 95 | 98 | 129 | 181 | 6140 | 2090 | 259 | 1930 | 5510 | 1610 | 1850 | 159 | | 2 | 97 | 135 | 128 | 176 | 2380 | 1670 | 244 | 2780 | 5290 | 2750 | 2250 | 125 | | 3 | 95 | 156 | 125 | 169 | 1330 | 478 | 1580 | 1090 | 5300 | 2890 | 1340 | 435 | | 4 | 94 | 192 | 124 | 163 | 975 | 513 | 1220 | 2900 | 5120 | 2720 | 1340 | 1440 | | 5 | 207 | 258 | 122 | 164 | 777 | 484 | 1480 | 1670 | 4780 | 1840 | 1570 | 1650 | | 6 | 308 | 209 | 122 | 171 | 672 | 937 | 1010 | 1090 | 5240 | 1300 | 1800 | 1730 | | 7 | 261 | 180 | 760 | 168 | 608 | 1290 | 207 | 4050 | 5070 | 192 | 1240 | 1670 | | 8 | 254 | 164 | 986 | 167 | 551 | 949 | 335 | 17400 | 5090 | 2640 | 1580 | 155 | | 9 | 185 | 155 | 142 | 166 | 499 | 779 | 1360 | 17400 | 5260 | 2960 | 2070 | 127 | | 10 | 1860 | 147 | 612 | 168 | 450 | 677 | 1040 | 12300 | 5150 | 2920 | 1350 | 740 | | 11 | 2460 | 142 | e900 | 166 | 399 | 577 | 1040 | 6490 | 5030 | 3000 | 202 | 1390 | | 12 | 1090 | 139 | e800 | 164 | 365 | 517 | 1730 | 2100 | 5220 | 2830 | 358 | 1020 | | 13 | 680 | 136 | 1530 | 162 | 2300 | 889 | 348 | 12200 | 5040 | 1520 | 1610 | 691 | | 14 | 454 | 136 | 1470 | 160 | 1450 | 531 | 232 | 9190 | 5480 | 199 | 1300 | 128 | | 15 | 358 | 136 | 905 | 158 | 984 | 394 | 1800 | 2910 | 5270 | 1620 | 396 | 117 | | 16 | 291 | 130 | 335 | 154 | 1610 | 349 | 1120 | 2630 | 5020 | 1660 | 1560 | 110 | | 17 | 242 | 128 | 1060 | 153 | 426 | 320 | 1660 | 5870 | 4870 | 1750 | 175 | 736 | | 18 | 215 | 133 | 2570 | 154 | 272 | 303 | 2390 | 8090 | 5060 | 1590 | 281 | 939 | | 19 | 198 | 142 | 1940 | 163 | 1200 | 308 | 1230 | 4070 | 5220 | 2530 | 1040 | 1100 | | 20 | 181 | 134 | 587 | 162 | 1220 | 1520 | 2530 | 2470 | 5180 | 1730 | 2370 | 718 | | 21 | 165 | 129 | 402 | 160 | 2080 | 1620 | 3550 | 5450 | 5290 | 1860 | 1450 | 138 | | 22 | 151 | 125 | 921 | 160 | 2070 | 1320 | 2410 | 5750 | 5160 | 1530 | 1890 | 125 | | 23 | 142 | 118 | 330 | 166 | 1540 | 472 | 2190 | 5660 | 5150 | 1130 | 1440 | 109 | | 24 | 132 | 129 | 290 | 163 | 318 | 335 | 2570 | 6320 | 5330 | 1840 | 1330 | 94 | | 25 | 126 | 180 | 265 | 607 | 1190 | 326 | 1790 | 4580 | 5330 | 1800 | 167 | 91 | | 26
27
28
29
30
31 | 116
109
104
99
98
97 | 153
134
127
128
132 | 250
240
228
219
204
191 | 324
175
168
165
277
5520 | 2410
1890
373
 | 363
438
379
333
305
284 | 2110
2710
3580
1450
2290 | 2940
5090
5070
5630
5310
5180 | 3170
2860
2890
1530
330 | 1840
1330
188
504
1740
1630 | 352
1820
1410
1410
1450
1190 | 88
84
85
89
233 | | MEAN
MAX
MIN
IN. | 354
2460
94
0.23 | 147
258
98
0.09 | 609
2570
122
0.39 | 360
5520
153
0.23 | 1303
6140
272
0.75 | 702
2090
284
0.45 | 1582
3580
207
0.98 | 5665
17400
1090
3.61
YEAR (WY) | 4675
5510
330
2.88 | 1795
3000
188
1.14 | 1277
2370
167
0.81 | 544
1730
84
0.34 | | MEAN | 1204 | 1416 | 1653 | 1453 | 1745 | 2205 | 2457 | 2509 | 2152 | 1441 | 1052 | 996 | | MAX | 11070 | 5392 | 5838 | 5487 | 5202 | 5630 | 6805 | 5782 | 7046 | 5283 | 2850 | 5283 | | (WY) | 1987 | 1994 | 1986 | 1993 | 1985 | 1985 | 1994 | 1995 | 1995 | 1995 | 1992 | 1993 | | MIN | 61.1 | 66.7 | 56.6 | 53.5 | 101 | 82.7 | 76.3 | 278 | 241 | 170 | 77.3 | 103 | | (WY) | 1981 | 1981 | 1981 | 1981 | 1981 | 1981 | 1981 | 2001 | 1991 | 1988 | 1991 | 1991 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALEN | DAR YEAR | F | OR 2002 WA | TER YEAR | | WATER YEA | ARS 1975 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | 995 12400 79 90 7.46 2370 483 128 | Feb 25
Sep 30
Sep 24 | | 1585
17400
84
91
18600
23.90
65
11.89
5080
779
129 | May 8,9
Sep 27
Sep 23
May 8
May 8
Sep 30 |
| 1689
3267
399
51200
34
47
61500
30.95
33
12.68
4100
965
95 | Aug 2
Oct
Apr 2
Apr 2 | 1994
1977
2 1986
25 1999
7 1980
12 1994
12 1994
24 1999 | | e Estimated # 06921070 POMME DE TERRE RIVER NEAR POLK, MO LOCATION.--Lat $37^{\circ}40^{\circ}56^{\circ}$, long $93^{\circ}22^{\circ}12^{\circ}$, in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.17, T.34 N., R.22 W., Polk County, Hydrologic Unit 10290107, on right bank 150 ft upstream from Jefferson Bridge on State Highway D, and 5 mi southwest of Polk. DRAINAGE AREA.--276 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1968 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 872.61 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair. U.S. Army Corps of Engineers satellite telemeter at station. | | _ | DISCHA | RGE, CUBIO | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|-------------------------------------|-------------------------------------|--|---|-------------------------------------|--|---|--|---|-------------------------------------|---|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 9.8
9.8
9.5
9.3 | 42
53
79
89
81 | 50
73
74
67
61 | 103
99
91
89 | 2230
803
581
471
402 | 110
271
455
351
348 | 262
235
208
183
168 | 295
246
206
180
159 | 190
165
146
130
322 | 22
22
24
23
22 | 8.3
7.9
7.3
7.0
6.8 | 13
12
11
9.9
9.4 | | 6
7
8
9
10 | 32
21
18
27
3570 | 72
64
58
53
50 | 55
52
49
46
43 | 88
85
80
78
79 | 367
351
319
292
272 | 418
347
303
313
291 | 156
150
176
239
219 | 143
1960
11900
4030
1210 | 181
141
117
111
117 | 20
18
16
15
18 | 6.5
6.5
6.7
6.5
6.3 | 8.6
16
13
9.8
8.0 | | 11
12
13
14
15 | 675
463
266
179
140 | 48
45
43
41
40 | 41
82
324
260
229 | 77
72
71
70
65 | 238
217
199
182
169 | 251
232
212
196
184 | 184
163
149
301
276 | 729
4340
9630
1280
773 | 97
91
256
138
94 | 43
21
30
24
18 | 6.2
6.2
7.8
12
9.2 | 7.2
6.6
6.4
6.4 | | 16
17
18
19
20 | 130
114
100
88
80 | 39
38
37
37
37 | e1500
e2600
1070
633
474 | 62
61
60
64
64 | 158
146
137
143
193 | 208
176
163
350
852 | 200
172
152
145
425 | 616
5290
2190
890
636 | 77
66
59
54
49 | 16
14
13
12 | 12
11
9.7
24
45 | 7.1
7.7
7.9
8.3
9.8 | | 21
22
23
24
25 | 73
68
64
61
59 | 39
39
38
40
39 | 393
339
286
244
213 | 63
68
81
134 | 197
169
155
146
135 | 530
404
348
309
1660 | 1380
567
411
334
274 | 515
440
376
911
604 | 44
39
37
33
32 | 12
12
146
51
24 | 122
44
28
21
55 | 9.1
7.9
7.1
6.9
6.3 | | 26
27
28
29
30
31 | 55
52
49
47
45
43 | 38
36
35
37
41 | 191
174
161
147
130
115 | 138
125
115
108
735
3820 | 126
116
109
 | 852
557
460
399
346
299 | 253
391
396
303
261 | 420
350
306
280
259
222 | 36
35
33
29
25 | 17
13
11
10
9.2
8.5 | 95
52
32
23
18
15 | 6.0
5.7
5.7
6.1
5.9 | | MEAN
MAX
MIN
IN. | 213
3570
9.3
0.89 | 47.6
89
35
0.19 | 328
2600
41
1.37 | 226
3820
60
0.94 | 322
2230
109
1.22 | 393
1660
110
1.64 | 291
1380
145
1.18 | 1658
11900
143
6.93 | 98.1
322
25
0.40 | 23.1
146
8.5
0.10 | 23.2
122
6.2
0.10 | 8.38
16
5.7
0.03 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 154
1094
1987
8.88
1979 | 353
1408
1986
9.94
1990 | 327
1488
1983
8.94
1990 | 269
822
1991
10.8
1977 | 346
1496
1985
42.5
1981 | 527
1673
1973
43.4
1996 | 516
1978
1994
26.8
1981 | 416
1658
2002
23.5
2000 | 224
1252
1995
15.9
1988 | 92.5
450
2000
4.16
1980 | 40.6
154
1985
2.72
1980 | 153
2348
1993
1.70
1980 | | SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1969 - 20 | | | | | | | | | - 2002 | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 9160
9.3
10

9.70
362
71
20 | Feb 24
Oct 4
Sep 28 | | 18900
20.96 | May 8
ep 27,28
Sep 24
May 12
May 13
ep 28,30 | | 284
554
85.6
24300
0.30
0.34
34300
27.10
0.30
13.99
572
86
10 | Aug 1
Aug
Sep 2
Sep 2 | 1993
2000
25 1993
10 1980
9 1980
24 1993
24 1993
10 1980 | | e Estimated # 06921070 POMME DE TERRE RIVER NEAR POLK, MO--Continued (Ambient Water-Quality Monitoring Network) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1983 to February 1986, November 1992 to current year. | DATE | TIME | SAMPL
TYPE | CH I CH I (C SAMPLE TYPE SE (0 | | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|--|---|---|--|---|--|---|--|---|---| | NOV
26 | 1235 | ENVIRONM | ENTAL | 38 | 10.3 | 97 | 7.9 | 460 | 10.9 | 240 | 49.7 | 28.8 | 2.76 | | JAN
09 | 0855 | ENVIRONM | ENTAL | 78 | 14.3 | 104 | 7.9 | 332 | .5 | | | | | | MAR
13 | 1245 | ENVIRONM | ENTAL | 212 | 13.8 | 125 | 8.4 | 386 | 9.4 | | | | | | MAY
20 | 1210 | ENVIRONM | ENTAL | 630 | 8.7 | 89 | 7.9 | 342 | 15.4 | 170 | 37.9 | 17.8 | 2.10 | | JUL
22 | 1115 | ENVIRONM | ENTAL | 12 | 5.3 | 69 | 7.8 | 405 | 26.9 | | | | | | SEP
09 | 1600 | ENVIRONM | ENTAL | 9.7 | 6.7 | 86 | 8.1 | 316 | 26.4 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
26
JAN | 5.87 | 221 | 223 | 272 | 0 | 13.8 | <.1 | 9.8 | <10 | 260 | <.04 | .18 | <.05 | | 09
MAR | | 196 | 195 | 237 | 0 | | | | <10 | | E.02 | .15 | 1.10 | | 13
MAY | | 168 | 169 | 197 | 5 | | | | <10 | | <.04 | .24 | .16 | | JUL | 4.14 | 154 | 154 | 188 | 0 | 7.23 | <.1 | 7.9 | 17 | 186 | <.04 | .27 | .47 | | 22
SEP | | 192 | 195 | 238 | 0 | | | | E12 | | <.04 | .38 | <.05 | | 09 | | 136 | 137 | 167 | 0 | | | | <10 | | <.04 | .37 | .06 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) |
PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | . 000 | . 05 | . 00 | . 06 | 773.0 | ***** | 63 | 1.0 | 21 | 4 | . 0.4 | . 1 | | | 26
JAN | <.008 | <.06 | <.02 | <.06 | K10 | K63 | 63 | 12 | 31 | . 4 | <.04 | <.1 | <6 | | 09
MAR | <.008 | <.06 | E.01 | <.06 | K14 | 22 | 29 | | | | | | | | 13
MAY | <.008 | <.06 | <.02 | <.06 | K7 | K5 | K2 | | | | | | | | 20
JUL | .084 | E.05 | <.02 | .08 | K180 | 500 | 420
170 | 46 | 182 | <.2 | <.04 | <.1 | E4 | | 22
SEP | <.008 | E.04 | .02 | E.05 | K78 | 125 | | | | | | | | | 09 | <.008 | .06 | .05 | .06 | 29 | 125 | 64 | | | | | | | # 06921070 POMME DE TERRE RIVER NEAR POLK, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 26 | 36 | E.06 | <1 | 12.1 | .01 | <.3 | | 4 | | JAN | | | | | | | | | | 09 | | | | | | | | | | MAR | | | | | | | | | | 13 | | | | | | | | | | MAY | | | | | | | | | | 20 | 63 | .18 | M | 14.0 | <.01 | E.2 | | 3 | | JUL | | | | | | | | | | 22 | | | | | | | | | | SEP | | | | | | | | | | 09 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ## 06921200 LINDLEY CREEK NEAR POLK, MO LOCATION.--Lat $37^{\circ}45^{\circ}02^{\circ}$, long $93^{\circ}15^{\circ}58^{\circ}$, in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.29, T.35 N., R.21 W., Polk County, Hydrologic Unit 10290107, on left bank 30 ft upstream from county highway bridge, 0.5 mi downstream from Panther Creek, 2.5 mi northeast of Polk, and 11 mi upstream from Ingalls Creek. DRAINAGE AREA. -- 112 mi². PERIOD OF RECORD. -- April 1957 to current year. GAGE.--Water-stage recorder. Datum of gage is 884.08 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 25, 1957, nonrecording gage at site 30 ft downstream at same datum. REMARKS.--Records fair except for discharges below 5 ft³/s, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHA | RGE, CUBIC | FEET PER | | VATER YE
MEAN VA | CAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---|------------------------------------|---|------------------------------------|---------------------------------------|--|--|-------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.1
1.0
0.96
1.0 | 10
22
51
29
21 | 15
e17
15
14
13 | 33
29
26
24
25 | 539
259
201
156
134 | 31
189
143
131
151 | 83
77
68
61
57 | 169
113
90
75
63 | 64
56
51
47
178 | 14
14
20
26
21 | 0.51
0.36
0.33
0.23
0.24 | 1.8
1.0
0.85
0.54
0.38 | | 6
7
8
9
10 | 58
16
7.4
6.9
2070 | 19
16
14
12
11 | 13
12
11
9.9
9.4 | 26
24
22
24
25 | 127
129
111
100
88 | 206
133
111
175
126 | 53
53
75
73
58 | 55
1070
4930
1840
390 | 82
57
48
46
52 | 17
15
13
12 | 0.16
0.05
0.00
0.00
0.05 | 0.30
0.22
0.17
0.13
0.11 | | 11
12
13
14
15 | 527
423
193
128
94 | 11
10
9.6
9.2
9.1 | 9.0
215
175
132
112 | 22
20
19
19
16 | 76
73
65
60
56 | 105
93
82
74
65 | 51
47
43
47
45 | 245
4580
5960
430
252 | 45
45
2820
244
128 | 12
13
14
16
13 | 0.20
0.16
0.18
0.28
0.23 | 0.08
0.05
0.01
0.02
0.09 | | 16
17
18
19
20 | 122
88
71
57
47 | 8.7
8.3
8.2
8.8
8.1 | 624
899
318
209
156 | 15
14
14
18
18 | 51
46
42
53
82 | 81
65
60
265
330 | 37
35
32
41
122 | 249
2560
546
270
192 | 88
66
52
42
34 | 10
8.6
7.6
6.7 | 0.54
3.0
3.5
3.3 | 0.08
0.08
0.05
0.07
0.11 | | 21
22
23
24
25 | 39
33
29
26
22 | 7.9
7.6
7.4
11 | 132
120
101
88
78 | 18
21
30
45
42 | 65
50
47
44
39 | 170
128
116
106
536 | 247
119
90
76
60 | 145
117
99
1010
317 | 29
26
23
21
20 | 12
8.8
88
36
16 | 12
9.5
10
10
9.7 | 0.07
0.02
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 18
14
14
12
11 | 9.8
8.7
8.3
9.3
13 | 72
65
62
55
45
38 | 36
33
30
28
568
2260 | 35
30
29
 | 212
163
136
119
104
93 | 63
182
183
114
116 | 184
133
111
107
87
74 | 25
23
18
17
16 | 12
7.9
5.4
3.5
1.8
0.92 | 8.8
7.6
6.0
4.8
3.6
2.7 | 0.00
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN
IN. | 135
2070
0.96
1.39 | 13.0
51
7.4
0.13 | 124
899
9.0
1.27 | 114
2260
14
1.18 | 99.5
539
29
0.93 | 145
536
31
1.49 | 80.3
247
32
0.80 | 854
5960
55
8.79 | 149
2820
16
1.48 | 15.2
88
0.92
0.16 | 3.65
15
0.00
0.04 | 0.21
1.8
0.00
0.00 | | MEAN
MAX
(WY)
MIN
(WY) | 80.6
812
1987
0.00
1977 | 107
566
1986
0.04
1964 | 116
526
1983
0.38
1964 | 97.4
358
1973
0.75
1964 | 130
764
1985
1.49
1964 | 191
855
1973
15.9 | 180
903
1994
4.86
1981 | 172
854
2002
6.04
2000 | 81.2
421
1985
0.73
1988 | 37.0
534
1958
0.08
1980 | 14.1
100
1958
0.00
1980 | 53.4
1134
1993
0.00
1960 | | SUMMA | RY STATISTI | CS | FOR | 2001 CAL | ENDAR YEAF | 3 | FOR 2002 | WATER YEA | R | WATER Y | EARS 1957 | - 2002 | | HIGHE
LOWES
HIGHE
LOWES
ANNUA
MAXIM
MAXIM
INSTA
ANNUA
10 PE
50 PE | L MEAN ST ANNUAL ME T ANNUAL ME ST DAILY MEA L SEVEN-DAY UM PEAK FLO UM PEAK STA NTANEOUS LO L RUNOFF (I RCENT EXCEE RCENT EXCEE | AN
AN
AN
MINIMUM
W
GGE
W FLOW
NCHES) | | 4110
0.37
0.39

10.32
164
26
1.3 | Feb 24
Sep 7-9
Sep 3 | 2
2
1 | 146
5960
0.00 Aug 8
0.00
24600
21.95
0.00
7.66
196
31
0.29 | May
,9,Sep 23
Sep
May
May
Several D | -30
23
13
13 | 104
247
18.8
12000
0.00
0.00
31900
23.60
0.00
12.68
184
25
0.48 | Many
Many
Oct
May | 1993
2000
1 1986
Years
Years
1 1986
5 1961
Years | e Estimated #### 06921325 POMME DE TERRE LAKE NEAR HERMITAGE, MO LOCATION.--Lat 37°54'06", long 93°19'05", in NE $\frac{1}{4}$ sec.2, T.36 N., R.22 W., Hickory County, Hydrologic Unit 10290107, in intake tower at dam on Pomme de Terre River, 3.0 mi southwest of Hermitage. DRAINAGE AREA. -- 611 mi². PERIOD OF RECORD. -- June 1960 to current year. GAGE.--Water-stage recorder. Nonrecording gage prior to Nov. 9, 1961. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). REMARKS.--Lake is formed by earthfill embankment with a concrete gravity section-type dam. Closure operation began on June 28, 1960; conservation pool level reached June 15, 1963. Capacity at top of flood control pool, 648,700 ac-ft at elevation 874.0 ft, crest of spillway, of which 407,200 ac-ft between elevations 839.0 ft and 874.0 ft is used for flood control, and 228,700 ac-ft between elevation 783.0 ft and 839.0 ft is used for
conservation and 12,840 ac-ft below elevation 783.0 ft is sediment storage. Lake is used for flood control and recreational purposes. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 506,000 ac-ft, Sept. 27, 1993, elevation, 864.58 ft; minimum, since initial filling to conservation pool level, 216,000 ac-ft, Mar. 3, 1964, elevation, 835.61 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 430,000 ac-ft, May 18, elevation 858.60 ft; minimum, 233,000 ac-ft, Sept. 30, elevation, 838.47 ft. ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 0800 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 838.82
838.80
838.79
838.75
838.98 | 839.36
839.17
839.06
839.10 | 839.28
839.30
839.31
839.32
839.36 | 841.54
841.43
841.34
841.24
841.15 | 842.87
843.41
843.64
843.77
843.85 | 840.78
840.86
841.03
841.15
841.18 | 842.36
842.19
842.09
841.99
841.88 | 842.49
842.48
842.41
842.32
842.22 | 853.32
852.74
852.16
851.57
851.08 | 840.13
840.10
840.16
840.14
840.12 | 839.90
839.86
839.82
839.79
839.76 | 839.09
839.07
839.04
839.02
839.00 | | 6
7
8
9
10 | 839.05
839.05
839.03
839.02
839.50 | 839.14
839.16
839.16
839.18
839.18 | 839.36
839.37
839.38
839.39 | 841.06
840.96
840.86
840.76
840.65 | 843.91
843.96
843.99
843.92
843.79 | 841.31
841.40
841.48
841.54
841.58 | 841.75
841.61
841.53
841.44
841.35 | 842.11
842.08
846.64
850.54
851.39 | 850.53
849.92
849.31
848.67
848.07 | 840.09
840.07
840.04
840.01
839.97 | 839.76
839.61
839.56
839.37
839.36 | 838.97
838.95
838.92
838.89
838.87 | | 11 | 841.14 | 839.18 | 839.39 | 840.56 | 843.66 | 841.59 | 841.30 | 851.28 | 847.46 | 839.96 | 839.32 | 838.84 | | 12 | 841.75 | 839.18 | 839.46 | 840.46 | 843.52 | 841.58 | 841.22 | 851.00 | 846.83 | 839.93 | 839.30 | 838.81 | | 13 | 841.92 | 839.18 | 839.64 | 840.35 | 843.38 | 841.57 | 841.16 | 855.82 | 846.91 | 840.00 | 839.29 | 838.78 | | 14 | 841.94 | 839.17 | 839.79 | 840.27 | 843.23 | 841.58 | 841.10 | 857.24 | 846.93 | 839.97 | 839.31 | 838.76 | | 15 | 841.87 | 839.18 | 839.87 | 840.15 | 843.06 | 841.50 | 841.08 | 857.14 | 846.33 | 839.94 | 839.28 | 838.75 | | 16 | 841.89 | 839.18 | 839.98 | 840.06 | 842.89 | 841.46 | 841.09 | 856.86 | 845.69 | 839.91 | 839.26 | 838.73 | | 17 | 841.83 | 839.18 | 840.82 | 839.93 | 842.72 | 841.42 | 841.06 | 857.01 | 845.05 | 839.88 | 839.22 | 838.72 | | 18 | 841.71 | 839.18 | 841.71 | 839.83 | 842.54 | 841.37 | 841.09 | 858.60 | 844.37 | 839.85 | 839.21 | 838.70 | | 19 | 841.68 | 839.22 | 841.97 | 839.74 | 842.37 | 841.35 | 841.01 | 858.52 | 843.69 | 839.82 | 839.18 | 838.66 | | 20 | 841.61 | 839.20 | 842.08 | 839.63 | 842.27 | 841.55 | 841.38 | 858.21 | 842.99 | 839.79 | 839.17 | 838.74 | | 21 | 841.53 | 839.21 | 842.13 | 839.54 | 842.13 | 841.77 | 841.90 | 857.79 | 842.30 | 839.76 | 839.17 | 838.72 | | 22 | 841.44 | 839.19 | 842.16 | 839.42 | 841.98 | 841.86 | 842.27 | 857.36 | 841.81 | 839.73 | 839.16 | 838.69 | | 23 | 841.24 | 839.17 | 842.14 | 839.37 | 841.82 | 841.89 | 842.31 | 856.87 | 841.31 | 840.09 | 839.19 | 838.66 | | 24 | 841.01 | 839.27 | 842.10 | 839.35 | 841.65 | 841.91 | 842.27 | 856.58 | 840.83 | 840.14 | 839.22 | 838.63 | | 25 | 840.80 | 839.25 | 842.06 | 839.33 | 841.47 | 841.95 | 842.20 | 856.76 | 840.57 | 840.13 | 839.21 | 838.60 | | 26
27
28
29
30
31 | 840.53
840.29
840.05
839.81
839.61
839.45 | 839.25
839.26
839.24
839.24
839.28 | 842.00
841.93
841.87
841.78
841.71
841.63 | 839.30
839.30
839.26
839.28
839.34
840.90 | 841.31
841.09
840.88
 | 842.50
842.68
842.76
842.71
842.62
842.50 | 842.13
842.11
842.35
842.38
842.33 | 856.38
855.93
855.43
854.93
854.41
853.87 | 840.36
840.25
840.18
840.19
840.17 | 840.10
840.09
840.04
840.01
839.97
839.93 | 839.19
839.19
839.18
839.16
839.13
839.11 | 838.57
838.55
838.52
838.50
838.47 | | MAX | 841.94 | 839.36 | 842.16 | 841.54 | 843.99 | 842.76 | 842.38 | 858.60 | 853.32 | 840.16 | 839.90 | 839.09 | | MIN | 838.75 | 839.06 | 839.28 | 839.26 | 840.88 | 840.78 | 841.01 | 842.08 | 840.17 | 839.73 | 839.11 | 838.47 | | (-) | 241000 | 240000 | 259000 | 253000 | 252000 | 266000 | 264000 | 376000 | 247000 | 245000 | 238000 | 233000 | | (=) | +5000 | -1000 | +19000 | -6000 | -1000 | +14000 | -2000 | +112000 | -129000 | -2000 | -7000 | -5000 | CAL YR 2001....+21000 WTR YR 2002....- 3000 ⁽⁻⁾ Contents, in acre-feet, at the end of the month.(=) Change in contents, in acre-feet. ## 06921350 POMME DE TERRE RIVER NEAR HERMITAGE, MO LOCATION.--Lat $37^{\circ}54^{\circ}20^{\circ}$, long $93^{\circ}19^{\circ}45^{\circ}$, in NW $\frac{1}{4}$ sec.2, T.36 N., R.22 W., Hickory County, Hydrologic Unit 10290107, on right bank 2,000 ft downstream from outlet of Pomme de Terre Lake, 2.5 mi southwest of Hermitage, 4.5 mi upstream from Green Branch, and at mile 43.4. DRAINAGE AREA. -- 615 mi². PERIOD OF RECORD. -- August 1960 to current year. GAGE.-- Water-stage recorder. Datum of gage is 749.33 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good. Flow regulated by Pomme de Terre Lake (06921325), 0.5 mi upstream. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|--|--|-------------------------------------|---|-------------------------------------|-------------------------------------|---|--|--------------------------------------|---|------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 43
43
52
4.4
5.3 | 949
729
51
50
50 | 52
52
52
52
52 | 484
484
483
481
481 | 423
420
421
420
420 | 375
291
290
387
485 | 999
842
715
715
715 | 752
753
752
754
755 | 3170
3160
3150
3140
3140 | 100
102
102
101
100 | 102
102
102
102
102 | 44
44
44
44 | | 6
7
8
9
10 | 4.3
4.0
3.7
13 | 50
50
51
51
51 | 52
52
52
52
52 | 481
480
478
478
478 | 420
420
680
919
919 | 487
486
486
489
487 | 715
715
716
717
572 | 758
844
822
1700
2460 | 3130
3110
3100
3090
3080 | 100
100
100
101
102 | 348
100
100
583
44 | 44
44
44
44 | | 11
12
13
14
15 | 7.2
191
498
496
390 | 51
51
51
51
52 | 52
67
168
252
252 | 478
478
478
478
478 | 919
919
919
918
917 | 487
487
487
487
487 | 490
492
493
494
389 | 2450
2460
2500
2500
2490 | 3070
3070
3100
3070
3060 | 101
104
102
101
100 | 43
44
44
44
43 | 44
44
44
45
45 | | 16
17
18
19
20 | 493
491
490
490
490 | 52
52
52
53
53 | 252
385
484
486
484 | 477
476
475
475
475 | 916
915
915
915
915 | 487
487
487
489
490 | 296
299
301
308
336 | 2480
2500
2660
3030
3250 | 3050
3040
3020
3020
3000 | 100
100
100
100
100 | 43
44
44
44 | 45
45
45
46
45 | | 21
22
23
24
25 | 490
736
1000
1000 | 52
52
52
52
52 | 484
485
486
485
484 | 475
357
247
248
248 | 915
913
912
911
912 | 492
491
490
491
493 | 312
542
744
745
744 | 3300
3280
3270
3290
3260 | 2410
2050
1960
1330
1060 | 100
102
109
102
102 | 44
44
44
44 | 45
45
45
45
45 | | 26
27
28
29
30
31 | 998
994
991
943
645
419 | 52
52
52
52
52
 | 484
484
484
484
484 | 247
247
157
82
92
206 | 914
911
752
 | 496
496
763
999
999 | 746
763
752
750
750 | 3250
3230
3220
3210
3200
3180 | 650
286
205
101
100 | 102
102
102
102
102
102 | 44
44
44
44
44 | 45
45
45
45
45 | | MEAN
MAX
MIN
IN. | 434
1000
3.7
0.81
STICS OF MC | 104
949
50
0.19 | 282
486
52
0.53 |
393
484
82
0.74 | 778
919
420
1.32 | 527
999
290
0.99 | 606
999
296
1.10 | 2334
3300
752
4.38 | 2397
3170
100
4.35 | 101
109
100
0.19 | 84.1
583
43
0.16 | 44.6
46
44
0.08 | | MEAN
MAX
(WY)
MIN
(WY) | 328
3116
1994
13.1
1969 | 547
2872
1987
7.50
1977 | 624
2886
1986
20.5
1963 | 503
2042
1993
20.4
1962 | 578
2100
1975
21.5
1963 | 869
3487
1985
24.6
1963 | 849
2948
1984
26.8
1963 | 907
4799
1961
26.4
1963 | 641
2397
2002
31.9
1969 | 356
2349
1995
26.0
1970 | 119
480
1978
18.6
1961 | 132
1110
1993
1.27
1960 | | SUMMAR | RY STATISTI | ICS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YEA | AR. | WATER YE | ARS 1960 | - 2002 | | LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAM ANNUAL 10 PER 50 PER | L MEAN ST ANNUAL ME T ANNUAL ME T DAILY ME T DAILY ME L SEVEN-DAY M PEAK SIZ WITANEOUS LC RUNOFF (I RECENT EXCER RCENT EXCER RCENT EXCER | EAN EAN AN MINIMUM AGE DW FLOW INCHES) EDS | | 1980
3.7
7.7

9.37
108
41 | Feb:
Oct
Oct | 8 | 3300
3.7
7.7
3430
9.00
3.5
14.83
2500
475
44 | May 2
Oct
Oct
May 2
May 2
Oct | 8
4
24
24 | 538
1163
67.8
9000
0.00
0.00
9000
15.02
0.00
11.88
1940
44 | Several
At
May | Times
9 1961
9 1961 | ## 06921582 SOUTH GRAND RIVER BELOW FREEMAN, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 38°35'20", long 94°26'30", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.27, T.44N., R.32 W., Cass County, Hydrologic Unit 10290108, access is on the left bank on upstream side of bridge on gravel road, approximately 2 mi south of State Highway 2, approximately 6.1 mi southwest of Harrisonville, and 4 mi southeast of Freeman. DRAINAGE AREA.--150 mi². PERIOD OF RECORD.--October 1997 to current year. October 1998 to September 2000 published as South Grand River at Grand River Church (06921881). | DATE | TIME | SAMPLI
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|--|--|---|--|---|---|--|--|--|--|--|---| | OCT
17 | 1345 | ENVIRONM | ENTAL | 46 | 9.1 | 84 | 8.1 | 810 | 10.5 | | | | | | NOV
13 | 1100 | ENVIRONM | ENTAL | 3.7 | 6.0 | 56 | 7.9 | 723 | 11.0 | 290 | 95.0 | 12.8 | 6.06 | | DEC 18 | 1135 | ENVIRONM | ENTAL | 4.9 | 10.3 | 84 | 8.2 | 835 | 5.5 | | | | | | JAN
23
23 | 1210
1245 | ENVIRONM
BLANK | ENTAL | 3.8 | 14.7 | 116
 | 8.3 | 659
 | 4.0 | 250
 | 81.0
.04 | 11.2 | 5.19
<.10 | | FEB 20 | 1155 | ENVIRONM | ENTAL | 125 | 9.4 | 84 | 8.3 | 460 | 9.0 | | | | | | MAR
04 | 1220 | ENVIRONM | ENTAL | 22 | 14.5 | 105 | 8.3 | 526 | 1.0 | | | | | | APR 23 | 1200 | ENVIRONM | ENTAL | 120 | 7.6 | 80 | 8.1 | 413 | 16.5 | | | | | | MAY
15 | 1135 | ENVIRONM | ENTAL | 239 | 9.3 | 100 | 8.1 | 436 | 17.5 | 200 | 68.5 | 7.15 | 3.38 | | JUN
11 | 1135 | ENVIRONM | ENTAL | 19 | 6.8 | 85 | 8.1 | 543 | 24.5 | | | | | | JUL
10 | 1155 | ENVIRONM | ENTAL | 1.6 | 6.0 | 83 | 8.1 | 734 | 30.5 | 250 | 82.6 | 11.5 | 4.10 | | AUG
13
SEP | 1240 | ENVIRONM | ENTAL | 8.2 | 5.2 | 64 | 8.2 | 785 | 24.0 | | | | | | 25 | 1230 | ENVIRONM | ENTAL | .62 | 7.6 | 85 | 8.0 | 1080 | 19.5 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | DIS-
SOLVED
(mg/L
as Na) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
17
NOV | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
17
NOV
13
DEC | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 196 257 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .71 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .60 E.03 | | OCT 17 NOV 13 DEC 18 JAN 23 | DIS-
SOLVED
(mg/L
as Na)
(00930)

41.5 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 196 257 234 200 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 196 259 234 199 | BICAR-BONATE
IT FIELD (mg/L as HCO ₃) (00450)
239
316
286
243 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

24.1

33.5 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) 102 94.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L)
(00530) 61 16 20 12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.71
.59
.43 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.60
E.03
.72 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04 | DIS-
SOLVED
(mg/L
as Na)
(00930)

41.5

45.5
<.09 | WATER
UNFITRD
FET
FIELD (mg/L as
CaCO ₃) (00410)
196
257
234
200 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
196
259
234
199 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
239
316
286
243 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

24.1

33.5
<.30 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

.3

.3
<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945)
102
94.7 <.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 61 16 20 12 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .71 .59 .43 .51 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .60 E.03 .72 1.79 <.05 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23 | DIS-
SOLVED
(mg/L
as Na)
(00930)

41.5

45.5
<.09 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 196 257 234 200 177 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
196
259
234
199
 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
239
316
286
243
 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

24.1

33.5
<.30 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945)

102
94.7
<.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 61 16 20 12 <10 82 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .71 .59 .43 .51 <.10 .93 | GEN, NO2+NO3 DIS- SOLVED (mg/L as N) (00631) .60 E.03 .72 1.79 <.05 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23 | DIS-
SOLVED
(mg/L
as Na)
(00930)

41.5

45.5
<.09 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 196 257 234 200 177 209 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 196 259 234 199 177 210 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
239
316
286
243

216
257 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

24.1

33.5
<.30 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

.3

.3
<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945)
102
94.7 <.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 61 16 20 12 <10 82 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

460

408
<10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .71 .59 .43 .51 <.10 .93 | GEN, NO2+NO3 DIS- SOLVED (mg/L as N) (00631) .60 E.03 .72 1.79 <.05 .43 .61 | | OCT
17
NOV
13
DEC
18
JAN
23
FEB
20
MAR
04
APR
23
MAY
15
JUN
11 | DIS-
SOLVED
(mg/L
as Na)
(00930)

41.5

45.5
<.09 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 196 257 234 200 177 209 162 | WATER
UNFLTRD
IT
FIELD (mg/L as
CaCO ₃)
(00419)
196
259
234
199

177
210 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 239 316 286 243 216 257 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

24.1

33.5
<.30 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.3

.3
<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 102 94.7 <.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 61 16 20 12 <10 82 <10 160 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

460

408
<10
 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.08 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .71 .59 .43 .51 <.10 .93 .33 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .60 E.03 .72 1.79 <.05 .43 .61 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23
MAY
15
JUN
11
JUL
10 | DIS-
SOLVED
(mg/L
as Na)
(00930)

41.5

45.5
<.09

 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 196 257 234 200 177 209 162 177 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
196
259
234
199

177
210
164
174 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 239 316 286 243 216 257 200 213 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

24.1

33.5
<.30

8.26 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.3

.3
<.1

 | DIS-
SOLVED (mg/L as SO ₄) (00945) 102 94.7 <.1 34.8 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 61 16 20 12 <10 82 <10 160 108 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

460

408
<10

275 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .71 .59 .43 .51 <.10 .93 .33 1.3 .82 | GEN, NO2+NO3 DIS- SOLVED (mg/L as N) (00631) .60 E.03 .72 1.79 <.05 .43 .61 .70 .85 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23
MAY
15
JUN
11 | DIS-
SOLVED
(mg/L
as Na)
(00930)

41.5

45.5
<.09

10.8 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 196 257 234 200 177 209 162 177 218 | WATER UNFLITED TT FIELD (mg/L as CaCO ₃) (00419) 196 259 234 199 177 210 164 174 220 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
239
316
286
243

216
257
200
213
269 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

24.1

33.5
<.30

8.26 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

.3

.3
<.1

.2 | DIS-
SOLVED (mg/L as SO ₄) (00945) 102 94.7 <.1 34.8 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 61 16 20 12 <10 82 <10 160 108 40 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 460 408 <10 275 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .71 .59 .43 .51 <.10 .93 .33 1.3 .82 .45 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .60 E.03 .72 1.79 <.05 .43 .61 .70 .85 | # 06921582 SOUTH GRAND RIVER BELOW FREEMAN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(μg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |--|---|--|--|--|--|--|--|--|---|--|---|---|--| | OCT
17 | .008 | .11 | .11 | .23 | K450 | 1400 | 1600 | | | | | | | | NOV
13 | <.008 | .07 | .06 | .15 | 23 | 50 | 100 | 3 | 463 | 1.9 | E.02 | <.1 | <6 | | DEC
18 | E.007 | .08 | .04 | .11 | 120 | 82 | 230 | | | | | | | | JAN
23 | .010 | .15 | .14 | .21 | K12 | K11 | 98 | 5 | 199 | 1.7 | .05 | <.1 | <6 | | 23
FEB | <.008 | <.06 | <.02 | <.06 | | | | 4 | 4 | <.2 | <.04 | <.1 | <6 | | 20
MAR | .009 | .07 | .04 | .19 | 720 | 320 | 810 | | |
 | | | | 04
APR | E.005 | E.04 | .03 | .08 | K3 | K2 | 27 | | | | | | | | 23
MAY | .028 | .08 | .06 | .24 | 850 | K2400 | K2800 | | | | | | | | 15
JUN | .032 | E.04 | .02 | .20 | 1000 | 470 | 800 | 2 | 1300 | 1.3 | <.04 | E.1 | <6 | | 11
JUL | .009 | E.04 | .04 | .10 | K11 | 93 | 160 | | | | | | | | 10
AUG | <.008 | E.05 | .04 | .11 | K60 | 42 | 100 | 2 | 430 | 2.4 | .04 | E.1 | <6 | | 13
SEP | <.008 | .07 | .05 | .16 | 1400 | 620 | 2000 | | | | | | | | 25 | E.004 | E.05 | .03 | .09 | K20 | 67 | 130 | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | DATE OCT 17 | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | | OCT | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV
13
DEC | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<1

4 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV
13
DEC
18
JAN | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- REABLE (µg/L as Pb) (01051) M | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS-
SOLVED (µg/L) (34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT 17 NOV 13 DEC 18 JAN 23 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E5

24 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

371

37.4 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<1

4 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260)

<.004 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS-
SOLVED (µg/L) (34253)
<.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E5

24 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- REABLE (µg/L as Pb) (01051) M <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

371

37.4 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.2

.6
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<1

4 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.002
 | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E5

24
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- REABLE (µg/L as Pb) (01051) M <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

371

37.4
<2.0 | TOTAL RECOV- REABLE (μg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.2

.6
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<1

4 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 4 3 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLITED
REC
(µg/L)
(49260)

<.004

 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.002 | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E5

24
<10
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.07
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

371

37.4
<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.2

.6
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<1

4
2 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 4 3 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 | CHLOR, WATER FLTRD FLTRD REC (µg/L) (49260) <.004 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.024

.021 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23
MAY
15
JUN | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E5

24
<10
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.07
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

371

37.4
<2.0 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.2

.6
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<1

4
2

 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 4 3 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 <.010 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.024

.021
1.69 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23
MAY
15
JUN
11
JUN
11 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E5

24
<10
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.07
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M <1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 371 37.4 <22.0 79.9 | TOTAL RECOV- REABLE (μg/L as Hg) (71900) <.01 <.01 E.01 | NIUM,
DIS-
SOLVED (μg/L
as Se)
(01145)

E.2

.6
<.3

 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<1

4
2

 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 4 3 | ETHYL ANILINE WAT FIT 0.7
μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004 <.006 .701 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 <.010 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.024

.021
1.69
.542 | | OCT 17 NOV 13 DEC 18 JAN 23 23 FEB 20 MAR 04 APR 23 MAY 15 JUN 11 JUL | DIS-
SOLVED (µg/L as Fe) (01046) E5 24 <10 E8 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.07
<.08

E.04 | TOTAL RECOV- RERABLE (µg/L as Pb) (01051) M <1 2 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

371

37.4
<2.0

79.9 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.01 E.01 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

E.2

.6
<.3

1.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

<1

4
2

<1 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 4 3 9 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER FLTRD FLTRD REC (µg/L) (49260) <.004 <.006 .701 .074 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 <.010 .008 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 024021 1.69 .542 | # 06921582 SOUTH GRAND RIVER BELOW FREEMAN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA WATER FLTRD 0.7 µ GF, REC (µg/L) (82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | |---|--|---|--|--|--|---|--|--|---|--|---|---|---| | OCT
17 | | | | | | | | | | | | | | | NOV
13 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.010 | <.005 | <.005 | <.02 | <.002 | <.009 | | DEC 18 | ~.010 | | ~.U41 | | | | | E.010 | | ·.003 | | | | | JAN
23 | | | | | | | | | | | | | | | 23
23
FEB | | | | | | | | | | | | | | | 20
MAR | | | | | | | | | | | | | | | 04
APR | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.009 | <.005 | <.005 | <.02 | <.002 | <.009 | | 23 | <.010 | <.002 | E.021 | <.020 | <.005 | <.018 | .019 | E.085 | .057 | <.005 | <.02 | <.002 | <.009 | | MAY
15 | <.010 | <.002 | E.004 | <.020 | <.005 | <.018 | <.003 | E.059 | .015 | <.005 | <.02 | <.002 | <.009 | | JUN
11 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.039 | <.005 | <.005 | <.02 | <.002 | <.009 | | JUL
10 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.037 | E.003 | <.005 | <.02 | <.002 | <.009 | | AUG
13
SEP | | | | | | | | | | | | | | | 25 | DATE | ETHO-
PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
17
NOV | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | ОСТ
17 | PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
17
NOV
13
DEC
18
JAN | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT
17
NOV
13
DEC
18 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684)

<.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FBB
20 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L) (39341)
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)

<.050 | PARA-
THION
WAT FLIT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE
WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82684)

<.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT 17 NOV 13 DEC 18 JAN 23 23
FEB 20 MAR 04 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L) (39341) <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003

 | THION,
DIS-
SOLVED (µg/L)
(39542)

<.007
 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23 | PROP WATER FLTRD 0.7 μ GF, REC (μg/L) (82672) <.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004

 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 | AZIN- PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 | PARA-
THION
WAT FLIT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 E.005 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 | MMIDE
WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82684)

<.007

<.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 | | OCT
17
NOV
13
DEC
18
JAN
23
FEB
20
MAR
04
APR
23 | PROP WATER FLTRD 0.7 μ GF, REC (μg/L) (82672) <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 E.005 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 | | OCT
17
NOV
13
DEC
18
JAN
23
23
FEB
20
MAR
04
APR
23
MAY
15
JUN
11 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 E.005 .015 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLITRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 | | OCT 17 NOV 13 DEC 18 JAN 23 23 FEB 20 MAR 04 APR 23 MAY 15 JUN 11 JUL | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 | AZIN- PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLIT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006

<.006
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 E.005 .015 .019 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLITRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 <.010 | # 06921582 SOUTH GRAND RIVER BELOW FREEMAN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | |-----------|---|---|--|--|---|---|---|--|--|---|---|--|--| | OCT | | | | | | | | | | | | | | | 17 | | | | | | | | | | | | | | | NOV | | | | | | | | | | | | | | | 13
DEC | <.002 | <.010 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | | 18 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 04 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.05 | <.034 | <.02 | | APR | | | | | | | | | | | | | | | 23 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | MAY | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .031 | <.02 | <.034 | <.02 | | 15
JUN | <.004 | <.022 | <.000 | <.011 | E.UI | <.004 | <.010 | <.011 | <.∪∠ | .031 | <.02 | <.034 | <.∪∠ | | 11 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .025 | <.02 | <.034 | <.02 | | JUL | 1.001 | 1.022 | <.000 | V.011 | \.U± | V.004 | √.010 | V.011 | 1.02 | .025 | 1.02 | V.034 | 1.02 | | 10 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | .006 | <.02 | <.034 | <.02 | | AUG | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | DATE | THIO-
BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | (µg/L) | |-----------|---|---|--------| | OCT | | | | | 17 | | | | | NOV
13 | <.005 | <.002 | <.009 | | DEC | <.005 | <.002 | <.009 | | 18 | | | | | JAN | | | | | 23 | | | | | 23 | | | | | FEB 20 | | | | | MAR | | | | | 04 | <.005 | <.002 | <.009 | | APR | | | | | 23 | <.005 | <.002 | <.009 | | MAY
15 | <.005 | <.002 | <.009 | | JUN | <.005 | <.002 | <.009 | | 11 | <.005 | <.002 | <.009 | | JUL | | | | | 10 | <.005 | <.002 | <.009 | | AUG | | | | | 13
SEP | | | | | 25 | | | | K--Results based on colony
count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 06921760 SOUTH GRAND RIVER NEAR CLINTON, MO LOCATION.--Lat $38^{\circ}22'16"$, long $93^{\circ}51'23"$, in NW $\frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.1, T.41 N., R.27 W., Henry County, Hydrologic Unit 10290108, at right upstream end of bridge on State Highway 18, 4.4 mi west of Clinton, and 5.4 mi downstream from Big Creek. DRAINAGE AREA.--1,270 mi². PERIOD OF RECORD.--October 1986 to current year. GAGE.--Water-stage recorder. Datum of gage is 700.00 ft above National Geodetic Vertical Datum of 1929. Auxiliary water-stage recorder 3.3 mi upstream from base gage at same datum. REMARKS.--Discharge is calculated using fall computations due to backwater from Harry S. Truman Reservoir. Records poor. U.S. Army Corps of Engineers satellite telemeter at base and auxiliary gage. EXTREMES FOR CURRENT YEAR.--Maximum daily discharge, 28,400 ${\rm ft}^3/{\rm s}$, May 10; minimum 13 ${\rm ft}^3/{\rm s}$, Sept. 24. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YEAR
Y MEAN VALU | | 2 2001 TC |) SEPTEMBE | R 2002 | | | |----------------------------------|-----------------------------------|----------------------------|----------------------------------|-----------------------------------|-----------------------------------|----------------------------------|------------------------------------|--|--|----------------------------------|----------------------------------|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 77
73
73
72
422 | 50
46
49
50
48 | 30
31
32
33
38 | 46
42
40
36
34 | 950
1780
1150
847
650 | 159
151
151
151
141 | 85
70
61
58
53 | 1260
859
626
465
361 | e1130
e920
e760
e760
e1400 | 105
101
102
104
101 | 40
38
39
40
40 | 23
22
21
22
21 | | 6
7
8
9
10 | 2930
1840
774
490
378 | 45
41
37
31
36 | 36
40
37
42
42 | 38
40
44
40
39 | 489
390
307
257
200 | 146
171
203
209
220 | 59
69
69
72
93 | 300
1410
7300
20800
28400 | e2150
e1510
e891
e676
e529 | 105
111
107
98
95 | 40
41
40
39
e36 | 19
18
17
17
15 | | 11
12
13
14
15 | 444
356
253
199
194 | 36
36
36
35
34 | 40
40
38
46
60 | 38
37
49
46
46 | 184
144
129
114
113 | 224
209
190
182
166 | 122
144
500
446
280 | 21300
14000
e8510
e6270
e4180 | e408
656
2270
2970
1750 | 85
88
126
168
135 | e35
e34
e34
e32
e32 | 15
14
14
15
16 | | 16
17
18
19
20 | 313
605
538
376
268 | 34
32
34
33
26 | 65
69
73
70
74 | 48
45
44
42
45 | 110
120
114
122
218 | 154
142
132
128
121 | 209
161
135
122
139 | e2360
e3220
e4930
e3380
e2150 | 1210
917
750
607
498 | 115
97
87
78
74 | e30
30
29
30
28 | 16
16
14
18
16 | | 21
22
23
24
25 | 213
170
143
113
92 | 33
34
33
34
29 | 90
80
68
58
64 | 42
46
57
75
73 | 551
614
465
360
279 | 112
104
99
95
97 | 283
1100
1110
696
478 | e1400
e1130
e973
e1190
e4180 | 418
348
303
263
230 | 95
106
85
73
65 | 33
37
35
37
31 | e15
e15
e14
e13 | | 26
27
28
29
30
31 | 82
65
69
63
56
54 | 34
27
27
29
30 | 63
58
58
56
52
50 | 61
50
52
54
71
764 | 224
198
174
 | 90
88
83
80
79
80 | 356
621
3360
4440
2420 | e6530
e7820
e4230
e3060
e1780
e1240 | 191
151
132
107
112 | 56
49
43
43
42
42 | 25
21
21
21
22
23 | 15
14
14
16
17 | | MEAN
MAX
MIN
IN. | 380
2930
54
0.35 | 50
26 | 52.7
90
30
0.05 | 70.4
764
34
0.06 | 402
1780
110
0.33 | 140
224
79
0.13 | 594
4440
53
0.52 | 5342
28400
300
4.85 | 834
2970
107
0.73 | 89.7
168
42
0.08 | 32.7
41
21
0.03 | 16.6
23
13
0.01 | e Estimated #### 06922440 HARRY S. TRUMAN RESERVOIR AT WARSAW, MO LOCATION.-- Lat 38°15'30", long 93°23'40", in NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.7, T.40 N., R.22 W., Benton County, Hydrologic Unit 10290105, in control room near middle of dam on Osage River, 1.5 mi northwest of Warsaw, and at mile 175. DRAINAGE AREA.--11,500 mi^2 , with 7,856 mi^2 uncontrolled area below other reservoirs. PERIOD OF RECORD.--October 1981 to current year. Records collected at same site since 1977 available from U.S. Army Corps of GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). REMARKS.--Lake is formed by a rolled earthfill type dam. Storage began on July 21, 1977. Spillway is equipped with 4 tainter gates 40 ft wide by 47.3 ft high. Capacity of surcharge pool 2,911,000 ac-ft (elevation 739.6 ft to 751.1 ft); of flood control pool 4,006,000 ac-ft (elevation 706.0 ft to 739.6 ft); and of multipurpose pool 1,203,000 ac-ft (elevation 635.0 ft to 706.0). Lake is used for flood control, power, recreation, and fish and wildlife enhancement. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 5,020,000 ac-ft, Oct. 11, 12, 1986, elevation, 738.69 ft, Oct. 11, 1986; minimum, 41,700 ac-ft, Nov. 14, 1978, elevation, 661.0 ft. EXTREMES FOR CURRENT YEAR. -- Maximum contents, 2,740,000 ac-ft, May 18, elevation, 724.41 ft; minimum, 1,130,000 ac-ft, Sept. 10, elevation, 704.99 ft. ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 2400 DAY OCT NOV DEC TAN FEB MAR APR MAY JITIN TTTT. ATTG SEP 705.60 706.46 705.83 706.24 706.55 708.63 707.01 705.58 709.04 721.30 707.76 705.78 2 706.47 705.94 706.31 706.47 708.92 707.23 705.52 708.86 720.96 707.78 705.77 705.58 706.49 706.00 706.38 706.36 708.93 707.27 705.45 708.55 720.50 707.08 705.82 705.32 708.66 706.67 706.02 706.42 706.32 707.19 705.41 708.15 719.91 707 04 705.84 705 18 5 707.16 705.93 706.46 706.34 708.41 707.12 705.47 707.71 719.18 707.12 705.83 705.02 708.12 6 707 46 705.89 706 51 706.38 707 10 705 52 707 28 718 31 707 17 705 88 705 03 707.65 705.85 706.58 706.33 707.77 707.24 705.55 708.82 717.45 707.13 705.88 705.08 8 707.51 705.80 706.64 706.27 707.46 707.38 705.61 711.90 716.56 706.92 705.92 705.08 705.66 707 41 705.81 706.68 706.30 707.40 707.39 714 50 716 06 706.71 705 98 705 02 10 705.82 706.34 707.44 705.72 716.53 715.63 704.99 708.40 706.52 707.15 707.20 706.02 11 708 46 705 81 706 40 706 39 706 90 707.48 705 79 717 82 715 26 707 18 706 00 705 03 706.42 718.94 715.32 12 708.25 705.83 706.38 706.87 707.37 705.86 707.27 705.98 705.04 707.38 715.77 707.41 13 708.35 705.84 706.41 706.47 706.85 705.95 720.48 706.02 705.06 14 708 40 705.86 706 55 706 53 707.00 707 37 706 00 721 75 715 62 707.39 706 03 705 12 706.56 15 708.13 705.87 706.63 707.07 707.44 706.09 722.64 715.51 707 25 705.98 705.12 16 707 60 705 88 706 73 706 62 707 13 707 48 706 12 723 30 715 29 707 12 706 02 705 11 707.35 705.89 706.80 706.60 707.20 707.48 705.92 723.97 714.89 706.93 706.01 705.13 17 707.26 705.98 706.98 706.51 707.22 707.48 705.98 724.41 714.34 706.73 706.00 705.17 19 707 15 705.97 706 90 706 56 707 29 707 40 706 18 724 38 713 78 706 56 706 02 705 30 20 707.16 705.98 706.87 706.61 707.28 707.10 706.64 724.03 713.17 706.52 706.02 705.28 707 19 707 36 706 90 707 21 705 27 21 705.98 706 88 706 63 723 50 712 54 706 44 705 96 22 707.04 711.89 705.98 706.95 706.60 707.42 706.67 707.45 722.88 706.23 705.76 705.26 705.24 23 706.79 705.98 707.01 706.64 707.57 706.58 707.68 722.22 711.22 706.25 705.49 707 03 24 706 49 706 16 706 62 707 64 706 39 707 68 722 38 710 60 706 22 705 53 705 20 25 706.21 706.06 707.06 706.52 706.33 709.88 706.11 705.20 705.91 707.40 707.26 705.91 26 706.15 706.93 706.49 706.22 722.09 709.13 705.45 705.20 705.90 706.53 707.21 705.93 27 706.10 706.86 706.07 708.14 721.97 708.53 705.49 705.20 706.11 28 705.92 706.87 706.55 706.98 705.97 708.85 721.80 707.94 705.93 705.53 705.19 707.96 29 705.81 706.17 706.84 706.59 ---705.88 709.18 721.70 705.90 705.55 705.18 30 705.81 706.22 706.76 706.82 705.77 709.13 721.64 707.88 705.91 705.58 705.17 31 705.81 706.64 708.12 705.68 721.50 705.86 705.61 721.30 708.46 706.22 707.06 708.12 708.93 707.48 709.18 724.41 707.78 706.03 705.60 MAX MTN 705.81 705.80 706.24 706.27 706.85 705.68 705.41 707.28 707.88 705.86 705.45 704.99 1170000 1190000 1220000 1310000 1180000 1160000 1370000 2420000 1290000 1170000 1160000 1140000 -20000 +210000 +1050000 -1130000 -120000 -20000 -10000 CAL YR 2001....+116000 WTR YR 2002....- 60000 -30000 (=) +30000 +90000 -130000 +20000 ⁽⁻⁾ Contents, in acre-feet, at the end of the month.(=) Change in contents, in acre-feet. #### 06922450 OSAGE RIVER BELOW HARRY S. TRUMAN DAM AT WARSAW, MO LOCATION.--Lat 38°15'41", long 93°24'16", NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.17, T.40 N., R.22 W., Benton County, Hydrologic Unit 10290109, on right bank 2,000 ft below Harry S Truman Dam, 1.5 mi northwest of Warsaw. DRAINAGE AREA.--11,500 mi^2 , with 7,856 mi^2 uncontrolled area below other reservoirs. PERIOD OF RECORD. -- May 1978 to current year. GAGE.--Acoustic flow monitor. Datum of gage is National Geodetic Vertical Datum
of 1929 (levels by the U.S. Army Corps of Engineers). REMARKS.--Records not published prior to 1982 water year due to test period of acoustic flow monitor which included periods of unreliable record. Flow completely regulated by Harry S. Truman Dam (06922440), 2,000 ft upstream. U.S. Army Corps of Engineers satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 COOPERATION. -- Records were provided by the U.S. Army Corps of Engineers. | | | DISCHA | RGE, CUB | IC FEEL P. | | MEAN VA | | ER 2001 10 | SELIEMBE | R 2002 | | | |------------------------------------|--|--|---|--------------------------------------|---|--|---|--|---|---|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0
0
0
0
1010 | 100
0
0
0
3390 | 0
0
0
0 | 2540
3680
3650
2170 | 7540
7490
9750
14200
12600 | 3990
0
0
4680
5270 | 3350
3680
2800
2800
1570 | 20600
17200
17500
17400
17900 | 41300
41600
41800
42200
45700 | 4470
3330
3550
4790
500 | 3370
2300
500
500
1620 | 300
300
6620
4340
5490 | | 6
7
8
9
10 | 0
0
6930
2790
0 | 0 | 5750 | 0
2920
2190
0
0 | 12800
13700
12400
6850
8270 | 4730
0
1360
4380
1800 | 833
833
1640
833
729 | 18300
0
0
0
0 | 52500
51900
51800
39800
34000 | 500
1870
7860
9100
8940 | 500
500
500
500
500 | 1040
300
300
1650
288 | | 11
12
13
14
15 | 7250
13000
0
0
11900 | 0
0
0
0 | 5070
4890
717
0 | 0
0
0
0 | 9650
3280
3780
0
1010 | 2690
6500
1090
4330
0 | 680
680
680
680
550 | 6430
10400
0
181
300 | 31900
27000
26000
29800
30000 | 4480
4160
500
1410
5150 | 500
500
1240
500
1780 | 200
225
133
200
200 | | 16
17
18
19
20 | 17700
8760
4520
5300
988 | 0
0
0
0 | 0
0
0
6120
2170 | 0
2050
3560
0 | 2030
0
1990
2020
4150 | 0
2980
2140
4790
10300 | 3810
8110
2030
383
383 | 7200
12900
12800
26100
37100 | 30400
34100
34600
33500
32700 | 6630
7720
8100
7750
4040 | 500
500
500
383
1500 | 133
200
83
0
83 | | 21
22
23
24
25 | 667
6890
7570
9920
8470 | 0
0
0
0 | 1450
0
0
0
0 | 0
2490
0
2140
3180 | 2650
3300
0
2420
6950 | 8730
7590
4640
6060
4420 | 383
2120
3570
10100
9460 | 46900
51600
52300
36400
36300 | 32800
31600
31900
29000
30000 | 4400
8750
1110
3090
4650 | 3900
6610
9380
300
300 | 200
200
200
146
100 | | 26
27
28
29
30
31 | 8670
617
647
4300
729
721 | 0
0
0
0
0 | 2550
2930
0
2420
2880
4370 | 1760
0
0
0
4220
3420 | 7200
9650
8300

 | 4130
5200
4350
4800
4190
4080 | 13600
8560
8460
11700
24900 | 43600
44900
45100
41800
40200
41000 | 28000
21500
21600
2330
2800 | 7420
500
500
500
1650
2580 | 300
300
300
300 | 33
0
0
0
67 | | MEAN
MAX
MIN | 4173
17700
0 | 261
3390
0 | 1333
6120
0 | 1289
4220
0 | 6214
14200
0 | 3846
10300
0 | 4330
24900
383 | 22660
52300
0 | 32800
52500
2330 | 4194
9100
500 | 1375
9380
300 | 768
6620
0 | | STATIS | TICS OF M | ONTHLY ME | AN DATA | FOR WATER | YEARS 1982 | - 2002 ^a | , BY WAT | ER YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 9333
52090
1987
0.00
1996 | 10050
42250
1987
23.8
1996 | 11790
43020
1993
83.6
1996 | 7623
32520
1993
431
2001 | 8549
20050
1982
933
1996 | 13400
44920
1985
864
1996 | 13900
32720
1984
253
1996 | 16810
48830
1994
966
2000 | 17350
48240
1995
585
1988 | 9189
43150
1995
551
1991 | 5232
28320
1993
367
1991 | 3403
18300
1993
135
1999 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CAL | ENDAR YEAR | F | OR 2002 | WATER YEAR | | WATER Y | EARS 1982 | - 2002 ^a | | LOWEST
HIGHES | MEAN
T ANNUAL
ANNUAL M
T DAILY ME | EAN
EAN | | 6813
50600
0 | Jun 13
Many Days | | 6914
52500
0 | Jun 6
Many Days | | 10810
18760
2516
71100
0 | | 1993
1991
20 1986
y Years | ^a Post-regulation period. # 06923700 NIANGUA RIVER BELOW BENNETT SPRINGS, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $37^{\circ}44^{\circ}17^{\circ}$, long $92^{\circ}51^{\circ}37^{\circ}$, in NE $\frac{1}{4}$ SE $\frac{1}{4}$ SEc. 25, T.35 N., R.18 W., Dallas County, Hydrologic Unit 10290110, at bridge on Highway 64, 1,200 ft downstream from inflow of Bennett Spring Branch. PERIOD OF RECORD. -- October 1983 to September 1988, July 1991 to current year. REMARKS.--Ambient Water-Quality Monitoring Network station October 1983 to September 1988, November 1993 to current year. Special project station July 1991 to October 1995. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
01 | 1055 | ENVIRONM | ENTAL | 147 | 9.6 | 98 | 7.8 | 375 | 14.5 | 200 | 40.8 | 23.5 | .75 | | JAN
22 | 1035 | ENVIRONM | ENTAT. | 171 | 11.3 | 100 | 7.1 | 348 | 8.7 | | | | | | MAR
18 | 1045 | | | 376 | 12.3 | 115 | 8.1 | 352 | 11.3 | | | | | | MAY | | ENVIRONM | | | | | | | | | | | | | 21
21
JUL | 1115
1116 | ENVIRONM
REPLICAT | | 1160 | 9.8 | 98
 | 7.7 | 229
 | 14.6 | 120 | 25.7
 | 13.6 | .46
 | | 29
SEP | 1110 | ENVIRONM | ENTAL | 165 | 8.3 | 89 | 7.4 | 381 | 17.4 | | | | | | 09 | 1400 | ENVIRONM | ENTAL | 140 | 12.8 | 139 | 7.9 | 394 | 18.1 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
01
JAN | 4.03 | 185 | 186 | 227 | 0 | 5.87 | <.1 | 5.5 | <10 | 202 | <.04 | .14 | .77 | | 22
MAR | | 163 | 164 | 200 | 0 | | | | <10 | | <.04 | .14 | .91 | | 18 | | 193 | 193 | 235 | 0 | | | | <10 | | <.04 | .14 | .67 | | MAY
21 | 4.84 | 107 | 106 | 130 | 0 | 5.62 | <.1 | 5.5 | 18 | 130 | E.02 | .22 | 1.07 | | 21
JUL | | | | | | | | | | | <.04 | .21 | .87 | | 29
SEP | | 182 | 183 | 223 | 0 | | | | <10 | | <.04 | .12 | .92 | | 09 | | 201 | 203 | 248 | 0 | | | | <10 | | E.02 | E.09 | .89 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF
STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV 01 | E.006 | <.06 | <.02 | E.03 | K2 | 40 | 31 | 22 | 44 | .2 | <.04 | <.1 | <6 | | JAN
22 | E.004 | <.06 | <.02 | E.03 | 330 | к4 | К8 | | | | | | | | MAR
18 | <.008 | <.06 | <.02 | <.06 | K1 | K1 | К6 | | | | | | | | MAY
21
21 | .016
.063 | E.04
E.04 | E.01
<.02 | E.04
E.04 | 120
650 | 220
237 | 372
334 | 123 | 228 | .2 | <.04 | <.1 | <6
 | | JUL
29 | .008 | <.06 | E.01 | E.04 | 20 | 21 | 38 | | | | | | | | SEP
09 | .009 | E.03 | E.02 | <.06 | K5 | 28 | 23 | | | | | | | # 06923700 NIANGUA RIVER BELOW BENNETT SPRINGS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 01 | 20 | E.06 | <1 | 10.2 | <.01 | <.3 | | 11 | | JAN | | | | | | | | | | 22 | | | | | | | | | | MAR | | | | | | | | | | 18 | | | | | | | | | | MAY | | | | | | | | | | 21 | 77 | .20 | M | 9.3 | <.01 | <.3 | | 3 | | 21 | | | | | | | | | | JUL | | | | | | | | | | 29 | | | | | | | | | | SEP | | | | | | | | | | 09 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ## 06923950 NIANGUA RIVER AT TUNNEL DAM NEAR MACKS CREEK, MO LOCATION.--Lat $37^{\circ}56'14"$, long $92^{\circ}51'03"$, in SE $\frac{1}{4}$ SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.19, T.37 N., R.17 W., Camden County, Hydrologic Unit 10290110, at left end of concrete structure on top of Tunnel Dam, 6.5 mi southeast of Macks Creek. DRAINAGE AREA.--598 mi². PERIOD OF RECORD.--September 1995 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records good. Diversion upstream through tunnel for power generation. U.S.G.S. satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER Y
MEAN V | EAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|---|---------------------------------------|--|--|-------------------------------------|---|--|--|------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 145
146
147
150
232 | 149
249
267
258
182 | 226
229
227
223
229 | 169
148
138
132
125 | 6500
4130
1820
1200
753 | 170
215
296
422
339 | 192
234
157
151
127 | 453
455
367
299
249 | 285
233
247
266
315 | 105
122
124
145
150 | 221
218
216
212
211 | 184
182
175
175
169 | | 6
7
8
9 | 260
233
214
196
1150 | 161
172
177
182
222 | 230
226
223
220
215 | 124
180
194
181
252 | 692
612
529
454
411 | 324
341
319
294
313 | 159
167
181
176
150 | 209
881
8860
10900
6530 | 322
275
228
191
168 | 140
125
109
96
90 | 213
221
219
212
208 | 161
161
160
156
159 | | 11
12
13
14
15 | 3350
745
369
230
179 | 217
213
209
206
202 | 213
252
328
381
378 | 197
145
239
237
232 | 368
318
274
243
239 | 293
227
232
202
169 | 153
127
242
408
291 | 2570
3030
10700
12000
3380 | 154
209
998
2110
670 | 95
127
105
84
87 | 238
242
242
237
218 | 152
150
147
162
162 | | 16
17
18
19
20 | 172
147
150
145
125 | 199
195
193
195
191 | 502
2390
4080
1640
959 | 228
226
222
226
223 | 210
183
192
232
229 | 146
136
145
215
386 | 299
259
220
256
1090 | 2110
3970
6720
3730
1950 | 395
280
207
169
160 | 263
278
277
248
246 | 241
235
226
222
236 | 158
159
159
162
173 | | 21
22
23
24
25 | 103
110
118
109
99 | 189
188
193
209
190 | 649
501
416
340
292 | 220
220
219
226
239 | 229
231
216
200
184 | 539
290
196
212
259 | 932
1290
941
687
377 | 1030
607
462
923
1940 | 127
121
126
134
149 | 243
251
400
292
256 | 234
218
268
276
254 | 166
155
147
142
138 | | 26
27
28
29
30
31 | 220
241
229
165
150
156 | 196
196
199
208
218 | 240
198
176
140
113
159 | 252
280
290
287
349
2800 | 175
167
174
 | 1090
699
375
370
273
180 | 312
415
489
488
420 | 939
598
448
336
352
404 | 136
160
155
128
113 | 239
229
222
214
218
225 | 230
223
214
205
198
189 | 136
137
137
135
141 | | MEAN
MAX
MIN
IN. | 328
3350
99
0.63 | 201
267
149
0.37 | 535
4080
113
1.03 | 297
2800
124
0.57 | 756
6500
167
1.32 | 312
1090
136
0.60 | 380
1290
127
0.71 | 2819
12000
209
5.44 | 308
2110
113
0.57 | 187
400
84
0.36 | 226
276
189
0.44 | 157
184
135
0.29 | | | | | | | | | , BY WATER | · · | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 226
492
1999
59.8
1998 | 346
1345
1997
66.8
1998 | 262
535
2002
130
1998 | 180
317
1999
56.9
1997 | 482
845
2001
39.2
1996 | 523
1458
1998
47.9
1996 | 600
1696
1999
106
2000 | 898
2819
2002
28.1
1997 | 232
370
1999
55.4
1996 | 164
248
2001
54.8
1997 | 170
385
1997
43.9
1996 | 189
462
1996
110
1999 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 1 | WATER YE | AR | WATER YEA | ARS 1995 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY PEAK FLOI PEAK STA ANEOUS LOI RUNOFF (II ENT EXCEE! ENT EXCEE! | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 8720
97
116

7.05
348
182
132 | Feb 2
Jul 2
Oct 1 | 1 | 12000
84
98
13400 ^a
13.55
71
12.34
804
222
138 | May
Jul
Jul
May
May
Jul | 14 | 361
555
143
14500
0.00
8.1
15200 ^a
14.19
0.00
8.20
597
159
46 | Oct 1
Sep 2
Nov
Nov | 1999
2000
8 1996
8 1997
95 1997
8 1996
8 1996
8 1997 | $^{^{\}rm a}$ $\,$ From rating extended above 10,500 $\,{\rm ft}^3/{\rm s}\,.$ #### 06925500 LAKE OF THE OZARKS NEAR BAGNELL, MO LOCATION.--Lat 38°12'19", long 92°37'21", in SE $\frac{1}{4}$ sec.19, T.40 N., R.15 W., Miller County, Hydrologic Unit 10290111, at left end of powerhouse section near left end of Bagnell Dam on Osage River, 2 mi southwest of Bagnell, and at mile 81.7. DRAINAGE AREA. -- 14,000 mi². PERIOD OF RECORD.--April 1931 to current year. Gage-height records collected at same site since 1932 are in reports of the National Weather Service, published as "Osage River at Bagnell Dam, Lakeside". GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum, adjustment of 1912. To obtain National Geodetic Vertical Datum of 1929, subtract 0.88 ft. REMARKS.--Lake is formed by concrete gravity dam. Spillway is equipped with 12 tainter gates 34 ft wide by 22 ft high. Storage began in 1931. Usable capacity 1,218,000 ac-ft between elevation 630.00 ft (maximum draw-down) and 660.00 ft (top of gates). Dead storage, 708,800 ac-ft. Figures given herein are usable contents. Lake is used for flood control, power, and recreational purposes. COOPERATION. -- Records were provided by the Ameren UE of Missouri. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 1,527,000 ac-ft, May 22, 1943, elevation, 665.45 ft; minimum, 322,100 ac-ft, Feb. 13,
1948, elevation, 639.95 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 1,222,000 ac-ft, May 9, elevation, 660.08 ft; minimum, 890,000 ac-ft, Mar. 5, elevation, 653.87 ft. | ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 2400 | | | | | | | | | | | | | | |---|--|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 657.91
657.87
657.83
657.95
658.09 | 658.70
658.79
658.79
658.79
658.80 | 658.54
658.54
658.41
658.41 | 659.80
659.68
659.64
659.25
659.06 | 657.57
657.49
657.27
657.12
656.96 | 654.20
654.32
654.25
654.00
653.87 | 656.45
656.38
656.25
656.10
656.00 | 658.80
658.25
658.01
658.53
659.05 | 659.02
659.12
659.12
659.10
659.12 | 659.5
659.58
659.76
659.74
659.69 | 658.76
658.74
658.72
658.68
658.70 | 658.11
658.10
658.32
658.45
658.45 | | | 6
7
8
9
10 | 658.08
658.07
658.33
658.25
658.02 | 658.67
658.68
658.73
658.72
658.70 | 658.42
658.43
658.43
658.43
658.64 | 658.90
658.68
658.50
658.16
658.17 | 656.95
656.96
656.86
657.13
657.35 | 654.00
654.06
654.20
654.38
654.48 | 656.04
656.12
656.08
656.18
656.04 | 659.15
659.04
659.95
660.08
659.39 | 659.37
659.55
659.72
659.50
659.39 | 659.66
659.71
659.58
659.36
659.28 | 658.73
658.71
658.70
658.67
658.62 | 658.30
658.13
658.10
657.83
657.41 | | | 11
12
13
14
15 | 657.95
657.84
657.91
657.96
658.00 | 658.70
658.60
658.56
658.51 | 658.87
659.15
659.19
659.21
659.23 | 658.18
658.18
658.18
658.18 | 657.35
657.01
656.75
656.30
655.90 | 654.50
654.72
654.84
655.05
655.14 | 655.89
655.77
655.80
655.79 | 658.51
658.40
658.89
658.45
657.51 | 659.40
659.40
659.32
659.39 | 659.43
659.68
659.69
659.71
659.38 | 658.57
658.55
658.42
658.42
658.46 | 657.37
657.33
657.30
657.32
657.33 | | | 16
17
18
19
20 | 658.00
657.83
657.40
657.14
657.25 | 658.51
658.51
658.52
658.53
658.53 | 659.45
659.48
659.61
659.60
659.34 | 658.18
658.25
658.29
658.30 | 655.96
655.95
655.67
655.45
655.22 | 655.12
655.28
655.10
655.20
655.60 | 655.80
656.00
656.10
656.25
657.25 | 656.80
656.95
656.85
656.70
656.94 | 659.29
659.24
659.25
659.23
659.20 | 659.50
659.55
659.58
659.50 | 658.40
658.39
658.41
658.25
658.22 | 657.28
657.27
657.19
657.15
657.12 | | | 21
22
23
24
25 | 657.32
657.60
658.00
658.40
658.72 | 658.53
658.52
658.53
658.57
658.56 | 659.30
659.35
659.40
659.43
659.44 | 658.07
658.06
658.00
657.90
657.85 | 654.85
654.55
654.54
654.62
654.71 | 655.60
655.55
655.75
655.90
655.73 | 657.77
657.90
657.97
658.33
658.40 | 657.39
658.02
658.40
658.84
658.62 | 659.14
659.05
659.00
659.00 | 659.62
659.56
659.38
659.43
659.53 | 658.12
658.10
658.50
658.50
658.49 | 657.10
657.07
657.04
656.98
656.95 | | | 26
27
28
29
30
31 | 658.90
658.97
659.02
658.85
658.80 | 658.57
658.55
658.53
658.55
658.55 | 659.47
659.50
659.56
659.61
659.70 | 657.90
657.95
657.85
657.57
657.28
657.70 | 654.65
654.53
654.44
 | 655.60
655.52
655.64
655.85
656.10
656.34 | 658.45
659.00
659.13
658.76
658.80 | 658.55
658.51
658.45
658.63
658.80
658.94 | 659.00
659.89
659.30
659.40
659.40 | 659.55
659.27
658.89
658.84
658.85
658.78 | 658.32
658.18
658.17
658.16
658.14
658.12 | 656.93
656.87
656.85
656.83
656.80 | | | MEAN
MAX
MIN | 658.10
659.02
657.14 | 658.61
658.80
658.51 | 659.11
659.74
658.41 | 658.33
659.80
657.28 | 656.08
657.57
654.44 | 655.03
656.34
653.87 | 656.88
659.13
655.69 | 658.37
660.08
656.70 | 659.28
659.89
659.00 | 659.45
659.76
658.78 | 658.45
658.76
658.10 | 657.44
658.45
656.80 | | | (-)
(=) | 1149000
+49000 | 1135000
-14000 | 1203000
+68000 | 1088000
-115000 | 918000
-170000 | 1015000
+97000 | 1149000
+134000 | 1158000
+9000 | 1183000
+25000 | 1148000
-35000 | 1111000
-37000 | 1039000
-72000 | | CAL YR 2001....+255000 WTR YR 2002....- 61000 ⁽⁻⁾ Contents, in acre-feet, at end of month.(=) Change in contents, in acre-feet. #### 06926000 OSAGE RIVER NEAR BAGNELL, MO LOCATION.--Lat 38°11'29", long 92°36'26", in NW $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.29, T.40 N., R.15 W., Miller County, Hydrologic Unit 10290111, on center pier of U.S. Highway 54 bridge, 1.3 mi downstream from hydroelectric plant of AmerenUE of Missouri, and at mile 80.5. DRAINAGE AREA. -- 14,000 mi², approximately. PERIOD OF RECORD.--October 1880 to current year. Monthly discharge only for some periods published in WSP 1310. Gage-height records collected in this vicinity 1880-1931 are contained in reports of the Missouri River Commission or the National Weather Service. GAGE.--Water-stage recorder. Datum of gage is 549.13 ft above National Geodetic Vertical Datum of 1929 (levels by the Missouri State Highway and Transportation Commission). Nonrecording gage from October 1880 to Oct. 15, 1930, and recording gage from Oct. 15, 1930, to Sept. 30, 1979, at site 1.7 mi downstream at datum 0.56 ft lower. REMARKS.--Records fair. Flow regulated by Lake of the Ozarks (06925500), 1.3 mi upstream. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximim stage prior to 1943, 43.1 ft in June 1844 (former site and datum), discharge, $164,000 \text{ ft}^3/\text{s}$. | | | DISCHA | RGE, CUB | IC FEET PEI | | WATER Y | YEAR OCTOBEI
VALUES | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---|---|---|---|---|--|---|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 413
1050
1210
579
588 | 2870
1050
573
537
2890 | 759
534
3290
1410
477 | 2560
7380
5780
11800
6100 | 25700
24800
21600
19200
19400 | 11000
2540
2500
12300
9360 | 1830
7590
9230
7380
6190 | 21100
34100
28800
6650
2790 | 39900
39900
40800
41600
43200 | 1750
1740
2600
2440
3290 | 4100
2440
1020
893
1410 | 1010
611
604
913
2640 | | 6
7
8
9
10 | 484
473
473
5060
25600 | 4640
2370
916
593
1330 | 478
485
477
472
483 | 4380
8130
8830
9140
1450 | 13600
15400
14700
6990
2910 | 4840
1470
501
2900
1440 | | 17900
21300
35400
36700
35600 | 46600
47700
47800
47800
41300 | 1460
701
7970
13900
13000 | 601
628
1060
684
1290 | 5660
6120
1510
7100
10500 | | 11
12
13
14
15 | 21300
20900
2510
453
9980 | 490
2740
1920
1510
674 | 479
497
499
485
480 | 484
470
464
464
456 | 10600
12200
11900
13200
12900 | 4370
1620
647
453
450 | 4130
594 | 35200
35300
36500
35400
34900 | 35200
33400
34000
33300
32600 | 3650
3360
1290
767
10100 | 1490
1690
5830
1460
1230 | 1880
574
538
1200
724 | | 16
17
18
19
20 | 19700
14200
17200
10600
900 | 451
456
488
488
485 | 528
6130
3370
11600
12700 | 452
460
2770
984
455 | 2730
1290
8600
10300
10400 | 1350
929
7550
3770
2570 | 2130
2700
2030
1770
895 | 34800
35800
35200
34800
34700 | 34500
34300
34900
35200
35600 | 4690
6260
6190
10100
4320 | 2380
741
581
3490
2900 | 1670
1110
2850
2920
953 | | 21
22
23
24
25 | 457
466
687
532
465 | 485
486
471
430
963 | 3690
527
488
490
488 | 5360
3580
3420
5290
4010 | 12500
11500
2390
1290
4990 | 8540
12500
4630
4370
10800 | 1320
5210
6340
4010
8150 | 36500
36500
42100
49000
49200 |
34900
35200
34600
30500
28500 | 1620
9700
8890
2820
1950 | 5810
6360
3130
628
564 | 746
1030
764
1530
1090 | | 26
27
28
29
30
31 | 889
566
472
7850
2790
704 | 570
1080
859
484
470 | 488
2920
2700
929
1750
767
4940 | 1670
586
3020
7650
15000
24900 | 9530
12300
11000
 | 11500
9920
4690
2280
506
560 | 20500
26800 | 48800
48700
48600
42400
37200
37900 | 31000
28700
9060
5450
4480 | 5410
7670
9310
2350
1710
4150 | 5430
4560
744
577
567
573 | 555
1820
651
564
634 | | MEAN
MAX
MIN
IN. | 5469
25600
413
0.45 | 4640
430
0.09 | 12700
472
0.17 | 24900
452
0.39 | 25700
1290
0.86 | 4608
12500
450
0.38 | 26800
451
0.46 | 34510
49200
2790
2.84 | 34070
47800
4480
2.72 | 5005
13900
701
0.41 | 2092
6360
564
0.17 | 2016
10500
538
0.16 | | MEAN
MAX
(WY)
MIN
(WY) | 7194
67300
1987
471
1957 | 8521
45270
1987
538
1957 | 8109
45050
1993 | 8012
34700
1993
554
2001 | 10040
34720
1949
535
1964 | 13570
57300
1973
359
1931 | 2 ^a , BY WATER
15610
70040
1973
452
1931 | 15990
92260
1943
516
1956 | 15550
78160
1935
515
1931 | 9647
96780
1951
492
1931 | 4937
26560
1993
510
1956 | 5720
54540
1951
486
1954 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 W | ATER YEAR | | WATER YE | EARS 1931 | - 2002 ^a | | LOWEST HIGHES: LOWEST ANNUAL MAXIMUM MAXIMUM INSTAN: ANNUAL 10 PERC 50 PERC | ANNUAL ME | EAN EAN AN Y MINIMUM OW AGE OW FLOW INCHES) EDS EDS | | 8429 35300 Jun 405 476 8.17 27500 2600 488 | 15-17,20
Sep 24
Nov 18 | | 9397 49200 413 464 50000 20.45 323 9.11 34900 2920 485 | May 25
Oct 1
Jan 11
May 24
May 24
Nov 24 | | 10230
23360
1046
212000
235
320
220000
48.80
183
9.93
30300
4020
506 | | 1973
1954
19 1943
23 1971
3 1931
19 1943
19 1943
9 1969 | ^a Post-regulation period. ## 06926510 OSAGE RIVER BELOW ST. THOMAS, MO LOCATION.--Lat 38°25'18", long 92°12'31", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.1, T.42 N., R.12 W., Cole County, Hydrologic Unit 10290111, on downstream bridge pier of State Highway B, 3.8 mi north of St. Thomas, and at mile 34.5. DRAINAGE AREA.--14,584 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--Oct. 1, 1996 to current year. August 1931 to Sept. 30, 1996, records collected at site 8.6 mi upstream, published as Osage River near St. Thomas (06926500). GAGE.--Water-stage recorder. Datum of gage is 525.72 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair. Considerable regulation by Lake of the Ozarks (06925500), 47.2 mi upstream. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAF | RGE, CUBIC | FEET PER | | | YEAR OCTOBER | R 2001 TO | SEPTEMBER | 2002 | | | |--|--|---|---|---|---|--|--|--|---|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 458
444
815
1140
868 | 1190
3420
1630
964
801 | 765
916
920
2850
1630 | 5050
3020
6800
6520
9960 | 31900
26900
22400
20500
20300 | 9630
10600
2710
6490
8600 | 7890
7950 | 21500
31800
31800
17700
5490 | 39400
40000
40100
41500
41900 | 3300
1910
2060
2620
5390 | 4250
4020
2230
1260
997 | 632
821
761
643
746 | | 6
7
8
9
10 | 755
624
559
539
15400 | 2940
4670
2420
1300
936 | 799
683
657
637
623 | 5710
5080
8350
7070
7820 | 13600
14800
13900
16200
4110 | 9480
4220
2200
1470
3330 | 1270
1550
3810 | 8020
19500
44700
53500
47600 | 45100
47100
47500
47700
45600 | 2200
1400
1070
9790
14100 | 1310
865
710
892
915 | 2160
5640
6240
1680
8170 | | 11
12
13
14
15 | 24900
18400
15200
2560
1880 | 1320
773
2260
1950
1450 | 623
725
1210
1200
1120 | 1800
835
700
662
637 | 4740
9050
12000
11600
11800 | 2600
3510
2120
1330
903 | 6260
3750
1240 | 42700
41000
52800
49600
45800 | 38500
34200
33800
34700
33200 | 11600
5320
5690
1860
1650 | 1160
1500
1700
5570
1670 | 9580
1810
791
654
987 | | 16
17
18
19
20 | 16600
14300
16000
14100
7680 | 1080
659
598
624
619 | 1960
5490
7990
5730
11800 | 620
607
608
2610
1360 | 10600
2560
2200
9160
8890 | 822
1400
1870
7010
4930 | e3370
e3520
e2520 | 43800
47300
45700
38300
35800 | 33100
34600
34200
35000
35200 | 11500
4160
6120
7180
9350 | 1350
2000
1160
798
3720 | 944
1360
1260
2170
2560 | | 21
22
23
24
25 | 1510
800
823
2170
1340 | 602
600
599
642
636 | 11500
3470
1290
958
859 | 886
4950
3190
3810
4440 | 11300
11000
9560
2450
1690 | 3990
11500
8850
4290
4600 | 4750
5860
5260 | 36300
36900
38100
48400
52100 | 35000
34800
34900
32000
28900 | 4400
2270
10000
7630
2770 | 2760
5910
6600
2670
991 | 1280
755
1020
907
1240 | | 26
27
28
29
30
31 | 927
1040
968
1280
7400
2790 | 817
924
1020
1170
774 | 810
2530
3040
1440
1620
1290 | 3940
1830
1050
3490
9240
29200 | 6140
9880
11300
 | 11600
12000
8140
4540
2750
1330 | 12000
12100
15900
25600 | 50000
49600
49200
47200
39200
37600 | 28000
29500
22000
6370
3940 | 2020
6660
7820
8990
2240
1770 | 781
5690
3980
1150
713
657 | 1230
684
1360
939
654 | | MEAN
MAX
MIN
IN. | 5622
24900
444
0.45 | 1313
4670
598
0.10 | 2488
11800
623
0.20 | 4576
29200
607
0.36 | 11800
31900
1690
0.85 | 5123
12000
822
0.41 | 25600
1050 | 39000
53500
5490
3.10 | 34590
47700
3940
2.66 | 5317
14100
1070
0.42 | 2257
6600
657
0.18 | 1989
9580
632
0.15 | | | | | | | | | 2, BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 9775
41410
1999
661
2001 | 10130
35360
1999
629
2001 | 8844
16580
1999
1670
2001 | 7654
18890
1998
687
2001 | 14020
27140
1999
5161
2000 | 18450
35430
1997
5123
2002 | 32900
1998
1814 | 19210
43010
1999
1334
2000 | 23410
37210
1999
6089
2000 | 11240
21200
1999
5317
2002 | 4624
8775
1998
2257
2002 | 4278
14790
1998
1263
2001 | | SUMMARY | Y STATIST | ICS | FOR 2 | 001 CALEN | DAR YEAR | | FOR 2002 W | ATER YEAR | | WATER YEA | ARS 1996 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | C ANNUAL MANNUAL MICE DAILY MICE | EAN EAN AN Y MINIMUM OW AGE OW FLOW INCHES) EDS EDS | | | Jun 6
Oct 2
Sep 26 | | 9992
53500
444
612
54800
17.73
436
9.36
35100
3520
755 | May 9
Oct 2
Nov 18
May 13
Oct 2 | | 12310
22740
3699
63600
563
74700
21.86
320
11.54
35100
5860
665 | Sep
Oct
Jul
Jul | 1999
2000
27 1998
24 1999
26 2000
26 1998
26 1998
24 1999 | e Estimated # 06926510 OSAGE RIVER BELOW ST. THOMAS, MO--Continued (Ambient Water-Quality Monitoring Network) #### WATER-QUALITY RECORDS PERIOD OF RECORD. -- October 1974 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: October 1974 to September 1981. WATER TEMPERATURE: October 1974 to September 1981. REMARKS.--National Stream-Quality Accounting Network station October 1975 to September 1995. Ambient Water-Quality Monitoring Network station October 1995 to current year. EXTREMES FOR PERIOD OF DAILY RECORD.-- SPECIFIC CONDUCTANCE: Maximum daily, 398 microsiemens per centimeter, Jan. 1, 1981; minimum daily, 140 microsiemens per centimeter, Sept. 3, 1981. WATER TEMPERATURE: Maximum daily, 30.0 °C, July 29, 1977, July 25 and Aug. 11, 1980; minimum daily, 0.0 °C, Jan. 21, 1978. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as
Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
07 | 0915 | ENVIRONM | ENTAL | 6190 | 8.2 | 84 | 7.6 | 254 | 15.9 | 120 | 33.9 | 9.68 | 2.64 | | JAN
09 | 1000 | ENVIRONM | ENTAL | 7280 | 11.0 | 92 | 7.7 | 248 | 6.9 | | | | | | MAR
07 | 0940 | ENVIRONM | ENTAL | 4420 | 12.8 | 104 | 8.3 | 272 | 6.1 | | | | | | MAY
08 | 1000 | ENVIRONM | ENTAL | 43700 | 8.3 | 84 | 7.9 | 243 | 15.3 | 120 | 29.8 | 11.1 | 2.65 | | JUL
15 | 1030 | ENVIRONM | ENTAL | 992 | 7.3 | 89 | 7.7 | 257 | 23.6 | | | | | | SEP
03 | 1300 | ENVIRONM | ENTAL | 740 | 6.4 | 88 | 7.8 | 271 | 30.3 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
07
JAN | 5.65 | 96 | 96 | 118 | 0 | 12.3 | E.1 | 17.8 | 18 | 140 | <.04 | .37 | .14 | | 09
MAR | | 93 | 93 | 113 | 0 | | | | 10 | | E.02 | .32 | .32 | | 07
MAY | | 113 | 112 | 137 | 0 | | | | <10 | | <.04 | .32 | .17 | | 08
JUL | 4.15 | 108 | 108 | 132 | 0 | 4.85 | <.1 | 13.3 | 152 | 148 | <.04 | .77 | .18 | | 15
SEP | | 103 | 104 | 126 | 0 | | | | 105 | | <.04 | .74 | .37 | | 03 | | 109 | 110 | 134 | 0 | | | | 11 | | <.04 | .49 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
07 | _ 000 | <.06 | E.01 | E 06 | 38 | K75 | 26 | 36 | 181 | 1.0 | <.04 | _ 1 | <6 | | JAN | <.008 | | | E.06 | | | | 36 | 181 | 1.0 | <.04 | <.1 | <6 | | 09
MAR | <.008 | <.06 | E.02 | E.03 | K4 | K10 | K6 | | | | | | | | 07
MAY | <.008 | <.06 | <.02 | <.06 | <1 | K1 | K15 | 140 | 1000 | | | | | | O8 | E.005 | E.03 | .02 | .15 | K1900 | K5940 | K4680 | 149 | 1090 | .7 | <.04 | <.1 | <6 | | 15
SEP | .016 | E.04 | .03 | .10 | K400 | 290 | 445 | | | | | | | | 03 | <.008 | E.04 | .03 | .08 | K8 | К9 | K65 | | | | | | | # 06926510 OSAGE RIVER BELOW ST. THOMAS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 07 | 13 | E.06 | M | 5.0 | <.01 | <.3 | 5 | 7 | | JAN | | | | | | | | | | 09 | | | | | | | | | | MAR | | | | | | | | | | 07 | | | | | | | | | | MAY | | | | | | | | | | 08 | 90 | .39 | 4 | 25.1 | E.01 | E.2 | | 21 | | JUL | | | | | | | | | | 15 | | | | | | | | | | SEP | | | | | | | | | | 03 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 06928000 GASCONADE RIVER NEAR HAZELGREEN, MO LOCATION.--Lat 37°45'33", long 92°27'06", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.15, T.35 N., R.14 W., Laclede County, Hydrologic Unit 10290201 on downstream end of center pier of bridge on south outer road, 400 ft upstream from eastbound bridge of Interstate 44, 1 mi downstream from Osage Fork, 1.5 mi west of Hazelgreen, and at mile 180. DRAINAGE AREA.--1,250 mi². PERIOD OF RECORD.--October 1928 to September 1971, October 2000 to current year. Prior to April 1929 monthly discharge only published in WSP 1310. GAGE.--Water-stage recorder. Datum of gage is 844.75 ft above National Geodetic Vertical Datum of 1929. Prior to March 6, 1956, nonrecording gage at present site and datum. March 6, 1956 to Dec. 17, 1957, nonrecording gage at site 750 ft downstream at present datum and Dec. 18, 1957 to Aug. 20, 1958, nonrecording gage at present site and datum. Aug. 20, 1958 to September 1971, water-stage recorder at present site and datum. REMARKS.--Records good. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of January 1916 reached a stage of 30.6 ft from flood mark. | | | DISCHAF | RGE, CUBIC | FEET PER | SECOND, W | | | BER 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---------------------------------|--|--|--|--|--|--|---------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 67 | 122 | 456 | 362 | 12400 | 442 | 1310 | 1480 | 777 | 204 | 136 | 176 | | 2 | 65 | 129 | 802 | 346 | 11500 | 926 | 1170 | 1290 | 701 | 195 | 128 | 159 | | 3 | 63 | 127 | 668 | 323 | 3800 | 2050 | 1060 | 1130 | 637 | 196 | 123 | 145 | | 4 | 62 | 126 | 536 | 311 | 2610 | 2340 | 952 | 1010 | 590 | 189 | 119 | 136 | | 5 | 85 | 123 | 443 | 285 | 2050 | 1830 | 854 | 897 | 762 | 186 | 141 | 126 | | 6 | 86 | 123 | 381 | 271 | 1710 | 1620 | 778 | 812 | 658 | 181 | 146 | 117 | | 7 | 85 | 122 | 336 | 263 | 1440 | 1550 | 726 | 1050 | 636 | 175 | 138 | 111 | | 8 | 83 | 122 | 302 | 253 | 1260 | 1450 | 748 | 10400 | 608 | 171 | 122 | 106 | | 9 | 81 | 120 | 275 | 247 | 1120 | 1390 | 3110 | 37800 | 542 | 165 | 112 | 101 | | 10 | 294 | 118 | 254 | 242 | 1020 | 1490 | 3180 | 22200 | 495 | 160 | 110 | 100 | | 11 | 150 | e116 | 236 | 233 | 917 | 1580 | 2250 | 6830 | 466 | 163 | 109 | 98 | | 12 | 127 | e113 | 235 | 227 | 824 | 1460 | 1790 | 5670 | 458 | 158 | 101 | 98 | | 13 | 121 | 111 | 282 | 219 | 747 | 1390 | 1570 | 18300 | 645 | 150 | 110 | 95 | | 14 | 118 | 109 | 404 | 213 | 686 | 1270 | 1940 | 12200 | 779 | 149 | 183 | 92 | | 15 | 118 | 107 | 862 | 208 | 633 | 1190 | 2200 | 4890 | 683 | 167 | 274 | 93 | | 16 | 125 | 106 | 1400 | 201 | 588 | 1140 | 1880 | 3500 | 567 | 236 | 254 | 92 | | 17 | 124 | 104 | 4920 | 197 | 551 | 1330 | 1590 | 7330 | 488 | 228 | 293 | 94 | | 18 | 120 | 102 | 11700 | 193 | 534 | 1280 | 1750 | 17500 | 433 | 198 | 262 | 96 | | 19 | 116 | 102 | 5140 | 195 | e503 | 1400 | 1520 | 14100 | 396 | 211 | 228 | 99 | | 20 | 114 |
101 | 2610 | 194 | e589 | 4820 | 1360 | 4610 | 363 | 193 | 215 | 118 | | 21 | 113 | 100 | 1820 | 189 | e680 | 7030 | 1590 | 3160 | 333 | 263 | 214 | 112 | | 22 | 112 | 100 | 1400 | 187 | 642 | 3440 | 2680 | 2460 | 309 | 384 | 239 | 119 | | 23 | 111 | 99 | 1140 | 189 | 626 | 2460 | 2020 | 2060 | 286 | 352 | 250 | 185 | | 24 | 114 | 129 | 959 | 219 | 588 | 2030 | 1620 | 1850 | 267 | 297 | 214 | 173 | | 25 | 110 | 138 | 810 | 276 | 560 | 3000 | 1710 | 1660 | 260 | 258 | 193 | 157 | | 26
27
28
29
30
31 | 105
102
106
124
128
126 | 289
390
337
308
328 | 700
614
548
491
442
401 | 639
681
614
552
956
4400 | 533
499
469
 | 4910
3260
2470
2070
1790
1530 | 1590
1420
1870
1700
1430 | 1490
1270
1120
1020
940
854 | 252
256
249
235
218 | 221
200
182
166
155
145 | 181
234
262
259
225
197 | 139
124
114
105
98 | | MEAN
MAX
MIN
IN. | 112
294
62
0.10 | 151
390
99
0.13 | 1341
11700
235
1.24 | 448
4400
187
0.41 | 1789
12400
469
1.49
OF RECORD, | 2127
7030
442
1.96 | 1646
3180
726
1.47 | 6158
37800
812
5.68 | 478
779
218
0.43 | 203
384
145
0.19 | 186
293
101
0.17 | 119
185
92
0.11 | | MEAN | 495 | 644 | 714 | 938 | 1204 | 1572 | 1744 | 1918 | 1112 | 540 | 287 | 361 | | MAX | 4943 | 4273 | 3361 | 4805 | 3209 | 6584 | 10180 | 7340 | 8710 | 5322 | 1467 | 2519 | | (WY) | 1950 | 1952 | 1943 | 1950 | 1938 | 1945 | 1945 | 1943 | 1935 | 1958 | 1946 | 1970 | | MIN | 31.6 | 65.8 | 72.6 | 68.0 | 91.2 | 141 | 130 | 202 | 83.2 | 41.8 | 30.8 | 25.6 | | (WY) | 1957 | 1954 | 1956 | 1956 | 1964 | 1956 | 1956 | 1932 | 1936 | 1934 | 1936 | 1954 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALEN | DAR YEAR | | FOR 2002 | WATER YEAR | | FOR PI | ERIOD OF | RECORD | | HIGHEST
LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DALLY MEAN LOWEST DALLY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 532
17500
53
60

5.78
850
248
85 | Feb 26
Aug 28
Aug 24 | | 1232
37800
62
73
49500
25.95
61
13.38
2290
308
108 | May 9
Oct 4
Oct 1
May 9
May 9
Oct 4 | | 959
2236
123
58800
19
21
76400
29.60
18
10.42
2010
345
85 | Sep
Sep
Apr
Apr | 1950
1954
12 1935
20 1954
14 1954
14 1945
14 1945
1 1936 | e Estimated ## 06928300 ROUBIDOUX CREEK ABOVE FT. LEONARD WOOD, MO LOCATION.--Lat $37^{\circ}36^{\circ}04^{\circ}$, long $92^{\circ}14^{\circ}02^{\circ}$, in NE $\frac{1}{4}$ SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.3, T.33 N., R.12 W., Pulaski County, Hydrologic Unit 10290201, on State Highway 17 bridge, 12 mi south of Ft. Leonard Wood. DRAINAGE AREA.--165 mi². PERIOD OF RECORD.--Dec. 29, 1999 to current year. GAGE.--Water-stage recorder. Datum of gage unknown. ${\tt REMARKS.--Records\ fair\ except\ for\ estimated\ daily\ discharges,\ which\ are\ poor.\ U.S.G.S.\ satellite\ telemeter\ at\ station.}$ | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBER | 2002 | | | |--|--|--------------------------------------|--|---|------------------------------------|---|---|--------------------------------------|---|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.8
3.5
3.3
3.4
5.7 | 6.8
9.3
11
11 | 324
192
130
94
74 | 39
35
33
31
29 | 3000
633
418
304
232 | 53
486
506
321
254 | 164
145
125
107
96 | 219
197
174
151
131 | 68
58
50
46
53 | 12
12
12
12
13 | 6.2
6.7
7.3
e9.8
e7.2 | 3.4
3.0
2.8
2.9
2.9 | | 6
7
8
9
10 | 6.6
6.4
5.5
4.8
5.6 | 9.6
9.0
8.6
8.3 | 60
50
44
36
32 | 29
27
26
26
25 | 194
167
145
132
119 | 267
250
215
251
308 | 88
84
485
726
459 | 119
221
7580
2230
991 | 60
52
44
38
36 | 13
12
11
9.5
9.9 | e6.4
5.9
5.4
4.9
4.8 | 2.8
3.0
2.7
2.5
2.3 | | 11
12
13
14
15 | 7.8
8.7
8.2
8.0
7.9 | 8.1
8.0
7.9
7.8
7.8 | 28
34
197
271
246 | 24
22
21
21
19 | 102
91
82
74
68 | 258
290
270
231
199 | 325
255
456
469
405 | 614
1110
4510
1050
635 | 36
37
162
122
75 | 11
12
14
13
11 | 4.6
4.4
5.4
8.3
8.1 | 2.4
2.3
2.2
2.1
2.2 | | 16
17
18
19
20 | 8.3
7.8
7.5
7.8
7.2 | 8.6
7.6
7.4
7.5
7.2 | 863
3790
873
460
305 | 19
18
18
20
19 | 63
58
54
56
74 | 397
337
262
1140
2020 | 298
493
350
266
232 | 481
5270
2430
867
594 | 56
46
38
32
28 | 10
9.8
10
10 | 7.2
7.0
6.6
6.2
6.3 | 2.6
3.5
3.9
4.7
5.9 | | 21
22
23
24
25 | 7.4
7.4
7.0
7.2
7.3 | 7.1
6.9
7.1
82
194 | 226
180
146
118
97 | 18
18
20
143
267 | 110
109
97
87
80 | 650
424
329
274
996 | 456
361
267
235
218 | 451
349
279
234
206 | 24
21
19
17
16 | 9.6
9.8
14
12
9.6 | 6.0
5.3
5.5
5.9 | 5.6
5.0
4.5
4.0
3.5 | | 26
27
28
29
30
31 | 7.7
7.2
6.9
6.8
7.0
6.8 | 106
72
59
58
318 | 82
72
64
56
48
44 | 196
150
121
100
171
3350 | 71
63
58

 | 647
431
340
279
229
190 | 190
335
334
253
213 | 172
145
124
111
96
82 | 18
16
15
14
13 | 8.6
7.6
7.2
6.8
7.1
7.4 | 5.2
5.0
4.5
4.2
3.9
3.6 | 3.1
2.9
2.6
2.4
2.5 | | MEAN
MAX
MIN | 6.66
8.7
3.3 | 36.0
318
6.8 | 298
3790
28 | 163
3350
18 | 241
3000
54 | 423
2020
53 | 296
726
84 | 1027
7580
82 | 43.7
162
13 | 10.6
14
6.8 | 5.92
9.8
3.6 | 3.21
5.9
2.1 | | STATIST | ICS OF MO | ONTHLY MEA | N DATA FOR | R WATER Y | EARS 2000 | - 2002, | BY WATER | ZEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 5.63
6.66
2002
4.60
2001 | 22.4
36.0
2002
8.76
2001 | 153
298
2002
8.49
2001 | 69.5
163
2002
17.2
2000 | 223
401
2001
35.2
2000 | 174
423
2002
43.4
2000 | 114
296
2002
18.0
2000 | 362
1027
2002
8.17
2000 | 41.7
73.6
2001
7.71
2000 | 9.77
10.5
2002
8.76
2000 | 5.14
5.92
2002
4.02
2000 | 5.79
11.9
2001
2.31
2000 | | SUMMARY | STATISTI | ics | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 V | VATER YEA | AR. | WATER YE | ARS 2000 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 4330
3.1
3.5

129
21
5.5 | Feb 2
Aug 2
Aug 2 | 28 | 7580
2.1
2.3
12900
14.86
2.0
427
35
4.7 | May
Sep 1
Sep
May
May
Sep 13,3 | .4
9
8
8 | 134
214
54.5
7580
1.2
1.3
12900
14.86
0.82
264
18 | Aug 3 | 2002
2001
8 2002
30 2000
29 2000
8 2002
8 2002
1 2000 | | e Estimated ## 06928430 ROUBIDOUX CREEK BELOW FT. LEONARD WOOD, MO LOCATION.--Lat $37^{\circ}49^{\circ}40^{\circ}$, long $92^{\circ}12^{\circ}19^{\circ}$, in SE $\frac{1}{4}$ SW $\frac{1}{4}$ Sec.24, R.36 N., R.12 W., Pulaski County, Hydrologic Unit 10290201, on right bank 400 ft downstream from Interstate 44 bridge, on Superior Road, 0.9 mi south of Business 44, and 0.6 mi upstream from Roubidoux Spring. DRAINAGE AREA. -- 287 mi². PERIOD OF RECORD. -- Feb. 23, 2000 to current year. GAGE.--Water-stage recorder. Datum of gage unknown. REMARKS.--Records fair. U.S.G.S. satellite telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | | |--|--|--------------------------------------|---|--|-----------------------------------|--|--|-------------------------------------|--|--|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR |
MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 0.57
0.57
0.62
0.63
2.1 | 1.8
2.5
2.2
1.8
1.8 | 2.8
26
32
6.4
1.5 | 3.0
2.8
2.6
2.4
2.3 | 5110
1280
585
313
200 | 2.4
15
738
275
235 | 88
66
46
29
15 | 210
208
153
110
70 | 6.6
6.3
4.9
3.9
5.6 | 0.28
0.47
0.95
0.78
0.50 | 0.93
0.89
0.66
0.52
0.49 | 0.58
0.62
0.65
0.46
0.33 | | | 6
7
8
9
10 | 1.3
0.69
0.67
0.99
9.1 | 1.7 | 1.2
1.2
0.88
0.80 | 2.3
2.2
2.0
2.2
1.8 | 134
87
55
41
26 | 180
180
110
114
195 | 8.2
6.3
7.4
600
575 | 41
87
7200
5560
1360 | 5.8
5.9
4.4
3.7
4.1 | 0.49
0.49
0.49
0.54
1.6 | 0.51
0.52
0.54
0.59
0.78 | 0.34
0.34
0.43
0.57
0.40 | | | 11
12
13
14
15 | 2.0
1.2
1.1
1.0
0.93 | 1.7
1.7
1.7
1.6
1.7 | 0.85
1.7
1.8
2.2
2.1 | 1.7
1.6
1.4
1.5 | 10
9.5
8.4
7.3
6.7 | 184
182
205
166
124 | 325
203
224
327
410 | 613
500
7240
1570
642 | 3.7
3.6
3.8
3.0
2.6 | 1.0
0.82
0.77
0.47
0.45 | 1.6
1.3
3.1
2.0
1.3 | 0.26
0.21
0.17
0.16
0.20 | | | 16
17
18
19
20 | 1.1
0.98
2.0
2.5
2.5 | 1.7
1.7
1.7
1.8
1.5 | 35
3680
2080
956
566 | 1.4
1.4
1.3
1.5 | 4.6 | 111
264
195
193
2830 | 260
266
346
369
306 | 360
3310
5660
978
503 | 1.7
1.4
1.2
1.1 | 0.56
0.56
0.49
0.61
0.60 | 1.3
1.2
1.1
1.4
2.3 | 0.21
0.23
0.19
0.21
0.47 | | | 21
22
23
24
25 | 2.6
2.6
3.2
3.6
3.0 | 1.4
1.3
1.4
3.3
1.8 | 327
176
86
38
16 | 1.3
1.3
1.5
1.6 | 3.8
3.4
2.9
2.6
2.9 | 1170
559
319
229
1120 | 331
484
278
195
156 | 292
197
137
105
76 | 0.99
0.87
0.67
0.66
0.71 | 0.52
0.62
1.3
0.76
0.60 | 1.5
1.4
1.5
1.8 | 0.26
0.13
0.06
0.04
0.03 | | | 26
27
28
29
30
31 | 2.6
2.2
2.1
2.0
1.8
1.8 | 1.2
0.98
1.5
2.3
3.5 | 7.9
5.1
4.0
4.2
3.7
3.4 | 1.2
4.1
8.6
4.2
12
1560 | 2.8
2.6
2.4
 | 1320
622
370
253
188
133 | 125
121
376
277
202 | 53
33
19
13
9.4
7.4 | 0.51
0.38
0.34
0.33
0.29 | 0.85
1.1
1.2
1.2
1.4 | 1.1
0.93
0.82
0.76
0.53
0.51 | 0.06
0.09
0.10
0.11
0.12 | | | MEAN
MAX
MIN | 1.94
9.1
0.57 | 1.88
3.5
0.98 | 260
3680
0.80 | 52.8
1560
1.2 | 283
5110
2.4 | 412
2830
2.4 | 234
600
6.3 | 1204
7240
7.4 | 2.67
6.6
0.29 | 0.77
1.6
0.28 | 1.14
3.1
0.49 | 0.27
0.65
0.03 | | | STATIST | CICS OF MO | NTHLY M | EAN DATA | FOR WATER | YEARS 200 | 00 - 2002 | , BY WATER | R YEAR (WY) | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.61
1.94
2002
1.29
2001 | 1.72
1.88
2002
1.57
2001 | 130
260
2002
0.70
2001 | 26.7
52.8
2002
0.61
2001 | 316
350
2001
283
2002 | 150
412
2002
2.55
2000 | 79.3
234
2002
1.76
2000 | 408
1204
2002
0.87
2000 | 32.6
94.5
2001
0.70
2000 | 0.71
0.81
2001
0.55
2000 | 0.56
1.14
2002
0.24
2000 | 0.25
0.29
2001
0.19
2000 | | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEAF | ર : | FOR 2002 1 | WATER YEAR | | WATER YE | ARS 2000 - | - 2002 | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DALLY MEAN LOWEST DALLY MEAN | | | 5120
0.10
0.15

25
1.4
0.25 | Feb 25
Sep 5
Aug 17 | | 7240
0.03
0.07
14000
14.13
0.03
337
2.3
0.49 | May 13
Sep 25
Sep 23
May 9
May 9
Sep 25 | | 123
206
39.8
7240
0.03
0.07
14000
14.13
0.05 Aug 3
200
1.5
0.30 | May 13
Sep 25
Sep 23
May 5
May 9
0,31,Sep 5 | 5 2002
3 2002
9 2002
9 2002 | | | # 06928440 ROUBIDOUX SPRING AT WAYNESVILLE, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $37^{\circ}49^{\circ}30^{\circ}$, long $92^{\circ}11^{\circ}53^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.25 T.36 N., R.12 W., Pulaski County, Hydrologic Unit 10290201, from I-44 Exit 159 at Waynesville to Business 44, approximately 1.5 mi to Superior Road, south on Superior Road 0.3 mi to spring. PERIOD OF RECORD.--November 1993 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|--|---|---|--|---|--|---|--|---|---| | NOV
19 | 0945 | ENVIRONM | ENTAL | 8.3 | 5.9 | 61 | 7.6 | 412 | 15.3 | 220 | 44.8 | 27.0 | .52 | | JAN
22 | 1300 | ENVIRONM | ENTAL | 24 | 9.6 | 89 | 6.9 | 355 | 10.8 | | | | | | MAR
14 | 0920 | ENVIRONM | ENTAL | 204 | 9.6 | 88 | 7.3 | 285 | 9.8 | | | | | | MAY
08 | 1015 | ENVIRONM | ENTAL | 400 | 6.9 | 69 | 7.7 | 296 | 14.1 | 160 | 32.6 | 18.3 | 1.02 | | JUL
15 | 1335 | ENVIRONM | ENTAL | 40 | 6.0 | 63 | 7.4 | 362 | 16.5 | | | | | | SEP
10 | 1455 | ENVIRONM | ENTAL | 30 | 6.1 | 63 | 7.5 | 407 | 15.9 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
19 | 2.68 | 206 | 208 | 253 | 0 | 5.74 | .1 | 6.3 | <10 | 240 | <.04 | E.06 | .38 | | JAN
22 | | 165 | 170 | 207 | 0 | | | | <10 | | <.04 | E.07 | .92 | | MAR
14 | | 133 | 134 | 164 | 0 | | | | <10 | | <.04 | <.10 | . 41 | | MAY
08 | 2.88 | 147 | 147 | 179 | 0 | 5.25 | <.1 | 6.8 | 12 | 165 | <.04 | E.08 | . 29 | | JUL
15 | | 186 | 187 | 229 | 0 | | | | <10 | | <.04 | <.10 | . 37 | | SEP
10 | | 94 | 96 | 118 | 0 | | | | <10 | | <.04 | E.08 | .52 | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | . 222 | . 65 | | . 05 | * | * | **** | 6 | 20 | • | . 04 | | | | 19
JAN | <.008 | <.06 | <.02 | <.06 | K2 | K2 | K10 | 8 | 30 | . 2 | <.04 | <.1 | <6 | | 22
MAR | <.008 | <.06 | <.02 | <.06 | К9 | K11 | K2 | | | | | | | | 14
MAY | <.008 | <.06 | <.02 | <.06 | K2 | K10 | K10 | | | | | | | | 08
JUL | <.008 | <.06 | <.02 | <.06 | K25 | 63 | 480 | 18 | 201 | . 2 | <.04 | <.1 | <6 | | 15
SEP | E.005 | <.06 | <.02 | <.06 | K18 | K10 | К9 | | | | | | | | 10 | <.008 | <.06 | E.01 | <.06 | K3 | K5 | K1 | | | | | | | # 06928440 ROUBIDOUX SPRING AT WAYNESVILLE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) |
LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | |------------------|---|---|--|---|--|---|--|--|---|--|---|--|--| | NOV
19 | <10 | <.08 | <1 | <2.0 | <.01 | E.2 | | 5 | | | | | | | JAN
22 | | | | | | | | | | | | | | | MAR
14 | | | | | | | | | | | | | | | MAY
08 | 13 | <.08 | <1 | <2.0 | <.01 | <.3 | | 1 | <.006 | <.006 | <.004 | <.005 | <.007 | | JUL
15 | | | | | | | | | | | | | | | SEP
10 | | | | | | | | | | | | | | | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L) | | NOV | (82073) | (04028) | (82680) | (820/4) | (38933) | (04041) | (82082) | (04040) | (39572) | (39381) | (82077) | (82008) | (82663) | | 19
JAN | | | | | | | | | | | | | | | 22
MAR | | | | | | | | | | | | | | | 14
MAY | | | | | | | | | | | | | | | 08
JUL
15 | <.010 | <.002 | E.007 | <.020 | <.005 | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | <.002 | <.009 | | SEP | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | DATE | ETHO-
PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | NOV
19 | | | | | | | | | | | | | | | JAN
22 | | | | | | | | | | | | | | | MAR
14 | | | | | | | | | | | | | | | MAY
08
JUL | <.005 | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | <.010 | | 15
SEP | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | DATE | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHORATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | | NOV | | | | | | | | | | | | | | | 19
JAN
22 | | | | | | | | | | | | | | | MAR
14 | | | | | | | | | | | | | | | MAY
08 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | JUL
15 | | | | | | | | | | | | | | | SEP
10 | # 06928440 ROUBIDOUX SPRING AT WAYNESVILLE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L) | |------------------|--|---|--| | NOV
19
JAN | | | | | 22
MAR | | | | | 14
MAY | | | | | 08
JUL | <.005 | <.002 | <.009 | | 15
SEP | | | | | 10 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. #### 06930000 BIG PINEY RIVER NEAR BIG PINEY, MO LOCATION.--Lat $37^{\circ}39^{\circ}56^{\circ}$, long $92^{\circ}03^{\circ}01^{\circ}$, in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec. 8, T.34 N., R.10 W., Pulaski County, Hydrologic Unit 10290202, on downstream side of left pier of Ross bridge, 3.0 mi east of Big Piney, 14.8 mi upstream from Spring Creek, and at river mile 22. DRAINAGE AREA. -- 560 mi². PERIOD OF RECORD.--October 1921 to Sept. 30, 1982, April 4 1988 to Sept. 30, 1996, Nov. 23, 1999 to current year. REVISED RECORDS.--WSP 826: 1935. WSP 1176: 1943, 1945. WSP 1340: 1922-23, 1927-28(M), 1933(M), 1935(M). GAGE.--Water-stage recorder. Datum of gage is 800.99 ft above National Geodetic Vertical Datum of 1929. Prior to July 12, 1961, nonrecording gage at same site and datum. REMARKS.--Records good. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 24.54 ft, Dec. 4, 1982, from floodmark, present datum, discharge, 81,200 ft³/s, from indirect measurement. | | | DISCHAR | GE, CUBIC | FEET PER | | | YEAR OCTOBER
VALUES | 2001 TO | SEPTEMBER | 2002 | | | |--|--|---------------------------------------|--|--|------------------------------------|--|--|--|------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 79
79
85
81
95 | 108
116
117
111
109 | 771
568
437
365
318 | 262
248
234
223
214 | 6870
2230
1290
993
805 | 333
430
466
578
620 | 604
562
516 | 641
625
583
533
489 | 521
483
446
414
406 | 179
178
176
180
180 | 178
180
175
175
158 | 137
134
132
130
126 | | 6
7
8
9 | 97
94
96
95
97 | 107
107
103
99
99 | 284
256
238
219
201 | 212
207
201
194
188 | 690
615
556
504
465 | 602
600
579
577
1410 | 442
625
2380 | 461
607
10300
21400
4660 | 397
377
351
334
358 | 180
175
167
164
161 | 148
143
137
137
139 | 123
131
126
121
116 | | 11
12
13
14
15 | 109
106
110
114
111 | 99
98
97
97
98 | 188
194
225
367
455 | 184
179
175
171
168 | 429
396
372
350
330 | 912
892
943
834
758 | 822
865
1560 | 2290
2050
7630
3380
2030 | 328
339
357
361
333 | 170
195
187
247
209 | 142
145
170
206
344 | 114
113
113
113
111 | | 16
17
18
19
20 | 115
110
104
105
102 | 97
97
96
98
95 |
547
4500
3950
1470
1020 | 164
162
161
169
165 | 314
301
327
325
343 | 857
915
802
952
4360 | 943
993
851 | 1640
6050
13000
3100
1940 | 306
286
274
261
253 | 192
178
174
171
438 | 303
244
211
198
203 | 112
126
124
135
163 | | 21
22
23
24
25 | 100
100
102
106
115 | 95
97
99
159
788 | 792
659
570
499
446 | 162
159
161
192
470 | 467
500
464
433
411 | 2370
1370
1060
922
1030 | 1010
848
781 | 1520
1280
1110
1000
918 | 245
233
215
209
206 | 582
372
288
300
418 | 191
174
165
159
155 | 168
177
162
144
132 | | 26
27
28
29
30
31 | 137
132
127
121
116
111 | 481
346
297
275
397 | 404
373
345
321
300
279 | 541
464
411
374
375
938 | 391
368
346
 | 1180
1000
894
823
757
693 | 788
793
722
651 | 829
745
689
645
605
564 | 203
196
191
189
188 | 305
246
214
194
184
177 | 155
164
165
154
148
142 | 128
124
120
118
116 | | MEAN
MAX
MIN
IN. | 105
137
79
0.22 | 169
788
95
0.34 | 696
4500
188
1.43 | 262
938
159
0.54 | 782
6870
301
1.45 | 984
4360
333
2.03 | 2380
442 | 3010
21400
461
6.20 | 309
521
188
0.62 | 232
582
161
0.48 | 178
344
137
0.37 | 130
177
111
0.26 | | MEAN
MAX
(WY)
MIN
(WY) | 267
1261
1950
82.3
1957 | 478
2127
1952
106
1965 | 453
1940
1943
98.5
1956 | 550
2554
1950
98.5
1956 | 633
2237
1982
127
1934 | 827
2565
1945
154
1981 | 986
3637
1927
168 | 940
3324
1990
132
2000 | 601
4490
1983
111
1934 | 288
1969
1951
89.3
1934 | 238
1947
1927
80.7
2001 | 255
1959
1993
72.9
1954 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 1 | WATER YE | AR | FOR PI | ERIOD OF | RECORD | | LOWEST ANIUAL ANNUAL ANIUAL ANIUAL ANIUAL ANIUAL ANIUAL 10 PERC. | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK FLOI PEAK STA ANEOUS LOI RUNOFF (II ENT EXCEE ENT EXCEE | AN AN N MINIMUM W SE W FLOW NCHES) DS | | 9980
60
63

6.68
441
150
82 | Feb 2
Sep
Sep | | 21400
79
87
38300
20.60
77
15.76
1010
275
108 | May
Oct 1
Oct
May
May
Oct 1 | ,2
1
9
9 | 544
1179
149
22900
60
63
38300
20.70
58
13.19
1060
257
122 | Sep
Sep
May
Dec | 1927
1954
26 1993
7 2001
2 2001
9 2002
27 1942
,8 2001 | ## 06930060 BIG PINEY RIVER BELOW FT. LEONARD WOOD, MO LOCATION.--Lat $37^{\circ}45'35"$, long $92^{\circ}03'30"$, in SE $\frac{1}{4}$ SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.17, T.35 N. R.10 W., Pulaski County, Hydrologic Unit 10290202, on right downstream wingwall of bridge on East Gate Ft. Leonard Wood road, 1.8 mi west of Highway J, 8.5 mi south of Interstate 44. DRAINAGE AREA. -- 593 mi². PERIOD OF RECORD. -- Dec. 3, 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records good. U.S.G.S. satellite telemeter at station. | | , , , , , , , , , , , , , , , , , , | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | CAR OCTOBER | 2001 TO S | SEPTEMBE | R 2002 | | | |---|---|---|--|--|------------------------|---|---|--|---------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 113 | 133 | 753 | 324 | 6690 | 339 | 701 | 753 | 583 | 244 | 222 | 194 | | 2 | 112 | 141 | 686 | 301 | 3350 | 462 | 656 | 741 | 549 | 236 | 221 | 192 | | 3 | 112 | 143 | 540 | 286 | 1500 | 632 | 612 | 704 | 516 | 240 | 227 | 186 | | 4 | 115 | 139 | 449 | 274 | 1150 | 676 | 570 | 657 | 490 | 238 | 219 | 185 | | 5 | 124 | 137 | 390 | 264 | 943 | 674 | 534 | 611 | 479 | 234 | 216 | 181 | | 6 | 127 | 135 | 345 | 259 | 818 | 644 | 508 | 579 | 472 | 235 | 207 | 177 | | 7 | 122 | 135 | 310 | 252 | 738 | 637 | 488 | 657 | 452 | 228 | 208 | 180 | | 8 | 121 | 133 | 288 | 241 | 677 | 622 | 528 | 7090 | 431 | 223 | 203 | 184 | | 9 | 122 | 131 | 266 | 235 | 622 | 612 | 2190 | 32300 | 410 | 214 | 198 | 177 | | 10 | 131 | 130 | 248 | 228 | 580 | 1220 | 1370 | 6390 | 426 | 211 | 195 | 174 | | 11 | 127 | 129 | 233 | 224 | 540 | 1030 | 1050 | 2290 | 409 | 210 | 201 | 170 | | 12 | 134 | 130 | 241 | 219 | 515 | 929 | 905 | 1760 | 402 | 238 | 197 | 169 | | 13 | 134 | 129 | 278 | 214 | 455 | 1030 | 919 | 8680 | 420 | 230 | 213 | 168 | | 14 | 135 | 129 | 356 | 209 | 434 | 915 | 1120 | 4650 | 418 | 246 | 237 | 168 | | 15 | 134 | 129 | 512 | 204 | 410 | 830 | 2240 | 2050 | 403 | 251 | 288 | 169 | | 16 | 137 | 130 | 610 | 201 | 388 | 866 | 1230 | 1530 | 377 | 232 | 321 | 167 | | 17 | 133 | 129 | 3390 | 199 | 371 | 1010 | 1020 | 4630 | 357 | 226 | 283 | 177 | | 18 | 128 | 129 | 5340 | 197 | 353 | 883 | 1070 | 20000 | 339 | 218 | 258 | 181 | | 19 | 128 | 130 | 1680 | 201 | 347 | 889 | 947 | 4150 | 327 | 215 | 244 | 182 | | 20 | 130 | 128 | 1150 | 199 | 359 | 3830 | 910 | 2000 | 316 | 240 | 242 | 212 | | 21 | 128 | 128 | 914 | 196 | 428 | 3600 | 971 | 1520 | 303 | 590 | 240 | 210 | | 22 | 127 | 129 | 779 | 193 | 523 | 2100 | 1160 | 1270 | 293 | 405 | 225 | 218 | | 23 | 126 | 132 | 685 | 194 | 489 | 1470 | 967 | 1110 | 284 | 338 | 221 | 217 | | 24 | 130 | 188 | 612 | 217 | 455 | 1110 | 855 | 1010 | 277 | 279 | 217 | 200 | | 25 | 130 | 603 | 554 | 378 | 431 | 1160 | 1680 | 940 | 272 | 389 | 213 | 189 | | 26
27
28
29
30
31 | 147
156
151
146
139
139 | 615
433
362
329
386 | 504
463
430
398
372
347 | 622
547
485
439
441
827 | 405
382
358
 | 1320
1160
1020
926
846
764 | 1210
888
905
845
772 | 866
795
740
698
663
625 | 275
261
259
252
248 | 331
284
259
242
232
221 | 208
211
216
207
201
198 | 182
183
176
173
171 | | MEAN | 130 | 198 | 778 | 299 | 882 | 1103 | 994 | 3628 | 377 | 264 | 224 | 184 | | MAX | 156 | 615 | 5340 | 827 | 6690 | 3830 | 2240 | 32300 | 583 | 590 | 321 | 218 | | MIN | 112 | 128 | 233 | 193 | 347 | 339 | 488 | 579 | 248 | 210 | 195 | 167 | | STATIST | ICS OF MOI | NTHLY MEA | N DATA FO | R WATER Y | EARS 2000 | 0 - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN | 130 | 178 | 471 | 241 | 975 | 619 | 482 | 1334 | 270 | 188 | 164 | 149 | | MAX | 130 | 198 | 778 | 299 | 1798 | 1103 | 994 | 3628 | 377 | 264 | 224 | 184 | | (WY) | 2002 | 2002 | 2002 | 2002 | 2001 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | | MIN | 129 | 158 | 164 | 195 | 269 | 305 | 200 | 160 | 168 | 147 | 121 | 124 | | (WY) | 2001 | 2001 | 2001 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2000 | 2001 | 2000 | | SUMMARY | STATISTIC | CS | FOR | 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YEAR | R | WATER YEA | ARS 2000 | - 2002 | | LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM INSTANTA 10 PERCE 50 PERCE | MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY PEAK FLOI PEAK STAC ANEOUS LOI ENT EXCEEI ENT EXCEEI | AN
AN
N
MINIMUM
W
GE
W FLOW
DS | | 18600
103
107

536
193
122 | Feb 2
Sep 6,
Sep | , 7 | 758 32300 112 118 43400° 18.89 108 1150 321 133 | May 9
Oct 2,
Oct 1
May 9
May 9 | 3
1
9
9 | 543
758
329
32300
103
107
43400 ^a
18.89
103
889
221
128 | Sep
Sep | 2002
2001
9 2002
6 2001
2 2001
9 2002
9 2002
6 2001 | $^{^{\}rm a}$ $\,$ From rating extended above 30,000 $\,{\rm ft^3/s.}$ # 06930450 BIG PINEY RIVER AT DEVIL'S ELBOW, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°50'53", long 92°03'44, in NW $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.18, T.36 N., R.10 W., Pulaski County, Hydrologic Unit 10290202, at bridge on County Highway V at Devil's Elbow. DRAINAGE AREA. -- 746 mi². PERIOD OF RECORD.--July 1977 to October 1989, November 1992 to currrent year. | DATE | TIME | SAMPLI
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---
---|--|---|--|---|--|---|---| | NOV
01 | 1335 | ENVIRONME | ENTAL | 181 | 10.2 | 102 | 8.2 | 360 | 14.3 | 190 | 38.5 | 23.5 | .53 | | JAN
22 | 1430 | ENVIRONM | ENTAL | 234 | 13.5 | 110 | 7.8 | 308 | 5.5 | | | | | | MAR
27 | 0955 | ENVIRONM | ENTAL | 2080 | 10.6 | 92 | 7.8 | 229 | 8.0 | | | | | | MAY
20 | 1215 | ENVIRONM | ENTAL | 4310 | 10.5 | 105 | 7.8 | 191 | 14.9 | 98 | 20.7 | 11.2 | .95 | | JUL
16 | 1015 | ENVIRONME | ENTAL | 314 | 7.4 | 91 | 7.9 | 307 | 24.1 | | | | | | SEP
05 | 1220 | ENVIRONM | ENTAL | 208 | 8.9 | 111 | 8.3 | 329 | 25.5 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
01
JAN | 6.21 | 180 | 181 | 221 | 0 | 6.15 | E.1 | 4.8 | <10 | 192 | <.04 | E.09 | .18 | | 22
MAR | | 149 | 152 | 185 | 0 | | | | <10 | | <.04 | E.10 | . 59 | | 27
MAY | | 105 | 105 | 129 | 0 | | | | 76 | | <.04 | .20 | .62 | | 20
JUL | 2.53 | 102 | 102 | 124 | 0 | 4.13 | .1 | 6.7 | 23 | 121 | E.02 | .30 | .41 | | 16
SEP | | 155 | 156 | 190 | 0 | | | | 27 | | <.04 | .11 | . 26 | | 05 | | 174 | 174 | 213 | 0 | | | | <10 | | <.04 | .14 | .21 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | 005 | - 00 | - 01 | 0.5 | | | | 1.0 | 20 | 2 | 0.6 | - | | | 01
JAN | <.008 | E.03 | E.01 | <.06 | K1 | K7 | K8 | 13 | 22 | .3 | <.04 | <.1 | <6 | | 22
MAR | <.008 | <.06 | <.02 | <.06 | K35 | K2 | K1 | | | | | | | | 27
MAY | <.008 | <.06 | E.01 | E.03 | K12 | 104 | 52 | 105 | | | | | | | JUL | .014 | <.06 | <.02 | E.04 | K50 | 220 | K208 | 127 | 249 | .2 | E.02 | <.1 | <6 | | 16
SEP | <.008 | <.06 | E.01 | E.03 | K1 | 25 | 25 | | | | | | | | 05 | <.008 | <.06 | .03 | E.04 | K3 | К9 | K14 | | | | | | | # 06930450 BIG PINEY RIVER AT DEVIL'S ELBOW, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 01 | 15 | E.06 | <1 | 5.3 | <.01 | <.3 | | 3 | | JAN | | | | | | | | | | 22 | | | | | | | | | | MAR | | | | | | | | | | 27 | | | | | | | | | | MAY | | | | | | | | | | 20 | 103 | .94 | 3 | 12.7 | E.01 | <.3 | | 17 | | JUL | | | | | | | | | | 16 | | | | | | | | | | SEP | | | | | | | | | | 05 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. #### 06930800 GASCONADE RIVER ABOVE JEROME, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $37^{\circ}55^{\circ}12^{\circ}$, long $91^{\circ}58^{\circ}33^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.24, T.37 N., R.10 W., Phelps County, Hydrologic Unit 10290203, at bridge on State Highway D at Jerome, 150 ft upstream from Little Piney Creek, and 0.7 mi upstream from gaging station. DRAINAGE AREA.--2,570 \min^2 . PERIOD OF RECORD. -- January 1978 to current year. PERIOD OF DAILY RECORD.--SPECIFIC CONDUCTANCE: March 1978 to September 1981. WATER TEMPERATURE: March 1978 to September 1981. REMARKS.--National Stream-Quality Accounting Network station January 1978 to September 1993. Ambient Water-Quality Monitoring Network station November 1993 to current year. SPECIFIC CONDUCTANCE: Maximum daily, 588 microsiemens per centimeter, Sept. 23, 1981; minimum, 133 microsiemens per centimeter, Sept. 1, 1981. WATER TEMPERATURE: Maximum daily, 34.0 °C, Aug. 11 and 17, 1980; minimum, 0.0 °C on many days during winter period. | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--------------|----------------------------|---|--|---|--|--|---|---|---|---|--| | OCT | | | | | | | | | | | | | | 22
NOV | 1310 | ENVIRONMENTAL | 504 | 8.7 | 91 | 8.0 | 328 | 16.0 | | | | | | 19 | 1200 | ENVIRONMENTAL | 469 | 9.4 | 93 | 8.1 | 357 | 13.1 | 200 | 39.2 | 24.2 | .99 | | DEC
04 | 1520 | ENVIRONMENTAL | 1820 | 9.9 | 94 | 8.0 | 358 | 12.0 | | | | | | JAN
28
28 | 0930
0935 | ENVIRONMENTAL
BLANK | 1630 | 11.1 | 94 | 7.8 | 356
 | 6.8 | 180 | 35.8
.02 | 21.8 | .96
<.10 | | FEB
13
MAR | 1050 | ENVIRONMENTAL | 2100 | 10.7 | 88 | 8.0 | 302 | 6.7 | | | | | | 26 | 1347 | ENVIRONMENTAL | 8780 | 10.9 | 93 | 8.2 | 242 | 7.8 | | | | | | APR
09 | 1010 | ENVIRONMENTAL | 2100 | 9.6 | 91 | 8.1 | 297 | 12.4 | | | | | | MAY
20 | 1450 | ENVIRONMENTAL | 26100 | 9.2 | 94 | 8.0 | 191 | 15.7 | 97 | 20.7 | 10.9 | 2.27 | | JUN | | | | | | | | | | | | | | JUL | 1325 | ENVIRONMENTAL | 1670 | 10.0 | 121 | 8.1 | 298 | 23.3 | | | | | | 16
16 | 1215
1216 | ENVIRONMENTAL
BLANK | 729
 | 7.0 | 86 | 7.9 | 318 | 24.8 | 170 | 33.4
E.01 | 20.2 | 1.62
<.10 | | AUG | 1210 | DEFINIT | | | | | | | | 1.01 | 1.000 | 1.10 | | 12
12 | 1010
1011 | ENVIRONMENTAL
REPLICATE | 547
 | 6.9 | 85
 | 8.0 | 331 | 24.3 | | | | | | SEP
03 | 0950 | ENVIRONMENTAL | 598 | 6.6 | 81 | 7.8 | 339 | 24.4 | | | | | # 06930800 GASCONADE RIVER ABOVE JEROME, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT
180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | $\begin{array}{c} {\rm NITRO-}\\ {\rm GEN},\\ {\rm NO_2+NO_3}\\ {\rm DIS-}\\ {\rm SOLVED}\\ ({\rm mg/L}\\ {\rm as~N})\\ ({\rm 00631}) \end{array}$ | |---|---|--|---|---|--|--|--|---|---|---|--|--|--| | OCT
22 | | 169 | 169 | 206 | 0 | | | | <10 | | <.04 | .15 | .06 | | NOV
19 | 3.75 | 176 | 176 | 215 | 0 | 6.75 | .1 | 5.5 | 12 | 206 | <.04 | .13 | .06 | | DEC
04 | | 180 | 182 | 222 | 0 | | | | 34 | | <.04 | .23 | .49 | | JAN
28
28 | 3.10
.32 | 167 | 169
 | 206 | 0 | 8.61
.48 | <.1
<.1 | 8.0 | <10
<10 | 194
<10 | <.04
<.04 | .12
<.10 | .68
<.05 | | FEB
13 | | 136 | 136 | 166 | 0 | | | | <10 | | <.04 | .13 | E1.33 | | MAR
26 | | 128 | 130 | 158 | 0 | | | | 54 | | <.04 | .44 | .71 | | APR
09 | | 141 | 140 | 171 | 0 | | | | <10 | | <.04 | .16 | .38 | | MAY
20 | 2.45 | 112 | 108 | 131 | 0 | 3.82 | <.1 | 4.6 | 69 | 125 | .06 | .55 | .29 | | JUN
11 | | 146 | 146 | 178 | 0 | | | | <10 | | <.04 | .15 | .21 | | JUL
16
16 | 2.78 | 158 | 159
 | 194 | 0 | 5.07
<.30 | <.1
<.1 | 4.4
<.1 | 10 | 170
<10 | <.04
<.04 | .12
<.10 | .16
<.05 | | AUG
12 | | 163 | 166 | 202 | 0 | | | | <10 | | <.04 | .14 | .15 | | 12
SEP | | | | | | | | | <10 | | <.04 | .14 | .15 | | 03 | | 165 | 167 | 204 | 0 | | | | <10 | | <.04 | .15 | .11 | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | OCT
22 | GEN, NITRITE DIS- SOLVED (mg/L as N) | PHORUS DIS- SOLVED (mg/L as P) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P) | PHORUS
TOTAL
(mg/L
as P) | MTEC MF
WATER
(col./
100 mL) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL) | STREP,
KF STRP
MF,
WATER
(col./
100 mL) | INUM,
DIS-
SOLVED
(µg/L
as Al) | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al) | DIS-
SOLVED
(µg/L
as As) | DIS-
SOLVED
(µg/L
as Cd) | WATER
UNFLTRD
TOTAL
(µg/L
as Cd) | DIS-
SOLVED
(µg/L
as Cu) | | OCT
22
NOV
19 | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | MTEC MF
WATER
(col./
100 mL)
(31633) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | DIS-
SOLVED
(µg/L
as As) | DIS-
SOLVED
(µg/L
as Cd) | WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | | OCT
22
NOV
19
DEC
04 | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | MTEC MF
WATER
(col./
100 mL)
(31633) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | DIS-
SOLVED
(µg/L
as As)
(01000) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | WATER UNFLTRD TOTAL (µg/L as Cd) (01027) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | | OCT 22 NOV 19 DEC 04 JAN 28 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 E.004 <.008 | PHORUS DIS-
SOLVED (mg/L as P) (00666) <.06 <.06 <.06 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
<.02
<.02
<.02 | PHORUS
TOTAL
(mg/L
as P)
(00665)
<.06
<.06
E.03 | MTEC MF
WATER
(col./
100 mL)
(31633)
K3
K4
28 | FORM, FECAL, 0.7 0.7 µm-MF (col./ 100 mL) (31625) K3 K14 37 K3 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
K8
K3
42 | INUM, DIS- SOLVED (µg/L as Al) (01106) 13 34 | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | DIS-
SOLVED (µg/L
as As)
(01000)

.3
 | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<.04 | WATER UNPITRD TOTAL (µg/L as Cd) (01027) <.1 <.1 | DIS-
SOLVED (µg/L
as Cu)
(01040)

<6

8 | | OCT 22 NOV 19 DEC 04 JAN 28 28 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 E.004 <.008 <.008 | PHORUS DIS- SOLVED (mg/L as P) (00666) <.06 <.06 <.06 <.06 <.06 | PHORUS ORTHO, DIS-
SOLVED (mg/L as P) (00671)
<.02
<.02
<.02
<.02
<.02 | PHORUS TOTAL (mg/L as P) (00665) <.06 <.06 E.03 <.06 <.06 <.06 | MTEC MF
WATER
(col./
100 mL)
(31633)
K3
K4
28 | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) K3 K14 37 K3 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
K8
K3
42
K7 | INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 36 | DIS-
SOLVED
(µg/L
as As)
(01000) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | WATER UNFLTRD TOTAL (µg/L as Cd) (01027) <.1 | DIS-
SOLVED
(µg/L
as Cu)
(01040) | | OCT 22 NOV 19 DEC 04 JAN 28 28 FEB 13 MAR | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 E.004 <.008 <.008 <.008 | PHORUS DIS- SOLVED (mg/L as P) (00666) <.06 <.06 <.06 <.06 <.06 <.06 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
<.02
<.02
<.02
<.02
<.02 | PHORUS TOTAL (mg/L as P) (00665) <.06 <.06 E.03 <.06 <.06 <.06 <.06 | MTEC MF
WATER
(col./
100 mL)
(31633)
K3
K4
28
<1

K2 | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625)
K3
K14
37
K3

K8 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
K8
K3
42
K7

K5 | INUM, DIS- SOLVED (µg/L as Al) (01106) 13 34 <1 | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 36 79 <2 | DIS-
SOLVED
(µg/L
as As)
(01000)

.3

.3
<.2 | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<.04

<.04
<.04 | WATER UNFITRD TOTAL (µg/L as Cd) (01027) <.1 <.1 <.1 <.1 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

<6

8
<6 | | OCT 22 NOV 19 DEC 04 JAN 28 28 FEB 13 MAR 26 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 | PHORUS DIS- SOLVED (mg/L as P) (00666) <.06 <.06 <.06 <.06 <.06 <.06 <.06 | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) <.02 <.02 <.02 <.02 <.02 E.01 E.01 | PHORUS TOTAL (mg/L as P) (00665) <.06 <.06 E.03 <.06 <.06 <.06 .07 | MTEC MF
WATER
(col./
100 mL)
(31633)
K3
K4
28
<1

K2
480 | FORM, FECAL, 0.7 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
K8
K3
42
K7

K5 | INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106)

13

34
<1 |
INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 36 79 <2 | DIS-
SOLVED
(µg/L
as As)
(01000)

.3

.3
<.2 | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<.04

<.04
<.04 | WATER UNFITRD TOTAL (µg/L as Cd) (01027) <.1 <.1 <.1 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

<6

8
<6 | | OCT 22 NOV 19 DEC 04 JAN 28 28 FEB 13 MAR 26 APR 09 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 E.004 <.008 <.008 .009 <.008 | PHORUS DIS- SOLVED (mg/L as P) (00666) <.06 <.06 <.06 <.06 <.06 <.06 <.06 | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | PHORUS TOTAL (mg/L as P) (00665) <.06 <.06 E.03 <.06 <.06 <.06 <.06 <.06 | MTEC MF WATER (col./ 100 mL) (31633) K3 K4 28 <1 K2 480 K8 | FORM, FECAL, 0.7, 100 mL) (31625) K3 K14 37 K3 K8 420 22 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
K8
K3
42
K7

K5
212
21 | INUM, DIS- SOLVED (µg/L as Al) (01106) 13 34 <1 | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 36 79 <2 | DIS-
SOLVED
(µg/L
as As)
(01000)

.3

.3
<.2 | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<.04

<.04
 | WATER UNFITRD TOTAL (µg/L as Cd) (01027) <.1 <.1 <.1 <.1 | DIS-
SOLVED (µg/L as Cu) (01040)
<6
8 <6 | | OCT 22 NOV 19 DEC 04 JAN 28 28 FBB 13 MAR 26 APR 09 MAY 20 JUN | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 E.004 <.008 <.008 <.008 <.008 .009 <.008 | PHORUS DIS- SOLVED (mg/L as P) (00666) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.0 | PHORUS ORTHO, DIS-SOLVED (mg/L as P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | PHORUS TOTAL (mg/L as P) (00665) <.06 <.06 E.03 <.06 <.06 <.06 <.06 .13 | MTEC MF
WATER
(col./
100 mL)
(31633)
K3
K4
28
<1

K2
480
K8
370 | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) K3 K14 37 K3 K8 420 22 600 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
K8
K3
42
K7

K5
212
21 | INUM, DIS- SOLVED (µg/L as Al) (01106) 13 34 <1 201 | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 36 79 <2 | DIS-
SOLVED
(µg/L
as As)
(01000)

.3

.3
<.2 | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<.04

<.04
<.04 | WATER UNFITRD TOTAL (µg/L as Cd) (01027) <.1 <.1 <.1 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

<6

8
<6 | | OCT 22 NOV 19 DEC 04 JAN 28 28 FEB 13 MAR 26 APR 09 MAY 20 JUN 11 JUL | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 | PHORUS DIS- SOLVED (mg/L as P) (00666) <.06 <.06 <.06 <.06 <.06 <.06 <.06 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02 | PHORUS TOTAL (mg/L as P) (00665) <.06 <.06 E.03 <.06 <.06 <.06 <.06 .13 <.06 | MTEC MF WATER (col./ 100 mL) (31633) K3 K4 28 <1 K2 480 K8 | FORM, FECAL, 0.7, 100 mL) (31625) K3 K14 37 K3 K8 420 22 | STREP, KF STRP MF, WATER (col./ 100 mL) (31673) K8 K3 42 K7 K5 212 21 1550 K10 | INUM, DIS- SOLVED (µg/L as Al) (01106) 13 34 <1 | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105)

36

79
<2

556 | DIS-
SOLVED
(µg/L
as As)
(01000)

.3

.3
<.2

.4 | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<.04

<.04
<.04

<.04 | WATER UNFITRD TOTAL (µg/L as Cd) (01027) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 < <.1 < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | DIS-
SOLVED (µg/L
as Cu) (01040)

<6
8 <6

<6 | | OCT 22 NOV 19 DEC 044 JAN 28 28 FEB 13 MAR 26 APR 09 MAY 20 JUNN 11 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 E.004 <.008 <.008 <.008 <.008 .009 <.008 | PHORUS DIS- SOLVED (mg/L as P) (00666) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.0 | PHORUS ORTHO, DIS-SOLVED (mg/L as P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | PHORUS TOTAL (mg/L as P) (00665) <.06 <.06 E.03 <.06 <.06 <.06 <.06 .13 | MTEC MF WATER (col./100 mL) (31633) K3 K4 28 <1 K2 480 K8 370 K2 | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) K3 K14 37 K3 K8 420 22 600 K11 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
K8
K3
42
K7

K5
212
21 | INUM, DIS- SOLVED (µg/L as Al) (01106) 13 34 <1 201 | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 36 79 <2 556 | DIS-
SOLVED
(µg/L
as As)
(01000)

.3

.3
<.2

.4 | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<.04

<.04
<.04

<.04 | WATER UNFLTRD TOTAL (µg/L as Cd) (01027) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 < <- <- <- Cd> | DIS-
SOLVED (µg/L
as Cu) (01040) <6 8 <6 <6 <6 | | OCT 22 NOV 19 DEC 04 JAN 28 FEB 13 MAR 26 APR 09 MAY 20 JUN 11 JUL 16 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 | PHORUS DIS- SOLVED (mg/L as P) (00666) <.06 <.06 <.06 <.06 <.06 <.06 <.06 <.0 | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | PHORUS TOTAL (mg/L as P) (00665) <.06 <.06 E.03 <.06 <.06 <.06 <.06 .07 <.06 .13 <.06 <.06 | MTEC MF WATER (col./ 100 mL) (31633) K3 K4 28 <1 K2 480 K8 370 K2 K1 | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) K3 K14 37 K3 K8 420 22 600 K11 K6 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
K8
K3
42
K7

K5
212
21
1550
K10
185 | INUM, DIS- SOLVED (µg/L as Al) (01106) 13 34 <1 201 1 | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 36 79 <2 556 59 | DIS-
SOLVED
(µg/L
as As)
(01000) 3345 | DIS-
SOLVED (µg/L as Cd) (01025) <.04 <.04 <.04 <.04 <.04 <.04 | WATER UNFITRD TOTAL (µg/L as Cd) (01027) <.1 <.1 <.1 <.1 <.1 <.1 | DIS-
SOLVED (µg/L
as Cu) (01040) <6 8 <6 <6 <6 <6 | # 06930800 GASCONADE RIVER ABOVE JEROME, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |-----------|---|---|--|---|--|--|---|--| | OCT | | | | | | | | | | 22 | | | | | | | | | | NOV | | | | | | | | | | 19 | 17 | E.04 | <1 | 8.1 | <.01 | <.3 | | 4 | | DEC | | | | | | | | | | 04
JAN | | | | | | | | | | 28 | 17 | <.08 | <1 | 5.0 | <.01 | <.3 | | 3 | | 28 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | 2 | <1 | | FEB | | | | | | | | | | 13 | | | | | | | | | | MAR | | | | | | | | | | 26 | | | | | | | | | | APR
09 | | | | | | | | | | MAY | | | | | | | | | | 20 | 136 | .73 | 3 | 12.0 | E.01 | <.3 | | 11 | | JUN | | | | | | | | | | 11 | | | | | | | | | | JUL | .10 | . 00 | ., | 7.0 | . 01 | . 2 | .1 | - | | 16 | <10 | <.08 | M | 7.2
<2.0 | <.01
<.01 | <.3 | <1 | 1
<1 | | 16
AUG | <10 | <.08 | <1 | <2.0 | <.U1 | E.2 | <1 | <t< td=""></t<> | | 12 | | | | | | | | | | 12 | | | | | | | | | | SEP | | | | | | | | | | 03 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 06932000 LITTLE PINEY CREEK AT NEWBURG, MO LOCATION.--Lat 37°54'35", long 91°54'12", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.22, T.37 N., R.9 W., Phelps County, Hydrologic Unit 10290203, on downstream side of bridge on State Highway P and T at Newburg, and 2 mi upstream from Mill Creek. DRAINAGE AREA.--200 mi². PERIOD OF RECORD.--October 1928 to current year. GAGE.--Water-stage recorder. Datum of gage is 693.40 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1951, all gages at datum 3.0 ft higher. Prior to Nov. 21, 1963, nonrecording gage at site 100 ft downstream; Nov. 21, 1963 to May 9, 1966, nonrecording gage at present site. REMARKS.--Records good. U.S.G.S satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage, 16.7 ft, Aug. 20, 1915, from floodmark, present datum; discharge, 30,000 ${\rm ft}^3/{\rm s}$, from rating curve based on discharge measurements made in 1935 and extended above 25,000 ${\rm ft}^3/{\rm s}$. | | | DISCHARGE | , CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|---|---------------------------------------
-------------------------------------|---|------------------------------------|--|--|---|-------------------------------------|---|-------------------------------------|-------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 35
35
34
35
50 | 38
44
41
38
37 | 135
105
89
79
72 | 78
74
71
71
69 | 1080
466
334
254
210 | 69
447
327
224
196 | 166
159
145
136
129 | 371
338
317
292
266 | 229
208
189
178
181 | 104
117
121
116
107 | 68
68
65
64
63 | 64
64
62
61 | | 6
7
8
9
10 | 45
39
37
36
56 | 39
40
40
39
38 | 67
63
59
55
52 | 69
65
64
64
63 | 182
162
147
136
127 | 197
177
162
200
182 | 124
121
147
166
154 | 255
786
4570
2220
1010 | 162
151
143
143
150 | 103
99
97
91
90 | 64
63
61
60
61 | 60
60
60
59 | | 11
12
13
14
15 | 55
52
48
48
46 | 38
38
38
38
38 | 50
66
121
110
102 | 60
59
58
57
55 | 116
110
105
100
97 | 171
176
165
156
158 | 145
140
135
135
133 | 726
2120
5590
1520
987 | 149
144
302
199
172 | 91
90
85
85
84 | 64
66
113
96
76 | 59
58
57
58
59 | | 16
17
18
19
20 | 50
45
43
41
41 | 38
37
37
36
35 | 453
975
447
280
207 | 54
53
53
55
53 | 92
89
85
90
93 | 178
166
154
381
519 | 130
134
128
1590
3110 | 1120
6980
3420
1640
1240 | 155
145
139
134
128 | 83
82
81
81 | 72
71
191
102
186 | 59
64
62
66
96 | | 21
22
23
24
25 | 41
40
68
128
59 | 35
36
37
103
76 | 173
155
137
123
113 | 53
51
54
66
66 | 87
83
81
78
78 | 323
247
215
196
704 | 981
588
425
351
362 | 1020
857
735
657
574 | 124
122
119
117
117 | 78
77
73
73
73 | 93
81
80
79
75 | 70
63
60
59
59 | | 26
27
28
29
30
31 | 48
43
41
40
39
38 | 61
53
58
114
257 | 107
101
96
91
85
81 | 65
63
61
62
259
1760 | 74
72
70
 | 430
313
262
230
200
180 | 428
400
446
474
409 | 483
421
366
322
281
253 | 121
114
111
109
107 | 72
71
70
70
70
70 | 71
69
67
66
66
65 | 59
60
58
58
56 | | MEAN
MAX
MIN
IN. | 47.0
128
34
0.27 | 53.2
257
35
0.30 | 156
975
50
0.90 | 123
1760
51
0.71 | 168
1080
70
0.87 | 248
704
69
1.43 | 403
3110
121
2.25 | 1346
6980
253
7.76 | 152
302
107
0.85 | 86.6
121
70
0.50 | 80.2
191
60
0.46 | 61.7
96
56
0.34 | | MEAN
MAX
(WY)
MIN
(WY) | 97.3
913
1950
26.9
1957 | 138
694
1994
33.1 | 151
1300
1983
35.7
1956 | 151
770
1950
34.9
1956 | 179
678
1985
35.6
1934 | 236
822
1945
42.8
1956 | 271
1335
1945
42.0
1956 | 276
1346
2002
43.7
1932 | 200
1545
1935
32.2
1934 | 107
684
1998
27.6
1934 | 82.3
493
1946
27.6
1936 | 86.8
706
1993
28.1
1954 | | SUMMARY | STATISTIC | CS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YEA | ıR. | WATER YE | ARS 1929 | - 2002 | | LOWEST A
HIGHEST
LOWEST DANNUAL S
MAXIMUM
MAXIMUM
INSTANTA
ANNUAL D
10 PERCE
50 PERCE | MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA DAILY MEA PEAK FLOI PEAK STA ANEOUS LOI RUNOFF (II ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS | | 3520
34
35

7.91
173
74
37 | Apr
Sep
Sep | 4 | 6980
34
36
14000
13.44
16.65
429
90
41 | May 1
Oct
Nov 1
Apr 1
Apr 1 | 3
.7
.9
.9 | 164
391
47.0
19600
24
24
32500
16.60
24
11.15
286
87
43 | 1936,195
Aug 2
Aug 1 | 22 1936
14 1946
17 1985 | #### 06933500 GASCONADE RIVER AT JEROME, MO LOCATION.--Lat $37^{\circ}55^{\circ}47^{\circ}$, long $91^{\circ}58^{\circ}38^{\circ}$, in NE $\frac{1}{4}$ NE $\frac{1}{4}$ Sec.13, T.37 N., R.10 W., Phelps County, Hydrologic Unit 10290203, on left bank at Jerome, 0.5 mi downstream from Little Piney Creek, and at mile 107. DRAINAGE AREA. -- 2,840 mi². PERIOD OF RECORD.--April 1903 to July 1906, January 1923 to current year. April 1903 to July 1906 published as "at Arlington". October to December 1922 monthly discharge only, published in WSP 1310. Gage-height records collected intermittently in the vicinity 1885-1926 and at same site since 1938 are contained in reports of the National Weather Service. REVISED RECORDS.--WSP 172: 1904. WSP 566: Drainage area. WSP 1340: 1903-04, 1928(M). GAGE.--Water-stage recorder. Datum of gage is 657.64 ft above National Geodetic Vertical Datum of 1929. Prior to July 26, 1904, nonrecording gage at site 0.8 mi downstream at different datum; July 26, 1904, to July 21, 1906, nonrecording gage at site 0.5 mi upstream from present site at datum about 0.85 ft higher than present gage; Jan. 3, 1923, to Sept. 29, 1928, nonrecording gage at site 400 ft downstream from present site at datum 0.14 ft lower than present datum; Sept. 30, 1928, to Jan. 17, 1939, nonrecording gage at present site and datum. REMARKS.--Records good. National Weather Service gage-height and U.S.G.S. satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Jan. 6, 1897, reached a stage of about 29.0 ft, discharge, 120,000 ft 3 /s. A stage of 28.6 ft was reached on Aug. 20 and 22, 1915, discharge, 114,000 ft 3 /s. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER Y | | BER 2001 TO | SEPTEMBE | ER 2002 | | | |---|--|---|--|---|--------------------------|--|--|---|----------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 384 | 515 | 1560 | 1230 | 17200 | 1210 | 3630 | 3540 | 2560 | 844 | 635 | 649 | | 2 | 379 | 528 | 1810 | 1130 | 22600 | 2270 | 3250 | 3460 | 2380 | 822 | 618 | 618 | | 3 | 376 | 530 | 1750 | 1040 | 17700 | 3290 | 2870 | 3160 | 2210 | 882 | 602 | 594 | | 4 | 375 | 529 | 1840 | 968 | 8550 | 4510 | 2570 | 2850 | 2080 | 866 | 592 | 571 | | 5 | 475 | 527 | 1580 | 924 | 6100 | 4860 | 2340 | 2570 | 2100 | 818 | 585 | 553 | | 6 | 484 | 523 | 1360 | 921 | 4850 | 4160 | 2200 | 2360 | 2050 | 798 | 567 | 533 | | 7 | 456 | 519 | 1190 | 881 | 4050 | 3720 | 2090 | 3620 | 2010 | 778 | 553 | 520 | | 8 | 439 | 512 | 1070 | 836 | 3450 | 3490 | 2090 | 16800 | 1850 | 766 | 556 | 517 | | 9 | 426 | 509 | 974 | 812 | 3030 | 3400 | 3530 | 39400 | 1790 | 748 | 559 | 518 | | 10 | 581 | 500 | 902 | 795 | 2730 | 3700 | 6220 | 47000 | 1740 | 734 | 545 | 494 | | 11 | 750 | 493 | 835 | 768 | 2440 | 4270 | 6250 | 43400 | 1680 | 741 | 548 | 483 | | 12 | 1040 | 489 | 865 | 749 | 2250 | 3980 | 4810 | 21100 | 1630 | 744 | 546 | 471 | | 13 | 737 | 484 | 1120 | 732 | 2090 | 3960 | 4000 | 32400 | 2390 | 773 | 665 | 460 | | 14 | 635 | 482 | 1160 | 720 | 1920 | 3770 | 3810 | 37000 | 1890 | 747 | 657 | 453 | | 15 | 591 | 479 | 1350 | 698 | 1760 | 3500 | 5850 | 25400 | 1990 | 748 | 617 | 454 | | 16 | e560 | 475 | 2910 | 681 | 1630 | 3300 | 5450 | 11800 | 1920 | 727 | 671 | 455 | | 17 | 535 | 469 | 7980 | 672 | 1500 | 3520 | 4630 | 20000 | 1750 | 701 | 725 | 484 | | 18 | 523 | 465 | 16800 | 662 | 1400 | 3530 | 4250 | 34800 | 1580 | 712 | 823 | 483 | | 19 | 517 | 465 | 16000 | 671 | 1360 | 3890 | 5760 | 34500 | 1440 | 739 | 771 | 489 | | 20 | 515 | 457 | 10400 | 657 | 1360 | 7440 | 14800 | 25400 | 1330 | 722 | 861 | 548 | | 21 | 511 | 452 | 6040 | 654 | 1330 | 13000 | 7780 | 11200 | 1250 | 870 | 753 | 539 | | 22 | 507 | 447 | 4540 | 645 | 1420 | 11900 | 6180 | 8050 | 1170 | 973 | 699 | 535 | | 23 | 527 | 478 | 3620 | 645 | 1480 | 7570 | 6520 | 6550 | 1090 | 924 | 693 | 535 | | 24 | 1050 | 712 | 3010 | 690 | 1530 | 5830 | 5340 | 5710 | 1050 | 964 | 681 | 525 | | 25 | 628 | 725 | 2570 | 718 | 1480 | 6350 | 4880 | 5280 | 1000 | 910 | 689 | 505 | | 26
27
28
29
30
31 | 541
531
526
520
517
513 | 1190
966
923
1160
1720 | 2280
2030
1790
1600
1440
1330 | 1030
1250
1610
1610
2010
6670 | 1410
1330
1260
 | 8540
9370
7190
5810
4910
4210 | 4600
4200
4040
4290
4000 | 4590
4060
3610
3250
3020
2770 | 1010
949
911
890
865 | e971
e890
e800
710
683
661 | 665
631
618
614
646
659 | 539
560
553
533
516 | | MEAN | 553 | 624 | 3345 | 1099 |
4258 | 5176 | 4741 | 15120 | 1618 | 799 | 647 | 523 | | MAX | 1050 | 1720 | 16800 | 6670 | 22600 | 13000 | 14800 | 47000 | 2560 | 973 | 861 | 649 | | MIN | 375 | 447 | 835 | 645 | 1260 | 1210 | 2090 | 2360 | 865 | 661 | 545 | 453 | | IN. | 0.22 | 0.25 | 1.36 | 0.45 | 1.56 | 2.10 | 1.86 | 6.14 | 0.64 | 0.32 | 0.26 | 0.21 | | MEAN | 1372 | 2307 | 2474 | 2406 | 3012 | 4045 | 4622 | 4439 | 3013 | 1526 | 1165 | 1257 | | MAX | 10390 | 10400 | 17740 | 10980 | 11540 | 13110 | 20450 | 15390 | 18500 | 10730 | 9244 | 12580 | | (WY) | 1950 | 1994 | 1983 | 1950 | 1985 | 1945 | 1945 | 1990 | 1935 | 1951 | 1927 | 1993 | | MIN | 289 | 368 | 392 | 368 | 491 | 597 | 504 | 532 | 518 | 339 | 324 | 293 | | (WY) | 1957 | 1957 | 1956 | 1956 | 1964 | 1956 | 1956 | 2000 | 1934 | 1934 | 1936 | 1956 | | SUMMARY | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | RECORD | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL 10 PERC | MEAN T ANNUAL M ANNUAL M T DAILY ME DAILY ME SEVEN-DAY M PEAK FIC M PEAK STA FANEOUS LC RUNOFF (1) CENT EXCER CENT EXCER CENT EXCER | EAN EAN AN Y MINIMUM OW AGE DW FLOW INCHES) EDS | | 28000
375
380

6.74
2170
799
431 | Feb 26
Oct 4
Sep 1 | | 3214
47000
375
418
51700
21.14
371
15.37
6290
1040
510 | May 10
Oct 4
Oct 1
May 10
May 10
Oct 4,5 | | 2624
6491
544
121000
259
266
136000
31.34
254
12.55
5470
1230
514 | Sep
Sep
Dec
Dec | 1985
1954
5 1982
21 1956
16 1956
5 1982
5 1982
21 1956 | e Estimated #### 06934000 GASCONADE RIVER NEAR RICH FOUNTAIN, MO LOCATION.--Lat $38^{\circ}23^{\circ}20^{\circ}$, long $91^{\circ}49^{\circ}15^{\circ}$, in SE $\frac{1}{4}$ sec.16, T.41 N., R.8 W., Osage County, Hydrologic Unit 10290203, on downstream side of State Highway 89 bridge, 100 ft downstream from Brush Creek Slough, 800 ft upstream from Swan Creek, and 4 mi east of Rich Fountain. DRAINAGE AREA.--3,180 mi^2 (by U.S. Army Corps of Engineers). PERIOD OF RECORD.--Nov. 1, 1921 to Sept. 30, 1959, Oct. 1, 1986 to current year. Annual peaks only for water years 1959 to 1986. GAGE.--Water-stage recorder. Datum of gage 553.70 ft above National Geodetic Vertical Datum of 1929. From Oct. 10, 1921, to Sept. 13, 1932, chain gage on former bridge, 50 ft downstream; Sept. 14, 1932, to Mar. 9, 1934, wire-weight gage on former bridge; Mar. 10, 1934, to Aug. 26, 1956, water-stage recorder on former bridge; Aug. 26, 1956, to May 11, 1966, gage readings were obtained by measuring from a reference point on present bridge; May 11, 1966, to Oct. 31, 1986, Type-A wire-weight gage on present bridge. All gages have been maintained at present datum. REMARKS.--Records good. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHA | RGE, CUBIC | C FEET PER | | WATER YE
Y MEAN V | EAR OCTOBEF
ALUES | R 2001 TC | SEPTEMBE | R 2002 | | | |--|--|---|--|---|--------------------------|--|--|--|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 432 | 565 | 2600 | 1520 | 13700 | 1480 | 4600 | 3840 | 3060 | 1020 | 761 | 745 | | 2 | 430 | 599 | 2040 | 1410 | 19800 | 2590 | 4060 | 3450 | 2830 | 1010 | 734 | 736 | | 3 | 424 | 613 | 2070 | 1340 | 22100 | 4550 | 3650 | 3330 | 2630 | 1000 | 718 | 714 | | 4 | 423 | 614 | 1990 | 1280 | 15100 | 4450 | 3240 | 3010 | 2450 | 1060 | 703 | 680 | | 5 | 496 | 596 | 2000 | 1170 | 7900 | 5370 | 2940 | 2710 | 2540 | 1040 | 681 | 654 | | 6 | 518 | 580 | 1780 | 1130 | 6160 | 5410 | 2690 | 2460 | 2490 | 964 | 658 | 631 | | 7 | 523 | 567 | 1580 | 1110 | 5110 | 4670 | 2500 | 2960 | 2350 | 925 | 643 | 604 | | 8 | 496 | 558 | 1410 | 1070 | 4350 | 4220 | 2490 | 13600 | 2230 | 894 | 616 | 588 | | 9 | 481 | 548 | 1270 | 1020 | 3780 | 4160 | 2620 | 27100 | 2090 | 864 | 613 | 583 | | 10 | 861 | 540 | 1160 | 997 | 3360 | 4060 | 4680 | 39000 | 2080 | 847 | 620 | 586 | | 11 | 834 | 525 | 1070 | 970 | 3010 | 4570 | 6950 | 47900 | 2210 | 830 | 606 | 566 | | 12 | 877 | 522 | 1120 | 937 | 2710 | 4650 | 6070 | 45400 | 2990 | 846 | 611 | 551 | | 13 | 1200 | 518 | 1980 | 912 | 2480 | 4420 | 4950 | 34700 | 2360 | 837 | 687 | 540 | | 14 | 961 | 516 | 1970 | 888 | 2270 | 4420 | 4350 | 35100 | 2730 | 861 | 778 | 534 | | 15 | 820 | 509 | 1820 | 867 | 2100 | 4140 | 4450 | 37400 | 2110 | 815 | 773 | 532 | | 16 | 779 | 504 | 3470 | 844 | 1960 | 4170 | 6360 | 26200 | 2160 | 821 | 707 | 535 | | 17 | 744 | 502 | 9000 | 824 | 1830 | 3850 | 5260 | 20200 | 2040 | 802 | 738 | 549 | | 18 | 686 | 497 | 11700 | 811 | 1720 | 4040 | 4200 | 28600 | 1880 | 778 | 3670 | 558 | | 19 | 641 | 497 | 16800 | 811 | 1640 | 4330 | 4280 | 35000 | 1730 | 974 | 2100 | 567 | | 20 | 611 | 490 | 14900 | 804 | 1640 | 6370 | 17000 | 36300 | 1620 | 850 | 2020 | 596 | | 21 | 596 | 486 | 8230 | 789 | 1620 | 10300 | 16400 | 24600 | 1520 | 828 | 1190 | 613 | | 22 | 583 | 477 | 5520 | 778 | 1580 | 13000 | 7840 | 10500 | 1440 | 928 | 992 | 607 | | 23 | 634 | 473 | 4330 | 772 | 1660 | 10300 | 6670 | 7970 | 1360 | 1140 | 924 | 596 | | 24 | 1480 | 1240 | 3590 | 792 | 1710 | 7280 | 6210 | 7080 | 1290 | 1070 | 878 | 596 | | 25 | 1820 | 1360 | 3060 | 832 | 1730 | 6580 | 5000 | 6230 | 1240 | 1100 | 847 | 591 | | 26
27
28
29
30
31 | 1040
791
694
655
614
586 | 1040
1320
1190
1190
3140 | 2670
2380
2150
1950
1790
1640 | 866
1160
1410
1710
2600
9970 | 1690
1610
1530
 | 7790
9610
9020
7370
6150
5300 | 4810
4680
4780
4280
4280 | 5580
4850
4330
4060
3690
3340 | 1200
1200
1150
1100
1060 | 1040
1090
983
890
830
793 | 828
803
761
731
718
733 | 575
588
624
618
606 | | MEAN | 733 | 759 | 3840 | 1368 | 4852 | 5762 | 5410 | 17110 | 1971 | 927 | 930 | 602 | | MAX | 1820 | 3140 | 16800 | 9970 | 22100 | 13000 | 17000 | 47900 | 3060 | 1140 | 3670 | 745 | | MIN | 423 | 473 | 1070 | 772 | 1530 | 1480 | 2490 | 2460 | 1060 | 778 | 606 | 532 | | IN. | 0.27 | 0.27 | 1.39 | 0.50 | 1.59 | 2.09 | 1.90 | 6.21 | 0.69 | 0.34 | 0.34 | 0.21 | | MEAN | 1638 | 2449 | 2505 | 2842 | 3305 | 4551 | 5585 | 5424 | 3736 | 1788 | 1345 | 1387 | | MAX | 12060 | 12230 | 12750 | 12700 | 7637 | 14640 | 22720 | 18300 | 19810 | 12630 | 9365 | 15330 | | (WY) | 1950 | 1994 | 1988 | 1950 | 1949 | 1945 | 1945 | 1990 | 1935 | 1951 | 1927 | 1993 | | MIN | 288 | 394 | 403 | 374 | 558 | 620 | 531 | 670 | 647 | 385 | 334 | 295 | | (WY) | 1957 | 1957 | 1956 | 1956 | 1954 | 1956 | 1956 | 2000 | 1934 | 1954 | 1936 | 1954 | | SUMMARY | STATISTI | ICS | FOR | R 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | FOR P | ERIOD OF | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANTANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME DAILY ME DAILY ME CONTENS CONTENS CONTENS MEAN M | EAN EAN AN MINIMUM OW AGE OW FLOW INCHES) EDS | | 27300
395
403

7.20
2860
988
475 | Feb
Sep
Aug | 1 | 47900
423
464
49500
22.17
414
15.78
7540
1360
572 | May
Oct
Oct
May
May
Oct | 4
1
11
11 |
3042
6560
629
101000
275
279
134000
33.27
275
13.00
6420
1460
562 | Sep
Oct
Dec
Dec | 1927
1954
28 1993
19 1954
6 1956
6 1982
6 1982
19 1954 | ### MISSOURI RIVER MAIN STEM 235 ### 06934500 MISSOURI RIVER AT HERMANN, MO LOCATION.--Lat $38^{\circ}42^{\circ}36^{\circ}$, long $91^{\circ}26^{\circ}21^{\circ}$, in SW $\frac{1}{4}$ sec.25, T.46 N., R.5 W., Montgomery County, Hydrologic Unit 10300200, on downstream side of third pier from right abutment of bridge on State Highway 19 at Hermann, and at mile 97.9. DRAINAGE AREA.--522,500 mi^2 . The 3,959 mi^2 in Great Divide basin are not included. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1897 to current year. Prior to August 1928 monthly discharge only published in WSP 1310. Gage-height records 1873-99 collected at site 480 ft downstream are contained in reports of Missouri River Commission; since 1900 in reports of the National Weather Service. REVISED RECORDS.--WDR MO-76-1: Drainage area, WDR MO-98-1: Extreme outside period of record. GAGE.--Water-stage recorder and nonrecording gage. Datum of gage is 481.56 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 26, 1930, nonrecording gage at site 480 ft downstream at datum 0.07 ft lower; Sept. 26, 1930, to Mar. 27, 1932, nonrecording gage; Mar. 28, 1932, to June 12, 1945, water-stage recorder; June 13, 1945, to Apr. 2, 1946, May 13 to Sept. 30, 1978, nonrecording gage at present site and datum. REMARKS.--Water-discharge records good. Some regulation from many upstream reservoirs. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1844 reached a stage of 35.5 ft, discharge, about $700,000 \text{ ft}^3/\text{s}$, computed by the U.S. Army Corps of Engineers. | | 1 1 | DISCH | ARGE, CUB | IC FEET P | | , WATER Y
LY MEAN V | | BER 2001 T | O SEPTEMB | ER 2002 | | | |---|--|---|--|--|---|--|--|--|--|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 57100
55600
54200
54000
56500 | 47100
46100
47000
45800
44200 | 52500
50400
47600
46200
45900 | 34900
35700
35000
36400
36600 | 119000
104000
92000
83300
71400 | 45200
44800
47500
41700
42900 | 48000
45400
46000
50600
50200 | 115000
97500
95800
87500
71500 | 109000
108000
106000
105000
104000 | 53900
51700
48700
47400
47200 | 40300
42600
42500
39700
37900 | 46200
44200
42800
42000
41700 | | 6
7
8
9
10 | 57400
61300
60800
54600
61400 | 43700
44800
47000
45600
44400 | 44600
41600
39500
37800
36300 | 37900
34200
33000
35300
35000 | 61900
53200
51100
48600
47100 | 47300
46600
41200
38500
38200 | 49600
47100
45400
47600
49100 | 61400
104000
225000
285000
299000 | 104000
105000
105000
105000
103000 | 48900
47800
45900
44700
52000 | 36600
35800
35500
35000
34900 | 41300
41300
44500
45500
42700 | | 11
12
13
14
15 | 81000
76100
68700
62600
52700 | 43700
43600
43200
43300
44100 | 35600
36300
40400
40500
40100 | 34900
31100
29900
30000
30500 | 38300
37100
42300
45600
46000 | 38300
39400
41400
40500
39300 | 49100
54100
57100
53200
50400 | 282000
269000
324000
345000
332000 | 98600
113000
153000
146000
130000 | 56600
55400
54700
52200
48600 | 35100
35600
37500
39400
41600 | 46700
47900
42000
40200
39500 | | 16
17
18
19
20 | 53300
66300
69500
75000
68700 | 43400
43100
42700
42400
42100 | 41300
54500
57500
56400
56700 | 30400
30100
30500
31400
32700 | 46300
44300
38400
37400
43100 | 37500
36400
35600
36600
42500 | 52100
54400
51500
49500
66300 | 315000
282000
260000
209000
170000 | 114000
109000
107000
100000
94800 | 47800
52300
47800
48200
48800 | 39000
38100
41500
59700
57000 | 39300
39600
39900
40700
41400 | | 21
22
23
24
25 | | 41800
41900
42400
47500
47200 | 58300
51200
42800
39000
37300 | 34000
33300
34500
34100
33900 | 44400
48100
54800
53500
44700 | 48000
53700
59000
51500
44500 | 90400
90100
94900
104000
83900 | 155000
143000
121000
116000
126000 | 92200
90300
88600
86700
82700 | 48300
44300
42800
47900
45900 | 55500
49600
50000
51400
51800 | 42200
42000
41000
40000
39500 | | 26
27
28
29
30
31 | 49100
48600
48500
47500
47300
50400 | 45200
44700
45600
46500
50200 | 37100
37000
37100
37800
36800
35500 | 35700
35100
33400
32200
33800
75700 | 40900
42500
45400
 | 45900
54300
56900
54600
53000
50900 | 70800
72400
102000
121000
128000 | 132000
157000
156000
140000
128000
115000 | 79300
79200
78400
68600
57500 | 41300
39500
42500
44500
44400
40200 | 49400
48000
56700
59800
52600
48700 | 39700
40000
38900
38000
37700 | | MEAN
MAX
MIN
IN. | 57830
81000
47300
0.13 | 44680
50200
41800
0.10 | 43600
58300
35500
0.10 | 75700
29900
0.08 | 54450
119000
37100
0.11 | 44960
59000
35600
0.10 | 65810
128000
45400
0.14 | 345000 | | 47810
56600
39500
0.11 | 44480
59800
34900
0.10 | 41610
47900
37700
0.09 | | MEAN
MAX
(WY)
MIN
(WY) | 79440
286700
1987
36680
1964 | 79450
174800
1999
29400 | 63400 | 50980
129000
1973
17350
1963 | 68980 | 97540
267500
1973
22810
1964 | 122100
333400
1973
45800
1963 | 123600
313000
1995
47710
1989 | 121400
282300
1995
46150
1988 | 101000
376300
1993
44010
1988 | 74830
306600
1993
39540
1991 | 76580
243500
1993
37800
1963 | | SUMMAR | Y STATIST | rics | FOR | 2001 CAL | ENDAR YEAI | 3 | FOR 2002 | WATER YEAR | R | WATER Y | EARS 1958 | 3 - 2002 ^a | | ANNUAL HIGHES LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN ANNUAL 10 PER 50 PER | MEAN T ANNUAL MANUAL MA | MEAN MEAN MEAN MEAN MEAN MEAN MEAN MEAN | ч | 87020 346000 25500 26300 2.25 154000 69700 37100 | Jun 1
Jan 1
Jan 1 | 3
1
1 | 345000
29900
30400
348000
29.93
29700
1.65
107000
47500
36100 | May 1.
Jan 1
Jan 1
May 1.
May 1.
Jan 13,1 | 4
3
3
2
4
4
4
4 | 87400
181800
44988
739000
6210
7400
750000
36.97
602
2.27
164000
36800 | Jul Dec | 1993
1963
31 1993
23 1963
20 1963
31 1993
31 1993
23 1963 | ^a Post-regulation period. 236 MISSOURI RIVER MAIN STEM
06934500 MISSOURI RIVER AT HERMANN, MO--Continued (National Stream-Quality Accounting Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1969 to current year. PERIOD OF DAILY RECORD.-SPECIFIC CONDUCTANCE: October 1974 to September 1996. WATER TEMPERATURE: October 1974 to September 1996. DISSOLVED OXYGEN: June 1984 to September 1984, April 1985 to September 1985, April 1986 to September 1986. INSTRUMENTATION.--Water-quality monitor, June 1984 to September 1984, April 1985 to September 1985, April 1986 to September 1986. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: (water years 1976 to 1996): Maximum daily, 2,150 microsiemens per centimeter, Dec. 9, 1978; minimum daily, 205 microsiemens per centimeter, Apr. 16, 1979. WATER TEMPERATURE: (water years 1976 to 1996): Maximum daily, 32.5 °C, July 31, 1987; minimum daily, 0.0 °C on many days during winter period. | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | TURBID-
ITY LAB
HACH
2100AN
(NTU)
(99872) | UV ABSORB- ANCE 254 NM, WTR FLT (units /cm) (50624) | UV ABSORB- ANCE 280 NM, WTR FLT (units /cm) (61726) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | |-----------|------|----------------|---|--|---|---|--|---|--|--|---|---| | OCT | | | | | | | | | | | | | | 16
DEC | 1025 | ENVIRONMENTAL | 51600 | 32 | .086 | .062 | 11.3 | 113 | 8.2 | 729 | 15.1 | 240 | | 04 | 1030 | ENVIRONMENTAL | 46300 | 26 | .071 | .051 | 10.6 | 93 | 8.1 | 696 | 9.1 | 230 | | JAN
25 | 1205 | ENVIRONMENTAL | 33800 | 14 | .060 | .040 | 12.8 | 101 | 8.1 | 664 | 4.3 | 250 | | FEB 22 | 1115 | ENVIRONMENTAL | 47400 | 27 | .068 | .046 | 12.9 | 107 | 8.2 | 613 | 6.3 | 220 | | MAR
13 | 1020 | ENVIRONMENTAL | 41600 | 80 | .077 | .053 | 12.2 | 102 | 8.1 | 615 | 6.9 | 230 | | APR | | | | | | | | | | | | | | 02 | 1125 | ENVIRONMENTAL | 45200 | 33 | .068 | .049 | 11.3 | 103 | 8.3 | 658 | 10.1 | 220 | | 02 | 1135 | REPLICATE | | 32 | .068 | .049 | | | | | | 230 | | 22 | 1220 | ENVIRONMENTAL | 89900 | 120 | .178 | .135 | 7.3 | 78 | 8.0 | 456 | 17.6 | 170 | | 24 | 1055 | ENVIRONMENTAL | 106000 | 470 | .153 | .113 | 6.4 | 68 | 7.9 | 502 | 17.1 | 180 | | MAY | | | | | | | | | | | | | | 07 | 0955 | ENVIRONMENTAL | 88900 | 170 | .125 | .092 | 8.0 | 86 | 8.1 | 560 | 18.2 | 200 | | 10 | 1110 | ENVIRONMENTAL | 304000 | 700 | .214 | .164 | 5.2 | 55 | 7.8 | 292 | 17.8 | 110 | | 22 | 1115 | ENVIRONMENTAL | 145000 | 140 | .127 | .094 | 7.2 | 77 | 8.1 | 375 | 17.4 | 160 | | JUN | | | | | | | | | | | | | | 04 | 1015 | ENVIRONMENTAL | 105000 | 66 | .116 | .084 | 7.3 | 89 | 8.1 | 476 | 24.3 | 180 | | JUL | | | | | | | | | | | | | | 09 | 1010 | ENVIRONMENTAL | 44400 | 24 | .080 | .057 | 7.7 | 105 | 8.3 | 711 | 30.3 | 230 | | 09 | 1018 | BLANK | | | | | | | | | | | | AUG | | | | | | | | | | | | | | 13 | 1030 | ENVIRONMENTAL | 37500 | 19 | .071 | .050 | 6.2 | 81 | 8.4 | 773 | 27.5 | 240 | | 13 | 1038 | BLANK | | | <.004 | <.004 | | | | | | | | SEP | | | | | | | | | | | | | | 10 | 0940 | ENVIRONMENTAL | 42500 | 24 | .080 | .057 | 7.2 | 93 | 8.2 | 715 | 27.6 | 230 | | 10 | 0950 | REPLICATE | | 22 | .080 | .056 | | | | | | 230 | 237 # 06934500 MISSOURI RIVER AT HERMANN, MO--Continued (National Stream-Quality Accounting Network) | DATE | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ALKA-
LINITY
WAT DIS
FIX END
FIELD
(mg/L as
CaCO ₃)
(39036) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
(mg/L as
CaCO ₃)
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
(mg/L as
HCO ₃)
(00453) | CAR-
BONATE
WATER
DIS IT
FIELD
(mg/L
as CO ₃)
(00452) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SILICA,
DIS-
SOLVED
(mg/L
as
SiO ₂)
(00955) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | |---|---|--|---|---|--|---|--|---|--|---|--|--|---| | OCT
16 | 60.2 | 21.1 | 7.15 | 59.5 | 159 | 161 | 197 | 0 | 22.9 | . 4 | 9.11 | 174 | 486 | | DEC 04 | 58.3 | 21.4 | 5.52 | 57.7 | 169 | 169 | 206 | 0 | 23.2 | . 4 | 10.7 | 151 | 468 | | JAN
25 | 65.6 | 21.0 | 5.60 | 49.1 | 187 | 190 | 232 | 0 | 28.9 | .5 | 15.0 | 131 | 464 | | FEB 22 | 58.1 | 17.9 | 4.78 | 39.8 | 168 | 169 | 206 | 0 | 24.5 | .3 | 12.7 | 101 | 380 | | MAR
13 | 59.6 | 19.2 | 4.88 | 39.7 | 182 | 182 | 222 | 0 | 24.0 | .3 | 10.1 | 104 | 402 | | APR 02 | 56.9 | 19.8 | 5.24 | 47.2 | 170 | 170 | 195 | 6 | 23.4 | . 4 | 11.8 | 136 | 441 | | 02
22
24 | 58.4
43.4
45.6 | 20.1
15.9
15.3 | 5.28
4.66
4.90 | 50.2
31.8
34.5 | 132
129 | 132
129 | 161
158 | 0
0 | 23.0
15.6
17.4 | .4
.3
.3 | 12.2
8.73
8.86 | 129
85.3
91.5 | 423
298
315 | | MAY
07
10 | 51.8
31.1 | 16.9
8.83 | 4.86
4.24 | 37.4
12.5 | 154
105 | 151
104 | 185
127 | 0 | 18.1
8.69 | .2 | 7.27
7.29 | 109
34.5 | 363
176 | | 22
JUN | 41.6 | 13.0 | 4.05 | 17.5 | 120 | 121 | 147 | 0 | 10.5 | .2 | 8.00 | 52.7 | 240 | | 04
JUL | 47.6 | 13.8 | 4.37 | 26.8 | 135 | 134 | 165 | 0 | 14.7 | .3 | 6.53 | 77.5 | 298 | | 09 | 57.8
<.01 | 20.3 | 5.78
 | 54.1
<.09 | 176
 | 175
 | 197
 | 8 | 21.4 | . 4 | 5.53
<.13 | 152
 | 441 | | AUG
13
13 | 58.0 | 22.6 | 5.72 | 73.1 | 172 | 173 | 184 | 13 | 22.0 | .5 | 3.38 | 188 | 497 | | SEP
10
10 | 56.4
56.3 | 21.5
21.4 | 6.01
6.05 | 61.6
61.3 | 157
 | 158 | 193 | 0 | 19.0
18.8 | .5
.5 | 6.84
6.83 | 166
165 | 462
457 | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | NITRO-
GEN,PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | CARBON,
ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(mg/L
as C)
(00689) | | OCT
16 | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N) | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N) | PHORUS
DIS-
SOLVED
(mg/L
as P) | PHORUS ORTHO, DIS- SOLVED (mg/L as P) | PHORUS
TOTAL
(mg/L
as P) | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C) | ORGANIC
DIS-
SOLVED
(mg/L
as C) | ORGANIC PARTIC- ULATE TOTAL (mg/L as C) | | OCT
16
DEC
04 | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as
N)
(00608) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | GEN,PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | ORGANIC PARTIC- ULATE TOTAL (mg/L as C) (00689) | | OCT
16
DEC
04
JAN
25 | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO_2+NO_3 DIS-SOLVED (mg/L as N) (00631) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS DIS- SOLVED (mg/L as P) (00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | ORGANIC PARTIC- ULATE TOTAL (mg/L as C) (00689) | | OCT
16
DEC
04
JAN
25
FEB
22 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 | GEN, AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO_2+NO_3 DIS-SOLVED (mg/L as N) (00631) | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) E.004 | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
4.3 | ORGANIC PARTIC- ULATE TOTAL (mg/L as C) (00689) 3.8 2.5 | | OCT
16
DEC
04
JAN
25
FEB
22
MAR
13 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .06 | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.76
.48 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .45 .84 1.55 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) E.004 E.005 | GEN,PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .47 .17 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.103
.086 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.090 | PHORUS
TOTAL
(mg/L
as P)
(00665)
.23
.168 | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694)
3.8
2.5 | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688)
<.1
<.1 | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
4.3
3.0 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.8 2.5 1.6 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 02 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .06 <.04 <.04 <.04 <.04 <.04 E.04 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .27 .30 .13 .27 .23 .22 .21 .45 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .76 .48 .50 .43 .65 .59 .55 1.2 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .45 .84 1.55 1.24 1.06 1.36 1.27 .64 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) E.004 E.005 .008 .009 .022 E.007 E.007 E.005 .014 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .47 .17 .18 .05 .36 .35 .24 .58 | PHORUS DIS- SOLVED (mg/L as P) (00666) .103 .086 .100 .084 .059 .091 .087 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.090
.079
.092
.071
.034
.080
.077
.079 | PHORUS TOTAL (mg/L as P) (00665) .23 .168 .150 .158 .23 .189 .177 .32 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.8 2.5 1.6 .5 3.4 2.6 2.6 2.4 5.8 | INOR- GANIC, PARTIC. TOTAL (mg/L as c) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | ORGANIC DIS- SOLVED (mg/L as C) (00681) 4.3 3.0 3.1 3.0 3.9 3.1 5.9 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.8 2.5 1.6 .4 3.4 2.5 2.3 5.7 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 22 24 MAY 07 10 22 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .27 .30 .13 .27 .23 .22 .21 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .76 .48 .50 .43 .65 .59 .55 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .45 .84 1.55 1.24 1.06 1.36 1.27 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) E.004 E.005 .008 .009 .022 E.007 E.005 | GEN,PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .47 .17 .18 .05 .36 .35 .24 | PHORUS DIS- SOLVED (mg/L as P) (00666) .103 .086 .100 .084 .059 .091 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.090
.079
.092
.071
.034 | PHORUS TOTAL (mg/L as P) (00665) .23 .168 .150 .158 .23 .189 .177 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.8 2.5 1.6 .5 3.4 2.6 2.4 | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688)
<.1
<.1
<.1
<.1 | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
4.3
3.0
3.1
3.0
3.1
3.0 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.8 2.5 1.6 .4 3.4 2.5 2.5 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 22 24 MAY 07 10 22 JUN 04 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + OORGANIC DIS. (mg/L as N) (00623) .27 .30 .13 .27 .23 .22 .21 .45 .50 .35 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .76 .48 .50 .43 .65 .59 .55 1.2 1.9 1.2 3.0 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .45 .84 1.55 1.24 1.06 1.36 1.27 .64 1.16 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) E.004 E.005 .008 .009 .022 E.007 E.005 .014 .041 .011 .058 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .47 .17 .18 .05 .36 .35 .24 .58 .90 .64 1.36 | PHORUS DIS- SOLVED (mg/L as P) (00666) .103 .086 .100 .084 .059 .091 .087 .097 .084 .082 .085 | PHORUS ORTHO, DIS-SOLVED (mg/L as P) (00671) .090 .079 .092 .071 .034 .080 .077 .079 .069 .066 | PHORUS TOTAL (mg/L as P) (00665) .23 .168 .150 .158 .23 .189 .177 .32 .83 .36 1.11 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.8 2.5 1.6 .5 3.4 2.6 2.4 5.8 8.3 6.6 12.1 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 4.3 3.0 3.1 3.0 3.9 3.1 5.9 5.4 4.6 6.5 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.8 2.5 1.6 .4 3.4 2.5 2.3 5.7 8.2 6.5 11.7 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 22 24 MAY 07 10 22 JUN 04 JUL 09 09 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .06 <.04 <.04 <.04 .004 <.04 .004 <.04 .004 .0 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .27 .30 .13 .27 .23 .22 .21 .45 .50 .35 .53 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .76 .48 .50 .43 .65 .59 .55 1.2 1.9 1.2 3.0 1.0 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .45 .84 1.55 1.24 1.06 1.36 1.27 .64 1.16 .94 1.15 1.40 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) E.004 E.005 .008 .009 .022 E.007 E.005 .014 .041 .058 .030 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .47 .17 .18 .05 .36 .35 .24 .58 .90 .64 1.36 .23 | PHORUS DIS- SOLVED (mg/L as P) (00666) .103 .086 .100 .084 .059 .091 .087 .097 .084 .082 .085 .078 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.090
.079
.092
.071
.034
.080
.077
.079
.069 | PHORUS TOTAL (mg/L as P) (00665) .23 .168 .150 .158 .23 .189 .177 .32 .83 .36 1.11 .36 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.8 2.5 1.6 .5 3.4 2.6 2.4 5.8 8.3 6.6 12.1 4.1 | INOR-GANIC, PARTIC. TOTAL (mg/L as c) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 4.3 3.0 3.1 3.0 3.9 3.1 5.9 5.4 4.6 6.5 4.3 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.8 2.5 1.6 .4 3.4 2.5 2.3 5.7 8.2 6.5 11.7 4.1 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 22 24 MAY 07 10 11 JUN 04 JUL 09 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 E.04 .04 <.04 <.04 <.04 <.04 <.04 <.04 <. | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .27 .30 .13 .27 .23 .22 .21 .45 .50 .35 .53 .37 .30 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .76 .48 .50 .43 .65 .59 .55 1.2 1.9 1.2 3.0 1.0 .74 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .45 .84 1.55 1.24 1.06 1.36 1.27 .64 1.16 .94 1.15 1.40 1.07 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) E.004 E.005 .008 .009 .022 E.007 E.005 .014 .041 .058 .030 .010 .009 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .47 .17 .18 .05 .36 .35 .24 .58 .90 .64 1.36 .23 .19 .32 | PHORUS DIS- SOLVED (mg/L as P) (00666) .103 .086 .100 .084 .059 .091 .087 .097 .084 .082 .085 .078 .073 | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) .090 .079 .092 .071 .034 .080 .077 .079 .069 .066 .068 .064 .057 | PHORUS TOTAL (mg/L as P) (00665) .23 .168 .150 .158 .23 .189 .177 .32 .83 .36 1.11 .36 .21 .182 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.8 2.5 1.6 .5 3.4 2.6 2.4 5.8 8.3 6.6 12.1 4.1 3.1 2.1 | INOR-GANIC, PARTIC. TOTAL (mg/L as c) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 4.3 3.0 3.1 3.0 3.9 3.1 5.9 5.4 4.6 6.5 4.3 4.0 3.2 | ORGANIC PARTIC-ULATE TOTAL (mg/L as c) (00689) 3.8 2.5 1.6 .4 3.4 2.5 2.3 5.7 8.2 6.5 11.7 4.1 3.1 2.0 | # 06934500 MISSOURI RIVER AT HERMANN, MO--Continued (National Stream-Quality Accounting Network) | DATE |
PHEO-
PHYTIN
A,
PHYTO-
PHYTON
(µg/L)
(62360) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (µg/L) (70953) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(µg/L
as Sb)
(01095) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | BARIUM,
DIS-
SOLVED
(µg/L
as Ba)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | BORON,
DIS-
SOLVED
(µg/L
as B)
(01020) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | |---|---|---|---|--|--|--|---|--|---|--|--|--|--| | OCT
16 | 31.1 | 200 | K230 | 350 | 29.0 | | | 3.1 | | | 107 | | | | DEC
04 | 7.9 | 110 | 210 | 56 | 10.3 | 4 | .25 | 2.3 | 83 | <.06 | 97 | E.03 | <.8 | | JAN
25 | 3.5 | K17 | 57 | K18 | 22.4 | | | 3.0 | | | 98 | | | | FEB 22 | 5.5 | 42 | K1 | K25 | 14.5 | | | 2.1 | | | 76 | | | | MAR
13 | 6.5 | K150 | 76 | 68 | 26.0 | | | 1.9 | | | 83 | | | | APR
02
02
22
24 | 9.3
7.9
13.9
15.2 | K22
K14
560
780 | 80
87
4800
2400 | LA
LA
940
1550 | 29.9
27.1
19.2
16.7 | 1
2
 | .12
.14
 | 2.5
2.7
2.1
2.0 | 89
91

 | <.06
<.06
 | 76
79
59
64 | .04
.04
 | <.8
<.8
 | | MAY
07
10
22
JUN | 12.3
12.8
5.5 | 1400
3800
720 | 2500
4200
K250 | 5400
4000
K420 | 25.2
6.8
6.4 |

 |

 | 2.1
1.4
1.6 |

 |

 | 61
33
42 |

 |

 | | 04
JUL | 14.7 | K40 | K60 | K43 | 23.8 | 2 | .32 | 2.0 | 94 | <.06 | 57 | <.04 | <.8 | | 09
09
AUG | 31.4 | 25
 | 26
 | K6
 | 30.5 |
<1 |
<.05 | 3.5
<.2 |
<1 | <.06 | 100
<7 | <.04 | <.8 | | 13
13 | 26.7 | 24 | 31 | 37
 | 55.0
 | | | 3.3 | | | 130 | | | | SEP
10
10 | 26.5
27.6 | 23 | 45
 | 39
 | 48.6
49.1 | 3 | .60
.61 | 3.4
3.5 | 89
89 | <.06
<.06 | 115
114 | E.03
E.03 | <.8
<.8 | | | | | | | | | | | | | | | | | DATE | COBALT,
DIS-
SOLVED
(µg/L
as Co)
(01035) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LITHIUM
DIS-
SOLVED
(µg/L
as Li)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li)
(01130) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT
16
DEC | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li)
(01130) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT
16 | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li)
(01130) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT
16
DEC
04
JAN | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED (µg/L
as Fe) (01046)
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li)
(01130)
41.1
38.5 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
2.7 | DIS-
SOLVED (µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080)
464 | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT
16
DEC
04
JAN
25
FEB
22
MAR
13 | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li)
(01130)
41.1
38.5 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
2.7
1.7 | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080)
464
485 | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085)
3.5
2.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 02 24 | DIS-
SOLVED
(µg/L
as Co)
(01035)

.18 | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED (µg/L as Fe) (01046)
<10
<10
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
41.1
38.5
31.1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(μg/L
as Mo)
(01060)

3.1 | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
2.7
1.7
2.9 | DIS-
SOLVED
(µg/L
as Ag)
(01075)

<1 | TIUM,
DIS-
SOLVED (µg/L
as Sr)
(01080)
464
485
465 | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085)
3.5
2.3
4.4
2.7 | DIS-
SOUVED
(µg/L
as Zn)
(01090) | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 02 24 MAY 07 10 22 | DIS- SOLVED (µg/L as Co) (01035) 1827 .26 | DIS-
SOLVED
(μg/L
as Cu)
(01040)

1.7

1.9
1.8 | DIS-
SOLVED (μg/L as Fe) (01046) <10 <10 <10 <10 <10 <10 <10 <15 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.05
<.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
41.1
38.5
31.1
24.2
27.7
28.9
30.6
18.0 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

4.2

3.8
4.2
 | DENUM,
DIS-
SOLVED
(μg/L
as Mo)
(01060)

3.1

2.9
3.0 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

1.21

2.00
2.17
 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
2.7
1.7
2.9
.8
2.4
2.4
2.6
1.7 | DIS-
SOLVED
(µg/L
as Ag)
(01075)

<1

<1

<1
 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 464 485 465 381 374 415 437 263 | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085)
3.5
2.3
4.4
2.7
.8
3.0
3.1
2.9 | DIS-
SOLVED
(µg/L
as
Zn)
(01090)

7

1
1 | | OCT 16 DECC 04 JAN 25 FEB 22 MAR 13 APR 02 24 MAY 07 10 | DIS-
SOLVED
(μg/L
as Co)
(01035)

.18

.27
.26

 | DIS-
SOLVED (µg/L as Cu) (01040) | DIS-
SOLVED (µg/L as Fe) (01046) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.05
<.08

 | DIS-
SOLVED (µg/L as Li) (01130)
41.1
38.5
31.1
24.2
27.7
28.9
30.6
18.0
20.3 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

4.2

3.8
4.2
 | DENUM, DIS- SOLVED (μg/L as Mo) (01060) 3.1 2.9 3.0 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

1.21

2.00
2.17

 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
2.7
1.7
2.9
.8
2.4
2.4
2.6
1.7
1.9 | DIS-
SOLVED
(µg/L
as Ag)
(01075)

<1

<1
<1

 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 464 485 465 381 374 415 437 263 295 337 153 | DIUM,
DIS-
SOLVED (µg/L
as V)
(01085)
3.5
2.3
4.4
2.7
.8
3.0
3.1
2.9
3.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

7

1
1
1 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 22 24 MAY 07 10 22 JUN 04 JUL 09 09 | DIS-
SOLVED
(μg/L
as Co)
(01035)

.18

.27
.26

 | DIS-
SOLVED
(μg/L
as Cu)
(01040)

1.7

1.9
1.8

 | DIS-
SOLVED (µg/L as Fe) (01046)
<10
<10
<10
<10
<10
<10
<10
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.05
<.08

 | DIS-
SOLVED
(µg/L
as Li)
(01130)
41.1
38.5
31.1
24.2
27.7
28.9
30.6
18.0
20.3
22.3
6.1
9.9 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 4.2 3.8 4.2 | DENUM, DIS- SOLVED (μg/L as Mo) (01060) 3.1 2.9 3.0 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

1.21

2.00
2.17

 | NIUM, DIS-SOLVED (µg/L as Se) (01145) 2.7 1.7 2.9 .8 2.4 2.4 2.6 1.7 1.9 1.5 .6 1.3 | DIS-
SOLVED (µg/L as Ag) (01075) | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 464 485 465 381 374 415 437 263 295 337 153 198 | DIUM,
DIS-
SOLVED (µg/L
as V)
(01085)
3.5
2.3
4.4
2.7
.8
3.0
3.1
2.9
3.2
2.8
2.6
2.4 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

7

1
1
1

 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 22 24 MAY 07 10 10 JUN 04 JUL 09 | DIS-
SOLVED (μg/L as Co) (01035) 1827 .2616 | DIS-
SOLVED (μg/L as Cu) (01040) 1.7 1.9 1.8 1.8 | DIS-
SOLVED (µg/L as Fe) (01046)
<10
<10
<10
<10
<10
<10
<10
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.05
<.08

<.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
41.1
38.5
31.1
24.2
27.7
28.9
30.6
18.0
20.3
22.3
6.1
9.9
17.7 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 4.2 3.8 4.2 3.7 | DENUM, DIS- SOLVED (μg/L as Mo) (01060) 3.1 2.9 3.0 2.1 | DIS-
SOLVED (µg/L
as Ni) (01065) 1.21 2.00 2.17 2.19 | NIUM, DIS-SOLVED (µg/L as Se) (01145) 2.7 1.7 2.9 .8 2.4 2.6 1.7 1.9 1.5 .6 1.3 1.4 2.6 | DIS-
SOLVED (µg/L as Ag) (01075) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 464 485 465 381 374 415 437 263 295 337 153 198 260 425 | DIUM, DIS- SOLVED (µg/L as V) (01085) 3.5 2.3 4.4 2.7 .8 3.0 3.1 2.9 3.2 2.8 2.6 2.4 4.0 4.1 | DIS-
SOLVED (µg/L as Zn) (01090) 7 1 1 <1 <1 | MISSOURI RIVER MAIN STEM 239 # 06934500 MISSOURI RIVER AT HERMANN, MO--Continued (National Stream-Quality Accounting Network) | DATE | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA WATER FLTRD 0.7 µ GF, REC (µg/L) (82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | |--|---|--|---
---|--|---|--|--|--|--|--|--|---| | OCT
16 | <.002 | .015 | <.002 | <.005 | .164 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.030 | | DEC
04 | <.002 | .009 | <.002 | <.005 | .065 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.010 | | JAN
25 | <.006 | .017 | E.004 | <.005 | .129 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.030 | | FEB 22 | <.006 | <.010 | <.004 | <.005 | .215 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.035 | | MAR
13 | <.006 | .010 | <.004 | <.005 | .099 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.017 | | APR
02
02
22
24
MAY | <.006
<.006
<.006
<.006 | <.006
<.006
.098
1.53 | <.004
<.004
.042
.213 | <.005
<.005
<.005
<.005 | .055
.057
.997
5.91 | <.010
<.010
<.010
<.010 | <.002
<.002
<.002
<.002 | <.041
<.041
<.041
<.041 | <.020
<.020
E.031
<.020 | <.005
<.005
<.005
<.005 | <.018
<.018
<.018
<.020 | <.003
<.003
<.003
<.003 | E.018
E.018
E.041
E.131 | | 07
10
22
JUN | <.006
<.006 |
.892
.539 | .102
.030 | <.005
<.005 | 6.42
3.06 | <.010
<.010 | <.002
<.002 | E.004
<.041 | E.004
<.020 | .005
<.005 | E.016
<.018 | <.003
<.003 |
E.202
E.117 | | 04
JUL | <.006 | .114 | .051 | <.005 | 1.91 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.155 | | 09
09
AUG | <.006 | .026 | .007 | <.005 | .424 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.068 | | 13
13
SEP | <.006 | E.005 | <.004 | <.005 | .130 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.026 | | 10 | <.006
<.006 | .025 | <.004
<.004 | <.005
<.005 | .186
.191 | <.010
<.010 | <.002
<.002 | <.041
<.041 | <.020
<.020 | <.005
<.005 | <.018
<.018 | <.003
<.003 | E.034
E.038 | | | | | | | | | | | | | | | | | DATE | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | | DATE OCT 16 | AZINON,
DIS-
SOLVED
(µg/L) | ELDRIN
DIS-
SOLVED
(µg/L) | FOTON WATER FLTRD 0.7 µ GF, REC (µg/L) | WATER FLTRD 0.7 µ GF, REC (µg/L) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L) | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | | OCT | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | | OCT
16
DEC | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLITRD 0.7µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | | OCT
16
DEC
04
JAN
25
FEB
22 | AZINON,
DIS-
SOLVED
(µg/L)
(39572)
<.005 | ELDRIN
DIS-
SOLVED
(µg/L)
(39381)
<.005 | FOTON WATER FLTRD 0.7 μ GF, REC (μg/L) (82677) <.02 | WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668)
<.002 | FLUR-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82663)
<.009 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)
<.005 | WATER DISS REC (µg/L) (04095) < .003 < .003 | DIS-
SOLVED
(µg/L)
(39341)
<.004 | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)
<.027
<.030 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006 | LACHLOR
WATER
DISSOLV
(µg/L)
(39415)
.044
.031 | |
OCT
16
DEC
04
JAN
25
FEB
22
MAR
13 | AZINON,
DIS-
SOLVED
(μg/L)
(39572)
<.005
<.005 | ELDRIN
DIS-
SOLVED
(µg/L)
(39381)
<.005
<.005 | FOTON WATER FLTRD 0.7 µ GF, REC (µg/L) (82677) < .02 < .02 < .02 | WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82668)
<.002
<.002 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663)
<.009
<.009 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672)
<.005
<.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)
<.004
<.004 | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 | THION, DIS-
SOLVED (µg/L) (39532)
<.027
<.030
<.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)
<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .044 .031 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR | AZINON,
DIS-
SOLVED
(µg/L)
(39572)
<.005
<.005
<.005 | ELDRIN DIS-
SOLVED (µg/L) (39381)
<.005
<.005
<.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) < .02 < .02 < .02 < .02 | WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82668)
<.002
<.002
<.002 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663)
<.009
<.009
<.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 | DIS-
SOLVED
(µg/L)
(39341)
<.004
<.004
<.004 | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.030 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .044 .031 .032 | | OCT
16
DEC
04
JAN
25
FEB
22
MAR
13
APR
02
02
22
24
MAY | AZINON, DIS- SOLVED (μg/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.007 | ELDRIN DIS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | WATER FLTRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341)
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
.007
<.040
<.006
<.006
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .044 .031 .032 .040 .032 .020 .022 .150 1.37 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 02 24 | AZINON, DIS- SOLVED (µg/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.007 | ELDRIN DTS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.03 .2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2 </.2</td <td>WATER FLITRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002</td> <td>FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009</td> <td>PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005</td> <td>WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003</td> <td>DIS-
SOLVED (µg/L)
(39341)
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004</td> <td>URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035</td> <td>THION, DIS- SOLVED (µg/L) (39532) <.027 <.030 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027</td> <td>AZIN- PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050</td> <td>PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
.007
<.040
<.006
<.006
<.006
<.006
<.006
<.006</td> <td>LACHLOR WATER DISSOLV (µg/L) (39415) .044 .031 .032 .040 .032 .020 .022 .150 1.37</td> | WATER FLITRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.030 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN- PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
.007
<.040
<.006
<.006
<.006
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .044 .031 .032 .040 .032 .020 .022 .150 1.37 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 02 24 MAY 07 | AZINON,
DIS-
SOLVED
(μg/L)
(39572)
<.005
<.005
<.005
<.005
<.005
<.005
<.005
005
005
005
005 | ELDRIN DIS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITED 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | WATER FLITRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341)
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS-
SOLVED (µg/L) (39532) <.027 <.030 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN- PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .044 .031 .032 .040 .032 .020 .022 .150 1.37 | | OCT
16
DEC
04
JAN
25
FEB
22
MAR
02
02
22
24
MAY
07
10
22
JUN
04
JUL
09 | AZINON, DIS- SOLVED (µg/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005005 <.007014 <.005 | ELDRIN DIS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | WATER FLTRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341)
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004
<.004 | URON WATER FLITRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
.007
<.040
<.006
<.006
<.006
<.006
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .044 .031 .032 .040 .032 .020 .022 .150 1.37963 .538 | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 02 24 MAY 07 10 22 JUN 04 JUL | AZINON, DIS- SOLVED (µg/L) (39572) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ELDRIN DIS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | WATER FLITRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLITRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PARA- THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 .007 <.040 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .044 .031 .032 .040 .032 .020 .022 .150 1.37963 .538 .275 | 240 MISSOURI RIVER MAIN STEM # 06934500 MISSOURI RIVER AT HERMANN, MO--Continued (National Stream-Quality Accounting Network) | DATE | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82687) | PHORATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | |---|---|---|---|---|--|---|--
--|--|--|--|---|--| | OCT
16 | <.006 | <.002 | <.007 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | M | <.004 | <.010 | <.011 | | DEC
04 | <.006 | <.002 | <.007 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | JAN
25 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | FEB 22 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | MAR
13 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | APR
02
02
22
24
MAY | <.006
<.006
.013
.020 | <.002
<.002
<.002
<.002 | <.007
<.007
<.007
<.007 | <.003
<.003
<.003
<.003 | <.010
<.010
<.010
<.010 | <.004
<.004
<.004
<.004 | <.022
<.022
<.022
<.022 | <.006
<.006
<.006
<.006 | <.011
<.011
<.011
<.011 | M
M
E.01
E.01 | <.004
<.004
<.004
<.004 | <.010
<.010
<.010
<.010 | <.011
<.011
<.011
<.011 | | 07
10 | .017 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | | 22
JUN | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | | 04
JUL
09 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.003
<.003 | <.010
<.010 | <.004 | <.022
<.022 | <.006
<.006 | <.011
<.011 | E.01
E.01 | <.004 | <.010
<.010 | <.011
<.011 | | 09
AUG | | | | | | | | | | | | | | | 13
13
SEP | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | | 10
10 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.003
<.003 | <.010
<.010 | <.004
<.004 | <.022
<.022 | <.006
<.006 | <.011
<.011 | E.01
E.01 | <.004
<.004 | <.010
<.010 | <.011
<.011 | | | | | | | | | | | | | | | | | DATE | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | TER-
BUTHYL-
AZINE,
WATER,
DISS,
REC
(µg/L)
(04022) | THIO-BENCARB WATER FLTRD 0.7 µ GF, REC (µg/L) (82681) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | URANIUM
NATURAL
DIS-
SOLVED
(µg/L
as U)
(22703) | SED.
SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 mm
(70331) | SEDI-
MENT,
SUS-
PENDED
(mg/L)
(80154) | | | OCT
16 | PARGITE WATER FLTRD 0.7 µ GF, REC (µg/L) | MAZINE,
WATER,
DISS,
REC
(µg/L) | THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | BUTHYL-
AZINE,
WATER,
DISS,
REC
(µg/L) | BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L) | NATURAL
DIS-
SOLVED
(µg/L
as U) | SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 mm | MENT,
SUS-
PENDED
(mg/L) | | | OCT
16
DEC
04 | PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | BUTHYL-
AZINE,
WATER,
DISS,
REC
(µg/L)
(04022) | BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82681) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | NATURAL
DIS-
SOLVED
(µg/L
as U)
(22703) | SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 mm
(70331) | MENT,
SUS-
PENDED
(mg/L)
(80154) | | | OCT
16
DEC
04
JAN
25 | PARGITE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82685) | MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | THIURON WATER FLTRD 0.7 μ GF, REC (μg/L) (82670) | BACIL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82665) | BUFOS
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82675) | BUTHYL-
AZINE,
WATER,
DISS,
REC
(µg/L)
(04022) | BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82681) | LATE WATER FLTRD 0.7 μ GF, REC (μg/L) (82678) <.002 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | NATURAL
DIS-
SOLVED
(µg/L
as U)
(22703) | SUSP.
SIEVE
DIAM.
% FINER
THAN
.062 mm
(70331) | MENT,
SUS-
PENDED
(mg/L)
(80154) | | | OCT
16
DEC
04
JAN
25
FEB
22 | PARGITE WATER FLTRD 0.7 µ GF, REC (µg/L) (82685) | MAZINE,
WATER,
DISS,
REC
(μg/L)
(04035)
<.011 | THIURON WATER FLTRD 0.7 μ GF, REC (μg/L) (82670) <.02 <.02 | BACIL WATER FLTRD 0.7 μ GF, REC (μg/L) (82665) <.034 <.034 | BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675)
<.02 | BUTHYL-
AZINE,
WATER,
DISS,
REC
(µg/L)
(04022) | BENCARB
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82681)
<.005 | LATE WATER FLTRD 0.7 μ GF, REC (μg/L) (82678) <.002 | FLUR-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82661)
<.009 | NATURAL
DIS-
SOLVED
(µg/L
as U)
(22703) | SUSP. SIEVE DIAM. FINER THAN .062 mm (70331) | MENT,
SUS-
PENDED
(mg/L)
(80154)
137 | | | OCT
16
DEC
04
JAN
25
FEB
22
MAR
13 | PARGITE WATER FLTRD 0.7 µ GF, REC (µg/L) (82685) <02 <02 | MAZINE,
WATER,
DISS,
REC
(μg/L)
(04035)
<.011
<.011 | THIURON WATER FLTRD 0.7 μ GF, REC (μg/L) (82670) < .02 < .02 | BACIL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82665)
<.034
<.034 | BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675)
<.02
<.02 | BUTHYL-
AZINE,
WATER,
DISS,
REC
(µg/L)
(04022) | BENCARB WATER FLTRD 0.7 µ GF, REC (µg/L) (82681) <.005 <.005 | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <.002 <.002 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661)
<.009
<.009 | NATURAL DIS-SOLVED (µg/L as U) (22703) | SUSP. SIEVE DIAM. FINER THAN .062 mm (70331) 62 35 | MENT,
SUS-
PENDED
(mg/L)
(80154)
137
107 | | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 02 24 | PARGITE WATER FLTRD 0.7 µ GF, REC (µg/L) (82685) <02 <02 <02 <02 <02 | MAZINE,
WATER,
DISS,
REC (μg/L) (04035)
<.011
<.011
.006 | THIURON WATER FLTRD 0.7 µ GF, REC (µg/L) (82670) <.02 <.02 <.02 <.02 | BACIL WATER FLTRD 0.7 µ GF, REC (µg/L) (82665) <.034 <.034 <.034 <.034 | BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675)
<.02
<.02
<.02 | BUTHYL-
AZINE,
WATER,
DISS,
REC
(µg/L)
(04022) | BENCARB WATER WATER 0.7 µ GF, REC (µg/L) (82681) <.005 <.005 <.005 | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <.002 <.002 <.002 <.002 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661)
<.009
<.009
<.009 | NATURAL DIS-SOLVED (µg/L as U) (22703) | SUSP. SIEVE DIAM. FINER THAN .062 mm (70331) 62 35 19 26 | MENT,
SUS-
PENDED
(mg/L)
(80154)
137
107
183 | | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 02 24 MAY 07 | PARGITE WATER FLITRD 0.7 µ GF, REC (µg/L) (82685) <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 <02 < | MAZINE,
WATER,
DISS,
REC (μg/L) (04035)
<.011
.006
.007
.010
<.005
.005
.005 | THIURON WATER FLITRD 0.7 µ GF, REC (µg/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | BACIL WATER FLTRD 0.7 µ GF, REC (µg/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 | BUFOS WATER FLTRD 0.7 μ GF, REC (μg/L) (82675) <.02
<.02 <.02 <.02 <.02 <.02 <.02 <.0 | BUTHYL- AZINE, WATER, DISS, REC (µg/L) (04022) M M M | BENCARB WATER FLITRD 0.7 µ GF, REC (µg/L) (82681) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | NATURAL
DIS-
SOLVED
(µg/L
as U)
(22703)

3.79

4.46
4.65
 | SUSP. SIEVE DIAM. FINER THAN .062 mm (70331) 62 35 19 26 79 57 | MENT,
SUS-
PENDED
(mg/L)
(80154)
137
107
183
149
152
197
 | | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 22 24 MAY 07 10 22 JUN 04 | PARGITE WATER FLTRD 0.7 µ GF, REC (µg/L) (82685) <-02 <-02 <-02 <-02 <-02 <-02 <-02 <-02 | MAZINE,
WATER,
DISS,
REC (μg/L) (04035)
<.011
<.011
.006
.007
.010
<.005
.005
.005
.059
.315 | THIURON WATER FLTRD 0.7 µ GF, REC (µg/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | BACIL WATER FLTRD 0.7 µ GF, REC (µg/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 | BUFOS WATER FLTRD 0.7 μ GF, REC (μg/L) (82675) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | BUTHYL- AZINE, WATER, DISS, REC (µg/L) (04022) M M | BENCARB WATER FLITRD 0.7 µ GF, REC (µg/L) (82681) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | NATURAL DIS- SOLVED (μg/L as U) (22703) 3.79 4.46 4.65 | SUSP. SIEVE DIAM. * FINER THAN .062 mm (70331) 62 35 19 26 79 57 74 92 90 | MENT, SUS- PENDED (mg/L) (80154) 137 107 183 149 152 197 170 383 1470 | | | OCT 16 DEC 04 JAN 25 FEB 22 MAR 13 APR 02 22 24 MAY 07 10 22 JUN 04 JUL 09 09 | PARGITE WATER FLITRD 0.7 µ GF, REC (µg/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | MAZINE,
WATER,
DISS,
REC (μg/L) (04035)
<.011
<.011
.006
.007
.010
<.005
.005
.059
.315

.286
.060 | THIURON WATER FLITRD 0.7 µ GF, REC (µg/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | BACIL WATER FLTRD 0.7 µ GF, REC (µg/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 | BUFOS WATER FLTRD 0.7 μ GF, REC (μg/L) (82675) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | BUTHYL- AZINE, WATER, DISS, REC (µg/L) (04022) M M | BENCARB WATER FLITRD 0.7 µ GF, REC (µg/L) (82681) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 <.009 <.009 <.009 <.009 <.009 <.009 E.005 E.003 <.009 | NATURAL DIS- SOLVED (µg/L as U) (22703) 3.79 4.46 4.65 | SUSP. SIEVE DIAM. FINER THAN .062 mm (70331) 62 35 19 26 79 57 74 92 90 72 | MENT,
SUS-
PENDED
(mg/L)
(80154)
137
107
183
149
152
197

170
383
1470
332 | | | OCT
16
DEC
04
JAN
25
FEB
22
MAR
13
APR
02
02
24
MAY
07
10
10
JUN
04
JUN | PARGITE WATER FLITRD 0.7 µ GF, REC (µg/L) (82685) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | MAZINE,
WATER,
DISS,
REC (μg/L) (04035)
<.011
<.011
.006
.007
.010
<.005
.005
.059
.315

.286
.060
.030
.010 | THIURON WATER FLTRD 0.7 μ GF, REC (μg/L) (82670) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | BACIL WATER FLTRD 0.7 µ GF, REC (µg/L) (82665) <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 <.034 | BUFOS WATER FLTRD 0.7 μ GF, REC (μg/L) (82675) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | BUTHYL- AZINE, WATER, DISS, REC (µg/L) (04022) M | BENCARB WATER FLITRD 0.7 µ GF, REC (µg/L) (82681) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | NATURAL DIS- SOLVED (µg/L as U) (22703) 3.79 4.46 4.65 2.51 | SUSP. SIEVE DIAM. FINER THAN .062 mm (70331) 62 35 19 26 79 57 74 92 90 72 80 81 | MENT, SUS- PENDED (mg/L) (80154) 137 107 183 149 152 197 170 383 1470 332 150 60 | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. LA--Laboratory accident. ### 06935755 BONHOMME CREEK NEAR ELLISVILLE, MO LOCATION.--Lat 38°36'35", long 90°40'20", St. Louis County, Hydrologic Unit 10300200, on right downstream side of Rieger Road bridge, 0.14 mi southwest of State Road 109, 1.56 mi north of State Road 100 (Manchester Road), 1.25 mi west of St. Louis County Highway C, and 9.55 mi upstream of Missouri River. DRAINAGE AREA. -- 4.44 mi². PERIOD OF RECORD.--September 1997 to current year. Annual peaks only for 1972-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 568.56 ft above National Geodetic Vertical Datum of 1929. Prior to September 1997, at datum of 570.00 ft above National Geodetic Vertical Datum of 1929. $REMARKS.--Records \ fair \ except \ estimated \ daily \ discharges \ and \ those \ below \ 0.5 \ ft^3/s \ and \ above \ 500 \ ft^3/s, \ which \ are \ poor.$ EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 23, 1973 reached a stage of 8.64 ft, former datum, discharge, 2,640 ft³/s. | | | DISCHAF | RGE, CUBI | C FEET PI | ER SECOND,
DAIL | WATER YE
Y MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---|--|---|--------------------------------------|---------------------------------------|---|--|---|--|--|---------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.02
0.02
0.00
0.09
3.5 | 0.22
0.36
0.30
0.27
0.26 | 1.9
1.4
0.85
0.70
0.64 | e0.70
e0.66
e0.62
e0.61
e0.63 | 15
5.6
3.4
2.3
1.8 | 0.72
28
6.4
3.0
3.2 | 1.7
1.6
1.3
1.1 | 2.1
1.6
1.3
1.1
0.99 | 0.41
e0.40
e0.39
e0.38
e1.6 | 0.17
0.19
1.9
1.1
3.5 | 0.18
0.18
0.18
0.19
0.23 | 0.09
0.08
0.08
0.07
0.08 | | 6
7
8
9
10 | 1.5
0.58
0.37
0.27 | 0.14
0.19
0.16
0.12
0.10 | 0.64
0.55
0.51
0.46
0.40 | 0.75
0.64
0.69
0.76
0.66 | 1.7
1.5
1.2
1.1 | 2.6
2.0
1.7
14
3.4 | 0.99
1.0
8.4
3.0
1.8 | 21
83
72
23
6.6 |
e0.69
e0.54
e0.45
e0.38
e0.50 | 1.0
0.17
0.18
0.20
8.1 | 0.27
0.40
0.32
0.24
0.30 | 0.10
0.09
0.08
0.07
0.07 | | 11
12
13
14
15 | 22
4.1
0.50
0.43
3.2 | 0.10
0.13
0.15
0.14
0.18 | 0.38
5.6
2.6
4.9
1.5 | 0.58
0.58
0.57
0.58
0.54 | 0.91
0.87
0.77
0.74
0.75 | 2.7
2.2
1.9
1.7 | 1.5
1.4
1.3
1.2 | 3.7 | | 1.2
1.00
0.48
0.30
0.24 | 0.30
0.29
0.52
0.53
0.21 | 0.06
0.06
0.09
0.05
0.05 | | 16
17
18
19
20 | 4.1
0.31
0.18
0.14
0.13 | 0.17
0.27
0.18
0.25
0.13 | 61
71
5.5
2.8
1.9 | 0.44
0.36
0.43
0.52
0.49 | 0.68
0.64
0.60
3.5
1.9 | 4.9
2.8
2.2
9.4
7.5 | 1.1
1.1
0.88
10
20 | 5.4
37
6.7
3.5
2.4 | 0.87
0.63
0.50
0.62
0.49 | 0.23
0.24
0.21
0.21
0.22 | 0.16
0.12
2.4
0.64
0.26 | 0.04
0.38
0.48
38
4.2 | | 21
22
23
24
25 | 0.13
0.13
0.19
34
2.1 | 0.13
0.14
0.18
37
2.5 | 2.5
4.8
1.6
1.3 | 0.48
0.52
0.58
0.91
0.59 | 1.1
0.91
0.87
0.86
0.89 | 3.6
2.6
2.3
2.2 | 18
5.9
3.5
3.8
2.2 | 1.5
1.1
0.93
1.1
0.86 | 0.44
0.36
0.32
0.26
0.25 | 0.21
0.27
0.42
0.26
0.21 | 0.41
0.22
0.23
0.25
0.20 | 0.75
0.30
0.21
0.19
0.18 | | 26
27
28
29
30
31 | 0.96
0.44
0.35
0.31
0.24
0.23 | 1.9
1.4
5.1
7.8
11 | 1.0
1.1
e0.98
e0.91
e0.83
e0.76 | 0.50
0.50
0.47
0.58
50 | 0.85
0.71
0.71
 | 11
6.5
4.9
3.2
2.4
2.1 | 1.7
17
6.4
3.5
2.5 | 0.62
0.52
0.54
0.47
0.54
0.44 | 0.29
0.25
0.22
0.22
0.22 | 0.19
0.20
0.17
0.15
0.15 | 0.15
0.13
0.12
0.11
0.09
0.08 | 0.17
0.21
0.15
0.16
0.21 | | MEAN
MAX
MIN
IN. | 3.21
34
0.00
0.80 | 2.37
37
0.10
0.57 | 5.87
71
0.38
1.47 | 6.00
119
0.36
1.50 | 1.89
15
0.60
0.43 | 5.84
30
0.72
1.46 | 4.20
20
0.88
1.02 | 13.5
104
0.44
3.37 | 2.03
36
0.22
0.49 | 0.75
8.1
0.14
0.19 | 0.32
2.4
0.08
0.08 | 1.56
38
0.04
0.38 | | STATIST | rics of M | ONTHLY MEA | N DATA F | OR WATER | YEARS 199 | 7 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.97
3.21
2002
0.22
2000 | 1.35
2.74
1999
0.13
2000 | 1.74
5.87
2002
0.36
2001 | 4.34
11.2
1999
0.13
2000 | 5.22
11.2
1999
1.89
2002 | 5.07
13.2
1998
1.03
2000 | 2.96
4.47
1998
0.39
2000 | 5.96
13.5
2002
1.29
1999 | 5.63
13.7
1998
0.71
1999 | 1.50
3.95
1998
0.26
2001 | 0.50
1.07
1998
0.14
1999 | 0.53
1.56
2002
0.01
1999 | | SUMMARY | STATIST: | ICS | FO | R 2001 C | ALENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1997 | - 2002 | | LOWEST
HIGHEST | MEAN C ANNUAL M ANNUAL M C DAILY M DAILY MEA | EAN
EAN | | | Dec 1 | 23, | 3.99
119
0.00 | Jan
Oct | | 2.97
4.35
1.11
246
0.00 | | 1998
2001
7 2000 | | MAXIMUN
MAXIMUN
INSTANT
ANNUAL
10 PERC
50 PERC | SEVEN-DAY M PEAK FLO M PEAK STA PANEOUS LO RUNOFF () CENT EXCENTEXC | AGE
DW FLOW
INCHES)
EDS
EDS | | 0.01

5.68
3.0
0.36
0.04 | Sep 3,0ct
Aug : | | 0.06
1060 ⁶
6.29
0.00
11.76
6.4
0.64 | Jun
Jun
Oct 1 | 10
11
11
-4 | 0.00
4930 ^a
9.11
0.00
8.76
4.6
0.48
0.09 | Sep
Jun 2
Jun 2
1999,200 | 6 1999
24 2000
4 2000
1,2002 | e Estimated $^{\rm a}$ From rating extended above 243 ${\rm ft}^3/{\rm s}.$ ### 06935770 BONHOMME CREEK NEAR CLARKSON VALLEY, MO LOCATION.--Lat 38°39'28", long 90°37'10", St. Louis County, Hydrologic Unit 10300200, on right downstream wingwall of Highway CC Bridge, 0.96 mi_south_of_U.S. Highway 40, 3.3 mi west of State Highway 340, 1.48 mi east of County Highway C, and 1.48 mi upstream from Missouri River. DRAINAGE AREA. -- 11.3 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1997 to current year. Annual peaks only for 1972-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 449.19 ft above National Geodetic Vertical Datum of 1929. Prior to June 1997, at datum 450.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair except for estimated daily discharges and those above 1,300 ft^3/s , which are poor. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 11, 1979 reached a stage of 20.10 ft, former datum, discharge 5,620 ft³/s. | | | DISCHA | RGE, CUBIC | C FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|--------------------------------------|--|--|---|--------------------------------------|--------------------------------------|---|--|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.19
0.17
0.15
0.14
4.2 | 0.67
0.95
0.77
0.64
0.59 | 4.3
2.5
1.9
1.5 | e1.8
e1.6
e1.5
e1.4
1.5 | 41
12
8.9
6.9
5.7 | 3.4
53
e17
9.3
9.0 | 5.9
5.5
4.7
4.3
4.0 | 6.9
6.1
5.2
4.6
3.8 | 4.4
4.0
3.6
3.5 | 2.2
2.2
5.4
6.1
2.9 | 0.80
0.70
0.64
0.64
0.60 | 0.58
0.40
0.43
0.75
0.71 | | 6
7
8
9
10 | 1.2
0.84
0.82
1.00
25 | 0.56
0.48
0.41
0.39
e0.37 | 1.1
1.2
0.77
0.79
0.76 | e1.7
e2.3
e1.8 | 4.2
4.6 | 8.9
7.5
7.0
22
9.6 | 3.9
4.0
14
7.9
5.4 | 5.1
152
175
189
29 | 5.8
4.1
3.6
3.4
3.8 | 2.1
1.9
1.8
1.9
9.3 | 0.71
0.62
0.57
0.47
0.44 | 0.59
0.39
0.33
0.29
0.29 | | 11
12
13
14
15 | 29
13
2.7
1.5
3.4 | e0.33
e0.42
e0.47
e0.44
e0.60 | 0.71
3.5
10
10
5.4 | e1.6
e1.5
e1.5
e1.8
e1.6 | 4.2
4.2
4.0
3.7
3.7 | 8.4
7.5
6.7
5.9 | 4.9
4.8
4.8
4.7
4.6 | 18
109
390
38
26 | 27
319
18
8.6
6.5 | 5.6
3.2
2.5
1.8
1.4 | 0.50
0.72
2.0
3.0
1.5 | 0.26
0.24
0.24
0.31
0.41 | | 16
17
18
19
20 | 9.0
1.8
0.92
0.66
0.64 | 0.53
0.87
0.60
0.66
0.71 | 95
190
15
8.3
5.6 | e1.5
e1.3
1.2
1.4 | 3.7
3.7
3.6
6.9
7.9 | 12
7.6
6.6
12
15 | 4.4
4.3
3.9
12
46 | 26
80
35
20
15 | 5.3
4.5
4.3
4.0
3.6 | 1.2
1.2
1.3
1.3 | 1.1
1.2
7.2
2.1
1.1 | 0.51
2.4
1.4
119
14 | | 21
22
23
24
25 | 0.57
0.73
2.7
31
5.5 | 0.72
0.86
1.0
75
3.9 | 4.5
5.6
4.9
3.7
3.5 | 1.5
1.5
1.8
2.5
2.1 | 4.6
3.9
3.6
3.7
3.8 | 9.0
7.6
7.0
6.8
65 | 26
13
8.5
8.4
7.4 | 12
10
9.0
9.4
8.0 | 3.6
3.4
3.3
3.0
2.9 | 1.2
1.1
1.7
1.7 | 0.81
0.69
0.97
0.93
0.61 |
3.0
1.6
1.2
0.81
0.65 | | 26
27
28
29
30
31 | 1.5
0.84
0.67
0.61
0.57 | 1.9
1.7
8.0
14
17 | 3.1
2.8
2.8
2.5
e2.2
e2.0 | 1.7
1.7
1.9
2.5
108
414 | 3.8
3.5
3.3
 | 21
14
10
8.9
7.5
6.6 | 5.9
36
19
9.5
7.8 | 6.6
6.0
5.6
5.1
4.7 | 2.9
2.8
2.7
2.5
2.2 | 1.1
1.0
1.0
1.0
0.95
0.94 | 0.53
0.49
0.49
0.39
0.62
0.91 | 0.67
0.65
0.94
0.71
0.63 | | MEAN
MAX
MIN
IN. | 4.57
31
0.14
0.45 | 4.52
75
0.33
0.44 | 12.8
190
0.71
1.27 | 18.4
414
1.2
1.83 | 6.20
41
3.3
0.56 | 13.0
65
3.4
1.30 | 9.85
46
3.9
0.95 | 45.7
390
3.8
4.54 | 16.0
319
2.2
1.54 | 2.24
9.3
0.94
0.22 | 1.10
7.2
0.39
0.11 | 5.15
119
0.24
0.50 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.53
4.57
2002
0.79
2000 | 3.58
6.11
1998
0.96
2000 | 4.42
12.8
2002
0.63
2001 | 10.4
18.8
1999
0.96
2000 | 17.6
36.6
1999
6.20
2002 | 14.4
40.9
1998
3.09
2000 | 8.95
14.5
1998
1.72
2000 | 19.6
45.7
2002
4.13
2001 | 15.7
28.9
2000
3.31
1999 | 4.04
8.51
1998
1.08
1997 | 2.17
3.25
2000
1.10
2002 | 2.24
5.15
2002
0.69
1999 | | SUMMARY | STATIST | ICS | FOR | R 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YEA | ARS 1997 | 7 - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | ANNUAL ME | EAN EAN AN Y MINIMUM DW AGE DOW FLOW INCHES) EDS EDS | | 5.00
190
0.14
0.23

5.86
8.9
1.7
0.53 | Dec 1
Oct
Sep 2 | 4 | 11.7
414
0.14
0.28
1850 ^a
15.94
0.14
13.71
16
3.0
0.57 | Jan
Oct
Sep
Jun
Jun
Oct 3 | 31
4
8
12
12
12 | 8.77
12.3
3.54
932
0.14
0.22
3540 ^a
19.62
0.14
10.28
13
2.1
0.57 | May
Oct
Sep
Jun
Jun
Oct 3 | 1998
2001
7 2000
4 2001
14 2000
24 2000
24 2000
3-5 2001 | e Estimated $^{\rm a}$ From rating extended above 631 ${\rm ft^3/s.}$ # 06935770 BONHOMME CREEK NEAR CLARKSON VALLEY, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1997 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
10 | 0630 | ENVIRONM | ENTAL | 57 | 8.1 | 82 | 7.8 | 513 | 14.9 | 180 | 53.4 | 10.7 | 144 | | DEC 10 | 1130 | ENVIRONM | | .79 | 11.0 | 87 | 7.6 | 606 | 4.8 | 250 | 76.9 | 15.1 | 197 | | 10
FEB | 1131 | REPLICAT | | | | | | | | 250 | 76.8 | 15.1 | | | 04
04
MAR | 1115
1130 | BLANK
ENVIRONM | ENTAL | 6.7 | 13.5 | 101 | 7.6 |
462 | 3.2 | 1
170 | .37
52.0 | .03
9.60 | 143 | | 25
MAY | 0542 | ENVIRONM | ENTAL | 109 | 10.8 | 89 | 7.7 | 384 | 5.7 | 120 | 36.0 | 6.80 | 98 | | 28
28 | 1045
1100 | BLANK
ENVIRONM | ENTAL |
5.6 | 7.0 |
77 |
7.7 |
585 | 18.8 |
250 | .17
78.0 | <.03
13.0 |
202 | | AUG
05 | 1140 | ENVIRONM | ENTAL | .64 | 6.6 | 85 | 7.6 | 644 | 27.3 | 280 | 83.0 | 17.0 | 232 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-PHORUSORTHOTOTAL(mg/Las P)(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
10 | 145 | 177 | 0 | | 293 | E1.6 | .06 | .370 | <.01 | .220 | .50 | 4.3 | 17 | | DEC 10 | 200 | 244 | 0 | 49.4 | E7 | <.20 | .05 | .510 | <.01 | .030 | E.06 | 10 | 11 | | 10
FEB | | | | 49.4 | E5 | <.20 | .04 | .490 | <.01 | .020 | E.05 | | 11 | | 04 | 143 | 174 | 0 | <.10
39.0 | 1
10 | <.20
.20 | <.01
<.01 | <.020
1.00 | <.01
<.01 | <.010
.040 | <.02
.06 | 7.1 | <5
5 | | MAR
25
MAY | 97 | 119 | 0 | | 100 | 2.6 | .28 | .390 | .03 | .190 | .49 | 4.0 | 16 | | 28
28 |
205 |
250 |
0 | | <1
15 | <.20 | <.01 | <.020
.570 | <.01 | <.010 | <.02 |
7.4 | <5
7 | | AUG
05 | 234 | 285 | 0 | | 13 | .60 | .07 | .310 | .01 | .060 | .08 | 12 | 11 | | | | | | | | | | | | | | | | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(COl./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
10 | 28000 | 4000 | 17000 | 205 | 2 | <1 | 1.0 | 1.0 | 1.7 | 241 | <1 | 78 | <.1 | | DEC
10
10 | K20
 | K38 | K33 | 13
12 | <1
<1 | 1
1 | 1.0 | 1.0
1.0 | 1.0
1.0 | 25
26 | <1
<1 | 235
235 | <.1
<.1 | | FEB
04
04 |
K30 |
K75 |
K60 | <3
21 | <1
<1 | <1
<1 | <1.0
<1.0 | <1.0
<1.0 | <1.0
<1.0 | <2
22 | <1
<1 | <1
133 | <.1
<.1 | | MAR
25
MAY | 1200 | 1100 | 4950 | 388 | 1 | <1 | <1.0 | <1.0 | 2.4 | 352 | <1 | 106 | <.1 | | 28
28
AUG |
100 |
116 |
96 | <3
11 | <1
<1 | <1
<1 | <1.0
<1.0 | <1.0
<1.0 | <1.0
<1.0 | <2
23 | <1
<1 | <1
199 | <.1
<.1 | | 05 | К4 | K20 | 108 | <3 | 2 | <1 | <1.0 | <1.0 | <1.0 | 3 | <1 | 254 | <.1 | # 06935770 BONHOMME CREEK NEAR CLARKSON VALLEY, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |------------------|---|--|---|---|--|---|---|---|---|---|--|---|---| | OCT
10 | 1.7 | <1 |
<1.0 | 42 | <7 | <3 | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC
10
10 | 1.4
1.2 | <1
<1 | <1.0
<1.0 | 21
17 | | | | | | | | | | | FEB
04
04 | <1.0
1.6 | <1
<1 | <1.0
<1.0 | <2
188 | | | | | | | | | | | MAR
25 | 2.0 | <1 | <1.0 | 102 | <7 | <3 | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
28
28 | <1.0
1.2 | <1
<1 | <1.0
<1.0 | <2
63 | | | | | | | | | | | AUG
05 | 2.3 | <1 | <1.0 | <2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | | OCT
10
DEC | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | М | <2 | | 10
10
FEB | | | | | | | | | | | | | | | 04
04
MAR | | | | | | | | | | | | | | | 25
MAY | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | M | <2 | | 28
28 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZ(A)
ANTHRA-
CENE
WATER
UNFLITRD
REC
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10 | <40 | <3 | <3 | <3 | <2 | <3 | <3 | <2 | <2 | <19 | <.02 | <.1 | <.01 | | DEC
10
10 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 25
MAY | <40 | М | М | M | М | М | <3 | <2 | <2 | <6 | <.02 | <.1 | <.01 | | 28
28
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | # 06935770 BONHOMME CREEK NEAR CLARKSON VALLEY, MO--Continued (Metropolitan Sewer District) | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | ETHION,
TOTAL
(µg/L)
(39398) | |------------------|---|---|--|--|--|---|---|--|--|---|---|---|---------------------------------------| | 10
DEC | <3 | <2 | <.02 | 1.10 | <.006 | М | М | M | <5 | | <.02 | <.01 | <.01 | | 10
10
FEB | | | | | | | | | | | | | | | 04
04 | | | | | | | | | | | | | | | MAR
25
MAY | М | <4 | <.02 | .70 | <.006 | <2 | <2 | <2 | <5 | <.30 | <.02 | <.01 | <.01 | | 28
28 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(μg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(µg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | | OCT
10
DEC | М | <2 | <.01 | <.009 | <.01 | <2 | <3 | М | <.006 | <.20 | <.020 | <.01 | <.006 | | 10
10
FEB | | | | | | | | | | | | | | | 04
04 | | | | | | | | | | | | | | | MAR
25
MAY | М | <2 | <.01 | <.009 | <.01 | <2 | М | <2 | <.006 | <.20 | <.020 | <.02 | <.006 | | 28
28 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL | N-NITRO
-SODI-
METHYL-
AMINE
TOTAL | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL | N-NITRO -SODI- PHENYL- AMINE TOTAL | P,P'-
DDD
UNFILT
RECOVER | P,P'-
DDE,
TOTAL | P,P'-
DDT
UNFILT
RECOVER | PARA-
CHLORO-
META
CRESOL
TOTAL | PARA-
THION,
TOTAL | PCB,
TOTAL | PENTA-
CHLORO-
PHENOL
TOTAL | PHENAN-
THRENE
TOTAL | PHENOL
UNFILT.
WATER | | | (µg/L)
(34292) | (μg/L)
(34438) | (μg/L)
(34428) | (μg/L)
(34433) | (µg/L)
(39360) | (µg/L)
(39365) | (µg/L)
(39370) | (µg/L)
(34452) | (µg/L)
(39540) | (µg/L)
(39516) | (µg/L)
(39032) | (µg/L)
(34461) | (µg/L)
(34694) | | OCT
10
DEC | <4 | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | <4 | М | <3.0 | | 10
10 | | | | | | | | | | | | | | | FEB
04
04 | | | | | | | | | | | | | | | MAR
25 | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | м | м | <3.0 | | MAY
28 | | | | | | | | | | | | | | | 28
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | # 06935770 BONHOMME CREEK NEAR CLARKSON VALLEY, MO--Continued (Metropolitan Sewer District) | | | | | BENZENE | BENZENE | BENZENE | BENZENE | ETHANE | | | |------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | | | | 1,2,4- | 1,3-DI- | 1,4-DI- | O-DI- | HEXA- | HEXA- | | | | | | | TRI- | CHLORO- | CHLORO- | CHLORO- | CHLORO- | CHLORO- | | | | | | TOX- | CHLORO- | WATER | WATER | WATER | WATER | BUT- | NAPHTH- | | | PHORATE | PYRENE | APHENE, | WAT UNF | UNFLTRD | UNFLTRD | UNFLTRD | UNFLTRD | ADIENE | ALENE | | DATE | TOTAL | TOTAL | TOTAL | REC | REC | REC | REC | RECOVER | TOTAL | TOTAL | | | $(\mu g/L)$ | | (39023) | (34469) | (39400) | (34551) | (34566) | (34571) | (34536) | (34396) | (39702) | (34696) | | OCT | | | | | | | | | | | | 10 | <.02 | М | <1 | <2 | <2 | <2 | <2 | <2 | <3 | <5 | | DEC | 1.02 | 1-1 | ~1 | 12 | ~2 | ~2 | ~2 | 12 | ~3 | ~5 | | 10 | | | | | | | | | | | | 10 | | | | | | | | | | | | FEB | | | | | | | | | | | | 04 | | | | | | | | | | | | 04 | | | | | | | | | | | | MAR | | | | | | | | | | | | 25 | <.02 | M | <1 | <2 | <2 | <2 | <2 | <2 | <1 | <5 | | MAY | | | | | | | | | | | | 28 | | | | | | | | | | | | 28 | | | | | | | | | | | | AUG | | | | | | | | | | | | 05 | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 06935830 CAULKS CREEK AT CHESTERFIELD, MO LOCATION.--Lat 38°39'16", long 90°35'42", St. Louis County, Hydrologic Unit 10300200, on downstream side of middle pier of Highway CC bridge, 2.0 mi west of State Highway 340, 1.1 mi south of U.S. Route 40, and 1.09 mi upstream of Bonhomme Creek. DRAINAGE AREA.--17.1 mi². PERIOD OF RECORD.--July 1996 to current year. Annual peaks only for the 1972-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 453.98 ft above National Geodetic Vertical Datum of 1929. Prior to July 1996, at datum 450.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except for estimated daily discharges and those above 1,300 ${\rm ft}^3/{\rm s}$, which are poor. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 11, 1979 reached a stage of 19.97 ft, former datum, discharge 7,940 ft³/s. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|--|--|--------------------------------------|--------------------------------------
--|---|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.0
4.0
4.1
4.2 | 6.1
7.4
6.8
5.8
5.5 | 22
12
9.7
8.4
7.7 | 6.5
6.3
6.0
6.0 | 105
48
31
21
15 | 6.5
86
45
21
16 | 14
13
11
9.8
9.5 | 18
16
13
12
11 | 9.9
9.7
9.5
9.3 | 7.3
7.3
25
24
10 | 4.8
4.7
4.6
4.6
4.6 | 5.0
5.0
5.0
4.9
4.8 | | 6
7
8
9
10 | 15
7.1
5.4
5.0
84 | 5.3
5.3
5.1
4.7
4.8 | 7.3
6.8
6.4
6.0
5.8 | 6.5
6.4
6.2
6.3
6.1 | 13
11
10
9.2
9.0 | 15
13
11
53
24 | 9.3
9.7
40
24
15 | 16
312
250
327
68 | 20
12
10
9.6
16 | 8.3
7.5
6.9
6.5
7.0 | 5.5
5.1
4.7
4.5
4.6 | 5.1
4.8
4.7
4.8
4.8 | | 11
12
13
14
15 | 104
70
21
15
15 | 4.6
4.5
4.5
4.6
4.5 | 5.6
14
35
41
19 | 5.7
5.6
5.8
5.8
5.5 | 8.6
8.3
7.7
7.6
7.5 | 16
14
12
11
29 | 12
12
12
11
10 | 41
185
541
125
102 | 122
1030
60
29
19 | 8.8
7.7
7.2
6.3
6.0 | 4.5
4.7
7.3
14
12 | 4.7
4.5
4.6
4.7
4.8 | | 16
17
18
19
20 | 53
15
10
8.4
7.5 | 4.4
4.2
4.3
4.8
4.3 | 190
233
60
35
23 | 5.3
5.2
5.1
6.0
6.8 | 7.2
6.9
6.5
13 | 36
18
14
27
42 | 9.7
16
11
15
104 | 73
152
73
41
29 | 15
12
11
11
9.7 | 5.8
5.9
5.5
5.3
5.2 | 9.7
9.2
24
15
8.1 | 5.1
9.0
13
7.5
e150 | | 21
22
23
24
25 | 6.8
6.3
6.9
133
34 | 4.2
4.3
4.2
163
24 | 15
17
14
10
9.2 | 6.1
5.8
5.9
10
7.5 | 9.9
8.2
7.9
7.6
7.5 | 22
16
15
14
118 | 75
43
24
24
26 | 23
19
18
18
16 | 9.3
9.1
8.9
8.7
8.6 | 5.1
5.1
7.6
6.0
5.5 | 6.5
6.5
7.4
6.0 | e50
e9.0
e6.4
e7.0
e6.4 | | 26
27
28
29
30
31 | 13
9.2
7.8
6.7
6.8
6.1 | 11
9.8
27
49
68 | 8.7
8.4
8.1
7.5
7.1
6.8 | 5.9
5.6
5.3
5.7
124
385 | 8.1
7.3
6.7
 | 54
42
27
21
17
15 | 16
81
64
29
21 | 14
13
12
12
11
10 | 8.4
8.3
8.0
7.8
7.6 | 5.2
5.1
5.2
5.1
4.9 | 5.7
5.6
5.2
5.0
5.2
5.1 | e6.3
e6.2
e8.0
e7.5
e7.0 | | MEAN
MAX
MIN
IN. | 22.8
133
4.0
1.54 | 15.5
163
4.2
1.01 | 27.7
233
5.6
1.87 | 22.1
385
5.1
1.49 | 15.2
105
6.5
0.93 | 28.1
118
6.5
1.89 | 25.7
104
9.3
1.68 | 82.9
541
10
5.59 | 51.8
1030
7.6
3.38 | 7.52
25
4.9
0.51 | 7.11
24
4.5
0.48 | 12.4
150
4.5
0.81 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 12.8
22.8
2002
8.15
2000 | 20.9
62.0
1997
6.33
2000 | 12.5
27.7
2002
5.76
1999 | 20.4
34.4
1999
5.33
2000 | 41.2
72.6
1999
15.2
2002 | 29.7
78.1
1998
9.70
2000 | 19.5
29.2
1998
6.64
2000 | 37.1
82.9
2002
12.5
1999 | 37.3
59.3
1998
8.40
1999 | 15.1
35.4
1998
7.52
2002 | 12.3
20.2
1996
7.11
2002 | 10.4
21.9
1996
4.33
1999 | | SUMMARY | STATIST | ICS | FOR | 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YEA | AR | WATER YE | ARS 1996 | 5 - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
INSTANTI
ANNUAL
10 PERC
50 PERC | C ANNUAL M
ANNUAL MI
C DAILY MI
DAILY MEA | EAN EAN AN Y MINIMUM DW AGE DW FLOW INCHES) EDS EDS | | 16.2 233 1.9 3.9 12.87 30 7.6 4.8 | Feb 2
Sep
Aug 2 | 1 | 26.7 1030 4.0 4.3 9690 ^a 14.37 4.0 Se 21.18 51 8.9 4.8 | Jun 1
Oct
Nov 1
Jun 1
Jun 1
everal Day | 2
L7
L2
L2 | 22.0
30.4
13.2
1920
1.9
3.7
10900 ^a
14.95
0.61 ^b
17.50
34
8.8
5.1 | Sep
Sep
Jun
Jun | 1998
2001
7 2000
1 2001
21 1999
24 2000
24 2000
4 2001 | e Estimated From rating extended above 544 ft $^3/s$. b Occurred during period of construction upstream. Verified by field visit. ### 06935850 CREVE COEUR CREEK AT CHESTERFIELD, MO LOCATION.--Lat 38°38'47", long 90°31'35", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.13, T.45 N., R.4 E., St. Louis County, Hydrologic Unit 10300200, on left downstream abutment of Highway 40 bridge, 3.71 mi north of State Highway 100 (Manchester Road), 0.75 mi west of State Highway 141, and 10.33 mi upstream of Missouri River. DRAINAGE AREA. -- 5.62 mi². PERIOD OF RECORD.--June 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 495.20 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair except for discharges above $600 \text{ ft}^3/\text{s}$ and below $1 \text{ ft}^3/\text{s}$, which are poor. | | | DISCHA | RGE, CUBI | C FEET PEF | | WATER YE
Y MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|---|--|--------------------------------------|---------------------------------------|--|--|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.05
0.05
0.05
0.04
14 | 0.50
4.5
0.56
0.39
0.73 | 1.1
0.58
0.55
0.49
0.53 | 0.45
0.43
0.47
0.46
0.53 | 18
6.5
4.2
2.9
2.5 | 1.9
42
7.5
2.9
3.5 | 2.5
2.9
2.1
1.8
1.2 | 2.0
1.8
1.4
1.9 | 1.2
1.2
1.3
2.1 | 0.56
0.52
0.63
1.3
0.66 | 0.24
0.22
0.25
0.22
0.24 | 0.37
0.35
0.35
0.33
0.32 | | 6
7
8
9
10 | 1.1
0.35
0.25
0.19
46 | 1.1
1.2
1.5
2.2
1.3 | 0.90
0.70
0.48
0.64
0.54 | 0.80
0.78
0.57
0.67
0.72 | 2.5
2.3
2.2
2.8
3.2 | 3.1
2.4
2.6
33
4.4 | 1.2
1.8
29
4.7
2.2 | 10
136
95
116
6.4 | 2.1
0.85
0.70
0.72 | 0.51
0.40
0.37
0.32
0.30 | 0.74
0.31
0.23
0.21
0.21 | 0.33
0.33
0.34
0.35
0.34 | | 11
12
13
14
15 | 47
14
5.0
1.8
21 | 0.64
0.62
0.69
0.52
0.54 | 0.57
23
8.7
29
4.6 | 0.52
0.50
0.45
0.54
0.47 | 2.2
2.0
1.8
1.9 | 3.5
2.9
2.5
2.6
27 | 1.9
2.3
2.2
2.1
2.2 | 3.5
106
141
7.3
3.9 | 108
251
5.8
2.2
1.5 | 0.40
0.39
0.36
0.32
0.34 | 0.22
0.23
8.9
2.8
0.62 | 0.31
0.30
0.33
0.33
0.37 | | 16
17
18
19
20 | | | 124
93
8.2
3.7
2.5 | 0.48
0.42
0.42
1.6
1.0 | 1.6
1.8
1.8
13
4.1 | 7.2
3.2
3.1
16
8.1 | 2.3
4.1
1.4
22
27 | 15
69
11
3.6
2.1 | 1.1
1.1
0.96
0.91
0.83 | 1.9
0.57
0.33
0.30
0.31 | 0.47
0.44
18
0.99
0.61 | 0.39
7.2
0.95
65
15 | | 21
22
23
24
25 | 1.0
1.00
4.4
94
2.4 | 0.54
0.45
1.1
131
0.97 | 1.3 | 0.76
0.65
1.2
4.7
0.86 | 2.1
1.7
1.6
1.6
2.8 | 2.7
2.2
2.2
3.5
38 | 24
4.8
2.4
8.1
2.7 | 1.5
1.4
1.3
3.1
1.7 | 0.78
0.75
0.72
0.73
0.76 | 0.29
0.93
2.1
0.35
0.30 | 0.49
0.44
1.1
0.62
0.48 | 1.4
0.66
0.52
0.51
0.45 | | 26
27
28
29
30
31 | 0.54
0.47
0.48
0.55
0.52
0.56 | 2.2
0.68
19
25
32 | 0.93
0.60
0.63
0.54
0.50 | 0.95
1.2
0.78
5.5
63
76 | 3.3
2.0
1.9
 | 19
5.7
3.1
2.7
2.8
2.4 | 1.7
48
13
2.8
2.1 | 1.1
1.2
1.5
1.4
1.1 | 0.70
0.63
0.62
0.62
0.64 | 0.35
0.34
0.32
0.32
0.29 | 0.42
0.37
0.35
0.36
0.35 | 0.41
0.42
0.43
0.42
0.40 | | MEAN
MAX
MIN | 8.79
94
0.04 | 7.82
131
0.39 | 10.3
124
0.47 | 5.42
76
0.42 | 3.44
18
1.6 | 8.51
42
1.9 | 7.55
48
1.2 | 24.2
141
1.1 | 14.4
251
0.62 | 0.54
2.1
0.26 | 1.34
18
0.21 | 3.31
65
0.30 | | STATIS | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.42
8.79
2002
2.14
1998 | 5.26
7.82
2002
0.77
2000 | 3.69
10.3
2002
0.93
2001 | 5.72
10.3
1999
0.85
2000 | 8.31
14.9
1998
3.44
2002 | 7.35
15.5
1998
3.49
2000 | 6.08
8.84
1999
1.62
2000 | 12.8
24.2
2002
4.36
1998 | 12.6
20.5
2000
3.13
1999 | 4.61
10.5
1998
0.54
2002 | 2.69
5.45
1998
0.44
2001 | 1.69
3.31
2002
0.33
1999 | | SUMMAR | Y STATIST | ICS | FO | R 2001 CAI | LENDAR YEA | AR |
FOR 2002 | WATER Y | EAR | WATER Y | EARS 1997 | - 2002 | | LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN 10 PER 50 PER | MEAN T ANNUAL ANNUAL M T DAILY ME SEVEN-DA M PEAK FL M PEAK ST TANEOUS L CENT EXCE CENT EXCE | EAN EAN AN Y MINIMUM OW AGE OW FLOW EDS EDS | 5.
1 0.
1 0.
-
-
-
0.
0. | 72
04 Sep 5,2
05

12
68 | Feb 29,30,0ct
Sep 2 | 24
4
228 | 8.01
251
0.04
0.25
1690 ^a
15.35
0.03
17
1.2
0.33 | Jun
Oct
Jul
Jun
Jun
Oct | 12
4
30
12
12
12,5 | 6.30
8.03
4.54
480
0.02
0.05
1890
15.88
0.02
12
1.2 | May
Sep 17,
Sep :
Jun :
Jun :
Sep 17, | 1998
2001
7 2000
24 1999
28 2001
24 2000
24 2000
24 1999 | $^{^{\}rm a}$ $\,$ From rating extended above 259 ${\rm ft}^{3}/{\rm s}.$ #### 06935890 CREVE COEUR CREEK NEAR CREVE COEUR, MO LOCATION.--Lat 38°40'55", long 90°29'18", St. Louis County, Hydrologic Unit 10300200, 200 ft downstream of Highway 340 bridge, 2.10 mi west of Interstate 270, 2.95 mi north U.S. Route 40, and 5.80 mi upstream of Missouri River. DRAINAGE AREA. -- 22.0 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- June 1997 to current year. Annual peaks only for 1972-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 449.43 ft above National Geodetic Vertical Datum of 1929. Prior to June 1997, at datum 451.10 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair except for discharges above 1,200 ft³/s, which are poor. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood in April 11, 1979 reached a stage of 14.78 ft, former datum, discharge 4,820 ft³/s. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY NOV DEC JAN FEB AUG SEP 60 1 0.26 3.7 13 3.6 4.7 8.4 9.4 6.4 3.4 1.6 1.7 2 0.37 9.8 7.7 19 124 9.2 8.9 7.4 3.7 2.1 3.6 6.0 3 0 41 6.3 5 9 3.5 14 26 5.8 3 4 2.0 2.5 6.8 1.7 0.40 4.4 3.5 13 6.4 4.4 1.5 11 5.4 5 46 1.7 6.4 92 1.6 8.4 11 6 1.7 7.8 13 5.9 35 8.3 4.0 4.4 15 6.1 8.6 1.1 2.2 3.0 3.0 1.4 3.1 4.1 7.5 9.0 6.3 628 7.7 1.3 0.63 7.8 2.5 8 2.5 3.8 6.6 85 382 6.4 1.5 2.5 2.2 107 20 602 5.4 0.48 4.1 6.4 1.4 9.3 10 176 1.7 2.0 4.1 10 16 40 3.8 1.7 30 11 148 1.6 2.2 3.9 8.5 12 7.8 710 2.7 1.6 1.3 12 13 1.2 3.8 5.9 7.6 1.6 68 58 9.8 357 1520 15 1.6 4.5 23 38 8.9 904 30 30 5.2 14 13 1.3 98 8.1 6.8 35 13 2.5 12 1.1 15 35 1.3 13 3.5 5.1 69 6.3 19 9.3 2.3 4.5 1.1 47 7.9 16 66 1.3 345 3.4 30 5.9 13 3.2 1.2 17 6.5 1.1 1.4 373 27 3.3 4.3 12 10 294 52 6.8 7.7 2.6 57 25 9.7 6.2 18 10 29 13 5.4 41 20 5.6 10 20 2.3 2.8 8.3 5.7 18 34 135 15 5.1 2.2 4.5 51 21 1.8 6.9 4.4 8.4 12 5.0 2.3 9.1 14 1.6 1.7 6.1 5.3 22 11 2.9 3.4 22 2.0 15 4.0 9.5 10 4.6 10 4.4 23 3.6 9.4 4.4 8.7 9.5 4.4 22 3.4 259 526 16 9.4 29 13 33 5.2 25 20 13 5.3 5.1 5.5 287 17 11 15 2.5 4.0 2.3 26 4.8 8.9 4.9 4.0 8.3 59 8.0 8.7 5.2 2.3 2.1 2.4 2.2 4.7 4.6 3.7 3.6 172 57 7 9 2.5 2.3 27 10 5.0 25 4.9 2.1 1 9 28 53 4.8 15 8.6 5.0 2.0 2.0 8.6 29 2.0 71 4.5 ---13 15 11 3.8 2.0 1.8 2.0 7.7 7.0 30 2 1 114 3 9 385 11 11 3.6 2 1 2 0 1 9 3.0 3.8 1.8 31 9.1 MEAN 29.2 28.4 35.3 10.3 33.1 27.7 116 86.3 4.72 5.93 39.9 11.9 259 526 373 721 60 287 172 904 1520 22 57 215 MAX MIN 0.26 1.1 2.0 3.1 4.1 4.7 5.9 6.4 3.6 1.7 1.3 0.49 1.74 0.31 1.85 2.09 6.05 4.37 0.25 0.60 IN. 1.53 1.44 1.41 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1997 - 2002, BY WATER YEAR (WY) 11.4 MEAN 13.3 16.2 12.7 29.9 48.1 38.7 25.3 60.0 68.4 13.0 7.20 28.4 2002 MAX 29 2 35 3 75.4 95 9 110 48.2 116 115 22.0 28 6 11 9 1999 2000 2002 1998 2002 1998 2002 1999 1998 2002 (WY) 1998 6.51 4.16 5.43 3.40 10.3 9.31 6.56 20.3 15.8 4.05 1.70 1.16 MIN (WY) 1998 2000 1999 2000 2002 2000 2000 1998 2001 1997 2001 1999 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1997 - 2002 ANNUAL MEAN 18.8 35.9 28.6 HIGHEST ANNUAL MEAN 37.0 1998 LOWEST ANNUAL MEAN 13.6 2001 HIGHEST DAILY MEAN 526 1520 Jun 12 2520 Jun 24 2000 Nov 24 LOWEST DAILY MEAN 0.25 Sep 15 0.26 Oct 1 0.20 Sep 17 1999 ANNUAL SEVEN-DAY MINIMUM Sep 15 1999 0.33 Sep 26 1.2 Nov 12 0.30 5140^a Jun 12 MAXIMUM PEAK FLOW 7330^a Jun 24 2000 MAXIMUM PEAK STAGE ___ 14.30 Jun 12 16.43 Jun 24 2000 INSTANTANEOUS LOW FLOW Sep 17 1999 0.24 Oct. 1 0.16 ANNUAL RUNOFF (INCHES) 11.56 22.13 17.68 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 36 57 37 4.4 5.4 5.8 90 PERCENT EXCEEDS 0.64 ^a From rating extended above 588 ft³/s. # 06935890 CREVE COEUR CREEK NEAR CREVE COEUR, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1997 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|--|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
10 | 0544 | ENVIRONM | ENTAL | 42 | 7.9 | 82 | 7.5 | 186 | 16.5 | 64 | 19.6 | 3.65 | 46 | | DEC 10 | 1315 | ENVIRONM | ENTAL | 1.97 | 9.0 | 73 | 7.7 | 894 | 5.8 | 330 | 92.7 | 24.0 | 216 | | FEB
04 | 1330 | ENVIRONM | ENTAL | 10 | 12.2 | 93 | 7.8 | 937 | 3.9 | 300 | 83.0 | 22.0 | 204 | | MAR
20 | 1919 | ENVIRONM | ENTAL | 56 | 9.6 | 84 | 7.9 | 1110 | 9.0 | 240 | 68.0 | 17.0 | 154 | | MAY
28 | 1300 | ENVIRONM | ENTAL | 7.5 | 7.7 | 86 | 7.8 | 1010 | 19.5 | 170 | 50.0 | 12.0 | 251 | | AUG
05 | 1245 | ENVIRONM | ENTAL | 1.6 | 4.9 | 65 | 7.6 | 856 | 28.6 | 320 | 89.0 | 23.0 | 221 | | DATE | ANC WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN
DEMAND,
CHEM-
ICAL
(high
level)
(mg/L)
(00340) | | OCT
10
DEC | 44 | 54 | 0 | | 338 | E1.9 | .08 | .410 | .01 | .240 | .58 | 3.0 | 20 | | 10
FEB | 217 | 264 | 0 | 108 | E8 | E.50 | .06 | .460 | .01 | .090 | E.10 | 9.3 | 13 | | 04
MAR | 200 | 244 | 0 | 130 | 15 | .50 | .03 | 1.00 | <.01 | .060 | .11 | 7.0 | 7 | | 20
MAY | 157 | 192 | 0 | | 66 | .90 | .08 | .440 | .02 | .060 | .15 | 3.4 | 11 | | 28
AUG | 254 | 310 | 0 | | 39 | .80 | .12 | .790 | .05 | .090 | .17 | 7.7 | 25 | | 05 | 225 | 275 | 0 | | 12 | .60 | .09 | .290 | .02 | .140 | .17 | 11 | 15 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT | 67000 | 42000 | 47000 | EOC | 2 | ٦1 | 1 0 | 1 0 | 2.0 | E4F | J1 | Γ4 | 1 | | 10
DEC
10 | 67000
K20 | 42000
100 | 47000
K77 | 506
17 | 2 | <1
<1 | 1.0 | 1.0 | 2.0
1.1 | 545
57 | <1
<1 | 54
192 | .1
<.1 | | FEB
04 | K20
K10 | K80 | K150 | 38 | 1 | <1 | <1.0 | <1.0 | 1.0 | 50 | <1 | 242 | <.1 | | MAR
20 | K360 | 680 | 860 | 180 | 2 | <1 | <1.0 | 4.6 | 2.2 | 188 | <1 | 232 | <.1 | | 20
MAY
28 | 400 | 480 | 192 | 141 | 2 | <1 | <1.0 | <1.0 | 2.5 | 163 | <1 | 192 | <.1 | | AUG
05 | ¥00
K17 | K343 | K20 | <3 | 6 | <1 | <1.0 | <1.0 | 1.3 | 4 | <1 | 487 | <.1 | | 03 | KI, | 11343 | 1020 | ٠, | 5 | ~± | -1.0 | `+.0 | 1.5 | - | ~± | 107 | | # 06935890 CREVE COEUR CREEK NEAR CREVE COEUR, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) |
SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |--|--|--|--|---|--|---|---|---|--|---|--|---|--| | OCT
10 | 1.3 | <1 | <1.0 | 37 | <7 | М | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC 10 | 2.2 | <1 | <1.0 | 40 | | | | | | | | | | | FEB
04 | 1.9 | <1 | <1.0 | 110 | | | | | | | | | | | MAR
20 | 2.9 | <1 | <1.0 | 49 | <7 | <3 | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
28 | 2.6 | <1 | <1.0 | 47 | | | | | | | | | | | AUG
05 | 3.5 | 1 | <1.0 | <2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL | 2-
CHLORO-
PHENOL
TOTAL | 2-
NITRO-
PHENOL
TOTAL | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL | 4-
NITRO-
PHENOL
TOTAL | ACE-
NAPHTH-
ENE
TOTAL | ACE-
NAPHTH-
YLENE
TOTAL | ALDRIN,
TOTAL | ANTHRA-
CENE
TOTAL | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER | | | (μg/L)
(34581) | (µg/L)
(34586) | (μg/L)
(34591) | (μg/L)
(34631) | (μg/L)
(34657) | (μg/L)
(34636) | (μg/L)
(34641) | (μg/L)
(34646) | (µg/L)
(34205) | (µg/L)
(34200) | (µg/L)
(39330) | (µg/L)
(34220) | (μg/L)
(34447) | | OCT
10
DEC | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | M | М | <.01 | М | <2 | | 10
FEB | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | MAR
20
MAY | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | <2 | <2 | | 28
AUG | | | | | | | | | | | | | | | 05 | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZ(A)
ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10 | DINE
TOTAL
(µg/L) | A-
PYRENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L) | [GHI]-
PERY-
LENE
TOTAL
(µg/L) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L) | PHENO-
THION
WATER
UNFLTRD
(µg/L) | DANE,
TECH-
NICAL
TOTAL
(µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L) | | OCT
10
DEC
10 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10
DEC
10
FEB
04 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10
DEC
10
FEB
04
MAR
20 | DINE
TOTAL
(µg/L)
(39120) | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 10 DEC 10 FEB 04 MAR 20 MAY 28 | DINE
TOTAL
(µg/L)
(39120)
<40 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E1 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 10 DEC 10 FEB 04 MAR 20 | DINE
TOTAL
(µg/L)
(39120)
<40 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E1 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT
10
DEC
10
FEB
04
MAR
20
MAY
28 | DINE
TOTAL
(µg/L)
(39120)
<40 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E1 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 |
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 10 DEC 10 FEB 04 MAR 20 MAY 28 AUG 05 | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (μg/L) (34247) M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E1 <2 DEF TOTAL (µg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M <2 AZINON, TOTAL (µg/L) (39570) | ANTHRA-CENE WATER WATER UNFLTRD REC (µg/L) (34526) M <2 ELDRIN TOTAL (µg/L) (39380) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E1

<3

<3

DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N-BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) | CHLORO-ISO-PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD (µg/L) (39390) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 10 DEC 10 FEB 04 MAR 20 MAY 28 AUG 05 DATE | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) | A- PYRENE TOTAL (µg/L) (34247) M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLIRD RECOVER (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E1 <2 DEF TOTAL (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M < 22 AZINON, TOTAL (µg/L) | ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) M < DI- ELDRIN TOTAL (µg/L) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 <3 <3 UDIETHYL PHTHAL- ATE TOTAL (µg/L) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <1 METHYL PHTHAL-ATE TOTAL (µg/L) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) | ETHYL HEXYL) PHTHAL ATE TOTAL (µg/L) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER (µg/L) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.TOTAL RECOVER (µg/L) (38932) | | OCT 10 DEC 10 FEB 04 MAR 20 MAY 28 AUG 05 DATE OCT 10 DEC 10 | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (μg/L) (34247) M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) | FLUOR- AN- THENNE TOTAL (µg/L) (34230) E1 <2 DEF TOTAL (µg/L) (39040) E.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M <2 AZINON, TOTAL (µg/L) (39570) | ANTHRA-CENE WATER UNFLTRD REC (µg/L) (34526) M <2 DI-ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E1

<3

DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 S2 BUTYL PHTHAL ATE TOTAL (µg/L) (39110) | CHLORO-ISO-PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 10 DEC 10 FEB 04 MAR 20 MAY 28 AUG 05 DATE OCT 10 DEC 10 FEB 04 MAR | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) M | A- PYRENE TOTAL (μg/L) (34247) M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) E1 <2 DEF TOTAL (μg/L) (39040) E.02 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M < DI- AZINON, TOTAL (μg/L) (39570) .04 | ANTHRA- CENE WATER WATER UNFLTRD REC (µg/L) (34526) M < DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 <3 <3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (L(g/L) (34273) <2 <2 <2 UI-N-BUTYL PHTHAL-ATE TOTAL (L(g/L) (39110) M | CHLORO-ISO-PROPYL) PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N-OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 10 DEC 10 FEB 04 MAR 20 AUG 05 DATE OCT 10 DEC 10 FEB 04 MAR 20 MAY | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) M | A- PYRENE TOTAL (μg/L) (34247) M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) E1 <2 DEF TOTAL (µg/L) (39040) E.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M < 22 AZINON, TOTAL (µg/L) (39570) .04 | ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) M <2 DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E1

<3

<3

UIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLIRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 10 DEC 10 FEB 04 MAR 20 MAY 28 AUG 05 DATE OCT 10 DEC 10 FEB 04 MAR 20 | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) M <3 | A- PYRENE TOTAL (μg/L) (34247) M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) E1 <2 DEF TOTAL (µg/L) (39040) E.02 <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M <2 AZINON, TOTAL (µg/L) (39570) .0405 | ANTHRA- CENE WATER WATER UNFLTRD REC (µg/L) (34526) M < < DI- ELDRIN TOTAL (µg/L) (39380) <.006 <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 <3 <3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M < <2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M <2 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 SIDI-N-BUTYL PHTHAL-ATE TOTAL (µg/L) (39110) M <2 | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <66 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) < < < < < < < < <- | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | ### 06935890 CREVE COEUR CREEK NEAR CREVE COEUR, MO--Continued (Metropolitan Sewer District) | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(μg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(μg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(μg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(μg/L)
(39600) | MIREX,
TOTAL
(μg/L)
(39755) | |-----------|---|---|--|--|--|---|--|---|---|--|---|---|---| | OCT
10 | E2 | М | <.01 | <.009 | <.01 | <2 | E1 | М | <.006 | <.20 | <.020 | <.01 | <.006 | | DEC
10 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | MAR
20 | <2 | <2 | <.01 | <.009 | <.01 | <2 | <3 | <2 | <.006 | <.50 | <.020 | <.02 | <.006 | | MAY
28 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | (µg/L) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
10 | <4 | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1
 М | М | <3.0 | | 10
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 20
MAY | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | <4 | <2 | <3.0 | | 28
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | | DATE | РНОR
ТОТ
(µg
(390 | 'AL TOT
(μg | AL TOT | 1,2,
TR
X- CHLO
NE, WAT
'AL RE
/L) (µg | II- CHLC
RO- WAT
UNF UNFI
C RE
/L) (µg | ·DI- 1,4
DRO- CHI
TER WA
TRD UNF
CC F
(/L) (µ | I-DI- O-:
JORO- CHL
LITER WA'
LITED UNF
REC R
g/L) (MG | ZENE ETHA DI- HEX ORO- CHLO TER WAT LTRD UNFL EC RECC (µg 536) (343 | A- HEX
PRO- CHLC
ER BUT
TRD ADIE
OVER TOT
/L) (µg | RO-
'- NAPE
'NE ALE
'AL TOT
/L) (µg | ENE
CAL
/L) | | | | OCT
10
DEC | <. | 02 E1 | <1 | <2 | <2 | ? < | :2 < | 2 <2 | <3 | M | 1 | | | | 10 | - | | | | | - | | | | | | | | | 04
MAR | - | | | | | - | | | | | - | | | | 20
MAY | <. | 04 <2 | <1 | <2 | <2 | ? < | :2 < | 2 <2 | <1 | < 5 | 5 | | | | 28
AUG | - | | | | | - | | | | | | | | | 05 | - | | | | | - | | | | | - | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 06935955 FEE FEE CREEK NEAR BRIDGETON, MO LOCATION.--Lat 38°43'39", long 90°26'52", St. Louis County, Hydrologic Unit 10300200, on left abutment of old bridge at McKelvey Road, 0.17 mi west of Interstate 270, 0.92 mi north of Dorsett Road, and 0.65 mi upstream of Creve Coeur Creek. DRAINAGE AREA. -- 11.7 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1996 to current year. Annual peaks only for 1972-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 451.99 ft above National Geodetic Vertical Datum of 1929. Prior to 1996 datum of gage 450.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records poor. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 11, 1979 reached a stage of 21.62 ft, former datum, discharge 3,810 ft³/s. | | | DISCHAF | RGE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|--|--|---------------------------------------|--------------------------------------|--------------------------------------|---|--|--------------------------------------|---|---|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.38
0.53
0.59
0.59 | 2.1
11
1.3
0.65
0.67 | 4.8
2.8
2.5
2.1
2.2 | 1.9
1.7
1.7
1.7 | 21
8.0
5.8
4.2
3.8 | 2.4
77
17
e5.5
6.4 | 3.7
4.2
3.3
2.9
2.9 | 4.5
6.4
3.5
5.1
2.8 | 3.4
2.8
3.3
2.4
119 | 5.0
2.9
2.1 | 0.96
1.0
3.4
1.2 | 0.87
0.72
0.58
0.80
0.85 | | 6
7
8
9
10 | 3.5
0.88
0.73
1.7 | 0.81
0.98
8.1
0.98
0.76 | 4.1
2.1
1.7
1.5 | 3.4
e2.3
e2.0
2.3
2.6 | 3.5
5.2
3.0
2.8
7.3 | 5.5
4.3
3.9
65
6.2 | 2.8
5.8
51
9.9
4.1 | 47
256
131
211
12 | 8.0
4.2
3.3
4.8 | 1.5
1.6
1.1
1.7 | 153
9.7
4.9
2.5
1.5 | 0.66
0.77
0.96
0.72
1.1 | | 11
12
13
14
15 | 129
25
20
5.2
46 | 0.74
0.72
0.75
0.89
1.0 | 1.5
61
13
65
9.1 | 2.2
2.0
2.3
2.1
2.0 | 3.2
2.5
2.2
2.1
2.1 | 5.2
5.3
4.1
3.7 | 3.6
4.3
3.6
10
3.5 | 7.7
332
242
17
9.6 | 359
13
7.1 | 1 0 | 1.2
1.4
12
16 | | | 16
17
18
19
20 | 22
3.0
3.2
3.2
1.7 | 1.6
1.4
2.7
3.5
1.1 | 164
134
12
6.5
4.6 | 2.0
2.0
2.5
6.9
4.0 | 2.0
1.9
1.9
27
7.2 | 9.8
5.3
4.4
32
15 | 2.5
4.8
2.4
320
74 | | 3.7
3.4
2.8
2.5
2.9 | 21
6.7
10
3.6
2.2 | 1.2
1.1
69
6.5
3.0 | 0.78
26
4.0
171
39 | | 21
22
23
24
25 | 1.2
1.3
24
143
7.1 | 0.98
0.97
1.3
212
6.3 | 4.0
14
4.6
3.4
3.2 | 3.0
2.5
7.8
12
2.6 | | | 70
14
9.2
15
6.7 | 5.5
5.0
4.5
9.3
5.1 | | 1.6
11
30
3.0
1.7 | 2.0
1.7
4.5
2.7
1.4 | 5.9
2.9
1.5
1.3 | | 26
27
28
29
30
31 | 2.7
1.2
0.98
1.1
1.2 | 11
4.0
43
42
48 | 3.4
2.9
2.8
2.4
2.1
2.0 | 2.2
2.0
2.0
18
177
230 | 6.6
3.5
2.4
 | 37
11
7.3
6.8
5.1
4.1 | | 4.0
3.5
26
8.5
5.0
4.2 | 3.2
2.2
1.9
1.7
1.5 | 2.2
4.6
1.3
1.0
1.2 | 1.1
1.5
1.2
1.2
1.0
0.87 | 1.1
1.4
1.8
1.6
1.6 | | MEAN
MAX
MIN
IN. | 20.2
143
0.38
1.99 | 13.7
212
0.65
1.31 | 17.4
164
1.5
1.72 | 16.4
230
1.7
1.62 | 5.15
27
1.9
0.46 | 17.2
106
2.4
1.69 | 26.3
320
2.4
2.51 | 51.6
332
2.8
5.09 | 33.6
391
1.5
3.20 | 4.20
30
1.0
0.41 | 11.0
153
0.87
1.09 | 9.10
171
0.56
0.87 | | STATIS | TICS OF M | ONTHLY MEA | N DATA FO | OR WATER Y | EARS 199 | 6 - 2002, | BY WATER | YEAR (WY | 7) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.0
20.2
2002
1.86
2000 | 16.4
49.1
1997
1.47
2000 | 7.30
17.4
2002
3.09
1999 | 15.3
25.7
1999
2.99
2000 | 22.1
39.6
1997
5.15
2002 | 16.7
34.2
1998
6.58
2000 | 16.4
26.6
1998
5.30
2000 | 21.1
51.6
2002
9.41
1999 | 22.8
42.0
1998
9.32
2001 | 8.91
20.3
1998
2.83
2000 | 9.24
15.7
1997
2.53
2001 | 7.69
15.2
1996
1.53
1999 | | SUMMAR | Y STATIST | ICS | FOF | R 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER Y | EARS 1996 | 5 - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU | I ANNUAL
ANNUAL M
I DAILY M
DAILY ME | EAN
EAN
AN
Y MINIMUM
OW
AGE | | 298
0.29
0.40 | Feb
Sep
Sep | 24
25
23 | 391
0.38
0.75
2640 ^a
14.71
0.34 | Jun
Oct
Sep
Jun
Jun
Oct 1 | 11
1
1
12
12
,2 | 14.3
18.9
8.31
665
0.28
0.30
2640 ^a
17.45
0.28 | Feb
Sep
Sep
Jun
Jun
Sep | 2002
2000
7 1999
22 1999
21 1999
12 2002
24 2000
15 1999,
25 2001 | | 10 PER
50 PER | RUNOFF (
CENT EXCE
CENT EXCE
CENT EXCE | EDS
EDS | | 12.77
25
2.5
0.64 | | | 21.95
44
3.3
1.0 | | | 16.57
29
2.6
0.86 | 2-E -11 | | e Estimated $^{\rm a}$ From rating extended above 1,130 ${\rm ft}^3/{\rm s}.$ # 06935955 FEE FEE CREEK NEAR BRIDGETON, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1996 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
23 | 2100 | ENVIRONM | ENTAL | 132 | 6.4 | 69 | 7.4 | 422 | 17.5 | 150 | 40.5 | 10.8 | 83 | | DEC
11 | 0800 | ENVIRONM | ENTAL | 1.5 | 11.9 | 91 | 7.8 | 1200 | 3.4 | 370 | 97.0 | 31.4 | 208 | | FEB
04 | 1700 | ENVIRONM | ENTAL | 4.03 | 13.4 | 100 | 7.9 | 1450 | 3.0 | 360 | 96.0 | 29.0 | 216 | | MAR
19 | 0441 | ENVIRONM | ENTAL | 49 | 8.3 | 72 | 7.9 | 1060 | 8.8 | 260 | 72.0 | 20.0 | 137 | | MAY
29 | 1045 | ENVIRONM | ENTAL | 9.1 | 6.4 | 72 | 7.6 | 569 | 20.0 | 230 | 64.0 | 16.0 | 106 | | AUG
05
05 | 1605
1606 | ENVIRONM
REPLICAT | | .94 | 6.6 | 90
 | 7.8 | 890
 | 29.9 | 260
260 | 69.0
69.0 | 22.0
22.0 | 140 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as
C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-PHORUSORTHOTOTAL(mg/Las P)(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
23
DEC | 82 | 100 | 0 | | 1080 | E2.1 | .24 | .390 | .01 | .140 | E.92 | 6.0 | 15 | | 11 | 208 | 254 | 0 | 191 | E3 | E.30 | .03 | .380 | <.01 | .110 | E.13 | 5.8 | 18 | | FEB
04
MAR | 216 | 264 | 0 | 250 | 4 | .40 | .05 | 1.40 | .02 | .070 | .10 | 5.8 | 9 | | 19
MAY | 132 | 161 | 0 | | 48 | 1.0 | .10 | .980 | .05 | .060 | .17 | 3.3 | 20 | | 29
AUG | 106 | 129 | 0 | | 5 | .70 | .12 | .940 | .05 | .160 | .19 | 4.8 | 22 | | 05
05 | 143 | 174
 | 0 | | 14
12 | .70
.70 | .08 | .520
.530 | .03 | .140
.140 | .17
.18 | 3.9 | 12
12 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
23
DEC | K3000 | 4400 | K1800 | 148 | 2 | <1 | 1.0 | 1.0 | 2.7 | 326 | 1 | 224 | .1 | | 11
FEB | 88 | K87 | 116 | 8 | 2 | <1 | 1.0 | 1.0 | 2.2 | 74 | <1 | 240 | <.1 | | 04
MAR | K5 | K52 | K52 | <3 | 1 | <1 | <1.0 | <1.0 | 1.2 | 20 | <1 | 460 | <.1 | | 19
MAY | K100 | 380 | 1020 | 60 | 2 | <1 | <1.0 | 4.2 | 4.6 | 91 | <1 | 472 | <.1 | | 29
AUG | 3100 | 7000 | 17800 | 85 | 2 | <1 | <1.0 | <1.0 | 3.7 | 223 | <1 | 100 | <.1 | | 05
05 | K30
K25 | 220
230 | K58
K100 | <3
<3 | 5
5 | <1
<1 | <1.0
<1.0 | <1.0
<1.0 | 2.1 2.0 | 3
2 | <1
<1 | 173
172 | <.1
<.1 | # 06935955 FEE FEE CREEK NEAR BRIDGETON, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |------------------|---|--|---|---|--|---|---|---|---|---|--|---|---| | OCT
23 | 3.3 | <1 | <1.0 | 46 | <7 | <3 | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC
11 | 3.7 | <1 | <1.0 | 110 | | | | | | | | | | | FEB
04 | 3.1 | 2 | <1.0 | 106 | | | | | | | | | | | MAR
19 | 4.7 | 1 | <1.0 | 111 | <7 | <3 | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
29 | 2.3 | <1 | <1.0 | 29 | | | | | | | | | | | AUG
05
05 | 3.3
3.0 | 1
2 | <1.0
<1.0 | 2 2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | | OCT
23
DEC | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | М | <2 | | 11
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 19
MAY | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | <2 | <2 | | 29
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | 33 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZ(A) ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT | -40 | 3.4 | 3.4 | 14 | 7.5 | 3.4 | -3 | <2 | <2 | <19 | - 00 | 1 ر | - 01 | | 23
DEC
11 | <40 | М | M | М | М | М | <3 | <2 | < <u>Z</u> | <19 | <.02 | <.1 | <.01 | | FEB
04 | | | | | | | | | | | | | | | MAR
19 | <40 | <1 | <2 | <2 | <2 | <3 | <3 | <2 | <2 | <6 | <.02 | <.1 | <.01 | | MAY
29 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | # 06935955 FEE FEE CREEK NEAR BRIDGETON, MO--Continued (Metropolitan Sewer District) | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | ETHION,
TOTAL
(μg/L)
(39398) | |-----------|---|---|--|---|--|---|--|--|--|---|---|---|---| | OCT
23 | М | <2 | <.02 | E.01 | <.006 | М | М | М | <5 | <.10 | <.02 | <.01 | <.01 | | DEC 11 | | | | | | | | | | | | | | | FEB 04 | | | | | | | | | | | | | | | MAR
19 | <3 | <4 | <.02 | .08 | E.004 | <2 | <2 | <2 | <5 | <.50 | <.02 | <.01 | <.01 | | MAY
29 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(µg/L)
(39480) |
METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | | OCT | | | | | | | | | | | | | | | 23
DEC | М | <2 | <.01 | <.009 | <.01 | <2 | М | М | <.006 | <.10 | <.020 | <.01 | <.006 | | 11
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 19
MAY | <2 | <2 | <.01 | <.009 | <.01 | <2 | <3 | <2 | .006 | <.50 | <.020 | <.02 | <.006 | | 29
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | 03 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO
-SODI-
METHYL-
AMINE
TOTAL
(µg/L)
(34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO
-SODI-
PHENYL-
AMINE
TOTAL
(µg/L)
(34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT | <4 | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | 23
DEC | < 4 | <3 | | < 3 | | | | | | | | 141 | | | 11
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 19
MAY | <4 | <3 | <2 | <2 | E.004 | .009 | <.009 | <3 | <.01 | <.1 | <4 | <2 | <3.0 | | 29
AUG | | | | | | | | | | | | | | | 05
05 | | | | | | | | | | | | | | # 06935955 FEE FEE CREEK NEAR BRIDGETON, MO--Continued (Metropolitan Sewer District) | DATE | PHORATE
TOTAL
(µg/L)
(39023) | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE
HEXA-
CHLORO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(μg/L)
(34696) | |------|---------------------------------------|--------------------------------------|---|---|---|---|---|--|--|--| | OCT | | | | | | | | | | | | 23 | <.02 | M | <1 | <2 | <2 | <2 | <2 | <2 | <3 | <5 | | DEC | | | | | | | | | | | | 11 | | | | | | | | | | | | FEB | | | | | | | | | | | | 04 | | | | | | | | | | | | MAR | | | | | | | | | | | | 19 | <.04 | <2 | <1 | <2 | <2 | <2 | <2 | <2 | <1 | <5 | | MAY | | | | | | | | | | | | 29 | | | | | | | | | | | | AUG | | | | | | | | | | | | 05 | | | | | | | | | | | | 05 | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. 258 MISSOURI RIVER MAIN STEM ### 06935965 MISSOURI RIVER AT ST. CHARLES, MO LOCATION.--Lat $38^{\circ}47^{\circ}08^{\circ}$, long $90^{\circ}28^{\circ}19^{\circ}$, SE $\frac{1}{4}$ sec. 29, R.47 N., R.5 E., St. Louis County, Hydrologic Unit 10300200, on right bank approximately $\frac{1}{4}$ mi downstream from Highway 115 bridge, on the St. Charles Sand Company property. DRAINAGE AREA.--524,000 mi^2 . The 3,959 mi^2 in Great Divide basin are not included. PERIOD OF RECORD.--April 1, 2000 to current year. April 15, 1932 to October 1944 recording gage; Feb. 16, 1984 to Sept. 30, 1997 stage only operated by U.S.G.S.; Oct. 1, 1997 to April 1, 2000, stage only operated by U.S. Army Corps of Engineers. GAGE.--Water-stage recorder. Datum of gage 413.472 ft above North American Vertical Datum of 1988. Prior to March 4, 1994 datum of gage was 413.58 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 2-3, 1993 reached a stage of 40.04 ft. by levels of good highwater mark. | | | DISCHAR | GE, CUBIC | FEET PE | | WATER Y | EAR OCTOBEI
ALUES | R 2001 TC | SEPTEMBE | R 2002 | | | |--|--|---|--|---|--|--|--|--|--|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 59900
58100
56500
55200
56000 | 51800
49000
47700
48500
47300 | 55000
56000
53000
49800
47900 | 36100
35300
35700
35500
36300 | 118000
125000
107000
95800
86300 | 46700
48100
51900
50400
44100 | 52600
49600
46800
47500
52000 | 127000
109000
98300
94800
84100 | 118000
113000
112000
110000 | 61400
57400
54900
51800
50200 | 42300
41800
43800
43900
41400 | 50800
48100
45900
44400
43500 | | 6
7
8
9
10 | 58300
59400
63200
62100
57400 | 45500
44900
46200
48200
47100 | 47500
46100
43000
40500
38700 | 37100
38400
35000
33400
35200 | 73200
64100
56000
53300
51100 | 44600
49400
48100
42800
40100 | 51800
50800
48800
48000
50100 | 70000
70500
178000
280000
307000 | 108000
108000
110000
110000
110000 | 49900
51400
50400
48200
47400 | 40000
37900
37000
36500
36000 | 43100
42700
42700
45700
46700 | | 11
12
13
14
15 | 69700
87300
78100
72100
64300 | 45700
44900
44700
44400
44600 | 37100
36500
38100
42900
43100 | 35600
35200
31800
30000
30000 | 48500
40100
37900
42900
46800 | 39500
39200
40200
42100
41500 | 50800
51000
55800
58500
54200 | 307000
300000
321000
345000
347000 | 108000
115000
145000
160000
148000 | 55000
62000
59600
57900
55100 | 35900
36100
36900
39400
41100 | 44500
47600
49100
43800
41700 | | 16
17
18
19
20 | 55900
57600
70400
75300
79000 | 45300
44800
44300
43900
43500 | 43800
54900
66200
63000
60500 | 30400
30500
30200
30500
31300 | 47700
48000
45500
39600
38500 | 40200
38200
36700
36300
37900 | 51200
53000
54800
52300
55300 | 339000
326000
304000
267000
210000 | 132000
120000
118000
113000
106000 | 51500
51100
54800
51000
50900 | 42800
40800
40200
44500
60600 | 40800
40900
41300
42600
43800 | | 21
22
23
24
25 | 71000
60500
53800
51600
50300 | 43200
42900
42900
46000
51500 | 60900
61200
53400
45000
40500 | 32500
34000
33700
34600
34600 | 43600
46200
50200
57400
55100 | 43700
50400
56800
61100
54000 | 81600
99500
92300
105000
101000 | 176000
160000
141000
124000
126000 | 101000
98400
96400
94700
e92200 | 51500
50800
46900
45200
49500 | 60300
57600
52300
52400
53500 | 43500
44000
43800
42800
41700 | | 26
27
28
29
30
31 | 51000
51300
50600
50400
49400
49400 | 50300
47400
47100
48300
50900 | 38400
38000
37900
38000
38400
37600 | 34100
35700
35500
34100
33500
47300 | 46300
42100
43300
 | 47700
50400
58700
60500
57200
55100 | 81500
72300
82400
116000
130000 | 133000
147000
163000
153000
142000
128000 | 87900
84900
85200
82700
71300 | 48000
43200
41000
43700
46300
46200 | 53700
51500
50400
58600
61600
54800 | 41000
41200
41300
40300
39200 | | MEAN
MAX
MIN | 60810
87300
49400 | 46430
51800
42900 | 46870
66200
36500 | 34290
47300
30000 | 58910
125000
37900 | 46890
61100
36300 | 66550
130000
46800 | 196100
347000
70000 | 109000
160000
71300 | 51100
62000
41000 | 45990
61600
35900 | 43620
50800
39200 | | STATIST | CICS OF MO | ONTHLY MEA | N DATA FO | R WATER | YEARS 200 | 0 - 2002 | , BY WATER | YEAR (WY | ") | | | | | MEAN
MAX
(WY)
MIN
(WY) | 54460
60810
2002
48120
2001 | 48330
50230
2001
46430
2002 | 39230
46870
2002
31590
2001 | 33150
34290
2002
32000
2001 |
71860
84820
2001
58910
2002 | 87940
129000
2001
46890
2002 | 80520
121100
2001
53880
2000 | 125500
196100
2002
59440
2000 | 129300
202100
2001
76770
2000 | 76870
104600
2001
51100
2002 | 56680
65550
2001
45990
2002 | 50460
62060
2001
43620
2002 | | SUMMARY | STATISTI | ICS | FOR | 2001 CA | LENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 2000 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
10 PERC
50 PERC | ANNUAL N | EAN EAN AN MINIMUM OW AGE OW FLOW EDS EDS | | 89530
303000
25100
26100

155000
73500
38100 | Jun
Jan
Jan | 1 | 347000
30000
30400
350000
31.69
29700
115000
50200
37000 | May
Jan 14,
Jan
May
May
Jan | 15
15
14
15
15
15 | 77370
87470
67280
347000
24700
25600
350000
31.69
24600
143000
53000
35500 | May 1
Dec 3
Dec 3
May 1
May 1
Dec 26,3 | 2001
2002
.5 2002
31 2000
.5 2002
.5 2002
.5 2002
31 2000 | e Estimated ### 06935980 COWMIRE CREEK AT BRIDGETON, MO LOCATION.--Lat 38°45'50", long 90°25'59", St. Louis County, Hydrologic Unit 10300200, on left bank of bridge at Kirchner Brick Co., 1.11 mi west of Interstate 70 and 270 interchange, 1.7 mi south of State Highway 370, 0.16 mi north of County Highway A (St Charles Rock Road), and 6.29 mi upstream of the Missouri River. DRAINAGE AREA.--3.74 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 1997 to current year. Annual peaks only for 1972-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 464.46 ft above National Geodetic Vertical Datum of 1929. Prior to May 1997, at datum 464.55 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair except for discharges below $0.5~{\rm ft}^3/{\rm s}$ and above $300~{\rm ft}^3/{\rm s}$, which are poor. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 11, 1979 reached a stage of 13.86 ft, former datum, discharge, 2,500 ft³/s. | | | DISCHAF | RGE, CUBIC | C FEET PER | | WATER YE
MEAN V | EAR OCTOBER
ALUES | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---|--------------------------------------|--|--------------------------------------|---------------------------------------|--|--|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.18
0.20
0.13
0.13 | 0.34
2.2
0.30
0.24
1.4 | 1.2
0.76
0.70
0.61
0.57 | 0.61
0.54
0.51
0.48
0.59 | 3.8
2.0
1.5
1.3 | 0.65
26
4.1
2.2
1.8 | 1.3
1.2
1.0
1.0 | 1.4
1.8
1.4
1.2 | 1.0
0.98
0.93
0.93 | 0.70
0.66
0.66
0.63
0.66 | 0.20
0.20
0.19
0.17
5.6 | 0.35
0.35
0.40
0.29
0.64 | | 6
7
8
9
10 | 0.51
0.24
0.18
0.20
44 | 0.24
0.15
0.23
0.17
0.19 | 0.95
0.51
0.42
0.36
0.35 | 1.2
0.93
0.77
0.80
0.83 | 1.2
1.1
1.0
1.00
2.5 | 1.3
1.2
1.1
16
1.4 | 0.96
1.9
14
1.9
1.2 | 13
67
30
49
2.5 | 1.5
1.2
0.95
1.4
8.2 | 0.83
0.64
0.61
0.62
0.74 | 173
1.4
0.51
0.48
0.47 | 0.22
0.25
0.21
0.34
0.29 | | 11
12
13
14
15 | 50
3.8
4.4
0.66
17 | 0.19
0.18
0.15
0.15
0.15 | 0.35
17
2.3
21
4.0 | 0.65
0.62
0.68
0.71
0.70 | 0.98
0.93
1.1
0.90
0.93 | 1.2
1.3
1.3
1.1
9.2 | 1.1
1.3
0.97
0.98
0.87 | 1.9
98
53
3.7
2.4 | 122
137
2.8
1.7
1.3 | 0.63
0.75
0.51
0.37
0.36 | 0.44
1.3
2.0
3.6
0.45 | 0.15
0.19
0.23
0.23
0.56 | | 16
17
18
19
20 | 3.3
0.44
0.28
0.25
0.19 | 0.15
0.15
1.1
1.5
0.58 | 49
31
2.2
1.4
1.1 | 0.69
0.65
1.0
2.3
1.0 | 0.93
0.80
0.63
7.4
1.8 | 1.7
1.1
1.0
7.7
3.1 | 0.78
1.2
0.79
135
14 | 13
37
4.0
2.3
2.0 | 1.2
1.0
0.93
0.93 | 1.8
0.77
1.6
0.51
0.43 | 0.34
0.37
23
1.3
1.1 | 0.19
6.7
0.50
121
11 | | 21
22
23
24
25 | 0.19
0.19
12
19
1.0 | 0.42
0.41
0.47
70
1.4 | 0.94
3.4
1.1
0.94
0.84 | 0.98
0.79
2.9
1.8
0.88 | 0.84
0.70
0.62
0.62
1.9 | 1.4
1.2
1.2
3.8
24 | 16
2.2
1.9
2.3
1.4 | 1.6
1.5
1.5
4.2
1.5 | 0.88
0.85
0.81
25
2.5 | 0.31
0.71
3.0
0.37
0.33 | 0.91
0.61
3.0
0.64
0.48 | 1.1
0.62
0.48
0.35
0.37 | | 26
27
28
29
30
31 | 0.60
0.44
0.33
0.30
0.38
0.31 | 2.5
0.71
14
12
16 | 0.73
0.69
0.69
0.67
0.69 | 0.82
0.71
0.74
4.1
44
57 | 1.3
0.98
0.85
 | 10
2.5
1.8
2.2
1.8
1.4 | 1.3
34
2.8
1.6
1.4 | 1.3
1.3
6.6
1.5
1.3 | 1.3
0.96
0.93
0.91
0.80 | 2.1
0.36
0.22
0.21
0.20
0.21 | 0.41
0.38
0.35
0.38
0.45
0.35 | 0.40
0.39
0.37
0.29
0.37 | | MEAN
MAX
MIN
IN. | 5.74
50
0.13
1.79 | 4.26
70
0.15
1.28 | 4.75
49
0.35
1.48 | 4.22
57
0.48
1.32 | 1.46
7.4
0.62
0.41 | 4.38
26
0.65
1.36 | 8.24
135
0.78
2.49 | 13.2
98
1.1
4.11 | 11.5
137
0.80
3.48 | 0.73
3.0
0.20
0.23 | 7.23
173
0.17
2.25 | 4.96
121
0.15
1.50 | | | | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.69
5.74
2002
1.44
1998 | 2.57
4.26
2002
0.84
2000 | 2.04
4.75
2002
0.75
1999 | 4.01
8.86
1999
0.84
2000 | 5.69
11.3
1999
1.46
2002 | 4.26
9.35
1998
1.57
2001 | 6.30
12.9
1998
1.66
2000 | 6.89
13.2
2002
2.45
2001 | 7.98
11.8
2000
3.48
1997 | 4.22
10.4
1998
0.73
2002 | 3.01
7.23
2002
1.14
1999 | 2.23
4.96
2002
0.57
1999 | | SUMMARY | STATIST | ICS | FOR 2 | 2001 CALEN | IDAR YEAR | I | FOR 2002 W | ATER YEAR | | WATER Y | TEARS 1997 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN INSTANT ANNUAL 10 PERC | CANNUAL MANNUAL MEDAILY MEDAIL | EAN EAN AN Y MINIMUM OW AGE OW FLOW INCHES) EDS EDS | |)
5 Aug 19-2
-
-
-
-
9 | Jun 27
11,Sep 3,7
Sep 11 | | 173
0.13
0.16
2990 ^a
15.05
0.10
21.70
13
0.96
0.24 | Aug 6
Oct 3,4
Nov 11
Aug 6
Aug 6
Oct 10 | 2.
20.
0.
29
15.
0. | 91
63
40
05 Aug 19
07
990 ^a
05
04
28
.6 | -21,Sep 3
Oct
Aug
Aug | 2002
2001
7 1999
8,7 2001
27 1999
6 2002
6 2002
6 2001 | $^{^{\}rm a}$ From rating extended above 100 ft $^{\rm 3}/{\rm s}$. # 06935980 COWMIRE CREEK AT BRIDGETON, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1997 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) |
pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
05
05 | 0555
0556 | ENVIRONM
REPLICAT | | 27 | 8.3 | 84 | 7.6 | 186
 | 14.7 | 200
200 | 47.4
49.4 | 18.8
19.0 | 101 | | DEC
11 | 1040 | ENVIRONM | ENTAL | .35 | 10.2 | 97 | 7.9 | 1350 | 12.7 | 510 | 119 | 52.3 | 282 | | FEB
05 | 1030 | ENVIRONM | ENTAL | 1.2 | 11.8 | 85 | 7.8 | 1210 | 1.7 | 510 | 121 | 50.0 | 313 | | MAR
25 | 0038 | ENVIRONM | ENTAL | 40 | 11.5 | 91 | 7.9 | 313 | 4.3 | 200 | 51.0 | 18.0 | 128 | | MAY
29 | 1600 | ENVIRONM | ENTAL | 1.3 | 7.7 | 88 | 7.9 | 890 | 20.7 | 340 | 85.0 | 31.0 | 182 | | AUG
08 | 1240 | ENVIRONM | ENTAL | .41 | 5.9 | 68 | 7.3 | 479 | 21.9 | 180 | 48.0 | 15.0 | 110 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
05
05 | 101 | 123 | 0 | | 170
186 | E2.5
E2.9 | .20 | .950
.950 | .05 | .170
.180 | .55
.55 | 4.8 | 39
39 | | DEC
11 | 284 | 347 | 0 | 225 | E2 | E.20 | .02 | .090 | .02 | .060 | E.10 | 7.0 | 20 | | FEB
05 | 319 | 389 | 0 | 270 | 12 | .30 | <.01 | .850 | <.01 | .040 | .07 | 8.7 | 11 | | MAR
25 | 129 | 157 | 0 | | 74 | 1.4 | .27 | 1.20 | .05 | .050 | .18 | 3.3 | 22 | | MAY
29 | 183 | 224 | 0 | | 8 | .60 | .09 | 1.10 | .06 | .070 | .09 | 4.2 | 18 | | AUG
08 | 112 | 137 | 0 | | 60 | .90 | .10 | .890 | .08 | .210 | . 29 | 11 | 15 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-MIUM, DIS-SOLVED (µg/L as Cr) (01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
05
05
DEC | 37000
 | 32000 | 5600
 | 48
55 | 2
2 | <1
<1 | 1.0 | 1.1 | 3.7
3.3 | 116
115 | <1
<1 | 127
116 | <.1
<.1 | | 11 | 48 | K174 | 310 | <3 | <1 | 1 | 1.0 | 1.0 | 1.1 | 56 | <1 | 243 | <.1 | | 05
MAR | 150 | 54 | K243 | <3 | <1 | <1 | <1.0 | <1.0 | <1.0 | 26 | <1 | 601 | <.1 | | 25 | 2900 | 3200 | K23400 | 71 | 2 | <1 | <1.0 | 2.4 | 4.0 | 87 | <1 | 316 | <.1 | | MAY
29 | 190 | K1440 | 580 | 16 | 2 | <1 | <1.0 | <1.0 | 2.0 | 36 | <1 | 131 | <.1 | | AUG
08 | K180 | 2500 | 700 | 6 | 3 | <1 | <1.0 | <1.0 | 2.1 | 4 | <1 | 112 | <.1 | | | | | | | | | | | | | | | | # 06935980 COWMIRE CREEK AT BRIDGETON, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |------------------------|---|--|---|---|--|---|---|---|---|---|--|--|--| | OCT
05
05 | 2.7
2.6 | <1
<1 | <1.0
<1.0 | 76
70 | <7
<7 | M
M | <2
<2 | <3
<3 | <3.0
<3.0 | <3
<3 | E3
E3 | <3
<3 | <2
<2 | | DEC
11 | 2.4 | 1 | <1.0 | 115 | | | | | | | | | | | FEB
05 | 2.6 | <1 | <1.0 | 93 | | | | | | | | | | | MAR
25 | 2.6 | <1 | <1.0 | 87 | <7 | М | <2 | <3 | E.2 | <3 | E5 | <3 | <2 | | MAY
29 | 2.7 | <1 | <1.0 | 27 | | | | | | | | | | | AUG
08 | 2.3 | 1 | <1.0 | <2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE NITRO- WATER UNFLITRD RECOVER (µg/L) (34447) | | OCT
05
05 | <2
<2 | <2
<2 | M
M | <3
<3 | M
M | <2
<2 | <2
<2 | E1
E1 | M
M | <2
<2 | <.01
<.01 | M
M | <2
<2 | | DEC
11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
25 | <2 | <2 | М | <5 | E1 | <2 | <2 | E3 | М | M | <.01 | М | <2 | | MAY
29 | | | | | | | | | | | | | | | AUG
08 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K FLUOR- AN- THENE TOTAL (µg/L) (34242) | BENZ(A) ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-PHEMO-THION WATER UNFLTRD (µg/L) (39786) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
05
05
DEC | <40
<40 | M
M | E1
E1 | M
M | M
M | E1
E1 | <3
<3 | <2
<2 | <2
<2 | E2
E3 | <.02
<.02 | <.1
<.1 | <.01
<.01 | | 11
FEB | | | | | | | | | | | | | | | 05
MAR | | | | | | | | | | | | | | | 25
MAY | <40 | М | E1 | М | М | M | <3 | <2 | <2 | E4 | <.02 | <.1 | <.01 | | 29
AUG | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | # 06935980 COWMIRE CREEK AT BRIDGETON, MO--Continued (Metropolitan Sewer District) | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) |
DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | ETHION,
TOTAL
(µg/L)
(39398) | |------------------------|---|---|--|--|--|---|--|--|--|---|---|---|---| | OCT
05
05
DEC | M
M | <2
<2 | <.02
<.02 | .02
E.02 | <.006
<.006 | 3 | M
M | M
M | M
M | | <.02
<.02 | <.01
<.01 | <.01
<.01 | | 11 | | | | | | | | | | | | | | | 05
MAR | | | | | | | | | | | | | | | 25 | M | <4 | <.02 | .03 | <.006 | М | М | <2 | <5 | <.30 | <.02 | <.01 | <.01 | | MAY
29 | | | | | | | | | | | | | | | AUG
08 | | | | | | | | | | | | | | | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(µg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | | OCT
05
05 | E1
E2 | M
M | <.01
<.01 | <.009
<.009 | <.01
<.01 | <2
<2 | E1
E1 | M
M | <.006
<.006 | <.10
<.10 | <.020
<.020 | <.01
<.01 | <.006
<.006 | | DEC
11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
25 | E2 | М | <.01 | <.009 | <.01 | <2 | М | М | <.006 | E.03 | <.020 | <.02 | <.006 | | MAY
29 | | | | | | | | | | | | | | | AUG
08 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N- NITRO- SODI-N- PROPYL- AMINE TOTAL (µg/L) (34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
05
05
DEC | M
M | <3
<3 | <2
<2 | <3
<3 | <.007
<.007 | <.006
<.006 | <.009
<.009 | <3
<3 | <.01
<.01 | <.1
<.1 | M
M | M
M | <3.0
<3.0 | | 11
FEB | | | | | | | | | | | | | | | 05
MAR | | | | | | | | | | | | | | | 25
MAY | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | 29
AUG | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | # 06935980 COWMIRE CREEK AT BRIDGETON, MO--Continued (Metropolitan Sewer District) | DATE | PHORATE
TOTAL
(µg/L)
(39023) | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE
HEXA-
CHLORO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(μg/L)
(34696) | |------|---------------------------------------|--------------------------------------|---|---|---|---|---|--|--|--| | OCT | | | | | | | | | | | | 05 | <.06 | E1 | <1 | <2 | M | <2 | <2 | <2 | <3 | M | | 05 | <.06 | E1 | <1 | <2 | M | <2 | <2 | <2 | <3 | M | | DEC | | | | | | | | | | | | 11 | | | | | | | | | | | | FEB | | | | | | | | | | | | 05 | | | | | | | | | | | | MAR | | | | | | | | | | | | 25 | <.02 | E1 | <1 | <2 | M | <2 | <2 | <2 | <1 | <5 | | MAY | | | | | | | | | | | | 29 | | | | | | | | | | | | AUG | | | | | | | | | | | | 08 | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 06935997 MILL CREEK NEAR FLORISSANT, MO LOCATION.--Lat 38°50'54", long 90°17'10", St. Louis County, Hydrologic Unit 10300200, on right downstream wingwall of Old Jamestown Road bridge, 2.50 mi west of U.S. 367 and 67 (Lewis and Clark Blvd.), 2.08 mi north of U.S. Route 67 (Lindbergh Blvd.), and 1.70 mi upstream of the Missouri River. DRAINAGE AREA. -- 2.12 mi². PERIOD OF RECORD. -- May 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 432.34 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair except for estimated daily discharges and those below 1 ft^3/s and above 1,000 ft^3/s , which are poor. | | | DISCHA | RGE, CUBIO | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|--------------------------------------|---|--|---|--------------------------------------|--|---|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.06
0.06
0.06
0.05
2.8 | 0.20
0.53
0.30
0.24
0.24 | e1.0
e0.74
e0.56
e0.47
e0.37 | 0.36
0.36
0.38
0.38
0.45 | 3.1
1.4
1.1
0.87
0.81 | 1.1
7.5
1.8
1.1
1.5 | 0.68
0.65
0.60
0.57
0.57 | 0.50
0.47
0.39
0.37
0.33 | 0.82
0.78
0.70
0.65
4.7 | 0.46
0.47
0.48
0.47
0.50 | 0.21
0.22
0.23
0.20
0.19 | 0.17
0.15
0.13
0.13
0.13 | | 6
7
8
9
10 | 0.24
0.10
0.06
0.08
8.9 | e0.22
e0.21
e0.21
e0.22
e0.25 | e0.60
e0.53
e0.47
e0.43
e0.39 | 0.58
0.47
0.46
0.43
0.43 | 0.77
0.71
0.63
0.64
1.5 | 0.96
0.83
1.0
4.7
0.96 | 0.57
0.70
3.8
1.2
0.66 | 5.8
39
10
18
2.6 | 0.88
0.67
0.62
0.60
2.0 | 0.50
0.51
0.52
0.57
0.61 | 3.4
0.19
0.16
0.16
0.16 | 0.13
0.13
0.14
0.13
0.10 | | 11
12
13
14
15 | 17
4.8
2.4
0.67
3.3 | e0.27
e0.26 | 6.2 | 0.37
0.44
0.45
0.50
0.44 | 0.95
0.85
0.75
0.77
0.81 | 0.81
0.79
0.66
0.69
1.4 | 0.72 | 2.2
176
42
3.4
2.4 | 37
31
2.1
1.4
0.95 | 0.63
1.0
0.64
0.56
0.50 | 7.2
0.51
0.25
0.67
0.27 | 0.12
0.13
0.14
0.14
0.23 | | 16
17
18
19
20 | 2.8
0.39
0.24
0.21
0.16 | e0.26
e0.25
e0.26
e0.42
e0.30 | 13
12
1.7
0.96
0.79 | 0.41
0.39
0.38
0.88
0.56 | 0.74
0.71
0.74
2.4
1.6 | 0.85
0.66
0.56
1.8
1.0 | 0.60
0.72
0.58
9.2
4.6 | 11
16
3.5
2.0
1.6 | 0.84 | 0.52
0.57
0.55
0.46
0.43 | 0.62
0.24
2.5
0.79
0.26 | 0.14
0.49
0.19
27
2.1 | | 21
22
23
24
25 | 0.16
0.16
1.2
6.0
0.81 | e0.28 | 0.67
1.1
0.71
0.58
0.50 | 0.52
0.52
0.98
1.1
0.48 | 1.1
0.63
0.57
0.57
2.0 |
0.64
0.55
0.61
0.73
4.8 | 5.8
0.96
0.68
0.63
0.48 | 1.4
1.3
1.3
1.5 | 0.59
0.57
0.55
0.53 | 0.41
0.38
0.50
0.33
0.28 | 0.23
0.20
0.79
0.35
0.27 | 0.23
0.11
0.10
0.12
0.10 | | 26
27
28
29
30
31 | 0.36
0.24
0.15
0.14
0.13 | e1.0
e0.55
e7.8
e3.1
e6.0 | 0.49
0.53
0.56
0.46
0.39
0.36 | 0.43
0.43
0.43
0.86
11
22 | 1.3
1.2
1.2
 | 4.9
2.6
1.4
1.3
0.91
0.79 | 0.44
5.7
0.94
0.56
0.48 | 1.3
1.2
1.2
1.1
0.96
0.87 | 0.50
0.52
0.44
0.48
0.45 | 0.39
0.27
0.26
0.25
0.25 | 0.25
0.25
0.23
0.24
0.22
0.20 | 0.10
0.10
0.10
0.11
0.10 | | MEAN
MAX
MIN | 1.74
17
0.05 | 2.34
45
0.20 | 1.83
13
0.36 | 1.54
22
0.36 | 1.09
3.1
0.57 | 1.61
7.5
0.55 | 1.52
9.2
0.44 | 11.3
176
0.33 | 3.16
37
0.44 | 0.47
1.0
0.21 | 0.70
7.2
0.16 | 1.11
27
0.10 | | STATIS | TICS OF M | ONTHLY MEA | AN DATA FO | OR WATER Y | EARS 1997 | - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.20
3.05
2001
0.24
1998 | 1.01
2.34
2002
0.32
2000 | 0.75
1.83
2002
0.42
2001 | 1.60
3.70
1999
0.30
2000 | 2.54
6.73
1999
1.09
2002 | 1.83
4.56
1998
0.57
2000 | 2.46
5.02
1998
0.52
2000 | 4.92
11.3
2002
0.46
2001 | 2.83
5.92
1998
0.72
2001 | 1.38
3.28
1998
0.47
2002 | 1.11
1.72
1998
0.70
2002 | 0.73
1.11
2002
0.33
1998 | | SUMMAR | Y STATIST | CICS | FOR | R 2001 CAL | ENDAR YEA | R | FOR 2002 | WATER YE | AR | WATER YE | ARS 1997 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 1.31
55
0.03
0.05

2.3
0.39
0.06 | Apr 1
Aug 1,6-
Jul 2 | 0
8
6 | 2.38
176
0.05
0.10
2020 ^a
9.13
0.04
3.4
0.57
0.16 | May
Oct
Sep
May
May
Oct 3 | 12
4
22
12
12
-5 | 1.89
2.65
1.18
215
0.03
0.05
2780 ^a
10.53
0.02
2.5
0.44
0.15 | | 6 2001
1 1999
1 1999 | e Estimated $^{\rm a}$ From rating extended above 870 ${\rm ft}^3/{\rm s}$. ### 06936475 COLDWATER CREEK NEAR BLACK JACK, MO LOCATION.--Lat 38°49'04", long 90°15'04", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.17, T.47 N., R.7 E., St. Louis County, Hydrologic Unit 10300200, on right downstream abutment of Old Jamestown Road bridge, 0.36 mi south of U.S. Route 67 (Lindbergh Blvd.), 1.1 mi west of Highway 367 (Lewis and Clark Blvd.), and 3.8 mi upstream of the Missouri River. DRAINAGE AREA. -- 40.4 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1996 to current year. GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage unknown. REMARKS.--Water-discharge records fair except for estimated daily discharges and those below 5 $\rm ft^3/s$ and above 2,500 $\rm ft^3/s$, which are poor. | | | DISCHAF | RGE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|--------------------------------------|--------------------------------------|--|---------------------------------------|-------------------------------------|---|--|-------------------------------------|--|---------------------------------------|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 2.1
2.1
2.1
2.1
143 | 3.5
30
8.3
3.3
3.3 | 20
13
10
8.3
7.3 | 3.8
3.8
4.3
5.0
5.6 | 84
31
24
18
15 | 9.5
233
41
22
21 | 15
14
12
10
10 | e18
e42
e17
e22
e14 | 9.7
8.9
8.4
8.6
271 | 4.2
5.1
39
16
4.9 | 4.3
3.2
3.6
3.0
4.1 | 2.2
2.0
1.8
1.7 | | 6
7
8
9
10 | 15
3.6
2.1
2.0
399 | 3.5
2.9
2.9
2.9
3.0 | 13
8.0
6.4
5.3
4.9 | 9.5
8.8
6.2
6.6
7.1 | 14
13
11
10
23 | 20
15
14
208
23 | 11
12
154
52
e17 | e136
e961
e583
497
41 | 21
10
7.9
12
106 | 3.4
2.9
2.6
4.9
6.6 | 833
10
5.4
3.8
3.0 | 1.9
1.9
2.0
1.7 | | 11
12
13
14
15 | 396
183
42
20
80 | 3.0
2.5
2.6
2.8
3.3 | 5.4
146
72
243
25 | 6.6
5.4
5.0
5.3
5.4 | 9.7
9.1
8.6
9.0 | 18
17
14
13
119 | e12
e21
e15
e13
e8.7 | 27
1350
1030
63
34 | 989
1470
54
21
14 | 4.5
8.1
7.1
3.5
3.0 | 47
11
6.3
35
7.2 | 1.9
2.5
2.2
2.1
2.7 | | 16
17
18
19
20 | 129
12
6.9
5.7
5.8 | 3.3
3.1
2.8
17
7.0 | 476
498
48
28
19 | 4.3
4.2
3.6
17 | 9.2
8.9
8.9
75
29 | 42
17
14
71
48 | e9.2
e11
e7.7
e602
e219 | 164
375
74
32
24 | 11
10
9.9
8.3
7.8 | 3.1
41
61
14
4.5 | 4.5
3.7
164
40
9.4 | 3.0
34
19
496
107 | | 21
22
23
24
25 | 5.6
5.6
35
321
26 | 4.8
4.5
4.2
693
15 | 15
39
18
11
8.6 | 5.8
5.5
6.6
48
6.8 | 12
8.9
8.2
7.7 | 19
15
14
16
272 | e195
e48
e25
e30
e20 | 20
18
15
29
19 | 7.6
7.4
7.1
26
49 | 3.4
3.1
33
6.4
3.7 | 5.5
4.5
26
12
4.1 | 9.9
3.1
2.2
2.0
1.6 | | 26
27
28
29
30
31 | 9.0
6.0
4.5
4.6
4.3 | 21
17
137
99
226 | 7.7
7.7
7.3
6.5
4.6
4.0 | 5.3
4.8
4.7
31
427
723 | 26
10
10
 | 117
44
28
27
22
17 | e15
e357
e105
e31
e22 | 13
11
40
34
13 | 9.4
5.9
5.5
4.9
5.0 | 15
8.1
3.3
3.0
3.7
6.0 | 3.4
3.3
3.2
2.9
4.8
2.8 | 1.4
2.0
1.9
2.2
1.8 | | MEAN
MAX
MIN
IN. | 60.6
399
2.0
1.73 | 44.4
693
2.5
1.23 | 57.6
498
4.0
1.64 | 45.1
723
3.6
1.29 | 18.6
84
7.7
0.48 | 50.7
272
9.5
1.45 | 69.1
602
7.7
1.91 | 185
1350
11
5.28 | 106
1470
4.9
2.93 | 10.6
61
2.6
0.30 | 41.1
833
2.8
1.17 | 23.9
496
1.4
0.66 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 31.0
60.6
2002
14.8
2000 | 37.9
95.6
1997
7.37
2000 | 21.2
57.6
2002
8.59
1999 | 39.5
79.3
1999
8.25
2000 | 72.7
173
1999
18.6
2002 | 47.8
118
1998
14.9
2000 | 52.2
82.3
1998
17.3
2000 | 78.2
185
2002
27.0
2001 | 81.6
123
2000
23.2
1997 | 41.7
109
1998
10.6
2002 | 29.1
44.5
1998
17.0
1996 | 20.5
25.8
1996
6.60
1999 | | SUMMARY | STATISTI | ICS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1996 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS | | | 37.0
871
2.0
2.1

12.45
95
7.5
2.7 | Apr
Oct
Sep | 9 | 59.7
1470
1.4
1.8
6740 ^a
9.02
1.3
20.07
132
10
2.9 | Jun
Sep
Sep
Jun
Jun
Sep | 26
4
12
12 | 46.0
59.7
30.3
4030
1.4
1.8
13000 ^a
11.46
0.75
15.46
8.3
3.1 | Sep
Sep
May
May | 2002
2001
7 1999
22 1996
4 2002
7 2000
7 2000
29 1997 | | e Estimated $^{\rm a}$ From rating extended above 1,250 ft $^{\rm 3}/{\rm s}$. # 06936475 COLDWATER CREEK NEAR BLACK JACK, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1996 to current year. | DATE | TIME | SAMPLE
TYPE | : | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|---|--|--|---|--|---
--|--|---|---|---|---|--| | OCT
10 | 0924 | ENVIRONM | IENTAL | 1640 | 7.1 | 75 | 7.8 | 129 | 17.1 | 45 | 13.2 | 3.01 | 38 | | DEC 10 | 1445 | ENVIRONM | IENTAL | 4.8 | 9.2 | 76 | 8.0 | 1130 | 6.4 | 370 | 89.5 | 36.7 | 245 | | FEB
04 | 1515 | ENVIRONM | IENTAL | 17 | 8.4 | 64 | 6.9 | 1170 | 3.8 | 390 | 93.0 | 38.0 | 193 | | MAR
09 | 0442 | ENVIRONM | IENTAL | 189 | 1.1 | 11 | 7.4 | 3 | 11.8 | 370 | 87.0 | 36.0 | 302 | | MAY
28
AUG | 1545 | ENVIRONM | IENTAL | 11 | 6.3 | 73 | 7.7 | 900 | 21.4 | 380 | 109 | 25.0 | 206 | | 05 | 1415 | ENVIRONM | IENTAL | 3.2 | 7.6 | 104 | 7.8 | 641 | 31.0 | 220 | 55.0 | 19.0 | 145 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON DIOXIDE DIS- SOLVED (mg/L as CO ₂) (00405) | OXYGEN
DEMAND,
CHEM-
ICAL
(high
level)
(mg/L)
(00340) | | OCT
10
DEC | 38 | 46 | 0 | | 861 | E2.4 | .05 | .440 | <.01 | .200 | 1.00 | 1.3 | 17 | | 10
FEB | 245 | 299 | 0 | 157 | E3 | E.40 | .07 | .800 | .02 | .090 | E.12 | 5.2 | 20 | | 04
MAR | 196 | 239 | 0 | 200 | 2 | .50 | .02 | 1.60 | .03 | .040 | .08 | 47 | 11 | | 09
MAY | 301 | 368 | 0 | | 134 | 3.1 | .25 | <.020 | <.01 | <.010 | .20 | 21 | 90 | | 28
AUG | 209 | 255 | 0 | | 17 | .60 | .08 | 1.00 | .06 | .060 | <.02 | 7.9 | 13 | | 05 | 147 | 179 | 0 | | 10 | .80 | .14 | .230 | .03 | .140 | .18 | 4.4 | 20 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
10 | 11000 | 21500 | 20000 | 452 | 2 | <1 | 1.0 | 1.1 | 6.5 | 612 | 2 | 67 | .1 | | DEC 10 | K20 | 54 | K18 | 19 | 2 | <1 | 1.0 | 1.0 | 1.7 | 65 | <1 | 158 | <.1 | | FEB
04 | K27 | 100 | 40 | 9 | 1 | <1 | <1.0 | <1.0 | 1.3 | 19 | <1 | 218 | <.1 | | MAR
09 | <200 | K500 | К667 | 15 | 4 | <1 | <1.0 | 6.4 | 1.5 | 42 | <1 | 1100 | <.1 | | MAY
28 | 200 | K320 | 190 | 29 | 2 | <1 | <1.0 | <1.0 | <1.0 | 58 | <1 | 271 | <.1 | | AUG
05 | K10 | 48 | 76 | <3 | 5 | <1 | <1.0 | <1.0 | 1.6 | 4 | <1 | 154 | <.1 | # 06936475 COLDWATER CREEK NEAR BLACK JACK, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |---|---|---|---|--|---|---|---|--|--|---|--|---|--| | OCT
10 | 1.7 | <1 | <1.0 | 20 | <7 | М | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC
10 | 3.3 | 2 | <1.0 | 17 | | | | | | | | | | | FEB
04 | 2.1 | 3 | <1.0 | 100 | | | | | | | | | | | MAR
09 | 4.6 | 3 | <1.0 | 124 | <7 | М | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
28 | 2.1 | <1 | <1.0 | 22 | | | | | | | | | | | AUG
05 | 3.5 | 1 | <1.0 | <2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL | 2-
CHLORO-
PHENOL
TOTAL | 2-
NITRO-
PHENOL
TOTAL | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL | 4-
NITRO-
PHENOL
TOTAL | ACE-
NAPHTH-
ENE
TOTAL | ACE-
NAPHTH-
YLENE
TOTAL | ALDRIN,
TOTAL | ANTHRA-
CENE
TOTAL | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER | | | (μg/L)
(34581) | (μg/L)
(34586) | (µg/L)
(34591) | (µg/L)
(34631) | (µg/L)
(34657) | (µg/L)
(34636) | (µg/L)
(34641) | (µg/L)
(34646) | (µg/L)
(34205) | (µg/L)
(34200) | (µg/L)
(39330) | (µg/L)
(34220) | (μg/L)
(34447) | | OCT
10
DEC | <2 | <2 | М | <3 | М | <2 | <2 | <3 | М | M | <.01 | М | <2 | | 10
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09
MAY | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | М | <2 | <.01 | М | <2 | | 28
AUG | | | | | | | | | | | | | | | 05 | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZ(A) ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) |
BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | ОСТ
10 | DINE
TOTAL
(µg/L) | A-
PYRENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L) | [GHI]-
PERY-
LENE
TOTAL
(µg/L) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L) | PHENO-
THION
WATER
UNFLTRD
(µg/L) | DANE,
TECH-
NICAL
TOTAL
(µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L) | | OCT
10
DEC
10 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10
DEC
10
FEB
04 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10
DEC
10
FEB
04
MAR
09 | DINE
TOTAL
(µg/L)
(39120) | A- PYRENE TOTAL (µg/L) (34247) E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10
DEC
10
FEB
04
MAR
09
MAY
28 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A-
PYRENE
TOTAL
(µg/L)
(34247)
E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E1 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 10 DEC 10 FEB 04 MAR 09 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A-
PYRENE
TOTAL
(µg/L)
(34247)
E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01

<.01 | | OCT
10
DEC
10
FEB
04
MAR
09
MAY
28 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A-
PYRENE
TOTAL
(μg/L)
(34247)
E1

M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01

<.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLIRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E2 M DEF TOTAL (µg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M AZINON, TOTAL (µg/L) (39570) | ANTHRA- CENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N-BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) (39390) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.TOTAL (µg/L) (38932) | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) E1 | A- PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E2 M DEF TOTAL (µg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M M AZINON, TOTAL (µg/L) | ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <1 METHYL PHTHAL-ATE TOTAL (µg/L) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 SUBJECT OF THE PROPER CONTROL OF THE PROPER CONTROL OF THE PROPER CONTROL OF THE PROPER M M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLIRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E2 M DEF TOTAL (µg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M M AZINON, TOTAL (µg/L) (39570) | ANTHRA- CENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N-BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) | CHLORO-ISO-PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 OCTYL PHTHAL ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) (39390) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) E1 | A- PYRENE TOTAL (μg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) E2 M DEF TOTAL (μg/L) (39040) E.01 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M M AZINON, TOTAL (μg/L) (39570) .18 | ANTHRA- CENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N-BUTYL PHTHAL-ATE
TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 < | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) E1 | A-PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA-CHLORO-UNFLTRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E2 M DEF TOTAL (µg/L) (39040) E.01 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M DI- AZINON, TOTAL (µg/L) (39570) | ANTHRA- CENE WATER WATER UNFLIRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) E1 | A- PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 <4 | FLUOR- AN- THENE TOTAL (µg/L) (34230) E2 M DEF TOTAL (µg/L) (39040) E.01 <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M DI- AZINON, TOTAL (µg/L) (39570) .1821 | ANTHRA- CENE WATER WATER UNFLTRD REC (µg/L) (34526) M DI- ELDRIN TOTAL (µg/L) (39380) <.006 <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E1 M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M < < < < - M C2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M <2 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 SUBJECT OF THE STATE STAT | CHLORO- ISO- PROPYIL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 OI-N- OCTYL PHTHAL ATE TOTAL (µg/L) (34596) M <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) < < < < < < < < <- | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 <.01 | # 06936475 COLDWATER CREEK NEAR BLACK JACK, MO--Continued (Metropolitan Sewer District) | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403 | ISO-
PHORON
TOTAL
(µg/L | TOTAL (µg/L) | TOTAL (µg/L) | METH-
OXY-
CHLOR,
TOTAL
(μg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(μg/L)
(39755) | |------------------|---|---|--|--|--|---|---|---|--|--|---|---|---| | OCT
10 | E2 | М | <.01 | <.009 | <.01 | <2 | E2 | М | <.006 | <.20 | <.020 | <.01 | <.006 | | DEC
10
FEB | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | MAR
09
MAY | М | М | <.01 | <.009 | <.01 | <2 | М | <2 | <.006 | <.10 | <.015 | <.02 | <.006 | | 28
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370 | (µg/L | PARA-
L PARA-
L THION,
TOTAL
(µg/L) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
10
DEC | М | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | 10
FEB | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | MAR
09 | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | MAY
28 | | | | | | | | | | | | | | | AUG
05 | DATE | РНОR
ТОТ
(µg
(390 | 'AL TOT
(μg | AL TOT
(μg | X- CHLO
NE, WAT
AL RE
/L) (µg | 4- 1,3- I- CHLC RO- WAT UNF UNFI C RE /L) (µg | DI- 1,4 DRO- CHI TER WA TTRD UNI EC I | 1-DI- C
LORO- CH
ATER W
FLTRD UN
REC
1g/L) (| D-DI- HE ILORO- CHI IATER WA IFLTRD UNF REC REC μg/L) (μ | IANE IXA- HEX ORO- CHLC TTER BUT LTRD ADIE OVER TOT g/L) (µg 396) (397 | DRO-
F- NAPH
ENE ALE
FAL TOT
[/L) (µg | NE
AL
/L) | | | | OCT
10 | <. | 02 E2 | <1 | <2 | <2 | 2 . | <2 | <2 < | 2 <3 | 3 M | 1 | | | | 10 | - | | | | | | | | | | - | | | | FEB
04 | - | | | | | | | | | | - | | | | MAR
09 | <. | 02 M | i <1 | <2 | <2 | 2 . | <2 | <2 < | 2 <1 | L <5 | ; | | | | MAY
28 | - | | | | | | | | | | | | | | AUG
05 | - | | | | | | | | | | - | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 06936530 SPANISH LAKE TRIBUTARY NEAR BLACK JACK, MO LOCATION.--Lat 38°48'04", long 90°12'59", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.22, T.47 N., R.7 E., St. Louis County, Hydrologic Unit 10300200, on left downstream wingwall of Bellefontaine Ave. bridge, 2.14 mi north of Interstate 270, 0.65 mi east of Highway 367 (Lewis and Clark Blvd.), and 1.9 mi upstream of the Missouri River. DRAINAGE AREA.--0.25 mi². PERIOD OF RECORD. -- August 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 502.33 ft above National Geodetic Vertical Datum of 1929. REMARKS. -- Records poor. | . 110001 | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | | | | | | | | |------------------------------------|--|--------------------------------------|---|--|--------------------------------------|---|--|--------------------------------------|--|---|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
0.58 | 0.01
0.17
0.04
0.04
0.04 | 0.13
0.08
0.06
0.05
0.04 | e0.06
e0.05
e0.04
e0.03
0.08 | 0.76
0.35
0.27
0.18
0.14 | 0.09
1.7
0.61
0.40
0.30 | 0.17
0.15
0.12
0.09
0.11 | 0.17
0.33
0.15
0.10
0.08 | 0.20
0.14
0.11
0.07 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | 6
7
8
9
10 | 0.04
0.00
0.00
0.00
2.8 | 0.04
0.03
0.02
0.01
0.01 | 0 04 | 0.18
0.09
0.18
0.12
0.13 | 0.13
0.13
0.12
0.11
0.19 | 0.24
0.18
0.15
2.2
0.44 | 0.11
0.16
1.7
0.45
0.21 | 1.4
10
2.9
2.9
0.60 | 0.25
0.11
0.08
0.07
0.14 | 0.00
0.00
0.00
0.00
0.00 | 0.64
0.00
0.00
0.00
0.21 | 0.00
0.00
0.00
0.00
0.00 | | | 11
12
13
14
15 | 2.0
0.92
0.39
0.16
0.68 | 0.01
0.01
0.01
0.02
0.02 | 0.02
0.98
0.38
2.4
0.70 | 0.04
0.04
0.04
0.04
0.03 | 0.11
0.10
0.09
0.07
0.07 | 0.31
0.24
0.19
0.15
1.9 | 0.15
0.16
0.15
0.18
0.13 | 0.42
15
8.1
1.5 | 3.0
4.2
0.66
0.39
0.32 | 0.00
0.00
0.00
0.00
0.00 | 2.3
0.70
0.06
0.12
0.02 | 0.00
0.00
0.00
0.00
0.00 | | | 16
17
18
19
20 | 0.70
0.11
0.05
0.02
0.00 | 0.02
0.02
0.03
0.05
0.04 | 7.0
6.3
1.2
0.58
0.30 | 0.04
0.03
0.03
0.20
0.10 | 0.07
0.06
0.06
0.55
0.27
| 0.60
0.34
0.26
0.95
0.60 | 0.11
0.10
0.09
1.2
2.0 | 2.1
4.3
1.7
1.1
0.98 | 0.18
0.13
0.10
0.07
0.05 | 0.00
0.00
0.00
0.00
0.00 | 0.32
0.06
1.2
0.75
0.26 | 0.00
0.06
0.04
0.76
1.0 | | | 21
22
23
24
25 | 0.00
0.00
0.09
1.1
0.19 | 0.03
0.02
0.02
4.4
0.20 | 0.18
0.34
0.15
0.11
0.10 | 0.09
0.10
0.18
0.26
0.09 | | 0.33
0.23
0.20
0.43
2.4 | 1.5
0.48
0.30
0.16
0.11 | 0.90
0.77
0.66
0.72
0.65 | 0.04
0.03
0.01
0.00
0.24 | 0.00
0.00
0.00
0.00
0.00 | 0.08
0.00
0.08
0.06
0.00 | 0.12
0.00
0.00
0.00
0.00 | | | 26
27
28
29
30
31 | 0.01 | 0.32
0.10
1.2
0.79
0.86 | 0.09
0.09
0.09
0.07
0.07
e0.06 | 0.05
0.04
0.04
0.40
3.1
5.0 | 0.19
0.20
0.15
 | 1.1
0.57
0.46
0.35
0.25
0.20 | 0.10
2.5
0.84
0.36
0.23 | 0.48
0.84
0.84
0.71
0.50 | 0.09
0.03
0.02
0.00
0.00 | 0.01
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | | MEAN
MAX
MIN | 0.32
2.8
0.00 | 0.29
4.4
0.01 | 0.70
7.0
0.02 | 0.35
5.0
0.03 | 0.18
0.76
0.06 | 0.59
2.4
0.09 | 0.47
2.5
0.09 | 2.01
15
0.08 | 0.39
4.2
0.00 | 0.00
0.01
0.00 | 0.22
2.3
0.00 | 0.07
1.0
0.00 | | | STATIST | CICS OF MO | NTHLY ME. | AN DATA F | OR WATER Y | EARS 1997 | 7 - 2002 | , BY WATER | YEAR (WY) | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.22
0.45
2001
0.06
2000 | 0.26
0.43
1999
0.02
2000 | 0.28
0.70
2002
0.13
1999 | 0.44
0.80
1999
0.26
2000 | 0.62
1.81
1999
0.18
2002 | 0.59
1.28
1998
0.23
2001 | 0.48
0.74
1998
0.12
2000 | 0.77
2.01
2002
0.14
2001 | 0.51
1.11
1998
0.18
2001 | 0.59
1.25
1998
0.00
2002 | 0.18
0.26
1998
0.07
1999 | 0.09
0.16
2001
0.00
1999 | | | SUMMARY | STATISTI | CS | FO | R 2001 CAI | LENDAR YEA | AR. | FOR 2002 | WATER YEA | AR. | WATER YE | ARS 1997 | - 2002 | | | ANNUAL MEAN | | | 7.0
0.00
0.00

0.74
0.07
0.00 | Dec 1
Many Day
At Time | L6
78
28 | 0.47
15
0.00
0.00
154'
3.55
0.00
1.1
0.09 | May 1
Many Day
At Time
A May 1
May 1
Many Day | .2
75
25
2
2
2
75 | 0.42
0.54
0.28
31
0.00
0.00
710 ^a
5.39
0.00
0.86
0.09 | Jul 3
Eac
At
Jul 3
Jul 3
Eac | 1998
2001
30 1998
ch Year
: Times
30 1998
30 1998
ch Year | | | e Estimated $^{\rm a}$ From rating extended above 110 ${\rm ft}^3/{\rm s}$. ### LOWER MISSISSIPPI RIVER BASIN ### 07001985 WATKINS CREEK AT BELLEFONTAINE NEIGHBORS, MO LOCATION.--Lat 38°45'44", long 90°11'48", St. Louis County, Hydrologic Unit 07140101, on left downstream wingwall of Fry Lane bridge, 0.34 mi south of Interstate 270, 2.34 mi east of Highway 367 (Lewis and Clark Blvd.), and 1.76 mi upstream of Mississippi River. DRAINAGE AREA. -- 5.19 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 431.94 ft above National Geodetic Vertical Datum of 1929. $REMARKS.--Water-discharge\ records\ fair\ except\ for\ estimated\ daily\ discharges\ and\ those\ below\ 1\ ft^3/s\ and\ above\ 1,000\ ft^3/s\ ,\ which\ records\ fair\ except\ for\ estimated\ daily\ discharges\ and\ those\ below\ 1\ ft^3/s\ and\ above\ 1,000\ ft^3/s\ ,$ are poor. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YEAN VAL | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |---|----------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|---------------------------------------|---|--|--------------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2 0
3 0
4 0 | .09
.09
.09
.09 | 0.31
2.2
0.43
0.28
0.27 | 1.1
0.80
0.70
0.66
0.65 | 0.93
0.99
1.0
0.92 | 13
6.3
4.6
3.6
3.1 | 2.2
31
8.9
2.6
3.0 | 2.7
2.8
2.6
3.1
2.6 | 2.6
5.3
2.0
1.8
1.5 | 1.7
1.3
1.3
1.8 | 1.6
0.91 | e0.43
e0.36
e0.30
e0.34
e2.2 | 0.22
0.17
0.14
0.14
0.25 | | 7 0 8 0 | .12
.12
.12 | 0.29
0.27
0.27
0.27
0.31 | 0.84
0.59
0.53
0.52
0.48 | 1.1
1.1
1.2
1.7 | | 2.5
2.0
1.9
37
3.7 | 2.0
3.6
25
4.4
2.1 | 22
123
43
50
5.6 | 2.0
1.2
1.1
1.0
2.6 | 0.53
0.54
0.53
0.72
1.9 | e1.4 | 0.26
0.25
0.34
0.28
0.19 | | 13 3
14 0 | .3
.5
.90 | | 0.46
16
4.8
37
4.3 | 1.1
1.1
1.1
1.1 | 3.1
2.3
2.2
2.0
2.1 | 3.0
2.8
2.5
2.3
25 | 1.9
2.6
2.2
2.4
1.8 | 3.8
177
100
8.9
5.7 | 82
54
2.7
1.5 | e0.81
e1.4
e1.1
e0.70
e1.3 | e2.3
e3.5
e1.4
e1.8
0.40 | 0.19
0.13
0.16
0.16
0.13 | | 18 0
19 0 | 51 | 0.33
0.33
0.34
0.74
0.37 | 85
65
9.0
5.7
4.0 | 0.95
0.93
0.93
3.2
1.6 | 2.0
2.0
1.9
19
4.6 | 5.4
2.9
2.6
13
5.8 | 1.8
1.8
1.6
38
21 | 16
56
10
5.6
4.9 | 0.92
0.83
0.79
0.77 | e0.91
e2.0
e4.0
e2.5
e0.96 | 0.39 | 0.18
3.2
0.64
9.9 | | 22 0
23 0
24 19 | . 25
. 68 | 0.56
0.36
0.35
74
1.0 | 3.3
6.7
3.3
2.2
1.7 | | 3.3 | 2.4
5.7
44 | 24
3.6
2.6
2.4
2.0 | 4.1
3.7
3.3
4.7
3.3 | 0.73
0.70
0.72
0.74 | e0.62
e2.1
e2.8
e0.96
e0.54 | 0.32
0.28
0.77
0.44
0.35 | 0.63
0.31
0.21
0.19
0.18 | | 28 0
29 0
30 0 | .39
.37
.32
.34 | 2.4
1.2
16
8.2
13 | | 1.1
1.1
1.1
9.0
63
99 | 3.2
2.1
1.8
 | 18
5.6
3.8
3.4
2.9
2.8 | 1.6
48
11
3.4
2.8 | 2.8
7.0
5.5
3.8
2.4
1.9 | 0.80
0.77
0.67 | e0.47 | 0.26
0.19
0.18
0.25
0.26
0.21 | 0.17
0.17
0.20
0.16
0.13 | | MAX | .83
43
.09 | 4.19
74
0.27 | 8.45
85
0.46 | 6.74
99
0.92 | 3.82
19
1.8 | 8.19
44
1.9 | 7.58
48
1.6 | 22.2
177
1.5 | 6.49
82
0.67 | 1.17
4.0
0.46 | 2.14
29
0.18 | 0.98
10
0.13 | | MEAN 3
MAX 5
(WY) 2
MIN 0 | .23
.38
.001
.50
998 | 2.88
4.36
1999
0.95
2000 | 2.90
8.45
2002
1.22
2001 | 5.51
13.2
1999
0.90
2000 | 7.15
17.1
1999
3.82
2002 | 7.32
18.5
1998
1.71
2000 | 6.37
11.3
1998
1.23
2000 | 10.0
22.2
2002
3.27
2001 | 7.17
17.5
1998
1.66
1997 | 6.76
18.5
1998
0.32
1997 | 3.74
10.9
1998
1.05
2001 | 1.79
2.69
1998
0.56
1999 | | SUMMARY ST | 'ATISTICS | S | FOR | 2001 CALE | ENDAR YEA | R | FOR 2002 1 | WATER YE | AR | WATER YE | ARS 1997 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 85
0.09 Ser
0.09

6.9
0.99
0.14 | Dec 1
26-Oct
Sep 2 | 6
4
6 | 177
0.09
0.16
1500 ^a
8.56
0.09
13
1.5 | May 1
Oct 1
Sep 1
May 1
May 1
Oct 1 | 12
-4
10
12
12 | 5.64
8.19
2.89
381
0.05
0.06
4800 ^a
13.10
0.05 ^b
9.8
1.0 | | 7 1997
1 1997
0 1998
0 1998 | e Estimated a From rating extended above 396 ft³/s. Minimum daily, instantaneous unknown # 07001985 WATKINS CREEK AT BELLEFONTAINE NEIGHBORS, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1997 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|---|--|--|---|--|---|--
--|---|---|---|---|--| | OCT 23 | 2357 | ENVIRONM | IENTAL | 12 | 6.3 | 67 | 7.8 | 1010 | 16.2 | 260 | 68.5 | 21.0 | 149 | | DEC 11 | 0920 | ENVIRONM | IENTAL | .43 | 13.2 | 99 | 7.7 | 984 | 2.5 | 360 | 90.7 | 31.6 | 208 | | FEB
05 | 0815 | ENVIRONM | IENTAL | 3.1 | 8.8 | 63 | 7.4 | 844 | 1.7 | 310 | 75.0 | 29.0 | 196 | | MAR
09 | 0617 | ENVIRONM | IENTAL | 158 | 9.8 | 95 | 7.5 | 1000 | 12.7 | 110 | 30.0 | 7.50 | 74 | | MAY
29 | 0815 | ENVIRONM | IENTAL | 4.4 | 5.5 | 60 | 7.6 | 677 | 18.5 | 210 | 58.0 | 16.0 | 136 | | AUG
08 | 1030 | ENVIRONM | IENTAL | e1.6 | 5.3 | 61 | 7.4 | 554 | 21.4 | 180 | 49.0 | 15.0 | 112 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
23
DEC | 150 | 183 | 0 | | 37 | E1.1 | .13 | .300 | .01 | .250 | E.29 | 4.4 | 13 | | 11 | 209 | 255 | 0 | 142 | E2 | E.40 | .04 | .600 | .02 | .120 | E.13 | 7.7 | 7 | | FEB
05
MAR | 195 | 238 | 0 | 150 | 3 | 9.8 | 7.60 | .700 | .06 | .590 | .99 | 14 | 44 | | 09
MAY | 74 | 91 | 0 | | 937 | 2.8 | .13 | .360 | .04 | .220 | 1.00 | 4.4 | 22 | | 29
AUG | 135 | 165 | 0 | | 43 | .60 | .10 | .600 | .03 | .100 | .15 | 7.2 | 14 | | 08 | 113 | 137 | 0 | | 49 | .90 | .11 | .710 | .02 | .240 | .30 | 9.2 | 18 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT 23 | 24000 | 42000 | 5600 | 42 | 2 | <1 | 1.0 | 1.0 | 3.7 | 109 | <1 | 238 | <.1 | | DEC 11 | 210 | 500 | 114 | 8 | 1 | <1 | 1.0 | 1.0 | 1.4 | 78 | <1 | 297 | <.1 | | FEB
05 | K800 | K600 | K1000 | 4 | <1 | <1 | <1.0 | <1.0 | 2.5 | 72 | <1 | 656 | <.1 | | MAR
09 | <20 | 16500 | K6400 | 355 | 2 | <1 | <1.0 | 2.1 | 3.0 | 332 | 2 | 248 | <.1 | | MAY
29 | 2800 | 4200 | 8000 | 71 | 2 | <1 | <1.0 | <1.0 | 2.3 | 69 | <1 | 97 | <.1 | | AUG
08 | <10 | 480 | K72 | <3 | 3 | <1 | <1.0 | <1.0 | 2.6 | 11 | <1 | 350 | <.1 | # 07001985 WATKINS CREEK AT BELLEFONTAINE NEIGHBORS, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |---|--|--|--|--|---|---|---|---|---|---|---|--|--| | OCT
23 | 3.9 | <1 | <1.0 | 54 | <7 | <3 | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC
11 | 3.5 | <1 | <1.0 | 27 | | | | | | | | | | | FEB
05 | 2.9 | <1 | <1.0 | 170 | | | | | | | | | | | MAR
09 | 2.5 | <1 | <1.0 | 49 | <7 | М | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
29 | 2.3 | <1 | <1.0 | 49 | | | | | | | | | | | AUG
08 | 3.6 | <1 | <1.0 | 3 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L) | 2-
NITRO-
PHENOL
TOTAL
(µg/L) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L) | 4-
NITRO-
PHENOL
TOTAL
(µg/L) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L) | ALDRIN,
TOTAL
(µg/L) | ANTHRA-
CENE
TOTAL
(µg/L) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L) | | | (34581) | (34586) | (34591) | (34631) | (34657) | (34636) | (34641) | (34646) | (34205) | (34200) | (39330) | (34220) | (34447) | | OCT 23 | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | М | <2 | | DEC 11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | М | <2 | <.01 | М | <2 | | MAY
29
AUG | | | | | | | | | | | | | | | 08 | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) |
BENZ(A)
ANTHRA-
CENE
WATER
UNFLITED
REC
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
23 | DINE
TOTAL
(µg/L) | A-
PYRENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L) | [GHI]-
PERY-
LENE
TOTAL
(µg/L) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L) | PHENO-
THION
WATER
UNFLTRD
(µg/L) | DANE,
TECH-
NICAL
TOTAL
(µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L) | | OCT 23
DEC 11 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
23
DEC
11
FEB
05 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT 23 DEC 11 FEB 05 MAR 09 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLITED
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT
23
DEC
11
FEB
05
MAR
09
MAY
29 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 23 DEC 11 FEB 05 MAR 09 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M
M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 23 DEC 11 FEB 05 MAR 09 MAY 29 AUG | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) M M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02

<.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 23 DEC 11 FEB 05 MAR 09 MAY 29 AUG 08 | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) | FLUOR-
AN-
THENE
TOTAL (μg/L) (34230) M M DEF TOTAL (μg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M M AZINON, TOTAL (µg/L) (39570) | ANTHRACENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M
M
M
DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <methyl (34341)<="" (µg="" l)="" phthal-ate="" td="" total=""><td>CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110)</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596)</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011)</td><td>PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) (39388)</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD (µg/L) (39390)</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01</td></methyl> | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) (39388) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD (µg/L) (39390) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 23 DEC 11 FEB 05 MAR 09 AUG 08 DATE OCT 23 DEC | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) | A- PYRENE TOTAL (µg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M AZINON, TOTAL (µg/L) | ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <1 METHYL PHTHAL-ATE TOTAL (µg/L) | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <66 DISUL- FOTON UNFILT RECOVER (µg/L) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (µg/L) | | OCT 23 DEC 11 FEB 05 MAR 09 MAY 29 AUG 08 DATE OCT 23 DEC 11 FEB | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) | FLUOR- AN- THENNE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M M AZINON, TOTAL (µg/L) (39570) | ANTHRACENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <methyl (34341)<="" (µg="" l)="" phthal-ate="" td="" total=""><td>CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 BUT-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110)</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596)</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <6 DISUL- FOTON UNFILT RECOVER (µg/L)
(39011)</td><td>PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02</td><td>DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01</td></methyl> | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 BUT-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 23 DEC 11 FEB 05 MAR 09 MAY 29 AUG 08 DATE OCT 23 DEC 11 FEB 05 MAR | DINE TOTAL (µg/L) (39120) <40 <40 <ho (34320)="" (µg="" l)="" m<="" sene="" td="" total=""><td>A- PYRENE TOTAL (μg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2</td><td>FLUOR- AN- THENE TOTAL (μg/L) (34230) M M DEF TOTAL (μg/L) (39040) <.02</td><td>FLUOR- AN- THENE TOTAL (μg/L) (34242) M M AZINON, TOTAL (μg/L) (39570) .05</td><td>ANTHRACENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006</td><td>[GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) E2</td><td>CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M</td><td>CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <66 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10</td><td>PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01</td></ho> | A- PYRENE TOTAL (μg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) M M DEF TOTAL (μg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M M AZINON, TOTAL (μg/L) (39570) .05 | ANTHRACENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) E2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <66 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 23 DEC 11 FEB 05 MAR 09 AUG 08 DATE OCT 23 DEC 11 FEB 05 MAR 09 MAY | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M DI- AZINON, TOTAL (µg/L) (39570) | ANTHRACENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) E2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100)
E2

<66

DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011)
<.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 23 DEC 11 FEB 05 MAR 09 AUG 08 DATE OCT 23 DEC 11 FEB 05 MAR 09 | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) M M | A- PYRENE TOTAL (μg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) (39040) <.02 <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M DI- AZINON, TOTAL (µg/L) (39570) .0505 | ANTHRACENE WATER WATER UNFLTRD REC (µg/L) (34526) M M ELDRIN TOTAL (µg/L) (39380) <.006 <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) E2 <2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 SIDI-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110) M <2 | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 <.10 | PHENO- THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02 <.01 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 <.01 <.01 | ### 07001985 WATKINS CREEK AT BELLEFONTAINE NEIGHBORS, MO--Continued (Metropolitan Sewer District) | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(μg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | |------------------|---|---|--|--|--|---|--|--|--|---|---|---|---| | OCT 23 | М | <2 | <.01 | <.009 | <.01 | <2 | М | М | <.006 | E.02 | <.020 | <.01 | <.006 | | DEC 11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | E1 | M | <.01 | <.009 | <.01 | <2 | М | M | <.006 | <.10 | <.015 | <.02 | <.006 | | MAY
29 | | | | | | | | | | | | | | | AUG
08 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
23
DEC | <4 | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | 11
FEB | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | MAR
09 | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | M | M | <3.0 | | MAY
29 | | | | | | | | | | | | | | | AUG
08 | | | | | | | | | | | | | | | | DATE | РНОR
ТОТ
(µg
(390 | 'AL TOT
(μg | NE APHE
TAL TOT
[/L) (μg | X- CHLC
NE, WAT
AL RE
/L) (µg | 4- 1,3- RI- CHLC DRO- WAT UNF UNFI CC RE | DI- 1,4- DRO- CHLO CER WA' TRD UNFI C RI (/L) (µg | ZENE BENZ -DI- O-I ORO- CHLC TER WAT LITRD UNFI EC RE g/L) (µg 571) (345 | DI- HEX
DRO- CHLO
FER WAT
LTRD UNFL
EC RECO
J/L) (µg. | A- HEX
RO- CHLO
ER BUT
TRD ADIE
VER TOT
/L) (µg. | RO-
'- NAPE
'NE ALE
'AL TOT
/L) (µg | ENE
CAL
/L) | | | | OCT 23 | <. | 02 M | 1 <1 | <2 | ? <2 | ? < | 2 <2 | 2 <2 | <3 | <5 | 5 | | | | DEC
11
FEB | - | | | | | | | | | | | | | | 05
MAR | - | | | | | | | | | | | | | | МАК
09
МАУ | <. | 02 E1 | . <1 | <2 | ? <2 | 2 < | 2 <2 | 2 <2 | <1 | | 1 | | | | 29
AUG | - | | | | | | | | | | | | | | 08 | - | | | | | - | | | | | - | | e--Estimated discharge. K--Results based on colony count outside
the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07005000 MALINE CREEK AT BELLEFONTAINE NEIGHBORS, MO LOCATION.--Lat $38^{\circ}44^{\circ}12^{\circ}$, long $90^{\circ}13^{\circ}35^{\circ}$, in SE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ Sec.9, T.46 N., R.7 E., St. Louis County, Hydrologic Unit 07140101, on left downstream wingwall of Bellefontaine Road bridge, 2.32 mi south of Interstate 270, 0.80 mi east of Highway 367 (Lewis and Clark Blvd.), and 1.03 mi upstream of Mississippi River. DRAINAGE AREA. -- 24.4 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1996 to current year. Annual peaks only for 1968-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 409.96 ft above National Geodetic Vertical Datum of 1929. $REMARKS.--Water-discharge\ records\ fair\ except\ for\ estimated\ daily\ discharges\ and\ those\ below\ 1\ ft^3/s\ and\ above\ 2,600\ ft^3/s,$ which are poor. | | | DISCHAF | GE, CUBIC | FEET PER | SECOND, W | | EAR OCTOBEF
ALUES | R 2001 TO | SEPTEMBE | R 2002 | | | |--|---|---|--|--|--------------------------------------|--------------------------------------|---|--|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.10
0.12
0.25
0.28
34 | 1.3
17
2.0
0.58
0.54 | 7.8
4.8
3.6
3.1
3.0 | 1.9
1.9
2.4
2.6
3.4 | 26
12
10
7.5
6.0 | 4.1
68
14
5.6
5.4 | 4.9
5.2
3.8
3.2
3.1 | 6.5
12
4.6
4.3
3.4 | 4.4
4.1
3.8
3.3 | 1.1
2.3
9.9
3.8
1.4 | 0.72
0.56
0.43
0.65
4.6 | 0.55
0.66
0.96
1.1
1.0 | | 6
7
8
9
10 | 4.3
0.42
0.24
0.34 | 0.57
0.66
0.71
1.4
1.2 | 6.2
2.8
1.9
1.7 | 4.7
3.8
2.9
3.3
3.0 | 5.7
5.3
4.9
4.7
9.1 | 5.9
4.0
3.4
70
8.4 | 3.0
4.2
49
12
4.6 | 47
312
138
e128
e20 | 8.6
4.0
3.3
6.0 | 1.8
0.87
0.95
3.2
5.6 | 193
8.6
5.3
1.9
1.6 | 1.7
1.1
2.1
1.6
1.3 | | 11
12
13
14
15 | 135
34
18
7.3
22 | 1.7
0.75
1.6
0.79
0.64 | 1.6
39
17
69 | 2.4
2.1
1.9
1.9 | 6.2
4.2
3.6
3.4
3.5 | 6.3
6.8
4.8
4.2 | 4.2
6.7
5.1
4.5
3.4 | e7.0
e450
e180
e18
e10 | 230
175
14
8.1
5.7 | 1.1
2.9
1.9
0.83
2.8 | 3.2
6.2
5.6
9.2
2.2 | 1.2
1.1
0.99
0.83
0.81 | | 16
17
18
19
20 | 27
3.2
1.0
0.53
0.58 | 0.69
0.68
0.70
4.2
1.5 | 120
105
16
9.5
6.8 | 1.4
1.5
1.4
8.6
4.9 | 3.5
3.3
3.0
26 | 14
6.7
5.0
30
17 | 3.1
2.7
2.5
173
64 | e40
e130
e27
e15
e14 | 4.2
3.5
3.1
2.6
2.6 | 1.4
5.7
24
6.8
1.5 | 0.79
0.81
36
6.7
2.9 | 1.0
11
6.2
31
32 | | 21
22
23
24
25 | 0.59
0.55
1.8
72
8.8 | 0.65
0.52
0.57
180
7.5 | 5.6
14
6.7
4.4
3.6 | 2.6
2.9
3.1
15 | 5.3
3.5
3.1
3.2
6.2 | 6.6
4.8
5.0
9.9 | 59
14
9.5
8.4
8.3 | e12
e12
39
16
10 | 2.8
3.8
3.9
9.8 | 0.96
6.4
20
2.5
1.1 | 1.3
1.3
3.9
4.2
1.1 | 3.1
0.91
0.75
0.79
1.5 | | 26
27
28
29
30
31 | 1.4
0.92
0.74
0.74
0.73 | 8.9
7.2
41
28
47 | 3.3
3.3
4.1
2.9
2.1
2.4 | 2.1
2.0
2.0
17
118
182 | 12
4.7
4.1
 | 37
15
11
8.8
7.2
5.5 | 4.9
98
28
10
7.7 | 8.1
15
19
12
6.4
6.8 | 6.6
3.2
3.2
1.5
1.3 | 12
4.0
0.87
3.3
0.89
0.90 | 0.79
0.76
0.71
0.60
0.65
0.53 | 0.71
0.65
0.98
1.0
1.1 | | MEAN
MAX
MIN
IN. | 15.5
135
0.10
0.73 | 12.0
180
0.52
0.55 | 15.6
120
1.6
0.74 | 13.2
182
1.4
0.62 | 7.18
26
3.0
0.31 | 17.1
89
3.4
0.81 | 20.3
173
2.5
0.93 | 55.6
450
3.4
2.63 | 21.0
230
1.3
0.96 | 4.28
24
0.83
0.20 | 9.90
193
0.43
0.47 | 3.66
32
0.55
0.17 | | STATIS | TICS OF M | ONTHLY MEA | N DATA FO | R WATER Y | EARS 1996 | - 2002 | , BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.1
15.5
2002
6.56
2000 | 18.2
51.7
1997
7.62
2000 | 9.27
17.2
2000
2.89
2001 | 19.3
45.3
1999
7.54
2001 | 27.1
55.5
1999
7.18
2002 | 24.3
69.3
1998
7.12
2000 | 17.4
31.0
1998
7.57
2000 | 24.0
55.6
2002
7.73
2001 | 27.4
61.2
1998
6.96
2001 | 16.2
42.7
1998
1.16
1997 | 14.9
32.9
1998
4.14
2001 | 8.35
14.0
1998
3.12
1999 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 W | NATER YEAR | | WATER Y | EARS 1996 | - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
INSTAN
ANNUAL
10 PER
50 PER | T ANNUAL M
ANNUAL M
T DAILY M
DAILY ME | EAN EAN AN Y MINIMUM OW AGE OW FLOW INCHES) EDS EDS | | 9.20
180
0.06
0.13

5.12
25
3.0
0.26 | Nov 24
Aug 15
Aug 31 | | 16.4
450
0.10
0.64
Unknown ^a
11.85
0.08
9.11
36
4.0
0.74 | May 12
Oct 1
Aug 27
May 17
May 17
Oct 1 | | 17.8
27.7
7.08
1050
0.06
0.13
5270 ^b
16.26
0.05
9.94
4.0
0.74 | Aug 1
Aug 3
Jul 2
Jul 2 | 1998
2001
7 1999
15 2001
31 2001
28 1996
28 1996
15 2001 | e Estimated $^{\rm a}$ Occurred during period of backwater from the Mississippi River. $^{\rm b}$ From rating extended above 1,270 ft $^{\rm 3}/\rm s.$ # 07005000 MALINE CREEK AT BELLEFONTAINE NEIGHBORS, MO--Continued (Metropolitan Sewer District) WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1996 to current year. | DATE | TIME | SAMPLE
TYPE | 2 | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT 24 | 0045 | ENVIRONM | MENTAL | 61 | 6.0 | 63 | 7.2 | 536 | 15.8 | 160 | 46.2 | 11.7 | 107 | | DEC
10 | 1700 | ENVIRONM | MENTAL | 1.7 | 6.9 | 56 | 8.0 | 1050 | 5.7 | 330 | 89.4 | 26.0 | 197 | | FEB
05 | 0900 | ENVIRONM | MENTAL | 6.4 | 11.2 | 82 | 7.8 | 1280 | 2.1 | 350 | 93.0 | 28.0 | 202 | | MAR
09 | 0332 | ENVIRONM | MENTAL | 171 | 10.3 | 101 | 7.9 | 2120 | 12.8 | 240 | 65.0 | 19.0 | 120 | | MAY
30
AUG | 0815 | ENVIRONM | MENTAL | 6.0 | 5.8 | 67 | 7.6 | 594 | 20.9 | 330 | 82.0 | 30.0 | 113 | | 08 | 1130 | ENVIRONM | MENTAL | 3.9 | 2.9 | 35 | 7.2 | 436 | 24.1 | 120 | 36.0 | 8.30 | 75 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD s (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-PHORUSORTHOTOTAL(mg/Las P)(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
24
DEC | 107 | 130 | 0 | | 69 | E.90 | .10 | .410 | .02 | .180 | E.27 | 13 | 10 | | 10
FEB | 198 | 242 | 0 | 152 |
E15 | E.50 | .10 | .280 | .01 | .070 | E.11 | 4.1 | 22 | | 05
MAR | 205 | 250 | 0 | 200 | 68 | .50 | <.01 | 1.40 | .01 | .080 | .14 | 6.6 | 12 | | 09
MAY | 121 | 148 | 0 | | 575 | 2.1 | .03 | .240 | .02 | .050 | .57 | 2.9 | <5 | | 30
AUG | 111 | 136 | 0 | | 6 | .50 | .08 | .730 | .04 | .080 | .09 | 5.0 | 18 | | 08 | 75 | 92 | 0 | | 56 | 1.3 | .17 | 1.10 | .07 | .260 | .34 | 9.6 | 17 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT 24 | | | | | | | | | | | | | | | | 7000 | 10600 | K2490 | 206 | 2 | _1 | 2 | 6 | 4 5 | 310 | _1 | 222 | _ 1 | | DEC
10 | 7000
K42 | 10600 | K2480 | 206 | 2 | <1
<1 | .3 | .6
1 | 4.5 | 312
47 | <1
<1 | 232
146 | <.1 | | 10
FEB | K42 | 46 | 72 | 10 | 1 | <1 | .1 | .1 | 1.9 | 47 | <1 | 146 | <.1 | | 10
FEB
05
MAR | K42
120 | 46
54 | 72
126 | | | | .1 <1.0 | .1 <1.0 | | | | | | | 10
FEB
05 | K42 | 46 | 72 | 10
11 | 1 <1 | <1
<1 | .1 | .1 | 1.9 | 47
24 | <1
<1 | 146
283 | <.1 | # 07005000 MALINE CREEK AT BELLEFONTAINE NEIGHBORS, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |---|---|---|---|---|---|---|---|---|--|---|--|---|--| | 24 | 3.2 | <1 | <1.0 | 94 | <7 | M | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC 10 | 3.0 | <1 | <1.0 | 42 | | | | | | | | | | | FEB
05 | 2.5 | 2 | <1.0 | 78 | | | | | | | | | | | MAR
09 | 3.2 | 1 | <1.0 | 25 | <7 | М | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
30 | 1.9 | <1 | <1.0 | 26 | | | | | | | | | | | AUG
08 | 2.5 | 1 | <1.0 | <2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLITED
RECOVER
(µg/L)
(34447) | | OCT 24 | <2 | <2 | М | <3 | <3 | <2 | <2 | <3 | М | М | E.01 | М | <2 | | DEC
10 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | MAY
30 | | | | | | | | | | | | | | | AUG
08 | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZ(A)
ANTHRA-
CENE
WATER
UNFLITED
REC
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT 24 | DINE
TOTAL
(µg/L) | A-
PYRENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L) | [GHI]-
PERY-
LENE
TOTAL
(µg/L) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L) | PHENO-
THION
WATER
UNFLTRD
(µg/L) | DANE,
TECH-
NICAL
TOTAL
(µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L) | | OCT 24
DEC 10 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
24
DEC
10
FEB
05 | DINE
TOTAL
(µg/L)
(39120) |
A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT 24 DEC 10 FEB 05 MAR 09 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(μg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | ANTHRA-
CENE
WATER
UNFLIRD
REC
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 24 DEC 10 FEB 05 MAR 09 MAY 30 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
E2 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
E.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 24 DEC 10 FEB 05 MAR 09 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
E2 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA-
CENE
WATER
UNFLTRD
REC
(µg/L)
(34526)
M
M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
E.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 24 DEC 10 FEB 05 MAR 09 MAY 30 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
E2 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | ANTHRA- CENE WATER UNFLIRD REC (µg/L) (34526) M M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02

<.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) E.1 < < < < | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 24 DEC 10 FEB 05 MAR 09 MAY 30 AUG 08 | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) | FLUOR-
AN-
THENE
TOTAL (μg/L) (34230)
E2
M

M

DEF
TOTAL (μg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M AZINON, TOTAL (µg/L) (39570) | ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M
M
M
DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 E1 E1 UNITED TOTAL DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) (39388) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD (µg/L) (39390) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 24 DEC 10 FEB 05 MAR 09 AUG 08 DATE OCT 24 DEC | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) | A- PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E2 M DEF TOTAL (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M M AZINON, TOTAL (µg/L) | ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <1 METHYL PHTHAL-ATE TOTAL (µg/L) | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) | CHLORO-ISO-PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) | ETHYL HEXYL) PHTHAL ATE TOTAL (µg/L) (39100) <19 E1 E1 DISUL- FOTON UNFILT RECOVER (µg/L) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 ENDRIN WATER UNFLIED REC (µg/L) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (µg/L) | | OCT 24 DEC 10 FEB 05 MAR 09 AUG 08 DATE OCT 24 DEC 10 FEB | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) E1 | A- PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E2 M DEF TOTAL (µg/L) (39040) <.02 | FLUOR-
AN-
THENE
TOTAL (μg/L) (34242) M M M AZINON, TOTAL (μg/L) (39570) | ANTHRACENE WATER UNFLIRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) E.005 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) E2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 E1 E1 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 24 DEC 10 FEB 05 MAR 09 AUG 08 DATE OCT 24 DEC 10 FEB 05 MAR | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) E1 | A- PYRENE TOTAL (μg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) E2 M DEF TOTAL (μg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M M AZINON, TOTAL (μg/L) (39570) .03 | ANTHRA- CENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) E.005 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) E2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 E1 E1 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 < < < ENDRIN WATER UNFLIRD REC (µg/L) (39390) < | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 24 DEC 10 FEB 05 MAR 09 AUG 08 DATE OCT 24 DEC 10 FEB 05 MAR 09 | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) E1 M | A- PYRENE TOTAL (µg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) E2 M DEF TOTAL (µg/L) (39040) <.02 <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M M AZINON, TOTAL (µg/L) (39570) .0303 | ANTHRACENE WATER WATER UNFLTRD REC (µg/L) (34526) M M ELDRIN TOTAL (µg/L) (39380) E.005006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) E2 <2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M <2 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 SIDI-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110) M <2 | CHLORO- ISO- PROPYIL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 VIENT OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 E1 E1 COUNTY OF THE PROOF TO PRO | PHENO- THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02 <.01 | DANE, TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 <.01 <.01 | | OCT 24 DEC 10 FEB 05 MAR 09 AUG 08
DATE OCT 24 DEC 10 FEB 05 MAR 09 | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) E1 | A- PYRENE TOTAL (μg/L) (34247) E1 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) E2 M DEF TOTAL (μg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M M AZINON, TOTAL (μg/L) (39570) .03 | ANTHRA- CENE WATER WATER UNFLTRD REC (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) E.005 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) E2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 E1 E1 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 < < < ENDRIN WATER UNFLIRD REC (µg/L) (39390) < | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | #### 277 07005000 MALINE CREEK AT BELLEFONTAINE NEIGHBORS, MO--Continued (Metropolitan Sewer District) | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(μg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(μg/L)
(39530) | METH-
ΟΧΥ-
CHLOR,
TOTAL
(μg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | |------------------|---|---|--|--|--|---|--|--|--|--|---|---|---| | OCT 24 | E2 | М | <.01 | <.009 | <.01 | <2 | E1 | М | <.006 | E.06 | .016 | <.01 | <.006 | | DEC 10 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09
MAY | E1 | М | <.01 | <.009 | <.01 | <2 | М | <2 | <.006 | <.10 | <.015 | <.02 | <.006 | | 30
AUG | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
24
DEC | <4 | <3 | <2 | <3 | .017 | <.006 | .009 | <3 | <.01 | <.1 | М | E1 | <3.0 | | 10 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | MAY
30 | | | | | | | | | | | | | | | AUG
08 | | | | | | | | | | | | | | | | DATE | PHOR
TOT
(µg
(390 | 'AL TOT
(μg | AL TOT | X- CHLO
NE, WAT
AL RE
/L) (µg | 4- 1,3- II- CHLC RO- WAT UNF UNFI C RE /L) (µg | -DI- 1,4- DRO- CHLO TER WAT TTRD UNFI EC RI J/L) (µg | ORO- CHLC
FER WAT
LTRD UNFI
EC RE
g/L) (µg | DI - HEX
DRO- CHLO
CER WAT
TRD UNFL
CC RECO
(/L) (µg. | A- HEX
RO- CHLC
ER BUT
TRD ADIE
VER TOT
/L) (µg | ORO-
'- NAPH
'NE ALE
'AL TOT
/L) (µg | ENE
PAL
/L) | | | | OCT 24 | <. | 02 E2 | <1 | <2 | N | 1 <2 | 2 <2 | 2 <2 | <3 | s <5 | ; | | | | DEC 10 | - | | | | | | | | | | - | | | | FEB
05 | - | | | | | | | | | | - | | | | MAR
09 | <. | 02 M | <1 | <2 | <2 | 2 <2 | 2 <2 | 2 <2 | <1 | . <5 | ; | | | | MAY
30
AUG | - | | | | | | | - | | | | | | | 08 | - | | | | | | | | | | - | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07010000 MISSISSIPPI RIVER AT ST. LOUIS, MO LOCATION.--Lat 38°37'44", long 90°10'47", Hydrologic Unit 07140101, on downstream side of west pier of Eads Bridge at St. Louis, 15.0 mi downstream from Missouri River, 19.2 mi upstream from Meramec River, and at mile 180.0 above the Ohio River. DRAINAGE AREA. -- 697,000 mi², approximately. #### WATER-DISCHARGE RECORDS #### PERIOD OF RECORD. -- DISCHARGE: January 1861 to current year. Monthly discharge only for some periods, published in WSP 1311. GAGE HEIGHT: March 1933 to current year. Since January 1861 in reports of Mississippi River Commission. Since January 1890 in reports of the National Weather Service. REVISED RECORDS.--WDR MO-76-1: Drainage area, WDR MO-98-1: Extreme outside period of record. GAGE.--Water-stage recorder. Datum of gage is 379.94 ft above National Geodetic Vertical Datum of 1929. Prior to May 5, 1934, nonrecording gage 0.4 mi downstream; May 5, 1934, to Dec. 9, 1952, water-stage recorder at site 20 ft downstream at present datum REMARKS.--Water-discharge records good except for estimated daily discharges, which are poor. Natural flow of stream affected by many reservoirs and navigation dams in upper Mississippi River Basin and by many reservoirs and diversions for irrigation in Missouri River Basin. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 27, 1844, reached a stage of 41.32 ft, from floodmarks, discharge, 1,000,000 ft³/s, computed by U.S. Army Corps of Engineers. Flood in April 1785 may have reached a stage of 42.0 ft. Minimum flow, 18,000 ft³/s, Dec. 23, 1863. DISCHARGE, CURIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 7 e121000 e123000 e126000 e129000 e125000 e116000 e110000 e109000 e105000 e97700 e90600 e91200 e95300 ---MEAN MAX MIN IN. 0.22 0.19 0.15 0.23 0.26 0.37 0.83 0.28 0.24 0.20 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1933 - 2002, BY WATER YEAR (WY) MEAN MAX (MA) 47920 MTN (WY) WATER YEARS 1933 - 2002 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR ANNITAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Jun 10 May 17 Aug 1 1993 Dec 12 1937 LOWEST DAILY MEAN Jan 13 Dec 30 ANNUAL SEVEN-DAY MINIMUM Dec 29 Jan 18 1940 Aug 1 1993 Aug 1 1993 MAXIMUM PEAK FLOW May 17 MAXIMUM PEAK STAGE ---37.34 May 17 49.58 INSTANTANEOUS LOW FLOW Dec 12 1937 Jan 23 ANNUAL RUNOFF (INCHES) 4 54 3 73 3 71 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS e Estimated #### 279 MISSISSIPPI RIVER MAIN STEM #### 07010000 MISSISSIPPI RIVER AT ST. LOUIS, MO--Continued WATER-QUALITY RECORDS PERIOD OF RECORD.--WATER TEMPERATURES: October 1951 to current year. SEDIMENT RECORDS: April 1948 to current year. REMARKS.--Sediment discharge computed from turbidity readings. Sediment records fair. EXTREMES FOR PERIOD OF DAILY RECORD.-SEDIMENT CONCENTRATIONS: Maximum daily mean, 6,720 mg/L, Feb. 24, 1985; minimum daily mean, 19 mg/L, Jan. 21 and 22, 1967. SEDIMENT LOADS: Maximum daily, 9,830,000 tons, Feb. 24, 1985; minimum daily, 2,800 tons, Jan. 21, 1967. #### EXTREMES FOR CURRENT YEAR. -- SEDIMENT CONCENTRATIONS: Maximum daily mean, 1,550 mg/L, May 9; minimum daily mean 62 mg/L, Oct. 7,Nov. 23 and Jan. 26. SEDIMENT LOADS: Maximum daily, 2,240,000 tons, May 9; minimum daily, 14,100 tons, Jan. 26. SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | MEAN | | | MEAN | | | MEAN | | |------|-----------|---------|--------------|-----------|---------|-------------|-----------|---------|-------------| | | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | DAY | (cfs) | (mq/L) | (tons/day) | (cfs) | (mq/L) | (tons/day) | (cfs) | (mq/L) | (tons/day) | | 2111 | (015) | (5/2/ | (colle) day) | (015) | (5/2/ | (comb, adj, | (015) | (5/2/ | (comb) day) | | | | OCTOBER | | N | OVEMBER | | DI | ECEMBER | | | 1 | 129000 | 174 | 60700 | 132000 | 150 | 53600 | 139000 | 135 | 50700 | | 2 | 118000 | 134 | 42800 | 131000 | 138 | 48800 | 138000 | 98 | 36400 | | 3 | 106000 | 106 | 30400 | 133000 | 135 | 48600 | 140000 | 97 | 36600 | | 4 | 96600 | 86 | 22600 | 133000 | 130 | 46600 | 145000 | 108 | 42200 | | 5 | 103000 | 69 | 19100 | 135000 | 123 | 44900 | 141000 | 96 | 36700 | | J | 103000 | 09 | 19100 | 133000 | 123 | 44900 | 141000 | 90 | 30700 | | 6 | 101000 | 70 | 19100 | 137000 | 119 | 44200 | 135000 | 104 | 37800 | | 7 | 106000 | 62 | 17700 | 130000 | 115 | 40300 | 127000
 94 | 32200 | | 8 | 110000 | 70 | 20900 | 121000 | 106 | 34700 | 123000 | 91 | 30300 | | 9 | 116000 | 76 | 24000 | 121000 | 93 | 30500 | 120000 | 98 | 31700 | | 10 | 110000 | 75 | 22400 | 126000 | 84 | 28500 | 124000 | 99 | 33200 | | 10 | 110000 | , 3 | 22100 | 120000 | 01 | 20300 | 121000 | ,,, | 33200 | | 11 | 110000 | 118 | 34900 | 120000 | 81 | 26200 | 129000 | 99 | 34400 | | 12 | 129000 | 191 | 66600 | 118000 | 74 | 23500 | 138000 | 103 | 38400 | | 13 | 135000 | 149 | 54200 | 115000 | 70 | 21700 | 138000 | 118 | 43900 | | 14 | 138000 | 165 | 61300 | 111000 | 71 | 21300 | 142000 | 168 | 64500 | | 15 | 136000 | 107 | 39300 | 109000 | 74 | 21800 | 145000 | 269 | 105000 | | | | | | | | | | | | | 16 | 136000 | 112 | 41100 | 105000 | 66 | 18700 | 150000 | 214 | 86500 | | 17 | 135000 | 108 | 39400 | 107000 | 67 | 19300 | 176000 | 513 | 244000 | | 18 | 144000 | 111 | 43100 | 99900 | 65 | 17500 | 187000 | 388 | 196000 | | 19 | 146000 | 106 | 41400 | 103000 | 72 | 19900 | 171000 | 276 | 127000 | | 20 | 154000 | 125 | 51900 | 99100 | 69 | 18400 | 162000 | 253 | 111000 | | 20 | 101000 | 123 | 51700 | 33200 | 0,5 | 10100 | 102000 | 200 | 111000 | | 21 | 154000 | 134 | 55900 | 102000 | 68 | 18800 | 153000 | 239 | 98600 | | 22 | 137000 | 127 | 47100 | 98000 | 69 | 18400 | 152000 | 183 | 75300 | | 23 | 136000 | 132 | 48600 | 90600 | 62 | 15100 | 157000 | 154 | 65400 | | 24 | 161000 | 160 | 69700 | 107000 | 121 | 35100 | 145000 | 136 | 53300 | | 25 | 180000 | 212 | 103000 | 122000 | 139 | 45900 | 123000 | 119 | 39400 | | 23 | 100000 | 212 | 103000 | 122000 | 133 | 43300 | 123000 | 117 | 37400 | | 26 | 168000 | 197 | 89600 | 116000 | 109 | 34200 | 121000 | 115 | 37500 | | 27 | 148000 | 181 | 72400 | 114000 | 101 | 31000 | 111000 | 107 | 32100 | | 28 | 152000 | 170 | 69600 | 116000 | 94 | 29500 | 91400 | 101 | 24900 | | 29 | 148000 | 160 | 63900 | 122000 | 125 | 41000 | 82700 | 82 | 18300 | | 30 | 138000 | 147 | 54900 | 138000 | 126 | 46900 | 78800 | 80 | 17000 | | 31 | 142000 | 159 | 61100 | | | | 89000 | 72 | 17300 | | 31 | 1 12000 | 137 | 31100 | | | | 0,000 | 12 | 17300 | #### MISSISSIPPI RIVER MAIN STEM ### 07010000 MISSISSIPPI RIVER AT ST. LOUIS, MO--Continued SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | |----------------------------------|---|--------------------------------------|---|--|--|--|--|--|---| | | | JANUARY | | : | FEBRUARY | | | MARCH | | | 1 | 89100 | 81 | 19500 | 234000 | 1070 | 677000 | 152000 | 129 | 53000 | | 2 | 82900 | 72 | 16100 | 261000 | 1020 | 720000 | 156000 | 135 | 56900 | | 3 | 81100 | 75 | 16500 | 227000 | 909 | 557000 | 160000 | 222 | 95800 | | 4 | 81100 | 74 | 16200 | 196000 | 667 | 353000 | 149000 | 151 | 60600 | | 5 | 85000 | 77 | 17800 | 172000 | 461 | 214000 | 132000 | 126 | 45100 | | 6 | 89300 | 77 | 18600 | 158000 | 476 | 203000 | 117000 | 113 | 35800 | | 7 | 89100 | 76 | 18400 | 148000 | 234 | 93500 | 125000 | 112 | 37800 | | 8 | 87000 | 76 | 17800 | 138000 | 207 | 77000 | 134000 | 113 | 40800 | | 9 | 97700 | 86 | 22800 | 134000 | 187 | 67600 | 146000 | 230 | 90700 | | 10 | 99700 | 72 | 19400 | 137000 | 175 | 64600 | 157000 | 328 | 139000 | | 11 | 94100 | 73 | 18500 | 136000 | 182 | 66800 | 173000 | 131 | 61400 | | 12 | 99000 | 75 | 20000 | 133000 | 175 | 62700 | 176000 | 148 | 70400 | | 13 | 98700 | 74 | 19600 | 133000 | 160 | 57400 | 167000 | 176 | 79300 | | 14 | 100000 | 78 | 20900 | 137000 | 156 | 57900 | 163000 | 268 | 118000 | | 15 | 97500 | 78 | 20600 | 139000 | 146 | 54900 | 168000 | 266 | 121000 | | 16 | 91300 | 78 | 19300 | 134000 | 153 | 55300 | 174000 | 249 | 117000 | | 17 | 94900 | 73 | 18800 | 126000 | 140 | 47500 | 173000 | 222 | 104000 | | 18 | 89500 | 80 | 19200 | 124000 | 134 | 45000 | 167000 | 216 | 97400 | | 19 | 90500 | 72 | 17500 | 123000 | 132 | 44000 | 167000 | 215 | 96700 | | 20 | 89100 | 77 | 18400 | 118000 | 129 | 41000 | 169000 | 205 | 93400 | | 21 | 86500 | 75 | 17500 | 116000 | 145 | 45400 | 166000 | 216 | 96700 | | 22 | 81100 | 70 | 15400 | 132000 | 131 | 46800 | 167000 | 183 | 82400 | | 23 | 79500 | 71 | 15300 | 142000 | 127 | 48500 | 161000 | 174 | 75500 | | 24 | 89200 | 64 | 15500 | 155000 | 155 | 65000 | 163000 | 193 | 84000 | | 25 | 86300 | 71 | 16500 | 164000 | 204 | 90300 | 178000 | 362 | 173000 | | 26
27
28
29
30
31 | 84600
84800
85000
92400
98800
136000 | 62
68
66
72
75
682 | 14100
15500
15200
18000
20000
250000 | 160000
145000
146000

 | 229
185
143
 | 99100
72600
56600

 | 172000
166000
164000
175000
170000
158000 | 318
284
329
298
251
208 | 146000
125000
144000
137000
112000
86500 | | | | APRIL | | | MAY | | | JUNE | | | 1 | 145000 | 165 | 62900 | 408000 | 694 | 764000 | 351000 | 353 | 335000 | | 2 | 139000 | 146 | 53000 | 402000 | 632 | 686000 | 329000 | 326 | 289000 | | 3 | 148000 | 152 | 58800 | 387000 | 519 | 542000 | 327000 | 315 | 278000 | | 4 | 151000 | 150 | 58600 | 377000 | 334 | 340000 | 323000 | 267 | 233000 | | 5 | 154000 | 136 | 54500 | 363000 | 256 | 251000 | 311000 | 281 | 236000 | | 6 | 155000 | 131 | 52400 | 350000 | 380 | 359000 | 305000 | 287 | 237000 | | 7 | 158000 | 132 | 53700 | 368000 | 667 | 663000 | 317000 | 289 | 247000 | | 8 | 164000 | 149 | 62600 | 428000 | 868 | 1000000 | 329000 | 295 | 262000 | | 9 | 179000 | 179 | 82100 | 534000 | 1550 | 2240000 | 340000 | 312 | 287000 | | 10 | 207000 | 216 | 115000 | 566000 | 1290 | 1970000 | 352000 | 350 | 333000 | | 11 | 220000 | 301 | 170000 | 577000 | 1110 | 1730000 | 364000 | 445 | 438000 | | 12 | 217000 | 352 | 196000 | 581000 | 1350 | 2120000 | 391000 | 782 | 826000 | | 13 | 204000 | 345 | 180000 | 609000 | 1180 | 1940000 | 418000 | 708 | 800000 | | 14 | 207000 | 320 | 170000 | 640000 | 1120 | 1930000 | 453000 | 1070 | 1310000 | | 15 | 203000 | 298 | 155000 | 662000 | 1090 | 1940000 | 460000 | 964 | 1200000 | | 16 | 197000 | 287 | 146000 | 676000 | 1100 | 2010000 | 452000 | 681 | 832000 | | 17 | 205000 | 306 | 162000 | 679000 | 852 | 1560000 | 436000 | 515 | 607000 | | 18 | 207000 | 360 | 193000 | 664000 | 939 | 1680000 | 417000 | 444 | 499000 | | 19 | 212000 | 358 | 198000 | 639000 | 614 | 1060000 | 394000 | 378 | 402000 | | 20 | 224000 | 589 | 347000 | 602000 | 563 | 915000 | 366000 | 320 | 316000 | | 21 | 249000 | 687 | 450000 | 562000 | 527 | 800000 | 334000 | 399 | 359000 | | 22 | 293000 | 669 | 518000 | 525000 | 484 | 685000 | 310000 | 415 | 347000 | | 23 | 304000 | 764 | 615000 | 489000 | 351 | 464000 | 293000 | 374 | 296000 | | 24 | 305000 | 725 | 587000 | 450000 | 329 | 400000 | 275000 | 308 | 229000 | | 25 | 321000 | 796 | 681000 | 426000 | 317 | 365000 | 269000 | 254 | 184000 | | 26
27
28
29
30
31 | 316000
308000
330000
370000
399000 | 858
832
588
737
578 | 723000
685000
520000
724000
621000 | 419000
421000
438000
437000
417000
388000 | 287
277
527
563
428
388 | 325000
315000
623000
664000
481000
406000 | 262000
252000
244000
240000
238000 | 226
224
193
173
167 | 160000
152000
127000
112000
107000 | ### MISSISSIPPI RIVER MAIN STEM ### 07010000 MISSISSIPPI RIVER AT ST. LOUIS, MO--Continued 281 SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | MEAN | | | MEAN | | | MEAN | | |-----|------------------|------------|----------------|------------------|----------|----------------|------------------|----------|----------------| | | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | MEAN | CONCEN- | SEDIMENT | | | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | DISCHARGE | TRATION | DISCHARGE | | DAY | (cfs) | (mg/L) | (tons/day) | (cfs) | (mg/L) | (tons/day) | (cfs) | (mg/L) | (tons/day) | | | | JULY | | | AUGUST | | SE | EPTEMBER | | | 1 | 227000 | 163 | 100000 | 136000 | 86 | 31500 | 172000 | 162 | 75400 | | 2 | 219000 | 133 | 78400 | 129000 | 85 | 29700 | 163000 | 162 | 71400 | | 3 | 217000 | 155 | 91000 | 122000 | 73 | 24000 | 156000 | 140 | 59100 | | 4 | 213000 | 144 | 82700 | 121000 | 75 | 24600 | 144000 | 125 | 48700 | | 5 | 209000 | 146 | 82700 | 117000 | 74 | 23300 | 133000 | 101 | 36300 | | | | | | | | | | | | | 6 | 204000 | 125 | 69100 | 116000 | 90 | 28300 | 126000 | 96 | 32600 | | 7 | 200000 | 103
101 | 55700
52400 | 116000 | 92 | 28900
26700 | 120000 | 84 | 27100
26900 | | 8 | 193000
188000 | 98 | 52400
49800 | 119000
110000 | 83
76 | 26700
22600 | 120000 | 83
81 | 26900
26600 | | 9 | | 98
87 | 49800
43100 | 110000 | | | 121000
119000 | 81
77 | 24800 | | 10 | 184000 | 8 / | 43100 | 110000 | 72 | 21400 | 119000 | // | 24800 | | 11 | 183000 | 88 | 43300 | 114000 | 80 | 24500 | 117000 | 77 | 24300 | | 12 | 188000 | 98 | 49900 | 110000 | 80 | 23600 | 123000 | 80 | 26500 | | 13 | 189000 | 101 | 51300 | 116000 | 87 | 27300 | 125000 | 81 | 27300 | | 14 | 183000 | 92 | 45600 | 127000 | 77 | 26300 | 124000 | 81 | 27000 | | 15 | 174000 | 94 | 44200 | 129000 | 73 | 25500 | 124000 | 84 | 28200 | | 16 | 161000 | 113 | 49100 | 128000 | 73 | 25100 | 123000 | 84 | 28000 | | 17 | 149000 | 90 | 36100 | 134000 | 71 | 25700 | e121000 | 85 | 27800 |
| 18 | 150000 | 113 | 46000 | 131000 | 74 | 26100 | e123000 | 90 | 29700 | | 19 | 146000 | 82 | 32300 | 126000 | 80 | 27300 | e126000 | 104 | 35300 | | 20 | 143000 | 80 | 31000 | 151000 | 153 | 62500 | e129000 | 162 | 56500 | | | | | | | | | | | | | 21 | 154000 | 78 | 32200 | 153000 | 159 | 64600 | e125000 | 145 | 48900 | | 22 | 155000 | 88 | 36700 | 151000 | 148 | 60200 | e116000 | 82 | 25500 | | 23 | 151000 | 82 | 33500 | 149000 | 119 | 47700 | e110000 | 89 | 26400 | | 24 | 152000 | 85 | 35000 | 190000 | 156 | 80200 | e109000 | 89 | 26200 | | 25 | 148000 | 72 | 28800 | 219000 | 183 | 108000 | e110000 | 93 | 27600 | | 26 | 146000 | 80 | 31400 | 215000 | 186 | 108000 | e105000 | 92 | 26100 | | 27 | 139000 | 95 | 35700 | 208000 | 176 | 98700 | e97700 | 95 | 25000 | | 28 | 138000 | 86 | 32000 | 197000 | 168 | 89200 | e90600 | 94 | 22900 | | 29 | 132000 | 91 | 32600 | 187000 | 166 | 83600 | e91200 | 86 | 21100 | | 30 | 141000 | 87 | 33200 | 185000 | 128 | 64200 | e95300 | 102 | 27300 | | 31 | 142000 | 85 | 32600 | 181000 | 121 | 59100 | | | | e Estimated #### 07010022 RIVER DES PERES NEAR UNIVERSITY CITY, MO LOCATION.--Lat $38^{\circ}40^{\circ}07^{\circ}$, long $90^{\circ}19^{\circ}26^{\circ}$, St. Louis County, Hydrologic Unit 07140101, on top of left downstream abutment of Purdue Ave. bridge, 3.78 mi south of Interstate 70, and 2.01 mi east of Interstate 170. DRAINAGE AREA.--8.94 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- September 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 491.97 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair except for discharges below 1 $\mathrm{ft^3/s}$ and above 1,400 $\mathrm{ft^3/s}$, which are poor. U.S.G.S. satellite telemeter at station. | | | DISCHA | RGE, CUB | IC FEET PER | | WATER YE
Y MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |--|---|--|--|--|--------------------------------------|---|---|--|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.06
0.00
0.00 | 0.47
9.4
0.40
0.10
0.09 | 2.1
1.5
0.64
0.39
0.57 | 0.08
0.32
0.05
0.04
0.07 | 14
2.9
1.8
1.3
0.65 | 0.36
71
8.6
1.7
2.7 | 0.52
2.3
0.52
0.42
0.38 | 0.70
0.49
0.27
0.92
0.23 | 0.31
0.95
0.19
0.45
45 | 0.08
0.67
1.6
0.46
0.09 | 0.02
0.08
0.10
0.10
5.5 | 0.08
0.09
0.16
0.14
0.12 | | 6
7
8
9
10 | 1.4
0.17
0.12
0.14
136 | 0.09
0.08
0.10
0.10 | 3.0
0.43
0.24
0.16
0.09 | 1.7
0.84
0.68
2.3
0.72 | 0.57
0.51
0.41
0.34
5.2 | 1.3
0.68
0.58
80
2.2 | 0.36
4.5
49
3.8
0.81 | 43
248
102
148
5.8 | 1.3
0.41
0.30
0.90
7.8 | 0.08
0.06
0.08
0.05
0.06 | 160
0.38
0.05
0.03
0.02 | 0.12
0.11
0.10
0.13
0.15 | | 11
12
13
14
15 | 155
17
24
6.9
49 | 0.06 | 0.06
48
5.6
62
8.6 | 0.08
0.41
0.09
0.31
0.12 | 0.87
0.51
0.45
0.41
0.42 | 1.0
0.72
0.42
0.28
52 | 0.36
13
0.55
0.92
0.40 | 1.4
155
150
8.1
2.6 | 267
233
2.8
0.52
0.23 | 3.8
6.7
1.2
0.07
0.04 | 0.68
1.6
2.4
3.5
0.28 | 0.19
0.14
0.16
0.15
0.20 | | 16
17
18
19
20 | 19
1.1
0.38
0.28
0.22 | 0.04
0.06
0.73
1.4
0.06 | 149
106
6.7
2.2
1.1 | 0.06
0.06
0.05
4.5
0.93 | | 4.5
1.3
0.72
31 | 0.41
0.86
0.38
238
39 | 29
117
9.7
2.3
1.2 | 0.18
0.18
0.13
0.35
0.18 | 41
2.5
34
1.3
0.14 | 0.06
0.07
58
0.79
0.20 | 0.19
56
1.6
39
35 | | 21
22
23
24
25 | 0.19
1.5
13
93
2.5 | 0.03
0.02
0.02
188
0.85 | 0.73
10
1.2
0.46
0.33 | 1.1
0.52
7.5
6.6
0.34 | 0.72
0.13
1.1
0.07
3.7 | 1.3
0.51
0.42
15
95 | 41
4.1
1.3
12
1.2 | | | 0.06
65
14
0.35
0.05 | 0.50
0.15
3.4
0.47
0.19 | 0.89
0.25
0.14
0.08
0.06 | | 26
27
28
29
30
31 | 0.35
0.11
1.9
0.08
0.10
0.08 | 6.7
0.82
44
28
44 | 0.32
0.45
0.41
0.18
0.08
0.05 | 0.16
0.13
0.12
15
143
196 | 2.7
0.87
0.39
 | 35
5.2
2.1
1.6
0.90
0.60 | 14 | 0.44
10
47
2.5
0.80
0.68 | 0.76
0.14
0.12
0.06
0.06 | 0.78
0.11
0.06
0.05
0.05
0.02 | 0.17
0.16
0.12
0.11
0.11
0.09 | 0.05
0.10
0.09
0.08
0.09 | | MEAN
MAX
MIN | 18.5
155
0.00 | 10.9
188
0.02 | 13.3
149
0.05 | 12.4
196
0.04 | 2.78
32
0.07 | 13.8
95
0.28 | 18.4
238
0.36 | 35.4
248
0.23 | 19.7
267
0.06 | 5.63
65
0.02 | 7.72
160
0.02 | 4.52
56
0.05 | | STATIS | TICS OF M | ONTHLY ME | CAN DATA I | FOR WATER Y | EARS 199' | 7 - 2002, | BY WATER | YEAR (WY | (1) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 6.79
18.5
2002
3.11
1998 | 5.91
10.9
2002
1.17
2000 | 5.35
13.3
2002
1.23
1999 | 9.78
20.9
1999
2.36
2000 | 12.2
27.7
1999
2.78
2002 | 12.4
33.4
1998
3.61
2000 | 10.6
18.4
2002
3.81
2000 | 17.6
35.4
2002
4.20
1999 | 23.5
34.9
2000
5.46
2001 | 8.13
20.1
1998
0.87
2001 | 5.61
8.29
2000
0.95
2001 | 4.64
8.19
2001
1.29
1999 | | SUMMAR | Y STATIST | ics | F | OR 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YE | AR | WATER Y | EARS 1997 | - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
10 PER
50 PER | MEAN T ANNUAL ANNUAL ANNUAL T DAILY ME SEVEN-DA M PEAK FI TANEOUS I CENT EXCE CENT EXCE CENT EXCE | EAN EAN Y MINIMUM OW CAGE OW FLOW EEDS | ſ | 7.98 188 0.00 0.00 Jul 19 0.44 0.00 | Nov 2
Many Day
25,Sep 2 | 24
ys
24 | 267
0.00
0.05
4070 ^a
13.51
0.00 s
42
0.52
0.06 | Jun
Oct 1,3
Jul
Jun
Jun
Jun
Geveral Da | 11
,4
28
11
11 | 10.2
13.7
5.55
711
0.00
0.00
5680
15.74
0.00
20
0.29
0.00 | Jun 2
Eac
At | 2002
2001
24 2000
2h Year
Times
2 1999
12 1999
2h Year | ^a From rating extended above 653 ft³/s. # 07010022 RIVER DES PERES NEAR UNIVERSITY CITY, MO--Continued (Metropolitan Sewer District) WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1997 to current year. | DATE | TIME | SAMPLE
TYPE | : | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT 24 | 1322 | ENVIRONM | IENTAL | 593 | 8.9 | 89 | 7.5 | 73 | 13.6 | 35 | 11.2 | 1.78 | 48 | | DEC
11 | 1350 | ENVIRONM | IENTAL | .07 | 4.2 | 34 | 7.6 | 1000 | 5.8 | 280 | 73.8 | 22.5 | 184 | | FEB
04
04
MAR | 1048
1049 | ENVIRONM
REPLICAT | | 1.3 | 12.1 | 88
 | 7.8 | 1600 | 1.8 | 340
380 | 93.0
107 | 25.0
28.0 | 216 | | 09
25
MAY | 0217
0300 | ENVIRONM
ENVIRONM | | 157
717 | 7.7
12.2 | 78
97 | 7.6
7.5 | 2100
214 | 14.2
4.3 | 140 | 41.0 | 9.20 | 80
35 | | 30
AUG | 0955 | ENVIRONM | IENTAL | .81 | 6.6 | 75 | 7.6 | 780 | 20.2 | 270 | 80.0 | 16.0 | 170 | | 08 | 1440 | ENVIRONM | IENTAL | .06 | 8.8 | 113 | 8.2 | 627 | 27.6 | 180 | 56.0 | 9.60 | 115 | | DATE | ANC WATER UNFLITD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as
C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN
DEMAND,
CHEM-
ICAL
(high
level)
(mg/L)
(00340) | | OCT
24
DEC | 45 | 54 | 0 | | 633 | E2.0 | .21 | .230 | .01 | .220 | E.86 | 2.6 | 26 | | 11
FEB | 184 | 225 | 0 | 131 | E28 | E4.3 | 1.90 | <.020 | <.01 | .130 | E.34 | 9.6 | 77 | | 04
04
MAR | 217 | 265
 | 0 | 290
290 | <1
<1 | 2.1
2.1 | .62
.62 | 1.60
1.60 | .09 | .130
.130 | .25
.25 | 6.3 | 26
28 | | 09
25 | 79
34 | 97
41 | 0 | | 380 | 5.2 | .23 | .230 | .03 | .130 | .93 | 4.3 | 52
 | | MAY
30 | 170 | 207 | 0 | | 4 | 2.1 | .72 | .520 | .07 | .150 | .21 | 7.9 | 26 | | AUG
08 | 114 | 139 | 0 | | 12 | .90 | .12 | .160 | .02 | .080 | .13 | 1.6 | 27 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT 24 | K200000 | K120000 | 134000 | 188 | 1 | <1 | 1.0 | 1.3 | 5.2 | 330 | 5 | 84 | .1 | | DEC
11 | K47 | 500 | 600 | 3 | 2 | <1 | 1.0 | 1.0 | 9.2 | 325 | <1 | 998 | <.1 | | FEB
04
04 | 1600
 | K6650
 | 4200
 | <3
<3 | <1
1 | <1
<1 | <1.0
<1.0 | <1.0
<1.0 | 24.0
30.0 | 50
56 | <1
<1 | 649
722 | <.1
<.1 | | MAR
09
25 | K9500
 | 56000
 | K5600
 | 245 | 2 | <1 | <1.0 | 3.1 | 6.8 | 252
 | 2 | 363
 | <.1 | | MAY
30
AUG | 7000 | 12600 | 2680 | 3 | 2 | <1 | <1.0 | <1.0 | 4.9 | 112 | <1 | 111 | <.1 | | 08 | 120 | 920 | 124 | 11 | 3 | <1 | <1.0 | <1.0 | 3.4 | 46 | <1 | 129 | <.1 | # 07010022 RIVER DES PERES NEAR UNIVERSITY CITY, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |------------------|---|--|---|---|--|---|---|---|---|---|--|---|---| | OCT 24 | 1.7 | <1 | <1.0 | 91 | 18 | E1 | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC
11
FEB | 3.6 | 1 | <1.0 | 38 | | | | | | | | | | | 04
04
MAR | 4.2
4.6 | 2
2 | <1.0
<1.0 | 128
65 | | | | | | | | | | | 09
25 | 3.1 | 1 | <1.0 | 137 | E5
 |
M | <2 |
<3 |
<.7 |
<3 |
<3 |
<3 |
<2 | | MAY
30 | 2.6 | <1 | <1.0 | 98 | | | | | | | | | | | AUG
08 | 3.1 | 1 | <1.0 | 5 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | | OCT 24 | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | DEC
11
FEB | | | | | | | | | | | | | | | 04
04 | | | | | | | | | | | | | | | MAR
09 | | | | | | | | | | | <.01 | | | | 25
MAY | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | M | М | | М | <2 | | 30
AUG | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZ(A) ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT 24 | <40 | 4 | 5 | E2 | 3 | E3 | <3 | <2 | <2 | E3 | <.02 | .2 | .04 | | DEC
11
FEB | | | | | | | | | | | | | | | 04
04 | | | | | | | | | | | | | | | MAR
09
25 |
<40 |
M |
E1 |
M |
M |
M |
<3 |
<2 |
<2 |
<6 | <.02 | .2 | .06 | | MAY
30 | | | | | | | | | | | | | | | AUG
08 | | | | | | | | | | | | | | # 07010022 RIVER DES PERES NEAR UNIVERSITY CITY, MO--Continued (Metropolitan Sewer District) | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | ETHION,
TOTAL
(μg/L)
(39398) | |------------------|---|---|--|--|--|---|--|--|--|---|---|---|---| | OCT 24 | 4 | <2 | <.02 | .03 | .007 | М | M | М | <5 | <.10 | <.02 | <.01 | <.01 | | DEC 11 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09 | | | <.02 | .02 | .015 | | | | | <.10 | <.01 | <.01 | <.01 | | 25
MAY | E1 | <4 | | | | <2 | <2 | <2 | <5 | | | | | | 30
AUG | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) |
INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(µg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | | OCT
24
DEC | 9 | М | <.01 | <.009 | <.01 | <2 | E3 | М | <.006 | E.04 | <.020 | <.01 | <.006 | | 11 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09 | | | <.01 | <.009 | <.01 | | | | <.006 | <.10 | <.015 | <.02 | <.006 | | 25
MAY | 2 | М | | | | <2 | М | М | | | | | | | 30
AUG | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(μg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT 24 | <4 | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | 4 | <3.0 | | DEC 11 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09 | | | | | <.007 | <.006 | <.009 | | <.01 | <.1 | | | | | 25
MAY | <4 | <3 | <2 | <2 | | | | <3 | | | М | E1 | <3.0 | | 30
AUG
08 | | | | | | | | | | | | | | | 00 | | | | | | | | | | | | | | # 07010022 RIVER DES PERES NEAR UNIVERSITY CITY, MO--Continued (Metropolitan Sewer District) | DATE | PHORATE
TOTAL
(µg/L)
(39023) | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLITED
REC
(µg/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE HEXA- CHLORO- WATER UNFLTRD RECOVER (µg/L) (34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(μg/L)
(34696) | |------|---------------------------------------|--------------------------------------|---|---|--|---|---|---|--|--| | OCT | | | | | | | | | | | | 24 | <.02 | 7 | <1 | <2 | <2 | M | <2 | <2 | <3 | M | | DEC | | | | | | | | | | | | 11 | | | | | | | | | | | | FEB | | | | | | | | | | | | 04 | | | | | | | | | | | | 04 | | | | | | | | | | | | MAR | | | | | | | | | | | | 09 | <.02 | | <1 | | | | | | | | | 25 | | E2 | | <2 | <2 | M | <2 | <2 | <1 | <5 | | MAY | | | | | | | | | | | | 30 | | | | | | | | | | | | AUG | | | | | | | | | | | | 0.8 | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07010030 RIVER DES PERES TRIBUTARY AT PAGEDALE, MO 287 LOCATION.--Lat 38°40'37", long 90°18'53", St. Louis County, Hydrologic Unit 07140101, on right culvert wall next to sidewalk handrail at Page Ave., 3.04 mi south of Interstate 70, and 2.37 mi east of Interstate 170. DRAINAGE AREA.--2.01 mi^2 . PERIOD OF RECORD.--June 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 504.56 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records poor. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | | | | | | | | |---|---|--------------------------------------|--|---|--------------------------------------|--|--|---|--------------------------------------|---|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
5.6 | 0.16
0.92
0.07
0.03
0.03 | 0.52
0.37
0.30
0.26
0.40 | 0.14
0.12
0.11
0.11
0.13 | 3.1
0.99
0.68
0.43
0.33 | 0.17
7.3
1.5
0.89
0.76 | 0.24
0.32
0.18
0.16
0.15 | 0.31
0.25
0.19
0.19
0.16 | 0.70
0.56
0.50
0.49
2.6 | 0.08
0.06
0.06
0.06
0.08 | 0.08
0.08
0.08
0.12
2.3 | 0.05
0.05
0.04
0.04
0.04 | | | 6
7
8
9
10 | 0 01 | 0.02 | 0.39
0.26
0.25
0.25
0.24 | 0.19
0.14
0.16
0.16
0.14 | 0.31
0.28
0.25
0.22
0.45 | 0.68
0.51
0.48
12
0.97 | 0.14
0.34
6.2
0.37
0.17 | 4.3
58
16
24
1.5 | 0.58
0.46
0.42
0.80
0.87 | 0.07
0.04
0.03
0.02
0.03 | 73
0.52
0.22
0.13
0.09 | 0.05
0.05
0.06
0.06
0.06 | | | 11
12
13
14
15 | 28
2.3
3.5
0.34
6.3 | 0.02
0.02
0.02
0.04
0.05 | 0.22
4.7
1.0
9.4
1.5 | 0.12
0.11
0.12
0.12
0.11 | 0.20
0.18
0.15
0.14
0.14 | 0.67
0.57
0.49
0.42
6.3 | 0.16
1.1
0.17
0.18
0.13 | 0.86
23
30
2.0
0.94 | 79
57
1.6
0.77
0.53 | 1.8
1.7
0.11
0.06
0.05 | 0.17
0.55
0.33
0.40
0.15 | 0.89
0.07
0.93
0.06
0.06 | | | 16
17
18
19
20 | 1.7
0.17
0.09
0.06
0.05 | 0.05
0.06
0.21
0.25
0.10 | 19
16
1.5
0.72
0.52 | 0.10
0.10
0.11
0.50
0.15 | 0.15
0.16
0.16
3.4
0.50 | 1.1
0.58
0.43
2.5
1.2 | 0.12
0.10
0.09
27
7.4 | 3.7
23
4.0
1.9
1.4 | 0.40
0.34
0.31
0.27
0.24 | 2.3
0.24
1.7
0.19
0.08 | 0.08
0.08
6.1
0.37
0.20 | 0.06
1.6
0.24
2.6
3.5 | | | 21
22
23
24
25 | 0.05
1.2
11 | 0.10 | 0.43
0.88
0.38
0.31
0.29 | 0.22
0.14
0.76
0.40
0.10 | 0.20
0.17
0.16
0.16
0.42 | 0.49
0.37
0.34
1.7 | 4.5
0.63
0.32
1.3
0.21 | 1.1
1.0
0.89
1.6
0.80 | 0.20
0.17
0.15
0.14
1.1 | 0.07
6.5
1.1
0.19
0.12 | 0.15
0.13
0.42
0.18
0.09 | 0.28
0.19
0.13
0.12
0.12 | | | 26
27
28
29
30
31 | 0.27
0.17
0.15
0.14
0.13
0.12 | 0.30 | 0.25
0.24
0.23
0.18
0.18
0.17 | 0.09
0.09
0.09
1.4
18
32 | 0.31
0.21
0.16
 | 3.6
1.1
0.63
0.47
0.35
0.30 | 0.15
17
1.9
0.55
0.38 | 0.71
3.6
17
1.7
0.98
0.81 | 0.20
0.12
0.10
0.09
0.08 | 0.14
0.18
0.16
0.15
0.08 | 0.09
0.07
0.07
0.06
0.05 | 0.12
0.11
0.11
0.11
0.11 | | | MEAN
MAX
MIN | 2.59
28
0.00 | 1.56
30
0.02 | 1.98
19
0.17 | 1.81
32
0.09 | 0.50
3.4
0.14 | 2.00
13
0.17 | 2.39
27
0.09 | 7.29
58
0.16 | 5.03
79
0.08 | 0.56
6.5
0.02 | 2.79
73
0.05 | 0.40
3.5
0.04 | | | STATIST | rics of Mo | ONTHLY MEA | N DATA FO | OR WATER Y | EARS 1997 | - 2002, | BY WATER | YEAR (WY) | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.93
2.59
2002
0.39
2000 | 0.90
1.55
2002
0.12
2000 | 0.75
1.98
2002
0.33
1999 | 1.72
4.50
1999
0.32
2000 | 2.46
7.35
1999
0.50
2002 | 2.22
6.56
1998
0.37
2000 | 1.63
3.06
1998
0.48
2000 | 2.83
7.29
2002
0.51
1999 | 3.97
5.18
2000
0.45
2001 | 1.57
6.51
1998
0.25
1997 | 1.29
2.79
2002
0.12
2001 | 0.66
1.16
1998
0.14
1999 | | | SUMMAR | Y STATIST | ICS | FOR 2 | 2001 CALEN | IDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1997 | - 2002 | | | HIGHEST
LOWEST
HIGHEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
10 PERC
50 PERC | NUAL MEAN 1.04 GHEST ANNUAL MEAN WEST ANNUAL MEAN GHEST DAILY MEAN 30 Nov 2 WEST DAILY MEAN 0.00 Many Day NUAL SEVEN-DAY MINIMUM 0.00 Aug 27,Sep 11,2 XIMUM PEAK FLOW XIMUM PEAK STAGE ISTANTANEOUS LOW FLOW PERCENT EXCEEDS 1.8 PERCENT EXCEEDS 0.21 PERCENT EXCEEDS 0.00 | | | | | | 79
0.00
0.02
1290 ^a
7.52
0.00 Oct
4.1
0.24 | Jun 11
Oct 1-4,8
Nov 6
Aug 6
Aug 6
= 1-5,7-9 | | 1.76
2.53
0.69
148
0.00
Many
0.00
2490 ^a
8.84
0.00 Many
2.4
0.21 | Feb 'Days 200: At Time: Jul 2. Jul 2. Days 200: | 1998
2001
7 1999
1-2002
s 2001
2 1998
2 1998
1-2002 | | $^{^{\}rm a}$ $\,$ From rating extended above 48 ${\rm ft^3/s.}$ ### 07010035 ENGELHOLM CREEK NEAR WELLSTON, MO LOCATION.--Lat $38^{\circ}40^{\circ}57^{\circ}$, long $90^{\circ}18^{\circ}10^{\circ}$, in NW $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.3, T.45 N., R.6 E., St. Louis County, Hydrologic Unit 07140101, on right downstream wingwall of Kingsland Ave. bridge, 2.70 mi south of Interstate 70, and 2.78 mi east of Interstate 170. DRAINAGE AREA.--1.40 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1998 to current year. May 1997 to April 1998 published as Engelholm Creek at Pagedale (07010034). GAGE.--Water-stage recorder and crest-stage gage. Datum of gage unknown. REMARKS.--Water-discharge records poor. | | | DISCHAR | GE, CUBI | C FEET PER | SECOND, N | | | ER 2001 TO | SEPTEMBE | R 2002 | | | |--|--------------------------------------|---|--|--|--------------------------------------|---|---|---|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0 06 | 0.10
0.21
0.09
0.08
0.08 | 0.38
0.28
0.25
0.22
0.26 | 0.22
0.22
0.22
0.22
0.22 | 2.7
1.1
0.83
0.54
0.46 | 0.34
6.3
1.5
1.0
0.71 | 0.57
0.68
0.44
0.40
0.43 | 0.73
0.60
0.45
0.43
0.39 | 0.31
0.28
0.25
0.24
1.4 | 0.12
0.12
0.12
0.11
0.10 | 0.06
0.06
0.05
0.05
2.8 | 0.28
0.12
0.12
0.10
0.08 | | 6
7
8
9
10 | 0.06
0.04
0.04
0.05
8.2 | 0.08
0.08
0.09
0.10
0.09 | 0.26
0.18
0.15
0.12
0.12 | 0.23
0.21
0.19
0.20
0.20 | 0.46
0.42
0.39
0.38
0.59 | 0.60
0.54
0.47
7.9
0.90 | 0.62
4.6
0.94 | 3.6
20
9.9
11
1.6 | 0.56
0.24
0.23
0.33
0.55 | 0.09
0.08
0.07
0.07
0.09 | 28
0.17
0.09
0.08
0.07 | 0.08
0.08
0.08
0.08
0.09 | | 11
12
13
14
15 | 12
1.9
1.3
0.16
2.5 | 0.09
0.08
0.08
0.08
0.08 | 0.11
4.1
0.80
7.0
1.4 | 0.18
0.19
0.17
0.18
0.15 | 0.37
0.35
0.32
0.32
0.32 | 0.70
0.61
0.50
0.47
5.3 | 0.49
1.1
0.46
0.52
0.43 | 1.0
9.3
16
2.0
1.2 | 24
21
1.2
0.45
0.33 | 0.25
0.24
0.08
0.07
0.07 | 0.12
0.39
0.14
0.16
0.08 | 0.45
0.12
0.12
0.13
0.14 | | 16
17
18
19
20 | 1.1
0.11
0.09
0.08
0.08 | 0.07
0.07
0.08
0.11
0.09 | 14
11
1.4
0.68
0.45 | 0.15
0.15
0.15
0.32
0.21 | 0.32
0.31
0.31
3.0
0.80 | 1.3
0.80
0.65
3.3
1.8 | 0.39
0.35
0.34
17
6.8 | 3.2
12
2.7
1.2
0.78 | 0.27
0.25
0.24
0.21
0.20 | 0.61
0.12
0.60
0.10
0.07 | 0.07
0.06
3.9
0.15
0.11 | 0.12
0.89
0.19
1.6
2.3 | | 21
22
23
24
25 | 0.08
0.07
0.27
4.1
0.17 | 0.09
0.08
0.06
13
0.40 | 0.40
0.80
0.35
0.30
0.29 | 0.18
0.18
0.56
0.47
0.16 | 0.40
0.34
0.34
0.34
0.60 | 0.83
0.64
0.64
1.8
9.0 | 4.7
1.5
0.98
1.4
0.64 | 0.62
0.53
0.45
1.2
0.54 | 0.20
0.19
0.19
0.39
0.57 | 0.07
3.5
0.51
0.06
0.05 | 0.09
0.08
0.17
0.10
0.08 | 0.20
0.18
0.14
0.17
0.15 | | 26
27
28
29
30
31 | 0.10
0.09
0.10
0.10
0.10 | 0.67
0.30
4.0
3.0
4.8 | 0.27
0.27
0.27
0.24
0.24
0.24 | 0.15
0.15
0.15
1.4
11 | 0.46
0.37
0.35
 | 4.1
1.6
1.1
0.96
0.75
0.64 | 0.49
9.2
2.9
1.1
0.86 | 0.38
1.7
5.1
1.0
0.44
0.35 | 0.17
0.17
0.16
0.14
0.14 | 0.17
0.06
0.06
0.05
0.05 | 0.08
0.08
0.07
0.09
0.10 | 0.14
0.15
0.16
0.16
0.15 | | MEAN
MAX
MIN | 1.15
12
0.04 | 0.94
13
0.06 | 1.51
14
0.11 | 1.17
18
0.15 | 0.62
3.0
0.31 | 1.86
9.0
0.34 | 2.04
17
0.34 | 3.56
20
0.35 | 1.83
24
0.14 | 0.25
3.5
0.05 | 1.22
28
0.05 | 0.29
2.3
0.08 | | STATIST | rics of MC | ONTHLY MEA | N DATA F | OR WATER Y | EARS 1998 | - 2002, | , BY WATER | R YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 0.68
1.15
2002
0.42
2001 | 0.76
1.39
1999
0.22
2000 | 0.74
1.51
2002
0.30
2001 | 1.26
3.14
1999
0.34
2001 | 1.41
3.29
1999
0.62
2002 | 0.99
1.86
2002
0.38
2000 | 1.05
2.04
2002
0.36
2000 | 1.70
3.56
2002
0.56
2001 | 1.45
2.29
2000
0.28
2001 | 0.93
2.86
1998
0.22
2001 | 0.75
1.40
1998
0.10
2001 | 0.45
0.86
1998
0.21
1999 | | SUMMARY | | | | | DAR YEAR | F | FOR 2002 V | VATER YEAR | | WATER YE | ARS 1998 · | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT 10 PERCE 50 PERCE | C ANNUAL N | EAN EAN AN MINIMUM OW AGE OW FLOW EDS EDS | | 0.60
14
0.04 Seve
0.04

1.0
0.17
0.05 | Dec 16
ral Days
Aug 31 | | 28
0.04
0.05
486 ^a
8.61
0.04
3.2
0.28
0.08 | Aug 6
Oct 7,8
Jul 29
Aug 6
Aug 6
Oct 7-9 | 0.
0.
4
8. | 38
40
48
04 Several
04
86 ^a
88
03
.6 | Feb Zer Days 2001
Aug 3:
Aug (
Jul 2:
Sep 2: | 2002
2001
7 1999
1,2002
1 2001
6 2002
2 1998
4 2001 | $^{^{\}rm a}$ From rating extended above 52 ${\rm ft}^3/{\rm s}.$ # 07010035 ENGELHOLM CREEK NEAR WELLSTON, MO--Continued (Metropolitan Sewer District) WATER-QUALITY RECORDS PERIOD OF RECORD.--October 1997 to current year. REMARKS.--Published as Engelholm Creek at Pagedale (07010034) October 1997 to September 1998. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC
WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | |------------------|--|--|--|---|--|---|--|--|---|---|---|---|---| | OCT
24 | 1320 | ENVIRONM | ENTAL | 44 | 8.1 | 84 | 7.5 | 140 | 15.1 | 54 | 16.2 | 3.27 | 75 | | DEC
11 | 1255 | ENVIRONM | ENTAL | .11 | 9.6 | 83 | 7.8 | 784 | 8.2 | 270 | 65.6 | 24.7 | 150 | | FEB
05 | 1230 | ENVIRONM | ENTAL | .46 | 13.1 | 102 | 7.6 | 903 | 4.3 | 270 | 73.0 | 22.0 | 159 | | APR
08 | 0711 | ENVIRONM | ENTAL | 22 | 8.5 | 79 | 7.7 | 429 | 10.8 | 92 | 26.0 | 6.50 | 60 | | MAY
29 | 1300 | ENVIRONM | ENTAL | .79 | 7.7 | 85 | 7.9 | 606 | 18.5 | 240 | 65.0 | 20.0 | 148 | | AUG
08 | 1400 | ENVIRONM | ENTAL | .10 | 3.0 | 36 | 7.5 | 479 | 23.9 | 210 | 56.0 | 17.0 | 127 | | | | | | | | | | | | | | | | | DATE | ANC WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
24
DEC | 72 | 88 | 0 | | 825 | E1.7 | .03 | .270 | .01 | .140 | E.77 | 4.6 | 22 | | 11 | 150 | 184 | 0 | 75.1 | <1 | E1.1 | .34 | .830 | .09 | .160 | E.18 | 4.1 | 19 | | FEB
05 | 157 | 191 | 0 | 100 | 4 | .90 | .12 | 1.70 |
.02 | .080 | .10 | 8.5 | 12 | | APR
08 | 60 | 73 | 0 | | 169 | 1.3 | .16 | .420 | <.01 | .220 | .27 | 2.3 | 11 | | MAY
29 | 150 | 183 | 0 | | 38 | .80 | .18 | .800 | .06 | .120 | .18 | 3.6 | 18 | | AUG
08 | 128 | 156 | 0 | | 2 | 1.0 | .29 | .640 | .08 | .170 | .19 | 7.4 | 14 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CHRO-MIUM, DIS-SOLVED (µg/L as Cr) (01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT 24 | 16000 | 17000 | 20500 | 285 | 1 | <1 | 1.0 | 1.3 | 6.6 | 483 | 10 | 94 | .1 | | DEC | 42 | 480 | 52 | 285
<3 | <1 | 1 | 1.0 | 1.0 | 1.6 | 83 | <1 | 208 | <.1 | | 11
FEB | | | | | - | | | | | | _ | | | | 05
APR | K2 | 32 | K1 | 4 | <1 | <1 | <1.0 | <1.0 | 1.5 | 27 | <1 | 245 | <.1 | | 08
MAY | 3100 | 9200 | 7200 | 425 | 1 | <1 | <1.0 | 1.4 | 4.8 | 327 | 2 | 98 | <.1 | | 29
AUG | 790 | K870 | K1370 | 100 | 2 | <1 | <1.0 | <1.0 | 2.7 | 116 | <1 | 218 | <.1 | | 08 | 4400 | K3050 | 3050 | 3 | 2 | <1 | <1.0 | <1.0 | 2.6 | 26 | <1 | 159 | <.1 | # 07010035 ENGELHOLM CREEK NEAR WELLSTON, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |--|--|--|--|---|---|--|---|---|---|---|--|---|---| | OCT 24 | 3.0 | <1 | <1.0 | 32 | E3 | М | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC
11 | 2.0 | 1 | .1 | 11 | | | | | | | | | | | FEB
05 | 1.8 | 2 | <1.0 | 111 | | | | | | | | | | | APR
08 | 1.5 | <1 | <1.0 | 159 | <7 | <3 | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
29 | 3.2 | <1 | <1.0 | 106 | | | | | | | | | | | AUG
08 | 3.5 | 2 | <1.0 | 4 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | | OCT | • | 0 | 2 | | 2 | | • | 2 | | | 0.1 | | | | 24
DEC | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | 11
FEB | | | | | | | | | | | | | | | 05
APR
08 | <2 | <2 | <1 |
<5 | <3 | <2 | <2 | <3 |
M | м | <.01 |
M | <2 | | MAY
29 | | ~2 | ~_ | | | | ~2 | | M
 | M | V.01 | M | | | AUG
08 | | | | | | | | | | | | | | | 00 | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT 24 | DINE
TOTAL
(µg/L) | A-
PYRENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L) | [GHI]-
PERY-
LENE
TOTAL
(µg/L) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L) | PHENO-
THION
WATER
UNFLTRD
(µg/L) | DANE,
TECH-
NICAL
TOTAL
(µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L) | | OCT 24
DEC 11 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) |
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT 24
DEC 11
FEB 05 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT 24 DEC 11 FEB 05 APR 08 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
E.01 | | OCT 24 DEC 11 FEB 05 APR 08 MAY 29 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) E2 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
E1 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E2 | CHLORO-
ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
E.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
E.01 | | OCT 24 DEC 11 FEB 05 APR 08 MAY | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) E2 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
E1 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E2 | CHLORO-
ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
E.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
E.01 | | OCT 24 DEC 11 FEB 05 APR 08 MAY 29 AUG | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) E2 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
E1 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E2 | CHLORO-
ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02

<.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
E.01 | | OCT 24 DEC 11 FEB 05 APR 08 MAY 29 AUG 08 | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) E2 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLIRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) 3 E1 DEF TOTAL (µg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) E1 M AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 M BI- ELDRIN TOTAL (µg/L) (39380) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
E2

M

M
DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <methyl (34341)<="" (µg="" l)="" phthal-ate="" td="" total=""><td>CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110)</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596)</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 E4 DISUL- FOTON UNFILT RECOVER (µg/L) (39011)</td><td>PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) (39388)</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD (µg/L) (39390)</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) E.01 <.01 ETHION, TOTAL (µg/L) (39398)</td></methyl> | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 E4 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) (39388) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD (µg/L) (39390) | PYRIFOS TOTAL RECOVER (µg/L) (38932) E.01 <.01 ETHION, TOTAL (µg/L) (39398) | | OCT 24 DEC 11 FEB 05 APR 08 MAY 29 AUG 08 | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) | A- PYRENE TOTAL (µg/L) (34247) E2 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34230) 3 E1 DEF TOTAL (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34242) E1 M DI- AZINON, TOTAL (µg/L) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 M DI- ELDRIN TOTAL (µg/L) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E2 M M DIETHYL PHTHAL- ATE TOTAL (µg/L) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <1 METHYL PHTHAL-ATE TOTAL (µg/L) | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 E4 DISUL- FOTON UNFILT RECOVER (µg/L) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 ENDRIN WATER UNFLIED REC (µg/L) | PYRIFOS TOTAL RECOVER (µg/L) (38932) E.01 <.01 STHION, TOTAL (µg/L) (µg/L) | | OCT 24 DEC 11 FEB 05 APR 08 MAY 29 AUG 08 DATE OCT 24 DEC 11 FEB | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) E2 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLIRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) 3 E1 DEF TOTAL (µg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) E1 M AZINON, TOTAL (µg/L) (39570) <.02 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 M BI- ELDRIN TOTAL (µg/L) (39380) E.005 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E2 M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <methyl (34341)<="" (µg="" l)="" phthal-ate="" td="" total=""><td>CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 BUT-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110)</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596)</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 E4 DISUL- FOTON UNFILT RECOVER (µg/L) (39011)</td><td>PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) E.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01</td></methyl> | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 BUT-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 E4 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) E.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 24 DEC 11 FEB 05 APR 08 MAY 29 AUG 08 DATE OCT 24 DEC 11 FEB 05 APR | DINE TOTAL (µg/L) (39120) <40 <40 <40 SENE TOTAL (µg/L) (34320) 3 | A- PYRENE TOTAL (μg/L) (34247) E2 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) 3 E1 DEF TOTAL (μg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (μg/L) (34242) E1 M AZINON, TOTAL (μg/L) (39570) <.02 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 M BI- ELDRIN TOTAL (µg/L) (39380) E.005 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E2 M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N-BUTYL PHTHAL-ATE TOTAL (µg/L) (39110)
M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 E4 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 < < < ENDRIN WATER UNFLIRD REC (µg/L) (39390) < | PYRIFOS TOTAL RECOVER (µg/L) (38932) E.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 24 DEC 11 FEB 05 APR 08 MAY 29 AUG 08 DATE OCT 24 DEC 11 FEB 05 APR 08 MAY | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) 3 | A- PYRENE TOTAL (µg/L) (34247) E2 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) 3 E1 DEF TOTAL (µg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) E1 M AZINON, TOTAL (µg/L) (39570) <.02 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 M BI- ELDRIN TOTAL (µg/L) (39380) E.005 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E2 M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 E4 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) E.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 24 DEC 11 FEB 05 APR 08 MAY 29 AUG 08 DATE OCT 24 DEC 11 FEB 05 APR 08 | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) 3 E1 | A- PYRENE TOTAL (μg/L) (34247) E2 M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR-AN- THENE TOTAL (µg/L) (34230) 3 E1 DEF TOTAL (µg/L) (39040) <.02 <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) E1 M AZINON, TOTAL (µg/L) (39570) <.02 E.02 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) E2 M ELDRIN TOTAL (µg/L) (39380) E.005 <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) E2 M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 SIDI-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110) M M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 E4 E4 COUNTY OF THE PROOF TO THE PROOF TO T | PHENO- THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02 <.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) E.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) E.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 <.01 | #### 07010035 ENGELHOLM CREEK NEAR WELLSTON, MO--Continued (Metropolitan Sewer District) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 INDENO FONOFOS (DY-METHYL FONATE) (1,2,3-CD) HEPTA-HEXA-METH-FLUOR-HEPTA-FLUOR-WATER CHLOR CHLORO-ISO-MALA-OXY-PARA-ANTHENE ENE WHOLE EPOXIDE CHLOR, BENZENE PYRENE PHORONE LINDANE THION, CHLOR, THION, MIREX, TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL TOTAL DATE TOTAL TOT.REC TOTAL TOTAL TOTAL TOTAL $(\mu g/L)$ $(\mu g/L)$ (µg/L) $(\mu g/L)$ (34376) (34381) (82614) (39420) (39410) (39700) (34403) (34408) (39340) (39530) (39480) (39600) (39755) OCT 24... 5 Μ <.01 < .009 <.01 <2 E2 Μ < .006 E.03 <.020 <.01 < .006 DEC FEB 05... 2 08... Μ <.01 < .009 < .01 <2 Μ Μ < .006 <.10 <.020 < .02 <.006 MAY 29... AHG 08... N-BUTYL N-NITRO NITRO-N-NITRO PARA-BENZYL -SODI-SODI-N--SODI-P,P'-P,P'-CHLORO-PENTA-PHTHAL-METHYL-PROPYL-PHENYL-DDD P.P'-DDT META PARA-CHLORO-PHENAN-PHENOL UNFILT UNFILT DDE. PCB. PHENOL THRENE ATE AMINE AMINE AMINE CRESOL THION. UNFILT. DATE TOTAL TOTAL TOTAL TOTAL RECOVER TOTAL RECOVER TOTAL TOTAL TOTAL TOTAL TOTAL WATER (µg/L) (34292) (µg/L) (34438) (µg/L) (34433) (µg/L) (39360) (µg/L) (39365) (µg/L) (34452) (µg/L) (39540) (µg/L) (39516) (µg/L) (39032) (µg/L) (39370) (34428)(34461)(34694)OCT 24... <3 <2 E.005 <.006 <.009 <3 <.01 E1 3 <4 <3 <.1 < 3.0 DEC 11 __ FEB 05... APR 08... <4 <3 <2 <2 <.007 <.006 <.009 <3 <.01 <.1 Μ E2 E.1 | DATE | PHORATE
TOTAL
(µg/L)
(39023) | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE
HEXA-
CHLORO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(µg/L)
(34696) | |------------------|---------------------------------------|--------------------------------------|---|---|---|---|---|--|--|--| | OCT 24 | <.02 | 4 | <1 | <2 | <2 | <2 | <2 | <2 | <3 | М | | DEC 11 | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | APR
08
MAY | <.02 | E2 | <1 | <2 | <2 | М | <2 | <2 | <1 | М | | 29
AUG | | | | | | | | | | | | 08 | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). MAY 29... 08... E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07010075 DEER CREEK AT LADUE, MO LOCATION.--Lat 38°36'58", long 90°21'50", St. Louis County, Hydrologic Unit 07140101, on left upstream bank at bridge to Rock Hill Quarry, on McCarthy Construction Company complex, 5 mi east of I-270, 0.93 mi south of Highway 64/40, 0.17 mi west of McKnight. DRAINAGE AREA.--21.4 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 31, 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. ${\tt REMARKS.--Water-discharge\ records\ fair\ except\ for\ discharges\ below\ 1\ ft^3/s\ and\ above\ 800\ ft^3/s\ ,\ which\ are\ poor.}$ EXTREMES FOR CURRENT YEAR.--For the period May 31 to Sept. 30, maximum discharge, $4,100~{\rm ft}^3/{\rm s}$ (from rating extended above 364 ${\rm ft}^3/{\rm s}$) Sept. 9, gage height 12.24 ft; minimum, 0.00 ft $^3/{\rm s}$, many days. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------| | 1 | | | | | | | | | 0.87 | 1.4 | 0.00 | 0.00 | | 2 | | | | | | | | | 0.0 | 5.8 | 2.7 | 0.00 | | 3 | | | | | | | | | 13 | 0.16 | 18 | 0.00 | | 4 | | | | | | | | | 28 | 40 | 0.0 | 0.00 | | 5 | | | | | | | | | 2.3 | 1.9 | 0.00 | 0.00 | | | | | | | | | | | 2.5 | 2.,, | 0.00 | 0.00 | | 6 | | | | | | | | | 48 | 0.0 | 0.00 | 0.00 | | 7 | | | | | | | | | 0.71 | 0.00 | 0.00 | 0.00 | | 8 | | | | | | | | | 0.0 | 0.00 | 0.00 | 85 | | 9 | | | | | | | | | 0.00 | 0.00 | 0.00 | 187 | | 10 | | | | | | | | | 0.00 | 0.00 | 0.00 | 2.1 | | | | | | | | | | | | | | | | 11 | | | | | | | | | 0.00 | 0.00 | 0.00 | 0.52 | | 12 | | | | | | | | | 0.00 | 4.0 | 0.00 | 0.24 | | 13 | | | | | | | | | 0.00 | 0.09 | 0.00 | 0.02 | | 14 | | | | | | | | | 3.5 | 0.00 | 0.00 | 0.00 | | 15 | | | | | | | | | 25 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | | 16 | | | | | | | | | 0.03 | 0.00 | 0.00 | 0.00 | | 17 | | | | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | | 18 | | | | | | | | | 0.00 | 57 | 0.00 | 73 | | 19 | | | | | | | | | 0.00 | 6.5 | 0.00 | 4.0 | | 20 | | | | | | | | | 88 | 28 | 0.00 | 0.21 | | | | | | | | | | | | | | | | 21 | | | | | | | | | 26 | 1.1 | 0.00 | 0.44 | | 22 | | | | | | | | | 1.3 | 0.04 | 0.00 | 0.05 | | 23 | | | | | | | | | 0.01 | 0.46 | 0.03 | 0.00 | | 24 | | | | | | | | | 0.00 | 18 | 2.0 | 0.00 | | 25 | | | | | | | | | 0.00 | 0.04 | 0.01 | 0.00 | | | | | | | | | | | | | | | | 26 | | | | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | | 27 | | | | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | | 28 | | | | | | | | | 0.39 | 0.00 | 0.00 | 0.00 | | 29 | | | | | | | | | 0.09 | 0.00 | 0.00 | 0.00 | | 30 | | | | | | | | | 15 | 0.00 | 0.00 | 0.00 | | 31 | | | | | | | | 17 | | 0.00 | 0.00 | | | | | | | | | | | | | | | | | MEAN | | | | | | | | | 8.41 | 5.31 | 0.73 | 11.8 | | MAX | | | | | | | | | 88 | 57 | 18 | 187 | | MIN | | | | | | | | | 0.00 | 0.00 | 0.00 | 0.00 | | | | | | | | | | | | | | | # 07010075 DEER CREEK AT LADUE, MO--Continued (Metropolitan Sewer District) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--May 2001 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |-----------------
--|--|--|--|--|---|--|---|---|---|---|--|--| | 21
30 | 0234
0935 | ENVIRONM
ENVIRONM | | 62
e.01 | 5.9
3.0 | 65
33 | 7.5
7.6 | 292
645 | 20.6
19.0 | 90
160 | 29.0
43.0 | 4.20
12.0 | 66
84 | | AUG
28 | 1200 | ENVIRONM | ENTAL | e.01 | 4.7 | 55 | 7.3 | 611 | 21.7 | 150 | 34.0 | 16.0 | 54 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-PHORUS ORTHO TOTAL (mg/L as P) (70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON DIOXIDE DIS- SOLVED (mg/L as CO ₂) (00405) | OXYGEN
DEMAND,
CHEM-
ICAL
(high
level)
(mg/L)
(00340) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | | MAY
21
30 | 68
81 | 83
99 | 0 | 80
10 | 1.6
1.2 | .16
.49 | .650
.930 | .06 | .140
.160 | .31 | 3.9
4.2 | 24
9 | 23000
K860 | | AUG
28 | 52 | 64 | 0 | 6 | <.20 | .090 | .790 | .140 | .12 | .150 | 5.6 | 15 | 170 | | DATE | COLI-
FORM,
FECAL,
0.7
UM-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(col./
as Al)
(01106) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-MIUM, DIS-SOLVED(µg/L as Cr)(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | | MAY
21
30 | 71000
1100 | 25000
1700 | 84
25 | 2 | <1
<1 | <1.0
<1.0 | 1.0
<1.0 | 6.6
2.3 | 142
99 | 1
<1 | 120
478 | <.1
<.1 | 2.2
3.1 | | AUG
28 | 600 | 158 | <3 | 1.0 | <1 | <1.0 | <1.0 | <1.0 | <2 | <1 | <1 | <.1 | <1.0 | | DATE | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
As Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
Aa Zn)
(01090) | ALDRIN,
TOTAL
(µg/L)
(39330) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | | MAY
21
30 | <1
2 | <1.0
<1.0 | 67
60 | <.01 | <.21 | <.1 | E.01 | <.02 | .13 | E.005 | <.03 | <.01 | <.01 | | AUG
28 | 2 | <1.0 | 22 | | | | | | | | | | | | DATE | ETHION,
TOTAL
(µg/L)
(39398) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(µg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
THION,
TOTAL
(µg/L)
(39540) | | MAY
21
30 | <.01 | <.01 | <.009 | <.01 | <.006 | E.03 | <.015 | <.01 | <.006 | <.007 | <.006 | <.009 | <.01 | | AUG
28 | | | | | | | | | | | | | | # 07010075 DEER CREEK AT LADUE, MO--Continued (Metropolitan Sewer District) | | | | | BENZENE | BENZENE | BENZENE | |------|---------|---------|-------------|-------------|---------|---------| | | | | | 1,3-DI- | 1,4-DI- | O-DI- | | | | | | CHLORO- | CHLORO- | CHLORO- | | | | | TOX- | WATER | WATER | WATER | | | PCB, | PHORATE | APHENE, | UNFLTRD | UNFLTRD | UNFLTRD | | Date | TOTAL | TOTAL | TOTAL | REC | REC | REC | | | (µq/L) | (µq/L) | $(\mu g/L)$ | $(\mu g/L)$ | (µq/L) | (µq/L) | | | (39516) | (39023) | | (34566) | | (34536) | | | | | | | | | | MAY | | | | | | | | 21 | <.1 | <.02 | <1 | <.1 | <.1 | <.1 | | 30 | | | | | | | | AUG | | | | | | | | 28 | | | | | | | e--Estimated discharge value. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. #### 07010075 DEER CREEK AT LADUE, MO--Continued LOCATION.--Lat 38°36'58", long 90°21'50", St. Louis County, Hydrologic Unit 07140101, on left upstream bank at bridge to Rock Hill Quarry, on McCarthy Construction Company complex, 5 mi east of I-270, 0.93 mi south of Highway 64/40, 0.17 mi west of McKnight. DRAINAGE AREA. -- 21.4 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--May 31, 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. ${\tt REMARKS.--Water-discharge\ records\ fair\ except\ for\ discharges\ below\ 1\ ft^3/s\ and\ above\ 800\ ft^3/s,\ which\ are\ poor.}$ | | | DISCH | ARGE, CUBI | C FEET PEF | | , WATER YE
LY MEAN V | | ER 2001 TO |) SEPTEMB | ER 2002 | | | |--|--|--|--------------------------------------|---|--------------------------------------|---|--|--|--------------------------------------|---|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
53 | 0.00
2.1
0.34
0.01
0.00 | 2.9
0.41
0.14
0.20
0.09 | 0.00
e0.00
e0.00
0.00 | 43
7.8
3.0
1.3
0.35 | 0.08
106
12
2.6
2.1 | 1.0
1.4
0.38
0.60
0.22 | 0.47
0.27
0.11
0.02
0.00 | 0.39
0.39
0.30
0.28 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 |
0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 2.3
0.15
0.02
0.00
207 | 0.00
0.00
0.00
0.00
0.00 | 0.48
0.14
0.02
0.00
0.00 | 0.00
0.00
0.00
0.03
0.00 | 0.21
0.13
0.12
0.12
0.33 | 2.2
0.65
0.41
146
5.0 | 0.08
0.67
55
6.2
1.3 | 27
332
269
392
19 | 2.0
0.27
0.14
1.0
6.4 | 0.00
0.00
0.00
0.00
0.00 | 7.5
0.02
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 226
46
26
5.4
48 | 0.00
0.00
0.00
0.00
0.00 | 0.00
53
17
105
5.8 | 0.00
0.00
0.00
0.15
0.00 | 0.52
0.10
0.07
0.06
0.07 | 1.9
1.4
0.87
0.53 | 0.49
5.7
0.97
0.47
0.14 | 7.2
134
390
20
6.5 | 453
720
14
5.1
1.3 | 0.00
0.00
0.00
0.00 | 0.29
0.84
0.48
0.24
0.0 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 37
1.5
0.39
0.10
0.01 | 0.00
0.00
4.6
1.0
0.07 | 309
290
15
2.7
0.46 | 0.00
0.00
0.00
0.20
0.12 | 0.02
0.03
0.04
31
5.9 | 16
2.9
1.2
43
22 | 0.02
0.31
0.09
76
70 | 28
223
33
7.5
3.8 | 0.01
0.00
0.00
0.00
0.00 | 1.9
2.5
3.5
0.45
0.00 | 0.00
0.00
38
0.49
0.00 | 0.00
17
1.3
41
31 | | 21
22
23
24
25 | 0.00
0.00
2.9
113
7.2 | 0.00
0.00
0.00
272
3.7 | 0.18
3.7
0.41
0.05
0.00 | 0.00
0.00
1.1
6.6
0.06 | 0.50
0.11
0.09
0.09
0.36 | 4.2
2.4
1.7
2.7 | 49
6.6
1.4
61
7.2 | 2.6
1.6
1.1
3.7
1.6 | 0.00
0.00
0.00
24
4.9 | 0.00
2.5
7.2
0.06
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.33
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.81
0.33
0.06
0.00
0.00 | 3.0
1.2
49
37
98 | 0.0
0.03
0.00
0.00
0.00 | 0.00
0.00
0.00
2.6
252
510 | 1.5
0.21
0.09
 | 43
13
5.3
3.2
2.0
1.1 | 0.71
187
42
4.6
1.3 | 0.55
9.5
31
5.2
0.88
0.38 | 0.20
0.00
0.00
0.00
0.00 | 0.04
0.06
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN | 25.1
226
0.00 | 15.7
272
0.00 | 26.0
309
0.00 | 24.9
510
0.00 | 3.47
43
0.02 | 22.3
171
0.08 | 19.4
187
0.02 | 62.9
392
0.00 | 42.2
720
0.00 | 0.59
7.2
0.00 | 1.54
38
0.00 | 3.02
41
0.00 | | STATIS | TICS OF M | NONTHLY ME | EAN DATA F | OR WATER Y | EARS 200 | 01 - 2002 | , BY WATER | R YEAR (W | Y) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 25.1
25.1
2002
25.1
2002 | 15.7
15.7
2002
15.7
2002 | 26.0
26.0
2002
26.0
2002 | 24.9
24.9
2002
24.9
2002 | 3.47
3.47
2002
3.47
2002 | 22.3
22.3
2002
22.3
2002 | 19.4
19.4
2002
19.4
2002 | 62.9
62.9
2002
62.9
2002 | 25.3
42.2
2002
8.41
2001 | 2.95
5.31
2001
0.59
2002 | 1.14
1.54
2002
0.73
2001 | 7.38
11.8
2001
3.02
2002 | | SUMMAR | Y STATIST | CICS | | | FOR | R 2002 WAT | TER YEAR | | | WATER YE | EARS 2001 | - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
10 PER
50 PER | MEAN T ANNUAL AN | MEAN
MEAN
CAN
AY MINIMUN
COW
CAGE
COW FLOW
CEDS
CEDS | 1 | | 1 | 0.00 <i>I</i>
6910 ^a
L6.30 | Jun 12
any Days
At Times
Jun 12
Jun 12
any Days | | | 20.8
20.8
720
0.00 Many
0.00
6910 ^a
16.30
0.00 Many
42
0.15 | y Days 20
A
Jun
Jun | t Times
12 2002
12 2002 | e Estimated a From rating extended above 364 ft³/s. # 07010075 DEER CREEK AT LADUE, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--May 2001 to current year. | DATE | TIME | SAMPL
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |-----------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
05 | 0707 | ENVIRON | MENTAL | 18 | 8.1 | 83 | 7.6 | 414 | 15.4 | 140 | 40.0 | 8.85 | 75 | | DEC
10 | 1240 | ENVIRON | MENTAL | e.01 | 7.4 | 56 | 7.2 | 989 | 3.1 | 280 | 83.4 | 17.4 | 189 | | FEB
05 | 1400 | ENVIRON | MENTAL | .28 | 8.3 | 62 | 7.7 | 1240 | 3.0 | 310 | 94.0 | 19.0 | 227 | | MAR
09 | 0232 | ENVIRON | MENTAL | 85 | 7.7 | 77 | 7.5 | 2190 | 13.2 | 190 | 58.0 | 10.0 | 119 | | MAY
30 | 0825 | ENVIRON | MENTAL | 1.0 | 6.3 | 70 | 7.8 | 742 | 19.8 | 250 | 77.0 | 14.0 | 170 | | AUG
05 | 1440 | ENVIRON | MENTAL | e.01 | 5.0 | 70 | 7.7 | 580 | 32.5 | 170 | 49.0 | 12.0 | 129 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L a HCO ₃) (00450) | ANC CAR- BONATE IT FIELD s (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
05 | 75 | 92 | 0 | | 64 | E2.6 | .38 | 1.30 | .06 | .220 | . 46 | 4.0 | 45 | | DEC
10 | 191 | 233 | 0 | 122 | E9 | E.40 | .04 | .030 | <.01 | .110 | E.13 | 22 | 18 | | FEB
05 | 227 | 277 | 0 | 160 | 8 | 1.4 | <.01 | 1.20 | <.01 | .080 | .14 | 8.4 | 13 | | MAR
09 | 118 | 144 | 0 | | 221 | 2.2 | .09 | .720 | .03 | .070 | .40 | 7.3 | 52 | | MAY
30 | 171 | 209 | 0 | | 31 | .70 | .07 | .840 | .03 | .110 | .14 | 4.6 | 19 | | AUG
05 | 132 | 161 | 0 | | 12 | 1.0 | .07 | <.020 | <.01 | .080 | .15 | 5.2 | 20 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
05 | K130000 | K91000 | K110000 | 115 | 2 | <1 | 1.0 | 1.0 | 7.3 | 171 | 1 | 114 | <.1 | | DEC 10 | 780 | 1100 | K120 | 21 | 1 | <1 | 1.0 | 1.0 | 2.4 | 26 | <1 | 194 | <.1 | | FEB
05 | К3 | 39 | 71 | 12 | <1 | <1 | <1.0 | <1.0 | 1.9 | 31 | <1 | 143 | <.1 | | MAR
09 | 6200 | 9000 | 11600 | 317 | 3 | <1 | <1.0 | 4.2 | 5.9 | 208 | <1 | 181 | <.1 | | MAY
30 | 620 | K2200 | 630 | 74 | 2 | <1 | <1.0 | <1.0 | 3.4 | 75 | <1 | 192 | <.1 | | AUG
05 | K29 | 48 | K23 | 6 | 4 | <1 | <1.0 | <1.0 | 1.8 | 11 | <1 | 264 | <.1 | # 07010075 DEER CREEK AT LADUE, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |-----------------
---|---|---|---|--|--|---|---|---|---|--|--|--| | OCT
05 | 1.9 | <1 | <1.0 | 54 | <7 | М | <2 | <3 | <3.0 | <3 | E5 | <3 | <2 | | DEC 10 | 1.9 | <1 | <1.0 | 51 | | | | | | | | | | | FEB
05 | 1.6 | <1 | <1.0 | 178 | | | | | | | | | | | MAR
09 | 3.1 | <1 | <1.0 | 48 | <7 | М | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
30 | 2.2 | <1 | <1.0 | 57 | | | | | | | | | | | AUG
05 | 3.0 | <1 | <1.0 | <2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L) | 2-
NITRO-
PHENOL
TOTAL
(µg/L) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L) | 4-
NITRO-
PHENOL
TOTAL
(µg/L) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L) | ALDRIN,
TOTAL
(µg/L) | ANTHRA-
CENE
TOTAL
(µg/L) | BENZENE NITRO- WATER UNFLTRD RECOVER (µg/L) | | OCT | (34581) | (34586) | (34591) | (34631) | (34657) | (34636) | (34641) | (34646) | (34205) | (34200) | (39330) | (34220) | (34447) | | 05
DEC | <2 | <2 | М | <3 | М | <2 | <2 | E2 | М | <2 | <.01 | М | <2 | | 10
FEB | | | | | | | | | | | | | | | 05
MAR | | | | | | | | | | | | | | | 09
MAY | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | 30
AUG
05 | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZ(A) ANTHRA- CENE WATER UNFLTRD REC (µg/L) (34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-DANE, TECH-NICAL TOTAL (µg/L) (39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
05 | <40 | М | М | М | М | М | <3 | <2 | <2 | E1 | <.02 | <.1 | <.01 | | DEC 10 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | <40 | E2 | 4 | E1 | E1 | 3 | <3 | <2 | <2 | E4 | <.02 | <.1 | <.01 | | MAY
30 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | ETHION,
TOTAL
(µg/L)
(39398) | | OCT
05 | М | <2 | <.02 | .06 | <.006 | М | М | М | М | | <.02 | <.01 | <.01 | | DEC 10 | | | | | | | | | | | | | | | FEB 05 | | | | | | | | | | | | | | | MAR
09 | 3 | <4 | <.02 | .02 | .008 | <2 | М | М | E1 | <.10 | <.01 | <.01 | <.01 | | MAY
30 | | | | | | | | | | | | | | | AUG
05 | ### 07010075 DEER CREEK AT LADUE, MO--Continued (Metropolitan Sewer District) | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(μg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | |-----------|---|---|--|--|--|---|--|--|--|--|---|---|---| | OCT
05 | М | M | <.01 | <.009 | <.01 | <2 | М | М | <.006 | E.06 | <.020 | <.01 | <.006 | | DEC
10 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | 6 | М | <.01 | <.009 | <.01 | <2 | 3 | М | <.006 | <.10 | <.015 | <.02 | <.006 | | MAY
30 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
05 | М | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | E1 | М | <3.0 | | DEC
10 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | M | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | M | 3 | <3.0 | | MAY
30 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | 03 | | | | | | | | | | | | | | | | DATE | PHOR
TOT
(µg
(390 | AL TO:
/L) (μο | AL TOTAL (µg. | X- CHLC
NE, WAT
AL RE
/L) (µg | 4- 1,3- RI- CHLO DRO- WAT UNF UNFI CC RE (/L) (µg | DI- 1,4- DRO- CHLO TER WAT TRD UNFI C RE | -DI- O-D
DRO- CHLC
PER WAT
LTRD UNFL
EC RE
1/L) (µg | OI - HEX
ORO - CHLO
OER WAT
OTRD UNFL
OC RECO
O/L) (µg. | A- HEX
RO- CHLO
ER BUT
TRD ADIE
VER TOT
/L) (µg | ORO-
'- NAPH
'NE ALE
'AL TOT
/L) (µg | NE
AL
/L) | | | | OCT
05 | <. | 06 I | 1 <1 | <2 | . <2 | ? <2 | 2 <2 | <2 | <3 | . M | í | | | | DEC
10 | ٠. | | | | | | <2 | | | | | | | | FEB | _ | | | | | | - | | | | | | | | 05
MAR | _ | | | | | | | | | | | | | | 09
MAY | <. | 02 4 | ł <1 | <2 | ? <2 | ? <2 | 2 <2 | <2 | <1 | . M | I | | | | 30
AUG
05 | - | | | | | | | | | | - | | | | | | | | | | | | | | | | | e--Estimated discharge. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07010086 DEER CREEK AT MAPLEWOOD, MO LOCATION.--Lat 38°36'04", long 90°19'34", St. Louis County, Hydrologic Unit 07140101, on right downstream pier of Big Bend Road bridge, 0.44 mi north of Interstate 44, 4.35 mi east of U.S. 67 (Lindbergh Blvd.), and 0.63 mi upstream of River Des Peres Drainage Channel. DRAINAGE AREA. -- 36.5 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1996 to current year. Annual peaks only for 1969-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 415.75 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair except for estimated daily discharges and those below 2 $\mathrm{ft^3/s}$ and above 2,100 $\mathrm{ft^3/s}$, which are poor. U.S.G.S. satellite telemeter at station. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | | |--
--|--------------------------------------|--|--|--------------------------------------|---|---|--|---|---|---|--------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1
2
3
4
5 | e0.49
e0.44
e0.40
0.50
98 | 3.3
8.2
1.5
0.70
0.61 | 8.4
3.7
2.6
2.2
2.3 | e1.2
e1.1
e1.3
e1.2
e1.7 | 74
14
7.6
5.3
4.0 | 2.1
176
22
4.1
3.5 | 3.0
3.9
3.1
2.2
2.2 | 4.3
3.5
2.8
2.3
1.9 | 2.6
2.3
2.3
2.4
47 | 1.4
1.1
1.1
0.92
0.97 | 1.1
1.0
1.2
1.6
0.85 | 1.2
1.2
1.3
1.4
1.3 | | | | 6
7
8
9
10 | 6.2
1.1
0.62
0.60
315 | 0.75
1.0
1.7
1.9
2.0 | 3.5
2.0
1.6
1.4
3.3 | e2.4
e1.6
e1.3
e1.7
e4.8 | 3.4
3.0
2.7
2.4
4.5 | 2.9
2.4
2.0
229
10 | 1.7
4.6
115
11
4.1 | 74
410
369
477
25 | 6.7
2.7
2.3
9.1 | 1.0
1.3
0.88
1.3
0.98 | 48
3.0
1.4
1.2 | 1.2
1.2
1.7
2.0
1.2 | | | | 11
12
13
14
15 | 313
94
46
22
73 | e1.5
e1.0
0.77
0.91
1.0 | 1.2
84
34
173
15 | e3.5
e2.1
e1.6
e1.3 | 3.2
2.6
2.2
2.3
2.7 | 4.9
4.4
3.5
2.9 | 4.5
e6.0
5.5
4.2
2.3 | 8.2
136
505
29
9.2 | 555
860
24
6.6
4.0 | 1.7
1.5
1.3
0.87
0.95 | 21
14
5.0
4.2
2.0 | 1.2
1.4
1.4
1.5
3.0 | | | | 16
17
18
19
20 | 68
4.9
2.5
1.7 | 1.1
1.0
3.2
5.4
1.7 | 428
421
28
9.7
5.4 | 1.5
1.1
0.99
5.1
3.6 | 2.3
1.8
1.8
83 | 29
5.8
4.1
70
37 | 1.9
1.9
2.0
117
147 | e80
e308
53
11
5.9 | 3.1
2.6
2.5
2.3
2.1 | 19
7.3
26
5.8
2.8 | 1.6
1.5
96
6.9
2.3 | 2.5
43
8.3
56
79 | | | | 21
22
23
24
25 | 1.1
1.4
12
153
13 | 1.3
1.2
1.3
419
8.6 | 3.8
8.4
5.4
2.6
2.3 | 2.5
1.8
6.1
18
2.8 | 4.7
2.7
2.3
2.2
3.7 | 7.5
4.5
3.9
7.5
247 | 91
14
5.0
112
17 | 4.2
3.6
2.9
6.8
4.3 | 2.0
1.3
0.96
24
14 | 1.9
6.3
19
3.1
1.7 | 2.1
1.5
3.1
1.9 | 4.5
1.4
1.1
1.5
1.0 | | | | 26
27
28
29
30
31 | 2.9
2.1
1.6
1.3
1.3 | 4.7
5.3
75
58
162 | 2.3
2.6
2.0
1.7
e1.4
e1.3 | 2.2
1.3
1.1
7.2
338
694 | 5.8
3.8
2.5
 | 65
27
9.5
6.2
5.0
3.7 | 4.3
328
83
12
6.0 | 2.1
80
128
13
3.2
3.2 | 2.6
2.0
1.5
1.2 | 3.2
2.1
1.7
1.6
4.3
1.5 | 1.2
1.2
1.3
1.3 | 0.94
1.0
1.0
0.85
0.92 | | | | MEAN
MAX
MIN
IN. | 40.0
315
0.40
1.26 | 25.8
419
0.61
0.79 | 40.8
428
1.2
1.29 | 36.0
694
0.99
1.14 | 9.52
83
1.8
0.27 | 36.1
247
2.0
1.14 | 37.2
328
1.7
1.14 | 89.2
505
1.9
2.82 | 54.4
860
0.96
1.66 | 4.02
26
0.87
0.13 | 7.50
96
0.85
0.24 | 7.51
79
0.85
0.23 | | | | STATIS | TICS OF M | ONTHLY MEA | AN DATA F | OR WATER Y | EARS 1996 | 5 - 2002, | BY WATER | YEAR (WY | () | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 15.6
40.0
2002
8.23
1998 | 25.4
82.3
1997
1.93
2000 | 12.3
40.8
2002
2.09
1999 | 26.8
48.4
1999
5.75
2000 | 38.9
77.0
1999
9.52
2002 | 35.7
108
1998
7.92
2000 | 25.0
46.9
1998
9.27
2000 | 37.8
89.2
2002
15.4
1999 | 54.8
101
1998
18.9
2001 | 25.2
48.5
1998
2.23
1997 | 17.2
35.3
1996
3.67
2001 | 11.2
28.8
1996
2.15
1999 | | | | SUMMAR | Y STATIST | ICS | FC | R 2001 CAL | ENDAR YEA | AR. | FOR 2002 | WATER YE | EAR | WATER Y | EARS 1996 | - 2002 | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 22.0
428
0.40
0.48

8.20
62
2.4
0.80 | Dec 1
Oct
Sep 2 | 3 | 860
0.40
1.0
4950
14.44
0.40
12.10
80
2.7 | Jun
Oct
Sep
^a Jun
Jun
Oct 3 | 12
3
24
12
12
12
3,4 | 26.5
36.5
15.7
1980
0.24
0.30
6550 ⁶
16.41
0.09
9.88
48
2.2 | Jun 1
Oct 1
Oct 3
Jun 2
Oct 1 | 1998
2001
24 2000
20 1996
1 1996
24 2000
24 2000
20 1996 | | | | e Estimated a From rating extended above 1,050 ft³/s. # 07010086 DEER CREEK AT MAPLEWOOD, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--May 2001 to current year. | DATE | TIME | SAMPLE
TYPE | : | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
05 | 0954 | ENVIRONM | IENTAL | 247 | 7.2 | 74 | 7.5 | 180 | 15.8 | 64 | 20.2 | 3.42 | 44 | | DEC
10
10 | 1055
1100 | ENVIRONM
BLANK | IENTAL | 1.3 | 7.6 | 60 | 7.5 | 1140 | 5.1 | 310 | 92.8
.11 | 18.6
.01 | 196 | | FEB 04 | 1235 | ENVIRONM | IENTAL | 5.3 | 12.2 | 92 | 7.6 | 1300 | 3.4 | 330 | 100 | 20.0 | 199 | | MAR
09 | 0327 | ENVIRONM | IENTAL | 392 | 8.5 | 85 | 6.3 | 2510 | 14.0 | 150 | 48.0 | 7.00 | 35 | | MAY
29 | 0810 | ENVIRONM | IENTAL | 13 | 5.2 | 57 | 7.7 | 531 | 19.2 | 160 | 50.0 | 8.90 | 111 | | AUG
05 | 1320 | ENVIRONM | ENTAL | .75 | 6.5 | 88 | 7.7 | 1010 | 30.1 | 250 | 71.0 | 18.0 | 160 | | DATE | ANC WATER UNFLITD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-PHORUS ORTHO TOTAL (mg/L as P) (70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
05 | 44 | 53 | 0 | | 133 | E1.8 | .55 | .690 | .03 | .150 | .37 | 2.6 | 26 | | DEC
10
10 | 198 | 242 | 0 | 162
.05 | E3
<1 | E1.1
<.20 | .54
.02 | .880
<.020 | .03
<.01 | .090
<.010 | E.11
E.02 | 13 | 27
9 | | FEB 04 | 201 | 246 | 0 | 210 | 6 | .80 | .18 | 1.90 | .02 | .080 | .11 | 10 | 16 | | MAR
09 | 36 | 43 | 0 | | 337 | 2.8 | .24 | .400 | .03 | .090 | .65 | 34 | 46 | | MAY
29 | 112 | 137 | 0 | | 19 | 1.2 | .24 | .970 | .07 | .160 | .23 | 4.6 | 25 | | AUG
05 | 160 | 195 | 0 | | 27 | 1.9 | .76 | .690 | .21 | .320 | .46 | 6.6 | 20 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) |
MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
05 | K67000 | 59000 | 77000 | 141 | 2 | <1 | 1.0 | 1.4 | 5.7 | 201 | 1 | 69 | <.1 | | DEC
10
10 | K170
 | 350
 | K117 | 13
6 | 1
<1 | <1
<1 | 1.0
1.0 | 1.0
<1.0 | 2.5
1.0 | 93
<2 | <1
<1 | 193
1 | <.1
<.1 | | FEB 04 | К67 | 400 | K63 | 7 | <1 | <1 | <1.0 | <1.0 | 2.4 | 18 | <1 | 242 | <.1 | | MAR
09 | 8500 | 49000 | 16200 | 372 | 3 | <1 | <1.0 | 2.6 | 5.4 | 265 | 2 | 191 | <.1 | | MAY
29
AUG | 13000 | K22200 | K22800 | 252 | 2 | <1 | <1.0 | 1.2 | 5.3 | 236 | 1 | 75 | <.1 | | 05 | 450 | 780 | 560 | 4 | 5 | <1 | <1.0 | <1.0 | 2.0 | 27 | <1 | 389 | <.1 | # 07010086 DEER CREEK AT MAPLEWOOD, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |------------------|---|--|---|---|--|---|---|---|---|---|--|---|---| | OCT
05 | 1.2 | <1 | <1.0 | 30 | <7 | М | <2 | <3 | <3.0 | <3 | E5 | <3 | <2 | | DEC
10
10 | 2.9 | <1
<1 | <1.0
1.0 | 33
2 | | | | |
 | | | | | | FEB 04 | 2.3 | 2 | <1.0 | 66 | | | | | | | | | | | MAR
09 | 2.9 | <1 | <1.0 | 134 | E5 | М | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
29
AUG | 2.0 | <1 | <1.0 | 82 | | | | | | | | | | | 05 | 3.3 | 1 | <1.0 | <2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | | OCT
05
DEC | <2 | <2 | <3 | <3 | М | <2 | <2 | <3 | М | <2 | <.01 | М | <2 | | 10 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | MAR
09
MAY | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | 29
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
05 | <40 | М | М | М | М | М | <3 | <2 | <2 | E2 | <.02 | <.1 | <.01 | | DEC 10 | | | | | | | | | | | | | | | 10
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09
MAY | <40 | E3 | 5 | E2 | E2 | 4 | <3 | <2 | <2 | E3 | <.02 | <.1 | <.01 | | 29
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | # 07010086 DEER CREEK AT MAPLEWOOD, MO--Continued (Metropolitan Sewer District) | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLITRD
RECOVER
(µg/L)
(34386) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLITED
REC
(µg/L)
(39390) | ETHION,
ΤΟΤΑL
(μg/L)
(39398) | |------------------|---|--|--|---|--|---|--|--|--|---|---|---|---| | 05
DEC | М | <2 | <.02 | .03 | <.006 | М | М | M | М | | <.02 | <.01 | <.01 | | 10
10 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09
MAY | 4 | <4 | <.02 | <.02 | .007 | <2 | М | М | <5 | <.10 | <.01 | <.01 | <.01 | | 29
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(µg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | | OCT
05
DEC | E1 | М | <.01 | <.009 | <.01 | М | М | <2 | <.006 | E.08 | <.020 | <.01 | <.006 | | 10 | | | | | | | | | | | | | | | 10
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09
MAY | 7 | М | <.01 | <.009 | <.01 | <2 | 4 | М | <.006 | <.10 | <.015 | <.02 | <.006 | | 29 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO
-SODI-
METHYL-
AMINE
TOTAL
(µg/L)
(34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO
-SODI-
PHENYL-
AMINE
TOTAL
(µg/L)
(34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
05
DEC | М | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | 10
10 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09
MAY | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | 3 | <3.0 | | 29
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | # 07010086 DEER CREEK AT MAPLEWOOD, MO--Continued (Metropolitan Sewer District) | DATE | PHORATE
TOTAL
(µg/L)
(39023) | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34566) |
BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE HEXA- CHLORO- WATER UNFLTRD RECOVER (µg/L) (34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(µg/L)
(34696) | |------|---------------------------------------|--------------------------------------|---|---|---|---|---|---|--|--| | OCT | | | | | | | | | | | | 05 | <.06 | M | <1 | <2 | <2 | <2 | <2 | <2 | <3 | M | | DEC | | | | | | | | | | | | 10 | | | | | | | | | | | | 10 | | | | | | | | | | | | FEB | | | | | | | | | | | | 04 | | | | | | | | | | | | MAR | | | | | | | | | | | | 09 | <.02 | 5 | <1 | <2 | <2 | <2 | <2 | <2 | <1 | M | | MAY | | | | | | | | | | | | 29 | | | | | | | | | | | | AUG | | | | | | | | | | | | 05 | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07010090 MACKENZIE CREEK NEAR SHREWSBURY, MO LOCATION.--Lat 38°34'37", long 90°19'24", St. Louis County, Hydrologic Unit 07140101, on right downstream bridge abutment at Resurrection Cemetery, 1.24 mi south of Interstate 44, 4.48 mi east of U.S. 67 (Lindbergh Blvd.), and 0.85 mi upstream of River Des Peres Drainage Channel. DRAINAGE AREA. -- 3.49 mi². PERIOD OF RECORD. -- May 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage unknown. REMARKS.--Record fair except for estimated daily discharges and those above 300 ft^3/s and below 1 ft^3/s , which are poor. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |---|--|---|--|---|--|--------------------------------------|--------------------------------------|--|--------------------------------------|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 0.09
0.08
0.08
0.10 | 0.34
2.9
0.32
0.29
0.27 | e1.3
e0.90
e0.63
e0.52
e0.61 | 0.40
0.38
0.36
0.34
0.34 | 4.3
1.7
1.2
0.88
0.78 | 0.76
15
1.8
1.2
0.93 | 0.94
1.2
0.85
0.77
0.69 | 1.4
1.2
1.1
0.98
0.87 | 3.7
0.97
0.79
0.88
1.3 | 0.32
0.18
0.20
0.24
0.20 | 0.15
0.16
0.14
0.16
0.36 | 0.18
0.15
0.13
0.15
0.17 | | | 6
7
8
9
10 | 0.47
0.78
0.16
0.13 | e0.27
e0.26
e0.26
e0.34
e0.32 | e0.87
e0.59
e0.43
e0.36
0.26 | 0.44
0.30
0.29
e0.60
e0.43 | 0.76
0.74
0.76
0.80
1.0 | 0.88
0.80
0.78
28
1.7 | 0.85
2.1
14
1.5
0.89 | 12
34
34
56
3.7 | 0.62
0.68
0.48
2.4 | 0.19
0.21
0.24
0.20
1.4 | 36
0.97
0.64
0.27
0.23 | 0.16
0.14
0.10
0.10
0.13 | | | 11
12
13
14
15 | | e0.28
e0.25
e0.22
e0.23
e0.23 | 0.60
11
1.8
22
3.9 | e0.31
e0.27
e0.24
e0.22
0.20 | 0.76
e0.70
e0.63
e0.76
e0.68 | 1.3
1.4
1.1
1.0 | 0.85
3.9
0.90
1.4
0.76 | 2.2
18
34
2.9
1.8 | | 0.45
0.14
0.15
0.13
0.12 | 1.8
0.92
1.4
1.1
0.35 | 0.14
0.10
0.16
0.28
0.26 | | | 16
17
18
19
20 | 3.5
0.77
0.60
0.60
0.60 | e0.20
e0.19
e0.19
e0.45
e0.34 | 44
29
3.4
4.0
1.4 | e0.18
e0.17
0.16
1.2
0.34 | e0.63
e0.60
0.76
11
1.3 | 2.2
1.3
1.0
12
2.7 | 0.69
0.76
0.59
7.3
5.6 | 6.8
23
3.4
1.6
1.4 | 0.40
0.31
0.26
0.28
0.29 | 0.14
0.13
4.8
0.22
0.16 | 0.25
0.25
18
0.75
0.45 | 0.11
9.3
0.27
4.7
6.6 | | | 21
22
23
24
25 | 0.60
0.53
3.6
6.8
0.56 | e0.19
e0.19
e0.45
e23
e1.1 | 1.1
1.4
0.95
0.90
0.94 | 0.42
0.27
2.4
1.4
0.29 | 0.76
0.73
0.68
0.68
1.3 | 1.5
1.1
1.0
2.5 | 18
1.4
0.88
25
1.9 | 1.3
1.1
1.1
1.1
0.99 | 0.26
0.24
0.20
0.24
0.58 | 0.16
0.15
0.37
0.14
0.17 | 0.29
0.32
0.50
0.25
0.20 | 0.30
0.17
0.14
0.34
0.15 | | | 26
27
28
29
30
31 | 0.39
0.40
0.38
0.40
0.36
0.34 | e0.48
e0.86
e7.5
e9.3
e17 | 0.86
0.62
0.60
0.54
0.69
0.48 | e0.23
e0.20
0.29
1.4
28
56 | 0.94
0.76
0.78
 | 7.6
2.0
1.5
1.4
1.0 | 1.5
45
7.4
1.7
1.5 | 0.94
32
20
2.7
1.5 | 0.26
0.26
0.31
0.22
0.20 | 0.13
0.13
0.16
0.15
0.13 | 0.21
0.19
0.17
0.16
0.15
0.16 | 0.15
0.14
0.15
0.13
0.13 | | | MEAN
MAX
MIN | 3.42
33
0.08 | 2.27
23
0.19 | 4.41
44
0.26 | 3.16
56
0.16 | 1.34
11
0.60 | 4.14
28
0.76 | | 9.82
56
0.87 | 8.95
139
0.20 | 0.38
4.8
0.12 | 2.16
36
0.14 | 0.84
9.3
0.10 | | | | | MONTHLY ME | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.89
3.42
2002
1.10
2001 | 1.68
2.27
2002
0.32
2000 | 1.80
4.41
2002
0.43
1999 | 2.74
4.97
1999
1.04
2000 | 3.84
8.01
1999
1.33
2002 | 4.10
11.4
1998
0.85
2000 | 3.51
5.68
1998
1.05
2000 | 4.94
9.82
2002
1.29
1999 | 6.98
13.2
1998
2.56
1999 | 4.26
10.1
1998
0.38
2002 | 2.82
7.16
1998
0.54
1999 | 1.31
2.60
2001
0.52
1999 | | | SUMMAR | Y STATIS | rics | FC | OR 2001 CA | LENDAR YE | AR | FOR 2002 | WATER YE | CAR | WATER Y | EARS 1997 - | - 2002 | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | 73
0.06 Aug
0.07

6.8
0.57
0.13 | Jun
21,Sep 2
Sep | 20 1
1,6 0.
1 0.
24
10. | 68 | Jun
Oct 2
Sep
Jun
Jun
3,Sep 16, | 11
2,3
6
11
11 | 3.41
5.46
2.15
209
0.06 Aug
0.07
3260 ^a
10.80
0.03
6.2
0.65
0.18 | Jun 24
21,Sep 2,6
Sep 5
Jun 1
Jun 1:
Aug 25 | 1998
2001
4 2000
5 2001
L 2001
1 1998
L 1998
L 2001 | | e Estimated From rating extended above 156 ft^3/s . #### 07010180 GRAVOIS CREEK NEAR MEHLVILLE, MO LOCATION.--Lat 38°31'36", long 90°17'58", St. Louis County, Hydrologic Unit 07140101, on center downstream pier of Green Park Road bridge, 1.10 mi south of Interstate 55, 0.24 mi west of Highway 267 (Lemay Ferry Road), and 3.48 mi upstream of River Des Peres Drainage Channel. DRAINAGE AREA. -- 18.1 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1996 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 422.15 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records poor. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002
DAILY MEAN VALUES | | | | | | | | | | | | | |--|--|--------------------------------------|---|--|--------------------------------------|---|--|--------------------------------------|--|--|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | | JUL | AUG | SEP | | | 1
2
3
4
5 | 0.73
0.66
0.62
0.58 | 1.3
16
2.4
1.0
0.85 | 5.7
3.5
2.6
2.3
2.0 | e1.4
e1.3
e1.3
e1.5
e2.1 | 35
13
9.6
7.5
7.0 | 2.7
88
e14
5.5
5.1 | 6.0
e7.2
e5.4
e4.4
e4.1 | 7.9
7.1
5.7
5.3
4.9 |
4.9
4.4
4.1
3.7
8.4 | e1.7
e1.6
6.2
6.2
2.0 | e1.4
e1.3
e1.3
e1.9
e1.4 | 0.96
e1.5
e5.2
3.4
1.9 | | | 6
7
8
9
10 | 4.2
1.2
0.94
0.75 | 0.85
0.79
0.77
0.92
0.86 | 3.8
2.2
1.9
1.8
1.4 | e3.2
e2.2
e1.7
e2.5
e7.0 | 7.0
6.1
5.8
5.5
5.3 | 5.6
4.2
4.1
166
11 | e3.9
e6.0
82
13
6.2 | 69
214
234
325
20 | e4.5
3.5
3.5
6.8
63 | 1.7
1.7
1.5
1.5 | 175
6.1
3.4
2.6
2.3 | 1.2
1.0
e1.6
e1.7
e1.0 | | | 11
12
13
14
15 | | | | e4.0
e3.6
e3.2
e2.8
e2.5 | | | | | | | 84
6.4
9.4
8.0
4.2 | 0.85
0.85
0.85
1.00
1.8 | | | 16
17
18
19
20 | | | | e2.2
e2.0
e1.8
8.3
5.6 | | | | | 6.5
5.4
4.1
3.5
3.0 | e12
e5.9
e15
e3.2
1.5 | 2.7
2.1
79
7.0
12 | e30
e8.0 | | | 21
22
23
24
25 | e1.1
1.6
5.1
61
8.2 | 0.82
0.70
1.8
242
5.2 | e6.1
e9.2
e6.5
e3.2
e2.7 | 3.5
4.3
8.3
20
3.4 | 5.1
3.5
3.2
3.0
4.3 | e9.6
e8.2
7.0
8.3 | 96
11
6.5
96
14 | e8.2
7.0
6.7
12
8.3 | 2.3
28 | 1.2
e5.0
e10
e3.8
e2.1 | 3.3
2.1
2.3
2.4
2.2 | e5.8
2.0
1.6
1.6 | | | 26
27
28
29
30
31 | 2.2
1.7
1.9
1.4
1.6 | 2.5
3.6
38
43
115 | e2.4
e2.5
e2.2
e1.9
e1.8
e1.6 | 2.9
2.7
2.5
3.4
159
329 | 8.0
3.8
2.9
 | 39
e12
e9.0
11
8.5
e7.0 | 6.5
192
102
13
9.2 | 5.5
7.5
95
14
6.8
5.4 | 4.5
2.7
e2.5
e2.2
e1.8 | e3.4
e2.5
e2.2
e2.0
e4.4
e1.9 | 1.8
1.6
1.5
1.3
1.1 | 1.2
1.0
1.0
1.0
0.96 | | | MEAN
MAX
MIN
IN. | | | 34.1
293
1.4 | 19.3
329
1.3
1.23 | | 26.5
166
2.7 | | 53.1
325
4.9 | 33.5
433
1.8 | | 14.0
175
1.1
0.89 | | | | STATIS | TICS OF M | | | OR WATER Y | EARS 199 | 6 - 2002, | BY WATER | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 10.8
16.9
2002
7.44
1998 | 17.0
45.0
1997
2.04
2000 | 11.6
34.1
2002
4.02
2001 | 22.8
51.4
1999
5.66
2000 | 26.8
49.5
1999
8.53
2002 | 25.7
69.8
1998
7.19
2000 | 19.0
32.0
1998
6.43
2000 | 25.5
53.1
2002
8.31
1999 | 36.2
65.6
1998
15.4
2001 | 21.1
44.3
1998
3.57
2002 | 14.1
27.3
2000
1.63
2001 | 10.4
27.9
1996
2.56
1999 | | | SUMMAR | Y STATIST | CICS | FO | R 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1996 | 5 - 2002 | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 15.8
373
0.14
0.18

11.83
34
2.7
0.59 | Jul :
Aug :
Aug : | 24
22
16 | 21.6
433
0.58
0.69
2680 ^a
14.00
0.55
16.23
62
4.2 | Jun
Oct
Nov
Jun
Jun
Oct 4 | 12
4
12
12
12
12 | 19.8
27.4
12.2
1110
0.14
0.18
4020 ⁸
15.6 ⁷
0.14
14.87
39
4.1 | | 1998
2001
24 2000
22 2001
16 2001
24 2000
24 2000
20 2001 | | | e Estimated $^{\rm a}$ From rating extended above 1,150 ${\rm ft}^3/{\rm s}$. # 07010180 GRAVOIS CREEK NEAR MEHLVILLE, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1996 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLITD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
15 | 2025 | ENVIRONM | IENTAL | 115 | 10.1 | 95 | 7.5 | 320 | 11.7 | 91 | 29.0 | 4.50 | 68 | | DEC
10 | 1515 | ENVIRONM | IENTAL | 1.5 | 12.6 | 104 | 7.6 | 1110 | 6.3 | 350 | 109 | 19.9 | 229 | | FEB
04
MAR | 1415 | ENVIRONM | IENTAL | 7.4 | 11.8 | 92 | 7.5 | 1300 | 4.8 | 350 | 107 | 20.0 | 220 | | 09 | 0316 | ENVIRONM | IENTAL | 297 | 9.1 | 90 | 7.7 | 1890 | 13.6 | 190 | 56.0 | 11.0 | 97 | | MAY
28
AUG | 1420 | ENVIRONM | IENTAL | 7.4 | 4.8 | 56 | 7.7 | 515 | 21.5 | 180 | 55.0 | 9.20 | 117 | | 05 | 1140 | ENVIRONM | IENTAL | 1.1 | 3.3 | 43 | 7.3 | 906 | 27.9 | 250 | 75.0 | 15.0 | 195 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
15
DEC | 68 | 83 | 0 | | 118 | <.20 | .02 | .520 | .01 | .160 | . 29 | 4.5 | 21 | | 10
FEB | 230 | 281 | 0 | 141 | <1 | E.20 | <.01 | .730 | <.01 | .070 | E.07 | 11 | 15 | | 04
MAR | 222 | 270 | 0 | 200 | 9 | .50 | <.01 | 1.80 | <.01 | .080 | .11 | 12 | 13 | | 09
MAY | 94 | 115 | 0 | | 982 | 2.4 | .07 | .390 | .02 | .110 | .68 | 4.2 | <5 | | 28
AUG | 118 | 144 | 0 | | 28 | .70 | .15 | 1.10 | .05 | .100 | .16 | 5.1 | 19 | | 05 | 195 | 238 | 0 | | 12 | .60 | .10 | .330 | .01 | .050 | .08 | 18 | 13 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
15 | 11000 | 38000 | 34000 | 252 | 1 | <1 | <1.0 | 1.2 | 2.9 | 285 | 2 | 72 | <.1 | | DEC 10 | K92 | 210 | K20 | 14 | 1 | <1 | 1.0 | 1.0 | 1.7 | 41 | <1 | 84 | <.1 | | FEB 04 | K5 | K30 | K17 | 12 | 1 | <1 | <1.0 | <1.0 | 1.6 | 23 | <1 | 108 | <.1 | | MAR
09 | K1800 | 7800 | 5800 | 671 | 3 | <1 | <1.0 | 3.6 | 2.8 | 463 | 1 | 148 | <.1 | | MAY
28 | 11000 | 11600 | 13400 | 181 | 1 | <1 | <1.0 | 1.1 | 2.8 | 153 | <1 | 104 | <.1 | | AUG
05 | K67 | 240 | K128 | <3 | 2 | <1 | <1.0 | <1.0 | 1.4 | 3 | <1 | 286 | <.1 | 307 LOWER MISSISSIPPI RIVER BASIN # 07010180 GRAVOIS CREEK NEAR MEHLVILLE, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |--|--|--
--|--|---|---|---|---|--|---|--|--|--| | OCT
15 | 1.5 | <1 | <1.0 | 32 | <7 | М | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC
10 | 1.8 | <1 | <1.0 | 45 | | | | | | | | | | | FEB 04 | 1.6 | 2 | <1.0 | 6 | | | | | | | | | | | MAR
09 | 2.9 | 1 | <1.0 | 103 | <7 | М | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
28 | 1.8 | <1 | <1.0 | 47 | | | | | | | | | | | AUG
05 | 3.2 | <1 | <1.0 | <2 | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | | OCT
15 | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | DEC 10 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | MAR
09 | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | MAY
28 | | | | | | | | | | | | | | | AUG
05 | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
15 | DINE
TOTAL
(µg/L) | A-
PYRENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L) | [GHI]-
PERY-
LENE
TOTAL
(µg/L) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L) | PHENO-
THION
WATER
UNFLTRD
(µg/L) | DANE,
TECH-
NICAL
TOTAL
(µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L) | | OCT
15
DEC
10 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
15
DEC
10
FEB
04 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
15
DEC
10
FEB
04
MAR
09 | DINE
TOTAL
(µg/L)
(39120) | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT
15
DEC
10
FEB
04
MAR
09
MAY
28 | DINE
TOTAL
(µg/L)
(39120)
<40 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
E1 | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 15 DEC 10 FEB 04 MAR 09 | DINE
TOTAL
(µg/L)
(39120)
<40 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT
15
DEC
10
FEB
04
MAR
09
MAY
28 | DINE
TOTAL
(µg/L)
(39120)
<40 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M
3 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 15 DEC 10 FEB 04 MAR 09 MAY 28 AUG 05 | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) M E2 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) E1 4 DEF TOTAL (µg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M E1 DI- AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M E1 ELDRIN TOTAL (µg/L) (39380) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M
3

3

DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N-BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) | CHLORO-ISO-PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) (39390) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 15 DEC
10 FEB 04 MAR 09 MAY 28 AUG 05 DATE | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) M E2 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) | FLUOR- AN- THENNE TOTAL (µg/L) (34230) E1 4 4 DEF TOTAL (µg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M E1 AZINON, TOTAL (µg/L) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M E1 DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M 3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <1 METHYL PHTHAL-ATE TOTAL (µg/L) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 S2 BUTYL PHTHAL ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) | ETHYL HEXYL) PHTHAL ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 15 DEC 10 FEB 04 MAR 09 MAY 28 AUG 05 DATE OCT 15 DEC 10 FEB | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) M | A- PYRENE TOTAL (µg/L) (34247) M E2 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) E1 4 DEF TOTAL (µg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M E1 AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M E1 DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M 3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLIRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 15 DEC 10 FEB 04 MAR 09 MAY 28 AUG 05 DATE OCT 15 DEC 10 FEB 04 MAR | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) M | A- PYRENE TOTAL (μg/L) (34247) M E2 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) E1 4 DEF TOTAL (μg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M E1 AZINON, TOTAL (μg/L) (39570) .02 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M E1 ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M 3 3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (L(g/L) (34273) <2 <2 <2 UI-N-BUTYL PHTHAL-ATE TOTAL (L(g/L) (39110) M | CHLORO-ISO-PROPYL) PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 < | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 15 DEC 10 FEB 04 MAR 09 AUG 05 DATE OCT 15 DEC 10 FEB 04 MAR 09 MAY | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) M 3 | A- PYRENE TOTAL (µg/L) (34247) M E2 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) E1 4 DEF TOTAL (µg/L) (39040) <.02 <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M E1 AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M E1 DI- ELDRIN TOTAL (µg/L) (39380) <.006008 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M 3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M <2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M <2 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 SIDI-N-BUTYL PHTHAL-ATE TOTAL (µg/L) (39110) M <2 | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) < < < < < < < < <- | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) (39390) <.01 <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 15 DEC 10 FEB 04 MAR 09 MAY 28 AUG 05 DATE OCT 15 DEC 10 FEB 04 MAR 09 | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) M | A- PYRENE TOTAL (μg/L) (34247) M E2 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) E1 4 DEF TOTAL (μg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M E1 AZINON, TOTAL (μg/L) (39570) .02 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M E1 ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M 3 3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (L(g/L) (34273) <2 <2 <2 UI-N-BUTYL PHTHAL-ATE TOTAL (L(g/L) (39110) M | CHLORO-ISO-PROPYL) PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N-OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E1 < | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | ### LOWER MISSISSIPPI RIVER BASIN ## 07010180 GRAVOIS CREEK NEAR MEHLVILLE, MO--Continued (Metropolitan Sewer District) | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(μg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(μg/L)
(39755) | |------------------|---|---|--|---|--|---|--|--|--|--|---|---|---| | OCT
15 | E2 | М | <.01 | <.009 | <.01 | <2 | E1 | М | <.006 | <.10 | <.020 | <.01 | <.006 | | DEC
10 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | MAR
09 | 6 | М | <.01 | <.009 | <.01 | <2 | 3 | М | <.006 | <.10 | <.015 | <.02 | <.006 | | MAY
28 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO
-SODI-
METHYL-
AMINE
TOTAL
(µg/L)
(34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO
-SODI-
PHENYL-
AMINE
TOTAL
(µg/L)
(34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
15
DEC | М | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | E1 | <3.0 | | 10
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09
MAY | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | 4 | <3.0 | | 28
AUG | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | | DATE | PHOR
TOT
(µg
(390 | AL TOT | 'AL TOT.
(μg | X- CHLO
NE, WAT
AL RE
/L) (µg | 4- 1,3- RI- CHLO DRO- WAT UNF UNFI CC RE | ·DI- 1,4- DRO- CHLO TER WAT TRD UNFI C RE | -DI- O-D
DRO- CHLC
PER WAT
LTRD UNFL
EC RE
1/L) (µg | OI – HEX
ORO – CHLO
TER WAT
TRD UNFL
CC RECO
/L) (µg. | A- HEX
RO- CHLO
ER BUT
TRD ADIE
VER TOT
/L) (µg | ORO-
'- NAPE
'NE ALE
'AL TOI
/L) (µg | NE
AL
L) | | | | OCT
15 | <. | 06 E1 | . <1 | <2 | 2 <2 | 2 <2 | 2 <2 | <2 | <3 | . M | I | | | | DEC 10 | | | | | | | | | | | _ | | | | FEB
04 | - | | | | | | | | | | _ | | | | MAR
09 | <. | 02 4 | <1 | <2 | 2 <2 | 2 <2 | 2 <2 | <2 | <1 | . M | I | | | | MAY
28 | - | | | | | | | | | | - | | | | AUG
05 | - | | | | | | | | | | - | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material
verified, but not quantified. <--Numeric result is less than the value shown. ### LOWER MISSISSIPPI RIVER BASIN ## 07010208 MARTIGNEY CREEK NEAR ARNOLD, MO LOCATION.--Lat 38°29'26", long 90°17'36", St. Louis County, Hydrologic Unit 07140101, on left downstream abutment of Sunrise Height Drive bridge, 0.1 mi south of Interstate 255, 0.5 mi east of Highway 231 (Telegraph Road), and 1.04 mi upstream of Mississippi River. DRAINAGE AREA. -- 2.64 mi². PERIOD OF RECORD. -- May 1997 to current year. GAGE.--Water-stage recorder. Datum of gage unknown. REMARKS. -- Records poor. | , icco | ras poor. | DISCHAF | RGE, CUBI | IC FEET PE | | WATER Y | EAR OCTOBE
ALUES | R 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|--------------------------------------|---|---|---|--|--|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.32
0.32
0.33
0.36
6.8 | e0.47
e1.9
0.52
0.53
0.51 | 0.83
0.56
0.51
0.49
0.50 | | eı.z | e0.73
e17
e2.9
1.4
1.3 | 0.81
0.89
0.78
0.81
0.83 | 0.77
0.69
0.64
0.62
0.61 | 0.62
0.72
0.84
1.6
2.0 | 0.31
0.31
0.31
0.32
0.31 | 0.25
0.97
0.24
0.26
5.5 | 0.55
0.51
0.52
0.52
0.45 | | 6
7
8
9
10 | 0.48
0.38
0.39
0.43
2.3 | 0.53
0.56
0.56
0.54
0.52 | 0.59
0.54
0.56
0.56
0.64 | 0.54
0.53
0.55
e0.51
e0.53 | e0.86
e0.78
e0.67
e0.65
e0.86 | 1.2
1.1
1.0
34
2.3 | 0.76
1.4
15
2.0
0.72 | 11
31
38
37
2.1 | 0.95
1.00
0.75
0.59
8.1 | 0.30
0.29
0.30
0.33
0.41 | 12
0.30
0.24
0.24
0.24 | 0.45
2.4
0.44
0.50
0.51 | | 11
12
13
14
15 | | | | | | | 0.65
0.64
0.63
1.3
0.61 | | | | 1.4
1.9
1.2
0.78 | 0.50
0.43
0.40
2.8
0.39 | | 16
17
18
19
20 | 2.2
0.46
0.43
e0.46
e0.41 | 0.48
0.49
0.50
0.53
0.52 | 56
36
4.1
2.6
2.1 | e0.43
e0.42
e0.57
e1.1
e0.74 | e0.54
e0.53
e0.57
e10
e2.2 | 3.8
1.7
1.2
14
3.4 | 0.59
0.66
0.55
5.9
3.0 | e6.9
e27
e5.2
1.8 | 0.47
0.45
0.44
0.44 | 0.26
0.24
8.5
0.22
0.21 | 0.65
0.56
7.9
5.4
1.2 | 0.35
7.8
0.57
12
7.4 | | 21
22
23
24
25 | | | | e0.85
e0.73
e1.6
e2.1
e0.91 | | | | | 0.42
0.42
0.42
0.42
4.6 | 0.21
8.9
0.79
0.23
0.23 | 0.50
0.48
0.59
0.48
0.51 | 0.48
0.42
0.59
0.36
0.37 | | 27 | e0.48
e0.43
e0.39
e0.40
e0.40
e0.43 | 0.49
0.46
6.5
21
20 | 0.76
0.66
0.62
0.58
0.54 | e0.80
e0.69
e0.66
e1.1
e37
e81 | e1.0
e0.86
e0.79
 | 5.5
2.3
1.6
2.6
1.2
0.94 | 0.58
40
11
1.3
0.93 | 0.74
4.2
4.6
0.85
0.61
0.57 | 0.89
0.37
0.34
0.32
0.32 | 0.23
0.21
0.22
0.22
0.22
0.23 | 0.54
0.57
0.56
0.53
0.55
0.53 | 0.39
0.43
0.39
0.41
0.43 | | MEAN
MAX
MIN | 2.28
22
0.32 | 3.24
35
0.46 | 5.45
56
0.49 | 4.46
81
0.42 | 1.49
10
0.53 | 5.16
34
0.73 | 3.55
40
0.55 | 7.46
38
0.57 | 2.59
33
0.32 | 0.83
8.9
0.21 | 2.23
22
0.24 | 1.46
12
0.35 | | STATIS | TICS OF M | ONTHLY MEA | AN DATA I | FOR WATER | YEARS 199 | 97 - 2002 | , BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.61
2.28
2002
1.21
1998 | 2.15
3.25
2002
0.74
2000 | 1.97
5.45
2002
0.38
1999 | 2.79
4.53
1999
1.25
2001 | 3.38
5.65
1999
1.49
2002 | 4.02
8.47
1998
1.69
2000 | 3.20
5.54
1998
1.30
2000 | 4.90
7.46
2002
1.44
1999 | 4.78
9.74
2000
2.10
1999 | 2.86
6.53
1998
0.71
1997 | 2.33
4.25
2000
0.96
2001 | 1.53
3.14
2001
0.49
1999 | | SUMMAR | Y STATIST | ICS | FC | OR 2001 CA | LENDAR YE | EAR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1997 | - 2002 | | LOWEST
HIGHES'
LOWEST
ANNUAL
MAXIMUI
MAXIMUI
INSTAN'
10 PERO
50 PERO | I ANNUAL M
ANNUAL M
I DAILY M
DAILY ME | EAN EAN AN Y MINIMUM OW AGE OW FLOW EDS | | 3.02
58
0.32
0.33

6.2
0.66
0.43 | Jul
Oct 1
Sep | 24
-,2
27 | 3.37
81
0.21 J
0.22
Unknown
9.48
0.18 J
8.0
0.64
0.33 | Jan
Tul 20,21,
Jul
Apr
Apr
Tul 19-21, | 31
27
24
27
27
27 | 3.04
3.97
2.19
126
0.17
0.20
1180 ^a
12.79
0.13
6.0
0.70
0.35 | Jun :
Sep :
Dec :
Jun :
Jun :
Oct | 1998
1999
24 2000
23 1999
23 1998
24 2000
24 2000
1 1999 | e Estimated $^{\rm a}$ From rating extended above 419 ${\rm ft}^3/{\rm s}$. # 07010500 MARAMEC SPRING NEAR ST. JAMES, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $37^{\circ}57^{\circ}20$ ", long $91^{\circ}31^{\circ}57$ ", in SE $\frac{1}{4}$ SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.1, T.37 N., R.6 W., Phelps County, Hydrologic Unit 07140102, in Maramec Spring Park, approximately 5 mi east of St. James on Highway 8. PERIOD OF RECORD.--November 1993 to August 1997, November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|---|---|---|--|---|--|---|--|---|---| | NOV
02 | 0945 | ENVIRONM | ENTAL | 72 | 7.5 | 75 | 7.5 | 361 | 14.0 | 190 | 38.6 | 22.2 | .77 | | JAN
28 | 1330 | ENVIRONM | ENTAL | 77 | 13.2 | 133 | 7.4 | 308 | 13.9 | | | | | | MAR
21 | 0925 | ENVIRONM | ENTAL | 365 | 8.0 | 78 | 7.0 | 233 | 12.9 | | | | | | MAY
21 | 1600 | ENVIRONM | ENTAL | 411 | 8.2 | 79 | 7.0 | 125 | 13.3 | 60 | 12.9 | 6.86 | 1.04 | | JUL
29 | 1015 | ENVIRONM | ENTAL | 135 | 8.8 | 88 | 7.8 | 305 | 14.0 | | | | | | SEP
05 | 1245 | ENVIRONM | ENTAL | 103 | 8.6 | 87 | 7.2 | 291 | 14.5 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV 02 | 5.15 | 170 | 172 | 210 | 0 | 7.95 | E.1 | 5.2 | <10 | 194 | <.04 | E.08 | .68 | | JAN
28 | | 161 | 163 | 199 | 0 | | | | <10 | | .04 | E.06 | .81 | | MAR
21 | | 129 | 130 | 159 | 0 | | | | <10 | | <.04 | <.10 | .60 | | MAY
21 | 2.03 | 51 | 52 | 63 | 0 | 2.59 | E.1 | 5.5 | <10 | 88 | <.04 | .14 | .46 | | JUL
29 | | 146 | 147 | 179 | 0 | | | | <10 | | <.04 | E.07 | .80 | | SEP
05 | | 136 | 139 | 169 | 0 | | | | <10 | | <.04 | E.07 | .83 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) |
COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV 02 | <.008 | E.04 | .02 | E.04 | К3 | К8 | K1 | 9 | 16 | E.1 | E.02 | <.1 | <6 | | JAN
28 | <.008 | <.06 | .04 | <.06 | K1 | K4 | K3 | | | | | | | | MAR
21 | E.006 | E.03 | <.02 | <.06 | K76 | 20 | 27 | | | | | | | | MAY
21 | E.004 | <.06 | E.01 | <.06 | K17 | K75 | K370 | 188 | 328 | E.1 | <.04 | <.1 | E4 | | JUL
29 | <.008 | <.06 | E.01 | <.06 | K17 | K13 | 31 | | | | | | | | SEP
05 | <.008 | <.06 | .02 | E.03 | 21 | K16 | 51 | | | | | | | # 07010500 MARAMEC SPRING NEAR ST. JAMES, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 02 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | | 1 | | JAN | | | | | | | | | | 28 | | | | | | | | | | MAR | | | | | | | | | | 21 | | | | | | | | | | MAY | | | | | | | | _ | | 21 | 65 | .27 | <1 | 4.3 | E.01 | <.3 | | 3 | | JUL | | | | | | | | | | 29 | | | | | | | | | | SEP | | | | | | | | | | 05 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### 07013000 MERAMEC RIVER NEAR STEELVILLE, MO LOCATION.--Lat $37^{\circ}59^{\circ}58^{\circ}$, long $91^{\circ}21^{\circ}39^{\circ}$, in NE $\frac{1}{4}$ sec.21, T.38 N., R.4 W., Crawford County, Hydrologic Unit 07140102, on left bank 20 ft downstream from railroad bridge, 400 ft upstream from highway bridge, 0.8 mi upstream from Whittenburg Creek, 1.5 mi north of Steelville, and at mile 146.4. DRAINAGE AREA. -- 781 mi². PERIOD OF RECORD.--October 1922 to current year. Prior to January 1923 monthly discharges only, published in WSP 1311. Gage-height records for 1916-33 at site 1.0 mi upstream in reports of the National Weather Service. REVISED RECORDS. -- WSP 897: 1939. WSP 1007: Drainage Area. GAGE.--Water-stage recorder. Datum of gage is 681.68 ft above National Geodetic Vertical Datum of 1929. Prior to May 24, 1934, and from July 20, 1966 to July 20, 1967, nonrecording gage, 400 ft downstream, same datum; May 24, 1934 to July 20, 1966, water-stage recorder at present site and datum; July 20, 1967 to Feb. 13, 1973, water-stage recorder at site 1,900 ft downstream and at datum 1.8 ft lower; Feb, 14, 1973 to current year, water-stage recorder at present site and datum. REMARKS.--Records good. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Aug. 20, 1915, reached a stage of 26.5 ft. discharge, 60,000 ft³/s. ## 07014000 HUZZAH CREEK NEAR STEELVILLE, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°58'29", long 91°12'16", in SW $\frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.25, T.38 N., R.3 W., Crawford County, Hydrologic Unit 07140102, at bridge on State Highway 8 at Huzzah Valley Resort, approximately 9 mi east of Steelville. DRAINAGE AREA.--259 mi². PERIOD OF RECORD.--November 1993 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|---|--|---|--|---|---| | NOV
01 | 1230 | ENVIRONM | ENTAL | 57 | 10.6 | 108 | 7.9 | 404 | 14.9 | 210 | 42.0 | 26.3 | .30 | | JAN
23 | 1410 | ENVIRONM | ENTAL | 70 | 11.7 | 109 | 7.6 | 378 | 10.6 | | | | | | MAR
28 | 1130 | ENVIRONM | ENTAL | 469 | 11.0 | 98 | 8.0 | 251 | 9.1 | | | | | | MAY
09 | 1450 | ENVIRONM | ENTAL | 3050 | 8.4 | 89 | 7.5 | 161 | 17.3 | 86 | 19.1 | 9.40 | .79 | | JUL
30 | 0950 | ENVIRONM | ENTAL | 73 | 10.5 | 125 | 7.7 | 373 | 23.0 | 200 | 42.2 | 23.0 | 1.31 | | SEP
03 | 1020 | ENVIRONM | ENTAL | 77 | 8.8 | 104 | 7.7 | 357 | 22.5 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
01
JAN | 4.41 | 199 | 201 | 245 | 0 | 5.02 | <.1 | 14.8 | 58 | 206 | <.04 | E.06 | .05 | | 23
MAR | | 173 | 176 | 215 | 0 | | | | <10 | | <.04 | E.06 | . 29 | | 28
MAY | | 105 | 105 | 128 | 0 | | | | <10 | | <.04 | E.09 | .28 | | 09 | 3.01 | 78 | 80 | 98 | 0 | 1.83 | <.1 | 8.5 | 49 | 115 | <.04 | .47 | .08 | | 30
SEP | 4.22 | 182 | 183 | 223 | 0 | 4.18 | E.1 | 10.7 | <10 | 208 | <.04 | <.10 | .25 | | 03 | | 170 | 171 | 208 | 0 | | | | <10 | | <.04 | E.07 | .23 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV 01 | <.008 | <.06 | <.02 | <.06 | К6 | 21 | 36 | 7 | 11 | . 2 | <.04 | <.1 | <6 | | JAN
23 | E.005 | <.06 | <.02 | <.06 | <1 | K1 | <1 | | | | | | | | MAR
28 | <.008 | <.06 | <.02 | <.06 | K1 | К5 | K12 | | | | | | | | MAY
09 | .010 | <.06 | <.02 | E.06 | K120 | 1300 | 3300 | 175 | 621 | . 4 | .04 | E.1 | <6 | | JUL
30 | <.008 | <.06 | <.02 | <.06 | K13 | 20 | K150 | 1 | 15 | .2 | <.04 | <.1 | <6 | | SEP
03 | <.008 | <.06 | <.02 | <.06 | 76 | К94 | 84 | | | | | | | # 07014000 HUZZAH CREEK NEAR STEELVILLE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) |
ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | | (01040) | (0104) | (01031) | (01030) | (71300) | (01143) | (01000) | (01052) | | NOV | | | | | | | | | | 01 | <10 | E.05 | <1 | E2.3 | <.01 | <.3 | | 3 | | JAN | | | | | | | | | | 23 | | | | | | | | | | MAR | | | | | | | | | | 28 | | | | | | | | | | MAY | | | | | | | | | | 09 | 146 | 1.25 | 1 | 15.9 | E.01 | <.3 | | 8 | | JUL | | | | | | | | | | 30 | <10 | <.08 | <1 | 4.6 | <.01 | <.3 | <1 | 1 | | SEP | | | | | | | | | | 0.3 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 07014200 COURTOIS CREEK AT BERRYMAN, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°55'05", long 91°06'04", in NE $\frac{1}{4}$ SW $\frac{1}{4}$ Sec.13, T.37 N., R.2 W., Crawford County, Hydrologic Unit 07140102, at bridge on State Highway 8, approximately 13 mi east of Steelville. DRAINAGE AREA.--173 mi². PERIOD OF RECORD. -- November 1993 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|---|---|--|---|---|---|--|--|--|--|---|---| | NOV
01
01 | 1000
1000 | ENVIRONM
BLANK | ENTAL | 29
 | 9.3 | 95
 | 7.9 | 443 | 14.9 | 240 | 47.6
.02 | 29.6
E.008 | .65
<.10 | | JAN
23
23
MAR | 1230
1235 | ENVIRONM
BLANK | ENTAL | 47
 | 10.9 | 98
 | 7.9 | 393
 | 9.1 | | | | | | 28
28
MAY | 1010
1011 | ENVIRONM
BLANK | ENTAL | 328 | 11.1 | 97
 | 7.0 | 247 | 8.1 | | | | | | 09
09
JUL | 1110
1230 | ENVIRONM
BLANK | ENTAL | 3250 | 8.1 | 81 | 7.3 | 145 | 14.4 | 78
 | 17.0 | 8.58 | .62
 | | 30
30
SEP | 1210
1211 | ENVIRONM
BLANK | ENTAL | 31 | 6.9
 | 86
 | 7.8 | 399
 | 25.4 | | | | | | 03
03 | 1200
1215 | BLANK
ENVIRONM | ENTAL | 32 | 7.8 |
96 | 7.9 |
391 | 24.6 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
01
01 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N) | | NOV 01 01 JAN 23 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV 01 01 JAN 23 MAR 28 28 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 200 178 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
5.60
<.30 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
27.5
<.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 E.06 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .05 <.05 | | NOV 01
01
JAN 23
23
MAR 28 | DIS-
SOLVED
(mg/L
as Na)
(00930)
3.39
<.09 | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 200 178 80 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 201 181 80 | BICAR-BONATE
IT FIELD (mg/L as HCO ₃) (00450)
245

221

97 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
5.60
<.30 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
<.1
<.1 | DIS-
SOLVED (mg/L
as SO ₄) (00945)
27.5
<.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 E.06 <.10 | GEN, NO2+NO3 DIS- SOLVED (mg/L as N) (00631) .05 <.05 .13 <.05 | | NOV 01 01 JAN 23 23 MAR 28 MAY 09 | DIS-
SOLVED
(mg/L
as Na)
(00930)
3.39
<.09 | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 200 178 80 74 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 201 181 80 75 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 245 221 97 91 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
5.60
<.30

1.33 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
<.1
<.1

E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
27.5
<.1

7.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <73 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
264
<10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 E.06 <.10 E.07 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .05 <.05 .13 <.05 .10 <.05 | # 07014200 COURTOIS CREEK AT BERRYMAN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as
Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |-----------|---|--|--|---|---|--|---|--|---|---|--|--|---| | NOV | | | | | | | | | | | | | | | 01 | <.008 | <.06 | <.02 | <.06 | K5 | 21 | 23 | 6 | 11 | . 2 | <.04 | <.1 | <6 | | 01
JAN | <.008 | <.06 | <.02 | <.06 | | | | 7 | 7 | <.2 | <.04 | <.1 | <6 | | 23 | <.008 | <.06 | <.02 | <.06 | K1 | <1 | K2 | | | | | | | | 23
MAR | <.008 | <.06 | <.02 | <.06 | | | | | | | | | | | 28 | <.008 | <.06 | <.02 | <.06 | K1 | К6 | К6 | | | | | | | | 28 | <.008 | <.06 | <.02 | <.06 | | | | | | | | | | | MAY
09 | E.007 | <.06 | <.02 | .07 | K150 | 590 | 3200 | 165 | 789 | . 4 | .05 | E.1 | E3 | | 09 | <.008 | <.06 | <.02 | <.06 | | | | 1 | 7 | <.2 | <.04 | <.1 | <6 | | JUL
30 | <.008 | <.06 | <.02 | <.06 | K2 | K18 | 34 | | | | | | | | 30 | <.008 | <.06 | <.02 | <.06 | | | | | | | | | | | SEP
03 | <.008 | <.06 | <.02 | <.06 | | | | | | | | | | | 03 | <.008 | <.06 | <.02 | <.06 | к7 | 21 | 44 | | | | | | | | | | | IRON, | LEAD, | LEAD,
TOTAL | MANGA-
NESE, | MERCURY
TOTAL | SELE-
NIUM, | ZINC, | ZINC,
TOTAL | | | | | | DAʻ | | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | RECOV-
ERABLE
(µg/L
as Pb)
(01051) | DIS-
SOLVED
(µg/L
as Mn)
(01056) | RECOV-
ERABLE
(µg/L
as Hg)
(71900) | DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | NOV | | SOLVED
(µg/L
as Fe)
(01046) | SOLVED
(µg/L
as Pb)
(01049) | ERABLE
(µg/L
as Pb)
(01051) | SOLVED
(µg/L
as Mn)
(01056) | RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SOLVED
(µg/L
as Se)
(01145) | SOLVED
(µg/L
as Zn)
(01090) | ERABLE
(μg/L
as Zn)
(01092) | | | | | | NOV
0 | 1
1 | SOLVED
(µg/L
as Fe) | SOLVED
(µg/L
as Pb) | ERABLE
(μg/L
as Pb) | SOLVED
(µg/L
as Mn) | RECOV-
ERABLE
(µg/L
as Hg) | SOLVED
(µg/L
as Se) | SOLVED
(µg/L
as Zn) | ERABLE
(μg/L
as Zn) | | | | | | NOV
0.
0.
JAN
2 | 1
1
3 | SOLVED (µg/L as Fe) (01046) <10 <10 | SOLVED (µg/L as Pb) (01049) <.08 <.08 | ERABLE (µg/L as Pb) (01051) | SOLVED (µg/L as Mn) (01056) E2.3 <2.0 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01 | SOLVED (µg/L as Se) (01145) | SOLVED
(µg/L
as Zn)
(01090) | ERABLE (µg/L as Zn) (01092) | | | | | | NOV
0.
0.
JAN
2 | 1
1
3
3 | SOLVED
(µg/L
as Fe)
(01046)
<10
<10 | SOLVED
(µg/L
as Pb)
(01049)
<.08
<.08 | ERABLE
(µg/L
as Pb)
(01051)
<1
<1 | SOLVED
(µg/L
as Mn)
(01056)
E2.3
<2.0 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01 | SOLVED (µg/L as Se) (01145) | SOLVED
(µg/L
as Zn)
(01090) | ERABLE
(µg/L
as Zn)
(01092) | | | | | | NOV
0
0
JAN
2
2
2
MAR
2. | 1
1
3
3 | SOLVED (µg/L as Fe) (01046) <10 <10 | SOLVED (µg/L as Pb) (01049) <.08 <.08 | ERABLE (µg/L as Pb) (01051) <1 <1 | SOLVED (µg/L as Mm) (01056) E2.3 <2.0 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01 | SOLVED (µg/L as Se) (01145) <.3 <.3 | SOLVED (µg/L as Zn) (01090) 24 | ERABLE (µg/L as Zn) (01092) | | | | | | NOV
0
0
JAN
2
2
2
MAR
2. | 1
1
3
3
8 | SOLVED (µg/L as Fe) (01046) <10 < | SOLVED (µg/L as Pb) (01049) <.08 <.08 | ERABLE (µg/L as Pb) (01051) | SOLVED (µg/L as Mn) (01056) E2.3 <2.0 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01 | SOLVED (µg/L as Se) (01145) <.3 <.3 | SOLVED (µg/L as Zn) (01090) | ERABLE (µg/L as Zn) (01092) | | | | | | NOV
0
0
JAN
2
2
2
MAR
2
2
2
MAY
0 | 1
1
3
3
8
8 | SOLVED (µg/L as Fe) (01046) <10 <10 | SOLVED (µg/L as Pb) (01049) <.08 <.08 3.21 | ERABLE (µg/L as Pb) (01051) <1 | SOLVED (µg/L as Mn) (01056) E2.3 <2.0 13.4 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01

 | SOLVED (µg/L as Se) (01145) <.3 <.3 <.3 | SOLVED (µg/L as Zn) (01090) 24 47 | ERABLE (µg/L as Zn) (01092) 2 2 2 | | | | | | NOV
0
0
JAN
2
2
2
MAR
2
2
MAY
0 | 1
1
3
3
8
9 | SOLVED (µg/L as Fe) (01046) <10 <10 | SOLVED (µg/L as Pb) (01049) < .08 < .08 | ERABLE (µg/L as Pb) (01051) <1 | SOLVED (µg/L as Mn) (01056) E2.3 <2.0 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01 | SOLVED (µg/L as Se) (01145) <.3 | SOLVED (µg/L as Zn) (01090) 24 | ERABLE (µg/L as Zn) (01092) 2 2 2 | | | | | | NOV
0
0
JAN
2
2
2
2
2
2
MAY
0
0
0 | 1
1
3
3
8
8
9 | SOLVED (µg/L as Fe) (01046) <10 <10 146 <10 | SOLVED (µg/L as Pb) (01049) <.08 <.08 3.21 <.08 | ERABLE (µg/L as Pb) (01051) <1 <1 | SOLVED (µg/L as Mn) (01056) E2.3 <2.0 13.4 E1.0 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01

.01
<.01 | SOLVED (µg/L as Se) (01145) <.3 <.3 <.3 <.3 | SOLVED (µg/L as Zn) (01090) 24 47 65 | ERABLE (µg/L as Zn) (01092) 2 2 32 2 | | | | | | NOV
0
0.0.
JAN
2
2
2
MAR
2.2
MAY
0
0
JUL
3.3 | 1
1
3
3
8
8
9
9 | SOLVED (µg/L as Fe) (01046) <10 | SOLVED (µg/L as Pb) (01049) <.08 <.08 3.21 <.08 | ERABLE (µg/L as Pb) (01051) <1 | SOLVED (µg/L as Mm) (01056) E2.3 <2.0 13.4 E1.0 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01

.01
<.01 | SOLVED (µg/L as Se) (01145) <.3 <.3 <.3 <.3 <.3 <.3 | SOLVED (µg/L as Zn) (01090) 24 47 65 | ERABLE (µg/L as Zn) (01092) 2 2 2 | | | | | | NOV
0
0
JAN
2
2
2
2
2
2
2
MAY
0
0
0
JUL
3
3
3
SEP
0 | 1
1
3
3
8
8
9
9 | SOLVED (µg/L as Fe) (01046) <10 <10 146 <10 | SOLVED (µg/L as Pb) (01049) <.08 <.08 3.21 <.08 | ERABLE (µg/L as Pb) (01051) <1 <1 | SOLVED (µg/L as Mn) (01056) E2.3 <2.0 13.4 E1.0 | RECOV-
ERABLE
(µg/L
as Hg)
(71900)
<.01
<.01

.01
<.01 | SOLVED (µg/L as Se) (01145) <.3 <.3 <.3 <.3 | SOLVED (µg/L as Zn) (01090) 24 47 65 | ERABLE (µg/L as Zn) (01092) 2 2 32 2 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. ### 07014500 MERAMEC RIVER NEAR SULLIVAN, MO LOCATION.--Lat $38^\circ09^\circ30^\circ$, long $91^\circ06^\circ30^\circ$, in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.35, T.40 N., R.2 W., Crawford County, Hydrologic Unit 07140102, on right bank at upstream side of Sappington Bridge, 3.8 mi downstream from Brazil Creek, 4.0 mi southeast of Sullivan, and at mile 117.0. DRAINAGE AREA. -- 1,475 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--September 1921 to September 1933, October 1943 to current year. Monthly discharge only for October 1943, published in WSP 1311. REVISED RECORDS.--WSP 1007: 1922(M), 1924-30, 1933: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 581.82 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Oct. 21, 1952, nonrecording gage at present site and datum. REMARKS.--Water-discharge records fair. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of August 1915 reached a stage of 33.5 ft, from information by local residents, discharge, $90,000 \text{ ft}^3/\text{s}$. CORRECTIONS.--The peak stage for period of record is 32.34 ft, Dec. 4, 1982, superseding figures published in WDR MO-88-1 to WDR MO-00-1. | | | DISCHARG | E, CUBIC | FEET PER | | WATER Y
MEAN V | | ER 2001 TO | SEPTEMBER | 2002 | | | |--|--|---|--|--|-----------------------------|--|---|---|---------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 191 | 276 | 1430 | 520 | 9440 | e600 | 1700 | 1850 | 1400 | 568 | 407 | 446 | | 2 | 189 | 280 | 1350 | 490 | 7130 | e930 | 1510 | 1670 | 1290 | 558 | 399 | 428 | | 3 | 189 | 274 | 1010 | 470 | 3600 | e1940 | 1360 | 1480 | 1200 | 560 | 402 | 412 | | 4 | 187 | 267 | 801 | 451 | 2690 | e1590 | 1220 | 1310 | 1130 | 615 | 390 | 399 | | 5 | 211 | 271 | 666 | 414 | 2150 | 1350
 1090 | 1180 | 1110 | 651 | 377 | 385 | | 6 | 232 | 272 | 579 | 409 | 1760 | e1300 | 1000 | 1200 | 1070 | 601 | 373 | 373 | | 7 | 221 | 264 | 518 | 405 | 1510 | 1250 | 932 | 1570 | 1020 | 550 | 367 | 363 | | 8 | 238 | 258 | 479 | 395 | 1310 | 1200 | 980 | 7100 | 967 | 519 | 354 | 356 | | 9 | 237 | 253 | 437 | 388 | 1150 | 1740 | 1370 | 22600 | 919 | 499 | 347 | 346 | | 10 | 234 | 249 | 406 | 381 | 1030 | 3440 | 1820 | 19400 | 892 | 485 | 341 | 333 | | 11 | 239 | 246 | 381 | 373 | 913 | 3030 | 1720 | 5900 | 952 | 536 | 374 | 326 | | 12 | 254 | 243 | 384 | 365 | 821 | 2450 | 1540 | 4330 | 1990 | 576 | 376 | 321 | | 13 | 284 | 242 | 449 | 354 | 740 | 2220 | 1400 | 15300 | 1380 | 601 | 418 | 317 | | 14 | 290 | 241 | 581 | 347 | 672 | 2010 | 1380 | 26400 | 1140 | 557 | 1040 | 319 | | 15 | 282 | 242 | 726 | 337 | 624 | 1780 | 1530 | 13900 | 1040 | 527 | 842 | 328 | | 16 | 290 | 241 | 1160 | 328 | 578 | 1850 | 1590 | 4260 | 925 | 508 | 704 | 326 | | 17 | 285 | 240 | 5240 | 319 | 539 | 2330 | 1480 | 13400 | 853 | 490 | 594 | 351 | | 18 | 277 | 241 | 7780 | 315 | 506 | 2110 | 1420 | 31500 | 802 | 478 | 604 | 365 | | 19 | 278 | 241 | 4140 | 325 | 502 | 2100 | 1370 | 21100 | 765 | 534 | 2230 | 385 | | 20 | 266 | 239 | 2820 | 321 | 564 | e6380 | 3580 | 5990 | 729 | 486 | 1860 | 440 | | 21 | 256 | 237 | 2150 | 319 | 650 | e5280 | 6610 | 4210 | 698 | 466 | 2290 | 481 | | 22 | 248 | 238 | 1750 | 314 | 693 | e4190 | 4900 | 3330 | 672 | 453 | 1630 | 514 | | 23 | 252 | 239 | 1470 | 321 | 659 | e3240 | 3520 | 2770 | 651 | 478 | 1130 | 454 | | 24 | 290 | 401 | 1240 | 351 | 616 | e3070 | 2840 | 2420 | 628 | 584 | 911 | 414 | | 25 | 350 | 518 | 1070 | 446 | 580 | e4310 | 2490 | 2190 | 670 | 592 | 774 | 390 | | 26
27
28
29
30
31 | 509
425
364
326
304
289 | 733
596
525
523
757 | 936
832
752
690
617
560 | 547
579
539
508
537
2530 | e538
e538
e538
 | 5190
3830
e3030
e2620
e2210
e1900 | 2170
2020
2600
2520
2120 | 2000
1820
2140
2180
1750
1550 | 718
627
616
620
605 | 527
483
452
431
419
412 | 680
614
560
521
490
467 | 375
365
351
341
334 | | MEAN
MAX
MIN
IN. | 274
509
187
0.21 | 328
757
237
0.25
VTHLY MEAN | 1400
7780
381
1.09 | 474
2530
314
0.37 | 1537
9440
502
1.09 | 2596
6380
600
2.03 | 2059
6610
932
1.56 | 7348
31500
1180
5.75 | 936
1990
605
0.71 | 522
651
412
0.41 | 738
2290
341
0.58 | 378
514
317
0.29 | | MEAN | 587 | 1041 | 1225 | 1218 | 1457 | 1936 | 2388 | 2037 | 1323 | 758 | 543 | 538 | | MAX | 4307 | 5692 | 8307 | 6304 | 5264 | 5786 | 9435 | 7348 | 8742 | 6142 | 2030 | 5489 | | (WY) | 1950 | 1986 | 1983 | 1950 | 1982 | 1945 | 1994 | 2002 | 1945 | 1951 | 1982 | 1993 | | MIN | 156 | 249 | 232 | 216 | 281 | 295 | 347 | 292 | 263 | 205 | 199 | 146 | | (WY) | 1957 | 1957 | 1956 | 1956 | 1954 | 1954 | 1954 | 1932 | 1932 | 1954 | 1964 | 1956 | | SUMMARY | STATISTIC | CS | FOR 2 | 001 CALEN | DAR YEAR | | FOR 2002 | WATER YEAR | | FOR PI | ERIOD OF | RECORD | | LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM INSTANTA ANNUAL I 10 PERCI 50 PERCI | MEAN ANNUAL ME ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA DEVEN-DAY PEAK FLOW PEAK STA ANEOUS LOW RUNOFF (IN EUNT EXCEEL ENT EXCEEL | AN AN MINIMUM SE THOW WCHES) OS | | 8340
174
180

6.37
1320
406
232 | Feb 25
Sep 6,7
Sep 2 | | 1556
31500
187
203
33800
21.78
184
14.33
2920
596
273 | May 18
Oct 4
Oct 1
May 18
May 18
Oct 4 | | 1252
3014
341
70600
131
133
77300
32.34
131
11.53
2410
603
271 | Sep
Sep
Jun
Dec | 1985
1954
9 1945
20 1956
16 1956
9 1945
4 1982
20 1956 | e Estimated # 07014500 MERAMEC RIVER NEAR SULLIVAN, MO--Continued (Ambient Water-Quality Monitoring Network) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1963 to July 1975, July 1977 to June 1990, November 1992 to current year. | DATE | TIME | SAMPLI
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|---|--|--|---|---|---|---|---|---|--|---|---| | OCT
23 | 0945 | ENVIRONM | ENTAL | 240 | 7.4 | 79 | 7.9 | 378 | 16.9 | | | | | | NOV
01 | 1010 | ENVIRONM | ENTAL | 275 | 9.1 | 89 | 8.3 | 397 | 13.5 | 210 | 40.5 | 25.5 | 1.23 | | DEC
05
05 | 0920
0921 | ENVIRONMI
REPLICATI | | 673
 | 9.2 | 88 | 8.0 | 357
 | 12.3 | | | | | | JAN
23 | 0915 | ENVIRONM | ENTAL | 312 | 12.0 | 99 | 7.9 | 349 | 6.0 | 180 | 36.2 | 22.1 | .44 | | FEB 12 | 1145 | ENVIRONM | ENTAL | 821 | 11.3 | 94 | 8.1 | 277 | 6.9 | | | | | | MAR
28 | 0945 | ENVIRONM | ENTAL | 3000 | 11.1 | 98 | 8.1 | 213 | 9.1 | | | | | | APR
10
10 | 0950
0951 | ENVIRONMI
REPLICATI | | 1860
 | 10.2
10.3 | 100
100 | 8.2
8.2 | 281
281 | 13.3
13.2 | | | | | | MAY
23 | 1000 | ENVIRONM | ENTAL | 23700 | 9.0 | 94 | 7.6 | 214 | 16.2 | 110 | 23.0 | 12.3 | .65 | | JUN
20 | 1000 | ENVIRONM | ENTAL | 1130 | 10.0 | 123 | 8.0 | 306 | 25.3 | | | | | | JUL
30 | 1420 | ENVIRONM | ENTAL | 1010 | 7.7 | 102 | 7.9 | 338 | 28.6 | 170 | 36.0 | 20.5 | 1.39 | | AUG
12
SEP | 1400 | ENVIRONM | ENTAL | 941 | 8.7 | 111 | 8.0 | 340 | 26.4 | | | | | | 03 | 1145 | ENVIRONM | ENTAL | 1010 | 8.3 | 105 | 8.8 | 329 | 26.1 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLITD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | DATE OCT 23 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
23
NOV
01 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
23
NOV
01
DEC
05 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFILTRD FET FIELD (mg/L as CaCO ₃) (00410) 176 185 174 | WATER
UNFLTRD
IT
FIELD
(mg/L
as
CaCO ₃)
(00419)
177
185
175 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 | | OCT 23 NOV 01 DEC 05 05 JAN | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
176
185
174 | WATER UNFLITRD IT FIELD (mg/L as CaCO ₃) (00419) 177 185 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
216
225
214 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 .14 .12 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .20 | | OCT 23 NOV 01 DEC 05 05 JAN 23 FEB | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.28

3.39 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
176
185
174
 | WATER
UNFLITRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
177
185
175
 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 216 225 214 217 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

8.05

 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

11.4

10.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTTAL (mg/L as N) (00625) E.09 E.09 .14 .12 E.09 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .20 .21 | | OCT 23 NOV 01 DEC 05 JAN 23 FEB 12 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.28

3.39 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 176 185 174 177 128 | WATER
UNFLITED
IT
FIELD (mg/L as
CaCO ₃) (00419)
177
185
175

178 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
216
225
214

217 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

11.4

10.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 .14 .12 E.09 E.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .20 .21 E.56 | | OCT 23 NOV 01 DEC 05 JAN 23 FEB 12 MAR 28 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.28

3.39 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 176 185 174 177 128 107 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 177 185 175 178 128 107 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
216
225
214

217
156
131 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

8.05

11.6 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

11.4

10.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <16 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 .14 .12 E.09 E.10 .24 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .20 .21 E.56 .29 | | OCT 23 NOV 01 DEC 05 U55 JAN 23 FEB 12 MAR 28 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.28

3.39 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 176 185 174 177 128 | WATER
UNFLITED
IT
FIELD (mg/L as
CaCO ₃) (00419)
177
185
175

178 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
216
225
214

217 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

8.05

 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

11.4

10.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 .14 .12 E.09 E.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .20 .21 E.56 | | OCT 23 NOV 01 DEC 05 JAN 23 FEB 12 MAR 28 APR 10 10 MAY 23 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.28

3.39
 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 176 185 174 177 128 107 135 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 177 185 175 178 128 107 135 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
216
225
214

217
156
131 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

8.05

11.6 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

11.4

10.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <20 <10 <20 <20 <20 <20 <20 <20 <20 <20 <20 <2 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 .14 .12 E.09 E.10 .24 .18 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .20 .21 E.56 .29 .11 | | OCT 23 NOV 01 DEC 05 JAN 23 FEB 12 MAR 28 APR 10 10 MAY 23 JUN 20 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.28

3.39

 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 176 185 174 177 128 107 135 134 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 177 185 175 178 128 107 135 133 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
216
225
214

217
156
131
164
162 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

8.05

11.6 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

11.4

10.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 .14 .12 E.09 E.10 .24 .18 .18 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .20 .21 E.56 .29 .11 .11 | | OCT 23 NOV 01 DEC 05 JAN 23 FEB 12 MAR 28 APR 10 10 MAY 23 JUN | DIS-
SOLVED (mg/L as Na) (00930) 6.28 3.39 2.67 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 176 185 174 177 128 107 135 134 97 | WATER
UNFLITED
IT
FIELD (mg/L as
CaCO ₃) (00419)
177
185
175

178
128
107
135
133
98 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
216
225
214

217
156
131
164
162 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

8.05

11.6

2.79 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.1

<.1

<.1
 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

11.4

10.3

7.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <20 19 26 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 .14 .12 E.09 E.10 .24 .18 .18 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .21 E.56 .29 .11 .11 .36 | | OCT 23 NOV 01 DEC 05 JAN 23 FEB 12 MAR 28 APR 10 10 MAY 23 JUN 20 JUN 30 | DIS-
SOLVED (mg/L as Na) (00930) 6.28 3.39 2.67 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 176 185 174 177 128 107 135 134 97 172 | WATER UNFLITED 1T FIELD (mg/L as CaCO ₃) (00419) 177 185 175 178 128 107 135 133 98 172 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
216
225
214

217
156
131
164
162
120
210 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

8.05

11.6

2.79 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.1

<.1

E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

11.4

10.3

7.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L)(00530) <10 <10 <10 <10
<10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.09 E.09 .14 .12 E.09 E.10 .24 .18 .18 .17 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 <.05 .20 .21 E.56 .29 .11 .11 .36 .14 | # 07014500 MERAMEC RIVER NEAR SULLIVAN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |------------------|--|--|--|---|--|--|--|--|---|--|--|--|---| | OCT
23 | <.008 | <.06 | <.02 | <.06 | К3 | K11 | 25 | | | | | | | | NOV
01 | <.008 | <.06 | <.02 | <.06 | K2 | K7 | K12 | 14 | 29 | .2 | <.04 | <.1 | <6 | | DEC
05
05 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | K7
 | K20
 | 39
 | | | | | | | | JAN
23 | <.008 | <.06 | <.02 | <.06 | К3 | К6 | к4 | 17 | 23 | E.2 | <.04 | <.1 | <6 | | FEB
12
MAR | <.008 | <.06 | <.02 | <.06 | <1 | K45 | К5 | | | | | | | | 28
APR | E.005 | <.06 | E.01 | E.04 | 22 | 87 | 47 | | | | | | | | 10
10 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | 22
22 | 25
39 | K13
K18 | | | | | | | | MAY
23 | E.005 | <.06 | <.02 | E.03 | K15 | K37 | 80 | 84 | 265 | <.2 | <.04 | <.1 | <6 | | JUN
20
JUL | E.005 | <.06 | <.02 | <.06 | 22 | 22 | 85 | | | | | | | | 30
AUG | <.008 | <.06 | <.02 | <.06 | K1 | K13 | K8 | 2 | 78 | .3 | <.04 | <.1 | <6 | | 12
SEP | E.005 | <.06 | <.02 | E.03 | K70 | 130 | 46 | | | | | | | | 03 | <.008 | <.06 | E.01 | <.06 | K11 | K14 | K14 | | | | | | | | | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT | 3 | | | | | | | | | | | | | | NOV | | 17 | E.05 | <1 | 7.4 | <.01 | <.3 | | 2 | | | | | | DEC | | | | | | | | | | | | | | | 0
JAN | 5 | | | | | | | | | | | | | | | 3 | 21 | .11 | <1 | 10.0 | <.01 | E.2 | 9 | 3 | | | | | | 1
MAR | 2 | | | | | | | | | | | | | | 2
APR | 8 | | | | | | | | | | | | | | 1 | 0 | | | | | | | | | | | | | | | 3 | 129 | .27 | 1 | 12.2 | <.01 | E.3 | | 3 | | | | | | | 0 | | | | | | | | | | | | | | | 0 | <10 | E.04 | M | 7.5 | <.01 | <.3 | <1 | 2 | | | | | | SEP | 2 | | | | | | | | | | | | | | 0 | 3 | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 07015720 BOURBEUSE RIVER NEAR HIGH GATE, MO LOCATION.--Lat $38^{\circ}08^{\circ}49^{\circ}$, long $91^{\circ}34^{\circ}50^{\circ}$, in SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.4, T.39 N., R.6 W., Phelps County, Hydrologic Unit 07140103, on downstream side of right bridge pier on State Highway B, 1.8 mi downstream from Lanes Fork, 5.0 mi east of High Gate, and 11.0 mi north of St. James. DRAINAGE AREA.--135 mi². PERIOD OF RECORD.--July 1965 to current year. Occasional low-flow measurements 1963, 1964. REVISED RECORDS. -- WDR MO-83-1: 1981. GAGE.--Water-stage recorder. Datum of gage is 802.1 ft above National Geodetic Vertical Datum of 1929 (levels by Missouri State Highway and Transportation Commission). Datum of gage prior to Oct. 1, 1987 was 2 ft higher. Prior to Aug. 17, 1966, nonrecording gage at present site and datum. REMARKS.--Records fair except for estimated daily discharges and those below 5 ${\rm ft}^3/{\rm s}$, which are poor. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD. -- Flood of June 1957 reached a stage of about 23 ft, from information by local resident. | | | DISCHA | ARGE, CUB | IC FEET PER | | WATER Y | | R 2001 TO | SEPTEMBE | R 2002 | | | |--|---|--|-------------------------------------|--------------------------------------|------------------------------------|--------------------------------------|---|--|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.22
0.22
0.21
0.19
0.57 | 4.2
5.5
5.5
5.2
4.7 | 172
62
35
26
21 | e16
e16
e15
e14 | 1500
402
202
110
74 | 15
2330
1380
312
286 | 62
58
55
47
42 | 66
52
41
35
30 | 28
26
23
31
222 | e3.2
e3.1
53
81
24 | 1.5
1.3
1.0
0.86
0.76 | 5.6
4.0
2.9
2.4
1.9 | | 6
7
8
9
10 | 0.52
0.39
0.35
1.6
7.4 | 4.0
3.9
3.7
3.5
3.4 | 18
15
13
12 | 13
12
12
12
12
e11 | 59
50
42
37
34 | 367
189
136
376
232 | 39
37
80
129
86 | 50
1540
4260
4040
598 | 94
51
36
29
27 | 11
6.3
4.4
3.4
3.0 | 0.69
0.61
0.54
0.48
0.44 | 1.6
1.4
1.2
1.0
0.87 | | 11
12
13
14
15 | 14
13
11
7.1
6.8 | 3.1
3.0
2.8
2.8
2.8 | 9.8
18
271
150
101 | el1
el1
el0
el0
e9.8 | 31
29
27
26
24 | 152
163
133
110
471 | 65
54
48
44
40 | 223
1230
4300
617
217 | 27
55
47
36
27 | 4.4
148
45
15
7.7 | 0.39
0.37
0.40
5.0
5.8 | 0.80
0.70
0.62
0.58
0.54 | | 16
17
18
19
20 | 7.9
8.4
8.2
5.7
4.5 | 2.7
2.7
2.6
2.6
2.6 | 1860
2860
648
235
109 | e9.5
e9.5
e9.4
e9.2
e9.0 | 22
20
19
21
32 | 768
299
199
1480
1290 | 37
39
38
958
3730 | 442
6160
1400
385
176 | 22
18
15
13 | 5.2
3.9
88
79
17 | 3.5
3.0
1810
250
137 | 0.51
0.50
0.49
0.65
1.1 | | 21
22
23
24
25 | 4.1
4.1
17
118
46 | 2.5
2.4
2.4
156
51 | 65
49
39
30
26 | e8.9
e8.8
e9.0
17 | 30
25
23
21
19 | 373
183
132
106
1000 | 1760
442
196
122
86 | 113
83
66
66
65 | 7.3
6.1
e5.7
e5.2
e4.8 | 8.1
4.8
5.1
5.3
4.1 | 80
45
34
29
24 | 2.3
3.5
2.6
2.1
1.8 | | 26
27
28
29
30
31 | 18
11
7.5
6.2
5.5
4.7 | 21
14
15
286
1010 | 23
20
19
e18
e17
e17 | 16
14
14
14
1120
4880 | 19
17
16
 | 487
299
175
126
95
75 | 59
637
459
156
91 | 54
46
42
40
36
32 | e4.5
e4.3
e4.3
e3.6
e3.4 | 3.6
2.9
2.2
1.9
1.8
1.7 | 27
30
15
12
9.8
8.0 | 1.4
1.0
0.90
0.80
0.72 | | MEAN
MAX
MIN
IN. | 11.0
118
0.19
0.09 | 54.4
1010
2.4
0.45 | 225
2860
9.8
1.92 | 205
4880
8.8
1.75 | 105
1500
16
0.81 | 443
2330
15
3.79 | 323
3730
37
2.67 | 855
6160
30
7.30 | 29.6
222
3.4
0.24 | 20.9
148
1.7
0.18 | 81.8
1810
0.37
0.70 | 1.55
5.6
0.49
0.01 | | STATIS | STICS OF N
44.6 | MONTHLY ME | EAN DATA 1
181 | FOR WATER Y | EARS 1969 | 5 - 2002
234 | , BY WATER 269 | YEAR (WY | 128 | 48.1 | 35.5 | 45.1 | | MEAN
(WY)
MIN
(WY) | 552
1987
0.34
1967 | 799
1986
0.94
1981 | 1213
1983
1.68
1990 | 150
549
1969
0.65
1977 | 178
634
1985
12.4
1981 |
747
1984
1.32
1981 | 1191
1994
1.57
1981 | 894
1995
3.88
1977 | 963
1985
0.95
1972 | 546
1998
0.25
1972 | 373
1982
0.19
1971 | 865
1993
0.14
1971 | | SUMMAI | RY STATIST | TICS | F | OR 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER : | YEARS 1965 | - 2002 | | HIGHES LOWES HIGHES LOWES ANNUAL MAXIM MAXIM INSTAL ANNUAL 10 PEL 50 PEL | L MEAN ST ANNUAL M ST DAILY M T DAILY M L SEVEN-DA JM PEAK ST JM PEAK ST VIANEOUS I L RUNOFF (RCENT EXCE RCENT EXCE RCENT EXCE | MEAN MEAN EAN AY MINIMUN LOW FAGE LOW FLOW (INCHES) EEDS | 4 | 106 4620 0.19 0.22 10.66 131 10 0.38 | Apr
Oct
Sep 1 | | 198
6160
0.19
0.33
10600
17.25
0.19
19.92
369
18 | May
Oct
Oct
May
May
Oct 3 | 4
1
17
17 | 13' 31' 15.' 2100' 0.0' 0.0' 4930' 23.6' 0.0' 13.8' 22' 1' 0.8' | Dec
Dec
Severa
Severa
Dec
Dec
Severa | 1985
2000
3 1982
1 Years
1 Years
3 1982
3 1982
1 Years | e Estimated ## 07016400 BOURBEUSE RIVER ABOVE UNION, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $38^{\circ}25^{\circ}55^{\circ}$, long $91^{\circ}01^{\circ}11^{\circ}$, in NE $\frac{1}{4}$ NE $\frac{1}{4}$ Sec.34, T.43 N., R.1 W., Franklin County, Hydrologic Unit 07140103, at bridge on North Bend Drive, 0.5 mi southwest of Union, and 5.5 mi upstream from the Bourbeuse River near Union gaging station. DRAINAGE AREA. -- 808 mi², approximately. PERIOD OF RECORD. -- November 1983 to October 1987, November 1993 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
15 | 1200 | ENVIRONM | ENTAL | 46 | 9.1 | 85 | 7.8 | 352 | 12.0 | 170 | 32.0 | 21.8 | 2.36 | | JAN
16 | 0900 | ENVIRONM | ENTAL | 109 | 12.7 | 96 | 7.9 | 298 | 3.0 | | | | | | MAR
13 | 1130 | ENVIRONM | | 709 | 10.9 | 96 | 7.6 | 203 | 8.5 | | | | | | MAY
16 | 0920 | ENVIRONM | | 1920 | 7.9 | 84 | 7.4 | 145 | 17.2 | 63 | 13.2 | 7.37 | 2.10 | | 16
JUL | 0921 | REPLICAT | | | | | | | | 63 | 13.2 | 7.36 | 2.32 | | 10
SEP | 1040 | ENVIRONM | ENTAL | 103 | 2.4 | 32 | 7.8 | 269 | 29.4 | | | | | | 05
05 | 0900
0901 | ENVIRONM
REPLICAT | | 47
 | 5.7 | 71
 | 7.8 | 204 | 26.1 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV | 0.00 | 120 | 1.40 | 1.50 | | 10.4 | | 06.7 | 1.0 | 100 | 0.4 | 0.0 | 25 | | 15
JAN | 8.08 | 139 | 142 | 173 | 0 | 10.4 | .2 | 26.7 | 12 | 192 | <.04 | .23 | <.05 | | 16
MAR | | 104 | 106 | 129 | 0 | | | | <10 | | <.04 | .16 | .72 | | 13
MAY | | 58 | 58 | 71 | 0 | | | | 18 | | <.04 | .39 | .26 | | 16
16 | 3.01
2.94 | 59
 | 58
 | 71
 | 0 | 3.13
2.92 | E.1
E.1 | 9.1
8.8 | 53
60 | 122
98 | E.03
<.04 | .63
.68 | . 27
. 28 | | JUL
10 | | 115 | 116 | 142 | 0 | | | | 26 | | <.04 | .35 | <.05 | | SEP
05 | | 83 | 83 | 102 | 0 | | | | <10 | | <.04 | .30 | .11 | | 05 | | | | | | | | | <10 | | <.04 | .31 | .11 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
15 | <.008 | <.06 | <.02 | E.03 | К3 | К4 | К3 | 26 | 69 | .5 | <.04 | <.1 | <6 | | JAN
16 | <.008 | <.06 | <.02 | <.06 | K18 | к7 | K10 | | | | | | | | MAR
13 | .048 | <.06 | <.02 | E.06 | K40 | K68 | K30 | | | | | | | | MAY
16
16 | .012
E.005 | .08
E.04 | .04 | .12 | 280
300 | 223
480 | K406
540 |
115 | 1180
1200 |
.6 |
<.04 | <.1
E.1 |
<6 | | JUL
10
SEP | <.008 | <.06 | <.02 | E.03 | 25 | K79 | 46 | | | | | | | | 05
05 | <.008
<.008 | E.03
<.06 | E.01
E.01 | E.05
E.04 | K8
K8 | K11
K9 | K19
K13 | | | | | | | # 07016400 BOURBEUSE RIVER ABOVE UNION, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 15 | 102 | .12 | <1 | 33.8 | <.01 | <.3 | | 4 | | JAN | | | | | | | | | | 16 | | | | | | | | | | MAR | | | | | | | | | | 13 | | | | | | | | | | MAY | | | | | | | | | | 16 | | | 4 | | .01 | E.2 | | 9 | | 16 | 125 | .18 | 3 | 17.6 | .01 | <.3 | 2 | 9 | | JUL | | | | | | | | | | 10 | | | | | | | | | | SEP | | | | | | | | | | 05 | | | | | | | | | | 05 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. ### 07016500 BOURBEUSE RIVER AT UNION, MO LOCATION.--Lat 38°26'39", long 90°59'41", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.26, T.43 N., R.1 W., Franklin County, Hydrologic Unit 07140103, on left bank at upstream side of the bridge on U.S. Highway 50, 800 ft upstream from Flat Creek, 0.5 mi east of Union, 7.0 mi upstream from Birch Creek, and at mile 13.4. DRAINAGE AREA. -- 808 mi². PERIOD OF RECORD.--June 1921 to current year. October 1916 to June 1921 gage heights only in reports of the National Weather Service. REVISED RECORDS.--WSP 957: 1941. WSP 1147: Drainage area. WSP 1281: 1924. GAGE.--Water-stage recorder. Datum of gage is 488.58 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1948, datum of all gages 3.00 ft higher. Prior to Oct. 21, 1933, nonrecording gage, at site 30 ft upstream; Oct. 21, 1933, to June 11, 1944, nonrecording gage, at present site. REMARKS.--Records fair except for estimated daily discharges, which are poor. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Aug. 22, 1915, reached a stage of 28.5 ft, present datum, from floodmarks, discharge, about $50,000 \text{ ft}^3/\text{s}$, determined from extension of rating curve for main channel based on measurements made since 1921 and study of overflow areas in
vicinity of gaging station. | | | DISCHAR | RGE, CUBIO | C FEET PER | | WATER YE
MEAN VA | EAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|--|-------------------------------------|--|---|---------------------------------|--|--|---|-----------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 26 | 98 | 2340 | e198 | 9670 | 183 | 812 | 932 | 350 | 83 | 69 | 77 | | 2 | 26 | 92 | 1640 | e183 | 12800 | 480 | 651 | 708 | 292 | 78 | 64 | 70 | | 3 | 25 | 81 | 777 | e172 | 5840 | 3330 | 544 | 574 | 258 | 78 | 60 | 66 | | 4 | 24 | 71 | 505 | e163 | 1550 | 4380 | 477 | 478 | 229 | 76 | 57 | 63 | | 5 | 46 | 66 | 375 | 146 | 1100 | 1670 | 424 | 405 | 312 | 71 | 55 | 56 | | 6 | 39 | 62 | 297 | 143 | 844 | 1190 | 375 | 369 | 304 | 93 | 57 | 52 | | 7 | 32 | 59 | 248 | 138 | 691 | 1150 | 340 | 508 | 274 | 95 | 55 | 49 | | 8 | 29 | 57 | 214 | 133 | 589 | 1060 | 408 | 3600 | 485 | 74 | 50 | 46 | | 9 | 30 | 56 | 187 | 129 | 516 | 884 | 474 | 10700 | 378 | 108 | 48 | 44 | | 10 | 79 | 57 | 164 | 126 | 457 | 907 | 692 | 14500 | 372 | 108 | 46 | 42 | | 11
12
13
14
15 | 64
76
76
100 | 55
51
49
48
46 | 147
160
185
355
891 | 123
120
118
114
111 | 403
360
324
294
267 | 1130
899
718
645
602 | 726
604
488
414
354 | 14200
2160
4660
9550
10900 | 388
726
2040
1280
713 | 133
122
127
75
63 | 50
43
84
82
58 | 40
39
37
36
36 | | 16 | 125 | 43 | 1290 | 107 | 246 | 616 | 314 | 1960 | 491 | 59 | 53 | 34 | | 17 | 98 | 42 | 5090 | 102 | 228 | 1410 | 282 | 1700 | 364 | 56 | 51 | 50 | | 18 | 96 | 41 | 9220 | 100 | 212 | 1200 | 263 | 4630 | 282 | 98 | 70 | 54 | | 19 | 90 | 41 | 6150 | 101 | 222 | 973 | 295 | 9360 | 229 | 102 | 62 | 89 | | 20 | 90 | 40 | 1570 | 99 | 227 | 1640 | 2700 | 2990 | 193 | 100 | 1440 | 95 | | 21 | 79 | 39 | 982 | 96 | 233 | 4230 | 7460 | 1330 | 166 | 509 | 873 | 72 | | 22 | 71 | 39 | 724 | 94 | 269 | 2010 | 8040 | 949 | 145 | 424 | 559 | 70 | | 23 | 70 | 38 | 584 | 95 | 278 | 1190 | 2970 | 749 | 128 | 314 | 382 | 56 | | 24 | 102 | 205 | 497 | 101 | 265 | 870 | 1500 | 632 | 117 | 214 | 292 | 50 | | 25 | 83 | 198 | 429 | 98 | 246 | 935 | 1020 | 551 | 105 | 162 | 229 | 49 | | 26
27
28
29
30
31 | 72
133
276
193
146
117 | 380
431
353
329
607 | 370
320
285
256
232
216 | 97
101
106
114
317
3330 | 227
207
195
 | 1530
2190
1660
1290
1510
1140 | 771
695
1040
2130
1450 | 506
501
495
481
421
392 | 101
100
94
97
100 | 125
103
88
79
78
74 | 185
154
127
108
95
84 | 48
46
51
48
44 | | MEAN | 84.6 | 126 | 1184 | 232 | 1384 | 1407 | 1290 | 3287 | 370 | 128 | 182 | 53.6 | | MAX | 276 | 607 | 9220 | 3330 | 12800 | 4380 | 8040 | 14500 | 2040 | 509 | 1440 | 95 | | MIN | 24 | 38 | 147 | 94 | 195 | 183 | 263 | 369 | 94 | 56 | 43 | 34 | | IN. | 0.12 | 0.17 | 1.69 | 0.33 | 1.78 | 2.01 | 1.78 | 4.69 | 0.51 | 0.18 | 0.26 | 0.07 | | MEAN | 298 | 530 | 651 | 642 | 799 | 1125 | 1294 | 1160 | 846 | 333 | 189 | 247 | | MAX | 4575 | 3320 | 6107 | 3518 | 3214 | 4207 | 5303 | 4578 | 4583 | 3650 | 1927 | 4859 | | (WY) | 1950 | 1986 | 1983 | 1950 | 1985 | 1984 | 1994 | 1995 | 1942 | 1993 | 1993 | 1993 | | MIN | 15.0 | 28.0 | 35.4 | 30.7 | 41.1 | 42.0 | 94.9 | 66.6 | 33.7 | 23.9 | 21.0 | 19.2 | | (WY) | 1957 | 1954 | 1954 | 1956 | 1963 | 1954 | 1956 | 1932 | 1936 | 1936 | 1936 | 1956 | | SUMMARY | Y STATISTI | CS | FOR : | 2001 CALEN | NDAR YEAR | F | FOR 2002 WA | TER YEAR | | WATER YE | ARS 1921 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN MAXIMUN INSTANT ANNUAL 10 PERC | MEAN F ANNUAL ME ANNUAL ME F DAILY MEA SEVEN-DAY M PEAK STA FANEOUS LO RUNOFF (I RUNOFF (I RUNOFF (Z RUNO | AN AN N MINIMUM GE W FLOW NCHES) DS | | 10600
22
24

7.72
891
117
32 | Feb 26
Sep 7
Sep 2 | | 810
14500
24
31
16300
18.36
23
13.61
1600
198
49 | May 10
Oct 4
Oct 1
May 11
May 11
Oct 4 | | 674
1771
106
63000
12
13
73300
33.80
11
11.34
1320
171
41 | Oct 1
Oct
Dec
Dec | 1993
1954
5 1982
10 1956
6 1956
5 1982
5 1982
10 1956 | e Estimated ## 07017200 BIG RIVER AT IRONDALE, MO LOCATION.--Lat $37^{\circ}49^{\circ}48^{\circ}$, long $90^{\circ}41^{\circ}27^{\circ}$, in SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.15, T.36 N., R.3 E., Washington County, Hydrologic Unit 07140104, on right bank 50 ft upstream from bridge on State Highway U, 0.2 mi upstream from Mill Creek, and 0.8 mi west of Irondale. DRAINAGE AREA.--175 \min^2 . PERIOD OF RECORD. -- July 1965 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 753.28 ft above National Geodetic Vertical Datum of 1929 (Missouri State Highway and Transportation Commission bench mark). REMARKS.--Records fair except estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. | | | DISCHARO | GE, CUBIC | FEET PER | | WATER Y | EAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|--|-------------------------------------|--|------------------------------------|--|---|--|------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 4.2
4.4
4.3
4.5
6.1 | 10
10
10
9.4
9.0 | 154
82
55
40
32 | 42
38
34
32
31 | 1750
571
359
251
191 | 62
99
217
150
134 | 166
152
133
118
109 | 211
181
155
134
118 | 146
117
97
82
83 | 20
19
20
19
19 | 13
13
13
12
12 | 20
20
18
17
16 | | 6
7
8
9
10 | 7.2
7.0
6.9
7.0
7.5 | 9.0
10
e9.7
9.0
9.2 | 33
40
34
30
27 | 32
32
31
32
32 | 158
136
113
98
84 | 128
112
102
2980
850 | 101
98
702
478
281 | 145
268
16400
5300
1130 | 85
72
61
70
96 | 17
17
16
16
18 | 12
12
11
11 | 15
15
14
14
14 | | 11
12
13
14
15 | 9.6
12
12
10
10 | 8.9
8.9
9.1
9.3
9.3 | 24
24
42
436
308 | 31
30
29
29
e30 | 72
65
56
51
47 | 523
669
e475
e301
e300 | 214
180
181
546
299 | 699
1840
7780
1260
719 | 87
152
103
75
59 | 61
24
21
19
18 | 13
14
50
73
30 | 13
13
12
135
85 | | 16
17
18
19
20 | 11
10
9.6
9.2
9.3 | 9.3
9.3
9.3
9.2
9.2 | 2000
4380
843
435
274 | 28
26
26
30
29 |
44
40
38
94
503 | e792
e708
e281
1960
1740 | 210
188
163
145
164 | 785
11900
1890
931
648 | 50
41
36
33
31 | 17
17
17
22
19 | 22
19
264
202
794 | 30
112
146
86
225 | | 21
22
23
24
25 | 9.3
9.2
13
66
51 | 9.2
9.2
9.3
20 | 200
162
132
107
90 | 28
28
30
59
88 | 255
167
129
109
92 | 741
459
345
278
1110 | 555
287
206
228
352 | 479
378
314
270
239 | 30
28
26
24
29 | 17
16
16
16
16 | 178
95
63
50
43 | 158
77
49
38
32 | | 26
27
28
29
30
31 | 24
15
12
12
10
9.7 | 16
16
17
31
323 | 77
68
64
57
49
44 | 75
66
59
54
56
1980 | 87
70
63
 | 640
415
318
263
222
192 | 217
882
659
339
248 | 209
189
238
240
194
172 | 29
26
24
22
21 | 15
15
14
13
13 | 36
31
28
25
23 | 28
26
24
22
21 | | MEAN
MAX
MIN
IN. | 12.7
66
4.2
0.08 | 21.9
323
8.9
0.14 | 334
4380
24
2.20 | 102
1980
26
0.67 | 203
1750
38
1.21 | 567
2980
62
3.73 | 287
882
98
1.83 | 1788
16400
118
11.8 | 61.2
152
21
0.39 | 18.7
61
13
0.12 | 70.8
794
11
0.47 | 49.8
225
12
0.32 | | STATIST | | | | | | | , BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 58.3
339
1971
6.95
1981 | 223
1147
1994
10.5
1981 | 262
1027
1983
13.7
1977 | 204
734
1969
11.1
1981 | 254
695
1985
24.9
1977 | 327
867
1978
38.9
1981 | 358
1329
1994
39.7
2000 | 273
1788
2002
17.3
2000 | 117
872
1985
9.95
1980 | 51.2
262
1981
4.69
1980 | 55.5
393
1970
4.27
2000 | 62.0
669
1993
3.10
2000 | | SUMMARY | STATIST | ICS | FOR | 2001 CALI | ENDAR YEAR | R | FOR 2002 V | WATER YE | AR | WATER YEA | ARS 1965 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | 'ANNUAL M
ANNUAL ME
'DAILY ME
DAILY ME | EAN EAN AN MINIMUM AGE DW FLOW ENCHES) EDS EDS | | 4380
3.6
4.2

6.33
123
21
5.1 | Dec 1
Sep :
Sep : | 8 | 296 16400 4.2 5.4 26300 21.32 3.7 22.94 511 47 9.9 | May
Oct
Oct
May
May
Oct | | 187
449
33.9
21300
1.2
1.5
49100
28.95
0.72
14.49
368
56
10 | Sep 2
Sep 1
Nov 1
Nov 1 | 1985
2000
14 1993
21 2000
17 2000
14 1993
14 1993
23 2000 | e Estimated ### 07018100 BIG RIVER NEAR RICHWOODS, MO LOCATION.--Lat 38°09'34", long 90°42'22", in sec.33, T.40 N., R.3 E., Jefferson County, Hydrologic Unit 07140104, on left bank at downstream side of bridge on State Highway H, 1.8 mi east of Fletcher, 6.8 mi east of Richwoods, and at mile 53.7. DRAINAGE AREA. -- 735 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1942 to current year. Prior to May 1949 monthly discharge only, published in WSP 1311. Prior to 1984 published as Big River near De Soto (07018000). GAGE.--Water-stage recorder. Datum of gage is 523.00 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 30, 1983 at site 5.5 mi downstream at datum 15.79 ft higher. REMARKS.--Water-discharge records good. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of August 1915 reached a stage of about 29.4 ft (former datum), discharge, about 70,500 ${\rm ft}^3/{\rm s}$, from rating curve extended above 37,000 ${\rm ft}^3/{\rm s}$. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER YI
MEAN V | EAR OCTOBEF
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|--|--|--|-------------------------------------|---|---|--|------------------------------------|---|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 52
52
51
50
61 | 109
106
104
101
97 | 1020
603
398
304
250 | 229
230
213
205
198 | 8230
3240
1560
1110
862 | 331
353
518
626
585 | 779
700
638
567
508 | 854
762
662
578
511 | 579
516
469
433
419 | 225
216
212
243
268 | 139
136
135
132
129 | 147
139
133
127
120 | | 6
7
8
9 | 69
70
68
65
66 | 93
92
90
88
87 | 222
228
235
210
190 | 191
191
186
184
183 | 715
631
560
496
447 | 540
508
469
4040
5840 | 466
437
657
1700
1180 | 506
1090
7740
21300
10700 | 425
407
384
362
431 | 229
207
194
185
216 | 135
155
150
131
124 | 114
110
106
104
104 | | 11
12
13
14
15 | 71
92
103
111
106 | 85
84
84
84 | 174
175
220
457
1260 | 183
177
171
166
161 | 402
366
337
312
294 | 2040
1660
1590
1260
1110 | 880
743
664
666
1000 | 2620
1840
14100
15000
2980 | 392
1240
810
626
477 | 352
302
316
299
226 | 128
133
2040
1750
607 | 104
102
102
106
142 | | 16
17
18
19
20 | 112
110
101
90
85 | 84
85
85
84
83 | 2090
10200
8060
2140
1320 | 157
152
149
154
157 | 279
265
253
265
628 | 1840
1680
1370
2070
6400 | 823
693
611
566
682 | 1890
5020
17300
4870
2150 | 402
360
333
312
295 | 201
194
188
189 | 402
299
274
361
1750 | 135
237
356
422
469 | | 21
22
23
24
25 | 84
81
84
140
462 | 82
84
90
128
180 | 949
760
644
549
467 | 155
155
158
263
289 | 973
721
565
481
429 | 3500
1880
1430
1200
2350 | 1260
1680
1120
861
779 | 1600
1300
1110
968
859 | 289
274
259
248
284 | 177
173
176
189
175 | 1550
691
448
355
292 | 435
440
328
254
212 | | 26
27
28
29
30
31 | 395
245
182
148
129
118 | 179
157
148
169
803 | 405
364
332
303
275
246 | 288
300
278
260
288
2000 | 407
381
350
 | 2960
1840
1420
1210
1030
889 | 888
1070
2550
1540
1050 | 767
697
696
944
792
666 | 454
312
281
254
238 | 165
158
151
144
141
139 | 256
247
214
188
170
158 | 188
174
164
157
152 | | MEAN
MAX
MIN
IN. | 118
462
50
0.18 | 128
803
82
0.19 | 1131
10200
174
1.77 | 260
2000
149
0.41 | 913
8230
253
1.29 | 1759
6400
331
2.76 | 925
2550
437
1.40 | 3964
21300
506
6.22 | 419
1240
238
0.64 | 208
352
139
0.33 | 441
2040
124
0.69 | 196
469
102
0.30 | | MEAN
MAX
(WY)
MIN
(WY) | 268
1641
1950
47.5
1957 | 650
4223
1986
87.9
1977 | 818
4332
1983
90.5
1956 | 712
3845
1950
84.0
1977 | 927
2935
1985
124
1954 | 1218
2851
1998
123
1954 | 1291
5642
1994
175
2000 | 1072
3964
2002
148
2001 | 563
3150
1985
110
1980 | 388
2492
1951
86.0
1980 | 261
1357
1950
69.9
1955 | 308
4022
1993
40.6
1956 | | SUMMARY | STATISTI | CS | FOR | 2001 CALEN | IDAR YEAR | I | FOR 2002 W | ATER YEAR | | WATER YEA | ARS 1949 - | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MINSTANT ANNUAL 10 PERC 50 PERC | MEAN ANNUAL M ANNUAL ME DAILY MEA SEVEN-DAY PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS DS | | 325
10200
50
52

6.01
523
151
70 | Dec 17
Oct 4
Sep 28 | | 21300
50
58
23900
21.30
50
16.19
1690
295
99 | May 9
Oct 4
Oct 1
May 9
May 9
Oct 2-5 | | 705
1766
171
44400
22
26
59800
30.33
20
13.04
1320
281 | Nov 15
Sep 19
Sep 13
Sep 23
Sep 23
Sep 19 | 9 1954
3 1954
3 1993
3 1993 | # 07018100 BIG RIVER NEAR RICHWOODS, MO--Continued (Ambient Water-Quality Monitoring Network) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1963 to July 1975, November 1983 to June 1987, November 1992 to current year. August 1963 to July 1975 published as Big River near De Soto (07018000). | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) |
------------------|--|--|--|---|---|---|--|--|---|---|---|--|--| | NOV
15 | 0900 | ENVIRONM | ENTAL | 84 | 8.2 | 74 | 8.0 | 544 | 10.2 | 290 | 55.3 | 36.5 | 1.93 | | JAN
16 | 1140 | ENVIRONM | ENTAL | 156 | 13.2 | 102 | 7.2 | 508 | 3.6 | | | | | | MAR
13 | 0915 | ENVIRONM | ENTAL | 1430 | 11.3 | 96 | 8.0 | 318 | 7.1 | | | | | | MAY
15
15 | 1340
1341 | ENVIRONM
BLANK | ENTAL | 2760 | 8.4 | 88 | 7.9 | 288 | 17.1 | 140 | 30.8 | 15.7
.009 | 1.36
<.10 | | JUL
10 | 1240 | ENVIRONM | ENTAL | 173 | 6.5 | 87 | 8.0 | 514 | 29.4 | | | | | | SEP
04 | 1550 | ENVIRONM | ENTAL | 125 | 6.6 | 86 | 7.9 | 498 | 27.4 | | | | | | | SODIUM,
DIS-
SOLVED | ANC
WATER
UNFLTRD
FET
FIELD | ANC
WATER
UNFLTRD
IT
FIELD | ANC
BICAR-
BONATE
IT
FIELD | ANC
CAR-
BONATE
IT
FIELD | CHLO-
RIDE,
DIS-
SOLVED | FLUO-
RIDE,
DIS-
SOLVED | SULFATE
DIS-
SOLVED | RESIDUE
TOTAL
AT 105
DEG. C,
SUS- | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS- | NITRO-
GEN,
AMMONIA
DIS-
SOLVED | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED | | DATE | (mg/L
as Na)
(00930) | (mg/L as
CaCO ₃)
(00410) | (mg/L as
CaCO ₃)
(00419) | (mg/L as
HCO ₃)
(00450) | (mg/L
as CO ₃)
(00447) | (mg/L
as Cl)
(00940) | (mg/L
as F)
(00950) | (mg/L
as SO ₄)
(00945) | PENDED
(mg/L)
(00530) | SOLVED
(mg/L)
(70300) | (mg/L
as N)
(00608) | (mg/L
as N)
(00625) | (mg/L
as N)
(00631) | | NOV
15 | 8.90 | 231 | 231 | 282 | 0 | 12.5 | .2 | 53.1 | <10 | 284 | <.04 | .14 | <.05 | | JAN
16 | | 193 | 196 | 239 | 0 | | | | 18 | | <.04 | .13 | .57 | | MAR
13 | | 122 | 123 | 150 | 0 | | | | 28 | | <.04 | .31 | .42 | | MAY
15
15 | 3.15
.46 | 127 | 127 | 154 | 0 | 2.83 | E.1
<.1 | 17.7
.1 | 53
<10 | 171
<10 | <.04
<.04 | .34 | .36
<.05 | | JUL
10 | | 213 | 214 | 261 | 0 | | | | 54 | | <.04 | .14 | .08 | | SEP
04 | | 216 | 218 | 266 | 0 | | | | <10 | | <.04 | .13 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
15 | <.008 | <.06 | <.02 | <.06 | К2 | К3 | К9 | 13 | 48 | .3 | .05 | E.1 | <6 | | JAN
16
MAR | E.004 | <.06 | E.01 | E.03 | К1 | K8 | К9 | | | | | | | | 13
MAY | <.008 | <.06 | <.02 | E.05 | K210 | 480 | 217 | | | | | | | | 15
15
JUL | E.006
<.008 | <.06
<.06 | E.01
<.02 | E.04
<.06 | 440 | K186
 | 780
 | 108
8 | 551
8 | .5
<.2 | .45
<.04 | 1.4
<.1 | E4
<6 | | 10
SEP | <.008 | <.06 | <.02 | <.06 | К6 | 42 | 43 | | | | | | | | 04 | <.008 | <.06 | <.02 | <.06 | K11 | K8 | K21 | | | | | | | # 07018100 BIG RIVER NEAR RICHWOODS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(μg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |-----------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 15
JAN | 40 | 4.79 | 18 | 19.6 | <.01 | <.3 | | 9 | | 16 | | | | | | | | | | MAR
13 | | | | | | | | | | MAY | | | | | | | | | | 15 | 121 | 15.7 | 216 | 32.2 | E.01 | E.3 | 49 | 83 | | 15 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | <1 | 1 | | JUL | | | | | | | | | | 10 | | | | | | | | | | SEP | | | | | | | | | | 04 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### 07018500 BIG RIVER AT BYRNESVILLE, MO LOCATION.--Lat $38^{\circ}23'31"$, long $90^{\circ}38'18$, in SE $\frac{1}{4}$ sec.12, T.42 N., R.3 E., Jefferson County, Hydrologic Unit 07140104, on right bank on downstream side of pier of privately owned bridge at Byrnesville, 4.0 mi upstream from Heads Creek, and at mile 14.1. DRAINAGE AREA.--917 mi². PERIOD OF RECORD.--October 1921 to current year. Prior to June 1922 monthly discharge only, published WSP 1311. REVISED RECORDS.--WSP 667: 1927. WSP 877: 1938. WSP 1007: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 433.69 ft above National Geodetic Vertical Datum of 1929. Prior to Mar. 9, 1940, nonrecording gage at present site and datum. REMARKS.--Records good except for estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Aug. 21, 1915, reached a stage of 30.2 ft from floodmarks, discharge, 80,000 $\rm ft^3/s$, by slope-area measurement of peak flow. | 1 | | DISCHAR | RGE, CUBIO | C FEET PEF | | WATER YE
MEAN VA | | R 2001 TO S | SEPTEMB | ER 2002 | | | |---|--|--|--|---|-----------------------|--|--|---|---------------------------------|--|--|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 66 | 155 | 811 | e320 | 6410 | 398 | 954 | 1080 | 679 | 245 | 134 | 183 | | 2 | 64 | 151 | 899 | e294 | 7630 | 440 | 854 | 920 | 607 | 229 | 132 | 171 | | 3 | 64 | 142 | 609 | e272 | 2540 | 521 | 770 | 808 | 549 | 218 | 132 | 160 | | 4 | 63 | 136 | 444 | e261 | 1570 | 607 | 705 | 708 | 502 | 210 | 129 | 153 | | 5 | 71 | 132 | 355 | 259 | 1180 | 685 | 641 | 630 | 471 | 221 | 126 | 146 | | 6 | 75 | 128 | 300 | 254 | 957 | 649 | 587 | 649 | 454 | 247 | 125 | 139 | | 7 | 77 | 125 | 263 | 247 | 817 | 606 | 549 | 1240 | 446 | 225 | 122 | 133 | | 8 | 83 | 122 | 245 | 240 | 721 | 569 | 594 | 4230 | 426 | 204 | 131 | 129 | | 9 | 85 | 119 | 255 | 236 | 644 | 1300 | 1090 | 12600 | 405 | 191 | 140 | 125 | | 10 | 90 | 117 | 234 | 233 | 577 | 6700 | 1640 | 21600 | 428 | 191 | 132 | 121 | | 11 | 104 | 115 | 217 | 228 | 521 | 4120 | 1180 | 12500 | 467 | 237 | 434 | 117 | | 12 | 128 | 114 | 218 | 224 | 474 | 1900 | 943 | 2740 | 569 | 347 | 158 | 114 | | 13 | 115 | 113 | 265 | 220 | 436 | 1730 | 818 | 7250 | 1170 | 317 | 425 | 112 | | 14 | 123 | 112 | 395 | 213 | 405 | 1470 | 746 | 15200 | 778 | 281 | 2260 | 110 | | 15 | 130 | 113 | 634 | 205 | 378 | 1260 | 774 | 15300 | 617 | 308 | 1190 | 112 | | 16 | 151 | 113 | 2190 | 200 | 357 | 1530 | 1020 | 3270 | 503 | 237 | 629 | 124 | | 17 | 140 | 112 | 7230 | 194 | 338 | 1950 | 844 | 2600 | 426 | 207 | 456 | 151 | | 18 | 137 | 112 | 11300 | 190 | 320 | 1590 | 724 | 9420 | 382 | 196 | 359 | 212 | | 19 | 133 | 111 | 6760 | 192 | 328 | 1610 | 656 | 16200 | 353 | 208 | 312 | 336 | | 20 | 126 | 110 | 2020 | 189 | 375 | 5110 | 744 | 5460 | 330 | 190 | 417 | 427 | | 21 | 117 | 108 | 1370 | 190 | 709 | 6470 | 1020 | 2210 | 311 | 187 | 1690 | 486 | | 22 | 113 | 106 | 1060 | 188 | 938 | 2860 | 1620 | 1670 | 298 | 180 | 1190 | 463 | | 23 | 112 | 105 | 874 | 189 | 729 | 1790 | 1510 | 1360 | 284 | e192 | 694 | 461 | | 24 | 124 | 247 | 740 | 199 | 602 | 1400 | 1090 | 1160 | 266 | e204 | 513 | 385 | | 25 | 166 | 199 | 639 | 255 | 527 |
2510 | 894 | 1020 | 254 | 180 | 407 | 309 | | 26
27
28
29
30
31 | 337
387
282
227
193
170 | 200
215
210
221
457 | 557
494
451
413
379
350 | 307
312
322
311
381
2180 | 479
449
423
 | 3820
2800
1830
1490
1280
1090 | 836
1050
2460
2330
1450 | 907
813
743
817
885
784 | 708
480
345
296
267 | 175
163
155
147
141
137 | 339
295
273
250
219
197 | 261
229
206
190
178 | | MEAN | 137 | 151 | 1386 | 307 | 1137 | 2003 | 1036 | 4735 | 469 | 212 | 452 | 215 | | MAX | 387 | 457 | 11300 | 2180 | 7630 | 6700 | 2460 | 21600 | 1170 | 347 | 2260 | 486 | | MIN | 63 | 105 | 217 | 188 | 320 | 398 | 549 | 630 | 254 | 137 | 122 | 110 | | IN. | 0.17 | 0.18 | 1.74 | 0.39 | 1.29 | 2.52 | 1.26 | 5.95 | 0.57 | 0.27 | 0.57 | 0.26 | | MEAN | 324 | 699 | 873 | 905 | 1107 | 1438 | 1671 | 1448 | 821 | 481 | 295 | 346 | | MAX | 2290 | 5084 | 5594 | 5064 | 3696 | 4539 | 7230 | 5196 | 4530 | 3895 | 1490 | 6464 | | (WY) | 1950 | 1994 | 1983 | 1950 | 1982 | 1945 | 1994 | 1990 | 1928 | 1957 | 1950 | 1993 | | MIN | 49.7 | 99.6 | 103 | 90.4 | 139 | 137 | 237 | 177 | 105 | 56.4 | 41.4 | 48.7 | | (WY) | 1957 | 1977 | 1956 | 1977 | 1954 | 1954 | 2000 | 1932 | 1936 | 1936 | 1936 | 1956 | | SUMMARY | STATISTI | CS | FOR 2 | 2001 CALEN | IDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YEARS | 1922 - | 2002 | | LOWEST ANIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT. ANNUAL 10 PERC. 50 PERC. | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM W GE W FLOW NCHES) DS DS | | 406 11300 63 Seg 66 6.01 699 194 84 | | | 1025
21600
63
69
23800
22.54
63
15.18
1860
350
122 | May 10
Oct 4
Oct 1
May 10
May 10
Oct 3,4 | | 867
1934
227
57800
25
34
63600
29.37
25
12.84
1720
338
117 | Sep 25
Aug 30
Aug 25
Sep 25
Sep 25
Aug 30 | 1936
1936
1993
1993 | e Estimated ### 07019000 MERAMEC RIVER NEAR EUREKA, MO LOCATION.--Lat $38^{\circ}30^{\circ}20^{\circ}$, long $90^{\circ}35^{\circ}30^{\circ}$, in SE $\frac{1}{4}$ sec.32, T.44 N., R.4 E., St. Louis County, Hydrologic Unit 07140102, on right bank, 44 ft upstream from bridge on north access roadway of I-44, 2.0 mi east of Eureka, 3.0 mi downstream from Big River, and at mile 34.1. DRAINAGE AREA. -- 3,788 mi². PERIOD OF RECORD.--August 1903 to July 1906, October 1921 to current year. Monthly discharge only for January, February, and March 1904, published in WSP 1311. REVISED RECORDS.--WSP 877: 1938(M). WSP 977: 1942. WSP 1007: Drainage area. WSP 1281: 1924-25. GAGE.--Water-stage recorder. Datum of gage is 404.18 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 17, 1933, nonrecording gage at site 200 ft upstream at different datum; Jan. 17, 1933, to Sept. 22, 1937, nonrecording gage; Sept. 23, 1937, to Sept. 30, 1971, water-stage recorder at present site at datum 2.00 ft higher. REMARKS.--Records good. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of Aug. 22, 1915, reached a stage of 42.2 ft, present datum, from floodmarks, discharge, $175,000 \text{ ft}^3/\text{s}$, by slope-area measurement of peak flow. | | | DISCHA | RGE, CUBI | C FEET PEI | | WATER Y | | BER 2001 TO | SEPTEMBI | ER 2002 | | | |---|---|--|--|---|-------------------------------|--|--|---|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 492 | 800 | 2580 | 1430 | 18300 | 1430 | 4550 | 5820 | 3800 | 1250 | 839 | 1060 | | 2 | 481 | 769 | 4670 | 1350 | 26700 | 1710 | 3860 | 4670 | 3260 | 1210 | 813 | 998 | | 3 | 478 | 722 | 3510 | 1290 | 26500 | 2780 | 3350 | 3860 | 2650 | 1160 | 807 | 959 | | 4 | 474 | 697 | 2420 | 1250 | 13200 | 6980 | 3010 | 3400 | 2430 | 1160 | 797 | 926 | | 5 | 458 | 679 | 1930 | 1220 | 6660 | 5870 | 2760 | 3080 | 2360 | 1180 | 820 | 898 | | 6 | 470 | 665 | 1640 | 1140 | 5100 | 4010 | 2500 | 2940 | 2300 | 1230 | 805 | 883 | | 7 | 489 | 657 | 1450 | 1100 | 4170 | 3430 | 2330 | 4380 | 2170 | 1250 | 837 | 911 | | 8 | 506 | 656 | 1310 | 1070 | 3450 | 3300 | 2440 | 11700 | 2070 | 1200 | 761 | 857 | | 9 | 508 | 644 | 1220 | 1050 | 3010 | 4250 | 2910 | 26500 | 2140 | 1160 | 786 | 848 | | 10 | 566 | 640 | 1160 | 1030 | 2680 | 8830 | 3960 | 42200 | 2100 | 1170 | 798 | 787 | | 11 | 630 | 630 | 1100 | 1020 | 2400 | 10100 | 4060 | 54700 | 2100 | 1260 | 946 | 750 | | 12 | 719 | 635 | 1070 | 1000 | 2180 | 7160 | 3790 | 45100 | 2690 | 1400 | 937 | 759 | | 13 | 648 | 633 | 1220 | 988 | 2000 | 5720 | 3330 | 24500 | 4690 | 1360 | 999 | 704 | | 14 | 633 | 623 | 1350 | 980 | 1840 | 5010 | 3050 | 30800 | 5140 | 1300 | 2670 | 710 | | 15 | 668 | 613 | 1870 | 962 | 1720 | 4500 | 2900 | 44800 | 3450 | 1310 | 2540 | 720 | | 16 | 764 | 620 | 4920 | 940 | 1610 | 5130 | 3130 | 46000 | 2620 | 1210 | 2020 | 718 | | 17 | 749 | 624 | 14300 | 926 | 1520 | 5400 | 3100 | 25500 | 2200 | 1180 | 1650 | 765 | | 18 | 700 | 628 | 22100 | 915 | 1460 | 6150 | 2880 | 22400 | 1940 | 1120 | 1380 | 889 | | 19 | 687 | 623 | 26900 | 916 | 1440 | 5550 | 2680 | 37500 | 1780 | 1140 | 1320 | 1050 | | 20 | 668 | 618 | 14400 | 920 | 1520 | 9210 | 3190 | 49000 | 1700 | 1090 | 1790 | 1280 | | 21 | 667 | 614 | 7050 | 910 | 1690 | 14800 | 9130 | 32600 | 1640 | 1080 | 5310 | 1310 | | 22 | 656 | 620 | 5210 | 906 | 2110 | 14600 | 17600 | 10600 | 1520 | 1290 | 4770 | 1250 | | 23 | 647 | 635 | 4010 | 902 | 1990 | 8790 | 15900 | 7420 | 1480 | 1410 | 3630 | 1220 | | 24 | 654 | 993 | 3330 | 919 | 1850 | 6280 | 8780 | 6030 | 1460 | 1260 | 2650 | 1230 | | 25 | 744 | 1100 | 2800 | 936 | 1730 | 7450 | 6130 | 5210 | 1440 | 1150 | 2110 | 1090 | | 26
27
28
29
30
31 | 826
985
987
1030
910
839 | 1060
1300
1440
1430
2000 | 2440
2160
1930
1760
1670
1550 | 997
1060
1130
1170
1320
7580 | 1670
1560
1470
 | 10000
11900
9530
7260
6360
5640 | 4900
4680
7840
8200
7660 | 4620
4220
3930
4040
4720
4100 | 1670
1640
1450
1330
1280 | 1190
1120
1100
1030
963
908 | 1760
1550
1420
1290
1170
1090 | 975
916
864
836
801 | | MEAN
MAX
MIN
IN. | 669
1030
458
0.20 | 812
2000
613
0.24 | 4678
26900
1070
1.42 | 1269
7580
902
0.39
OR PERIOD | 5055
26700
1440
1.39 | 6746
14800
1430
2.05 | 5153
17600
2330
1.52 | 18590
54700
2940
5.66 | 2283
5140
1280
0.67 | 1188
1410
908
0.36 | 1647
5310
761
0.50 | 932
1310
704
0.27 | | MEAN | 1404 | 2480 | 2998 | 3178 | 3896 | 5218 | 6257 | 5444 | 3611 | 1911 | 1195 | 1412 | | MAX | 12120 | 15450 | 23620 | 17320 | 14730 | 13960 | 22580 | 18590 | 18070 | 12600 | 5441 | 18500 | | (WY) | 1950 | 1986 | 1983 | 1950 | 1982 | 1978 | 1927 | 2002 | 1945 | 1951 | 1993 | 1993 | | MIN | 236 | 464 | 426 | 374 | 538 | 514 | 945 | 708 | 503 | 318 | 255 | 244 | | (WY) | 1957 | 1957 | 1956 | 1956 | 1954 | 1954 | 1954 | 1932 | 1936 | 1936 | 1936 | 1956 | | SUMMARY | STATISTI | CS | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | FRECORD | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN INSTANT ANNUAL 10 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY 4 PEAK FLC 4 PEAK STA CANEOUS LC RUNOFF (I CENT EXCEE CENT EXCEE CENT EXCEE | CAN CAN AN MINIMUM AGE OW FLOW CNCHES) CDS | | 26900
449
471

6.52
3150
916
535 | Dec 19
Sep 7
Sep 2 | | 4097 54700 458 477 56600 26.70 434 14.69 8430 1450 668 | May 11
Oct 5
Oct 1
May 11
May 11
Oct 4,5 | | 3236
7407
751
139000
196
209
145000
42.89
196
11.61
6750
1400
530 | Aug
Aug
Dec
Dec | 1985
1954
6 1982
27 1936
6 1982
6 1982
27 1936 | ## 07019072 KIEFER CREEK NEAR BALLWIN, MO LOCATION.--Lat $38^{\circ}33^{\circ}19^{\circ}$, long $90^{\circ}33^{\circ}06^{\circ}$, in NW $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.15, T.44 N., R.4 E., St. Louis County, Hydrologic Unit 07140102, on left downstream abutment of Castlewood Road bridge, 0.2 mi upstream of Spring Branch, 3.2 mi west of Highway 141, and 1.3 mi upstream of Meramec River. DRAINAGE AREA. -- 3.91 mi². ## WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1996 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 438.90 ft above National Geodetic Vertical Datum of 1929. ${\tt REMARKS.--Water-discharge\ records\ poor.\ U.S.G.S.\ satellite\ telemeter\ at\ station.}$ | | | DISCHAR | GE, CUBIC | | SECOND, N | | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|--------------------------------------|--|--------------------------------------|--|--------------------------------------|--------------------------------------
--|---|--------------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 1.5
e1.2
0.94
0.91
e0.90 | e1.3
e1.5
e1.8
e1.5
e1.2 | 5.1
3.3
2.6
2.2
1.8 | 1.7
1.7
1.6
1.6 | 24
10
6.4
4.9
4.0 | 1.9
13
7.8
5.1
4.0 | 4 6 | 6.3
5.8
4.7
4.4 | 3.6
3.0
2.9
2.6
5.6 | 2.5
2.6
14
4.6
2.0 | 1.2
1.2
1.3
1.3 | 1.5
1.2
1.3
1.4
1.4 | | 6
7
8
9
10 | 1.9
1.1
1.0
1.3 | e1.1
1.1
1.2
1.2 | 2.2
1.7
1.5
1.4 | 1.6
1.5
1.5
1.6
1.6 | 3.6
3.1
2.7
2.7
2.7 | 3.7
3.3
3.1
13
5.1 | 2.9
2.8
10
5.7
3.9 | 6.7
45
50
61
21 | 4.1
2.4
2.0
2.0
4.8 | 1.6
1.4
1.3
1.6
2.3 | 2.5
1.9
1.8
1.7 | 1.3
1.4
1.4
1.4 | | 11
12
13
14
15 | 25
6.0
e4.0
2.9
2.0 | | | | | | 3.5
3.5
3.6
3.1
2.8 | | | | | 1.2
1.2
0.95
1.1
1.2 | | 16
17
18
19
20 | 5.6
3.1
1.9
1.6
1.5 | | | | | | 2.6
3.5
2.6
5.0 | | | | | 1.2
4.3
5.9
20
12 | | 21
22
23
24
25 | e1.4
e1.2
e1.2
e4.0
e5.3 | 1.0
1.0
1.0
45
4.8 | 3.4
3.8
3.6
2.7
2.5 | 1.8
1.8
1.8
3.4
2.0 | 3.3
2.5
2.3
2.2
2.3 | 5.6
5.5
5.3
5.2
25 | 12
7.5
4.9
8.7
6.0 | 8.7
7.5
6.8
6.9 | 2.8
1.9
1.9
1.9 | 1.5
1.5
2.2
1.4
1.3 | | 5.3
3.2
2.7
2.5
2.4 | | | e2.6
e2.0
e1.8
e1.6
e1.5 | 3.2
3.0
6.9
11
14 | 2.4
2.2
2.1
1.8
1.8 | 1.8
1.7
1.6
1.9
30
73 | 2.6
2.2
2.1
 | 13
10
7.6
6.4
6.2
5.4 | 4.5
18
19
8.9
7.1 | 6.2
5.5
5.2
5.0
4.8
4.3 | 1.9
1.9
1.7
1.7
2.1 | 1.4
1.4
1.4
1.2 | 1.9
1.8
1.7
1.6
1.5 | 2.1
2.1
1.9
1.8
1.8 | | MEAN
MAX
MIN
IN. | | 3.82
45
0.92
1.09 | | | | | 6.13
19
2.6 | | | | | 2.94
20
0.95
0.84 | | STATIST | CS OF MO | ONTHLY MEA | N DATA FO | R WATER Y | EARS 1996 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.36
6.61
1997
1.86
2000 | 4.13
10.7
1997
1.35
2000 | 3.01
6.35
2002
1.35
1999 | 4.91
10.3
1999
1.41
2000 | 7.86
12.5
1999
3.96
2002 | 6.88
16.1
1998
2.75
2001 | 5.07
7.65
1998
1.97
2000 | 7.84
16.2
2002
3.12
1997 | 7.87
16.9
1998
1.68
1999 | 3.54
8.87
1998
1.70
1997 | 2.81
6.29
1998
1.53
2001 | 3.58
12.1
1996
0.82
1999 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEAI | R | FOR 2002 V | VATER YEA | AR. | WATER YEA | ARS 1996 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | ANNUAL N | EAN EAN AN MINIMUM AGE DW FLOW ENCHES) EDS | | 3.58
46
0.73
0.86

12.42
6.6
1.7
1.0 | Dec 1'
Aug '
May 1: | 7
7
1 | 5.61
116
0.90
1.0
2240 ^a
8.20
0.90
19.49
12
2.4
1.2 | Jun 1
Oct
Nov 1
Jun 1
Jun 1 | .2
5
.5
.2
.2
.2
5 | 4.95
7.06
3.11
251
0.61
0.70
2240 ^a
8.20
0.22
17.19
9.3
2.2 | May
Feb 1
Sep 2
Jun 1
Jun 1
Sep 2 | 1998
2001
7 2000
12 2000
21 1999
12 2002
12 2002
20 2000 | e Estimated $^{\rm a}$ From rating extended above 251 ft $^{\rm 3}/{\rm s}$. # 07019072 KIEFER CREEK NEAR BALLWIN, MO--Continued (Metropolitan Sewer District) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1996 to current year. | DATE OCT 10 DEC 11 FEB 05 MAY 29 AUG 06 | 0744
0950
1142
1350
1010 | SAMPLE
TYPE
ENVIRONM
ENVIRONM
ENVIRONM
ENVIRONM | IENTAL
IENTAL
IENTAL | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061)
108
1.3
3.8
5.7 | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300)
9.0
9.3
9.4
9.1 | OXYGEN, DIS- SOLVED (per- cent satur- ation) (00301) 93 90 89 90 93 | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400)
7.4
6.8
7.2
7.1 | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095)
230
876
820
818
839 | TEMPER-ATURE WATER (deg C) (00010) 16.5 13.1 12.5 13.9 14.0 | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900)
85
340
260
330 | CALCIUM DIS- SOLVED (mg/L as Ca) (00915) 26.4 105 82.0 105 71.0 | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925)
4.68
18.0
13.0
16.0 | ANC WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 63 228 196 243 237 | |--|--|---|---|---|--|---|--|---|--|---|--|---|---| | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN
DEMAND,
CHEM-
ICAL
(high
level)
(mg/L)
(00340) | | OCT
10 | 61 | 75 | 0 | | 315 | E1.6 | .14 | .870 | .02 | .380 | .56 | 5.3 | 19 | |
DEC
11 | 231 | 282 | 0 | 80.8 | <1 | <.20 | .03 | E1.80 | <.01 | .040 | E.04 | 72 | 13 | | FEB
05 | 197 | 240 | 0 | 94.0 | 15 | .30 | <.01 | 1.90 | <.01 | .040 | .05 | 27 | <5 | | MAY
29 | 244 | 298 | 0 | | 3 | <.20 | .01 | 1.70 | <.01 | .020 | <.02 | 35 | 7 | | AUG
06 | 237 | 289 | 0 | | 5 | .20 | <.01 | 1.80 | <.01 | .020 | .03 | 30 | 8 | | | | | | | | | | | | | | | | | DATE OCT 10 | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-INUM, DIS-SOLVED (µg/L as Al) (01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-MIUM, DIS-SOLVED (µg/L as Cr) (01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
10
DEC | MTEC MF
WATER
(col./
100 mL)
(31633) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | DIS-
SOLVED
(µg/L
as As)
(01000) | LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
10
DEC
11
FEB | MTEC MF
WATER
(col./
100 mL)
(31633)
28000
K70 | FORM, FECAL, 0.7 µm-MF (col./ 100 mL) (31625) 34000 K114 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
24800 | INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | DIS-
SOLVED
(µg/L
as As)
(01000) | LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030)
1.0 | DIS-
SOLVED
(µg/L
as Cu)
(01040)
2.8 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT 10 DEC 11 FEB 05 | MTEC MF
WATER
(col./
100 mL)
(31633) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | DIS-
SOLVED
(µg/L
as As)
(01000) | LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
1.0 | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030)
1.0
1.7 | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT 10 DEC 11 FEB 05 MAY 29 AUG | MTEC MF
WATER
(col./
100 mL)
(31633)
28000
K70
K20 | FORM, FECAL, 0.7 µm-MF (col./ 100 mL) (31625) 34000 K114 K40 105 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
24800
35
K69
380 | INUM, DIS- SOLVED (µg/L as Al) (01106) 736 3 30 5 | DIS-
SOLVED
(µg/L
as As)
(01000)
2
2
2
<1 | LIUM,
DIS-
SOLVED (µg/L
as Be)
(01010)
<1
1
<1 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
1.0
<1.0 | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030)
1.0
1.7
<1.0 | DIS-
SOLVED (µg/L
as Cu) (01040)
2.8
1.0
<1.0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
516
3 | DIS-
SOLVED
(µg/L
as Pb)
(01049)
<1
<1
<1 | NESE,
DIS-
SOLVED (µg/L
as Mn)
(01056)
31
25
30
51 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) .1 <.1 <.1 <.1 | | OCT
10
DEC
11
FEB
05
MAY
29 | MTEC MF
WATER
(col./
100 mL)
(31633)
28000
K70
K20 | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625)
34000
K114
K40 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
24800
35
K69 | INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106)
736
3 | DIS-
SOLVED
(µg/L
as As)
(01000)
2
2
2 | LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010)
<1
1 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
1.0
<1.0
<1.0
<1.0 | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030)
1.0
1.7 | DIS-
SOLVED
(µg/L
as Cu)
(01040)
2.8
1.0
<1.0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
516
3
16
6 | DIS-
SOLVED (µg/L
as Pb)
(01049) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
31
25
30 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) .1 <.1 <.1 | | OCT 10 DEC 11 FEB 05 MAY 29 AUG 06 | MTEC MF WATER (col./100 mL) (31633) 28000 K70 K20 160 160 NICKEL, DIS-SOLVED (µg/L as Ni) (01065) | FORM, FECAL, 0.7 µm-MF (col./ 100 mL) (31625) 34000 K114 K40 105 320 SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
24800
35
K69
380
K138
SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | INUM, DIS- SOLVED (µg/L as Al) (01106) 736 3 30 5 <3 ZINC, DIS- SOLVED (µg/L as Zn) (01090) | DIS-
SOLVED
(μg/L
as As)
(01000)
2
2
<1
<1
<1
OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 <1 <1 (1 <1 (1) <1 (1) (1) (1) (2) (3) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
1.0
<1.0
<1.0
<1.0
1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | MIUM, DIS- SOLVED (µg/L as Cr) (01030) 1.0 1.0 1.7 <1.0 <1.0 CHLORO-PHENOL (µg/L) (34621) | DIS-
SOLVED (µg/L as Cu) (01040) 2.8 1.0 <1.0 <1.0 <1.10 2,4-DI-METHYL-PHENOL TOTAL (µg/L) (34606) | DIS-
SOLVED
(µg/L)
as Fe)
(01046)
516
3
16
6
3
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L)
as Pb)
(01049)
<1
<1
<1
<1
<1
<1
<1
VI
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | NESE,
DIS-
SOLVED (µg/L
as Mn) (01056)
31
25
30
51
13
2,4-DI-
NITRO-
TOLUENE
TOTAL (µg/L) (34611) | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) .1 <.1 <.1 <.1 <.1 <.1 (.1) | | OCT 10 DEC 11 FEB 05 MAY 29 AUG 06 DATE | MTEC MF WATER (col./100 mL) (31633) 28000 K70 K20 160 160 NICKEL, DIS-SOLVED (µg/L as Ni) (01065) | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) 34000 K114 K40 105 320 SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) | STREP, KF STRP MF, WATER (col./ 100 mL) (31673) 24800 35 K69 380 K138 SILVER, DIS- SOLVED (µg/L as Ag) (01075) <1.0 | INUM, DIS- SOLVED (µg/L as Al) (01106) 736 3 30 5 <3 ZINC, DIS- SOLVED (µg/L as Zn) (01090) | DIS-
SOLVED
(μg/L
as As)
(01000) 2 2 <1 <1 <1 OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (mg/L) (00556) E5 | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 <1 <1 (1) <1 (1) <1 (1) <1 <1 (1) <1 <1 (1) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
<1.0
<1.0
<1.0
<1.0
1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | MIUM,
DIS-
SOLVVED
(μg/L
as Cr)
(01030)
1.0
1.7
<1.0
<1.0
2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(μg/L)
(34621) | DIS-
SOLVED (µg/L as Cu) (01040) 2.8 1.0 <1.0 <1.0 <1.0 1.0 2,4-DI-
METHYL-
PHENOL TOTAL (µg/L) (34606) <3.0 | DIS-
SOLVED
(µg/L)
as Fe)
(01046)
516
3
16
6
3
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L)
as Pb)
(01049)
<1
<1
<1
<1
<1
<1
<1
(1
<1
(1
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1) | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)
31
25
30
51
13 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) .1 <.1 <.1 <.1 <.1 <.1 (.1) .1 (.1) .1 (.1) .1 (.1) .1 (.2) .1 (.1) .1 (.1) .1 (.2) .1 (.2) .1 (.3) | | OCT 10 DEC 11 FEB 05 MAY 29 AUG 06 DATE OCT 10 DEC 11 FEB | MTEC MF WATER (col./100 mL) (31633) 28000 K70 K20 160 160 NICKEL, DIS-SOLVED (µg/L as Ni) (01065) 1.5 1.1 | FORM, FECAL, 0.7 pm-MF (col./100 mL) (31625) 34000 K114 K40 105 320 SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
24800
35
K69
380
K138
SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075)
<1.0 | INUM, DIS- SOLVED (µg/L as Al) (01106) 736 3 30 5 <3 ZINC, DIS- SOLVED (µg/L as Zn) (01090) 55 37 | DIS-
SOLVED
(µg/L
as As)
(01000)
2
2
<1
<1
<1
OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 CI <1 (1) (1) (1) (1) (1) (1) (1) (| DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | MIUM,
DIS-
SOLVVED (μg/L
as Cr) (01030)
1.0
1.7
<1.0
<1.0
2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(μg/L) (34621)
<3 | DIS-
SOLVED (µg/L as Cu) (01040) 2.8 1.0 <1.0 <1.0 <1.0 2,4-DI-METHYL-PHENOLL TOTAL (µg/L) (34606) <3.0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
516
3
16
6
3
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L
as Pb)
(01049)
<1
<1
<1
<1
<1
<1
<1
(1
(1
(1
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(| NESE,
DIS-
SOLVED (μg/L
as Mn) (01056)
31
25
30
51
13
2,4-DI-
NITRO-
TOLUENE
TOTAL (μg/L) (34611) | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) .1 | | OCT | MTEC MF WATER (col./100 mL) (31633) 28000 K70 K20 160 160 NICKEL, DIS-SOLVED (µg/L as Ni) (01065) 1.5 1.1 1.2 | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) 34000 K114 K40 105 320 SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) <1 1 <1 | STREP, KF STRP MF, WATER (col./ 100 mL) (31673) 24800 35 K69 380 K138 SILVER, DIS- SOLVED (µg/L as Ag) (01075) <1.0 <1.0 <1.0 | INUM, DIS- SOLVED (µg/L as Al) (01106) 736 3 30 5 <3 ZINC, DIS- SOLVED (µg/L as Zn) (01090) 55 37 45 | DIS-
SOLVED
(μg/L
as As)
(01000) 2 2 <1 <1 <1 OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (mg/L) (00556) E5 | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 <1 <1 (1) <1 (1) <1 (1) <1 <1 (1) <1 <1 (1) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
<1.0
<1.0
<1.0
<1.0
1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | MIUM,
DIS-
SOLVVED
(μg/L
as Cr)
(01030)
1.0
1.7
<1.0
<1.0
2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(μg/L)
(34621) | DIS-
SOLVED (µg/L as Cu) (01040) 2.8 1.0 <1.0 <1.0 <1.0 1.0 2,4-DI-
METHYL-
PHENOL TOTAL (µg/L) (34606) <3.0 | DIS-
SOLVED
(µg/L)
as Fe)
(01046)
516
3
16
6
3
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L)
as Pb)
(01049)
<1
<1
<1
<1
<1
<1
<1
(1
<1
(1
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(1) | NESE,
DIS-
SOLVED (µg/L
as Mn) (01056)
31
25
30
51
13
2,4-DI-
NITRO-
TOLUENE
TOTAL (µg/L) (34611) | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) .1 <.1 <.1 <.1 <.1 <.1 (.1) .1 (.1) .1 (.1) .1 (.1) .1 (.2) .1 (.1) .1 (.1) .1 (.2) .1 (.2) .1 (.3) | | OCT 10 DEC 11 FEB 05 MAY 29 AUG 06 DATE OCT 10 DEC 11 FEB 05 | MTEC MF WATER (col./100 mL) (31633) 28000 K70 K20 160 160 NICKEL, DIS-SOLVED (µg/L as Ni) (01065) 1.5 1.1 | FORM, FECAL, 0.7 pm-MF (col./100 mL) (31625) 34000 K114 K40 105 320 SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
24800
35
K69
380
K138
SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075)
<1.0 | INUM, DIS- SOLVED (µg/L as Al) (01106) 736 3 30 5 <3 ZINC, DIS- SOLVED (µg/L as Zn) (01090) 55 37 | DIS-
SOLVED
(µg/L
as As)
(01000)
2
2
<1
<1
<1
OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 CI <1 (1) (1) (1) (1) (1) (1) (1) (| DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | MIUM,
DIS-
SOLVVED (μg/L
as Cr) (01030)
1.0
1.7
<1.0
<1.0
2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(μg/L) (34621)
<3 | DIS-
SOLVED (µg/L as Cu) (01040) 2.8 1.0 <1.0 <1.0 <1.0 2,4-DI-METHYL-PHENOLL TOTAL (µg/L) (34606) <3.0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
516
3
16
6
3
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L
as Pb)
(01049)
<1
<1
<1
<1
<1
<1
<1
(1
(1
(1
(1)
(1)
(1)
(1)
(1)
(1)
(1)
(| NESE,
DIS-
SOLVED (μg/L
as Mn) (01056)
31
25
30
51
13
2,4-DI-
NITRO-
TOLUENE
TOTAL (μg/L) (34611) | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) .1 | # 07019072 KIEFER CREEK NEAR BALLWIN, MO--Continued (Metropolitan Sewer District) | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(μg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | |---|---|---|--|--|--|---|--|---|---|---|---|--|--| | OCT
10 | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | М | <2 | | DEC
11 | | | | | | | | | | | | | | | FEB 05 | | | | | | | | | | | | | | | MAY | | | | | | | | | | | | | | | 29
AUG | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) |
BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLITED
(µg/L)
(39786) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10 | <40 | М | М | М | М | М | <3 | <2 | <2 | E3 | <.02 | <.1 | <.01 | | DEC
11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAY
29 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 06 | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | ETHION,
TOTAL
(μg/L)
(39398) | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | | DATE OCT 10 | SENE
TOTAL
(µg/L) | NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L) | TOTAL
(µg/L) | AZINON,
TOTAL
(µg/L) | ELDRIN
TOTAL
(µg/L) | PHTHAL-
ATE
TOTAL
(µg/L) | METHYL
PHTHAL-
ATE
TOTAL
(µg/L) | BUTYL
PHTHAL-
ATE
TOTAL
(µg/L) | OCTYL
PHTHAL-
ATE
TOTAL
(µg/L) | SULFAN
I
TOTAL
(µg/L) | WATER
UNFLTRD
REC
(µg/L) | TOTAL
(µg/L) | ANTHENE
TOTAL
(µg/L) | | OCT | SENE
TOTAL
(µg/L)
(34320) | NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | TOTAL
(µg/L)
(39040) | AZINON,
TOTAL
(µg/L)
(39570) | ELDRIN
TOTAL
(µg/L)
(39380) | PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | SULFAN
I
TOTAL
(µg/L)
(39388) | WATER
UNFLTRD
REC
(µg/L)
(39390) | TOTAL
(µg/L)
(39398) | ANTHENE
TOTAL
(µg/L)
(34376) | | OCT
10
DEC
11
FEB | SENE
TOTAL
(µg/L)
(34320) | NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | TOTAL
(µg/L)
(39040)
E.01 | AZINON,
TOTAL
(µg/L)
(39570) | ELDRIN
TOTAL
(µg/L)
(39380) | PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | METHYL
PHTHAL-
ATE
TOTAL
(μg/L)
(34341) | BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | SULFAN
I
TOTAL
(µg/L)
(39388) | WATER
UNFLTRD
REC
(µg/L)
(39390) | TOTAL
(µg/L)
(39398) | ANTHENE
TOTAL
(µg/L)
(34376) | | OCT
10
DEC
11
FEB
05 | SENE
TOTAL
(µg/L)
(34320) | NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | TOTAL
(µg/L)
(39040)
E.01 | AZINON,
TOTAL
(µg/L)
(39570) | ELDRIN
TOTAL
(µg/L)
(39380)
<.006 | PHTHAL-
ATE
TOTAL
(µg/L)
(34336)
<2
 | METHYL
PHTHAL-
ATE
TOTAL
(μg/L)
(34341) | BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | SULFAN
I
TOTAL
(µg/L)
(39388) | WATER
UNFLTRD
REC
(µg/L)
(39390) | TOTAL
(µg/L)
(39398) | ANTHENE
TOTAL
(µg/L)
(34376)
M
 | | OCT 10 DEC 11 FEB 05 MAY 29 AUG | SENE
TOTAL
(µg/L)
(34320)
M
 | NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | ΤΟΤΑL
(μg/L)
(39040)
E.01
 | AZINON,
TOTAL
(µg/L)
(39570) | ELDRIN
TOTAL
(µg/L)
(39380)
<.006 | PHTHAL-
ATE
TOTAL
(µg/L)
(34336)
<2
 | METHYL PHTHAL- ATE TOTAL (µg/L) (34341) <2 | BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | SULFAN I TOTAL (µg/L) (39388) < .02 | WATER UNFLITED REC (µg/L) (39390) <.01 | TOTAL (µg/L) (39398) <.01 | ANTHENE
TOTAL
(µg/L)
(34376)
M
 | | OCT
10
DEC
11
FEB
05
MAY
29 | SENE
TOTAL
(µg/L)
(34320) | NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | TOTAL
(µg/L)
(39040)
E.01 | AZINON,
TOTAL
(µg/L)
(39570) | ELDRIN
TOTAL
(µg/L)
(39380)
<.006 | PHTHAL-
ATE
TOTAL
(µg/L)
(34336)
<2
 | METHYL
PHTHAL-
ATE
TOTAL
(μg/L)
(34341) | BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | SULFAN
I
TOTAL
(µg/L)
(39388) | WATER
UNFLTRD
REC
(µg/L)
(39390) | TOTAL
(µg/L)
(39398) | ANTHENE
TOTAL
(µg/L)
(34376)
M
 | | OCT 10 DEC 11 FEB 05 MAY 29 AUG | SENE
TOTAL
(µg/L)
(34320)
M
 | NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | ΤΟΤΑL
(μg/L)
(39040)
E.01
 | AZINON,
TOTAL
(µg/L)
(39570) | ELDRIN
TOTAL
(µg/L)
(39380)
<.006 | PHTHAL-
ATE
TOTAL
(µg/L)
(34336)
<2
 | METHYL PHTHAL- ATE TOTAL (µg/L) (34341) <2 | BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | SULFAN I TOTAL (µg/L) (39388) < .02 | WATER UNFLITED REC (µg/L) (39390) <.01 | TOTAL (µg/L) (39398) <.01 | ANTHENE
TOTAL
(µg/L)
(34376)
M
 | | OCT
10
DEC
11
FEB
05
MAY
29
AUG
06 | SENE TOTAL (μg/L) (34320) M FLUOR- ENE TOTAL (μg/L) | NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (µg/L) | TOTAL (µg/L) (39040) E.01 HEPTA-CHLOR EPOXIDE TOTAL (µg/L) | AZINON, TOTAL (μg/L) (39570) .02 HEPTA- CHLOR, TOTAL (μg/L) | ELDRIN TOTAL (µg/L) (39380) <.006 HEXA- CHLORO- BENZENE TOTAL (µg/L) | PHTHAL-
ATE
TOTAL
(μg/L)
(34336)
<2

INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(μg/L) | METHYL PHTHAL- ATE TOTAL (µg/L) (34341) <2 ISO- PHORONE TOTAL (µg/L) | BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M LINDANE TOTAL (µg/L) | OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M MALA- THION, TOTAL (µg/L) | SULFAN I TOTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTAL (µg/L) | WATER UNFLITED REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) | TOTAL (µg/L) (39398) <.01 MIREX, TOTAL (µg/L) | ANTHENE TOTAL (µg/L) (34376) M N-BUTYL BENZYL PHTHAL ATE TOTAL (µg/L) | | OCT | SENE TOTAL (µg/L) (34320) M FLUOR- ENE TOTAL (µg/L) (34381) | NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (µg/L) (82614) | TOTAL (µg/L) (39040) E.01 HEPTA-CHLOR EPOXIDE TOTAL (µg/L) (39420) | AZINON, TOTAL (μg/L) (39570) .02 HEPTA- CHLOR, TOTAL (μg/L) (39410) | ELDRIN TOTAL (µg/L) (39380) <.006 HEXA- CHLORO- BENZENE TOTAL (µg/L) (39700) | PHTHAL- ATE TOTAL (µg/L) (34336) <2 INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) | METHYL PHTHAL- ATE TOTAL (μg/L) (34341) <2 ISO- PHORONE TOTAL (μg/L) (34408) | BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M LINDANE TOTAL (µg/L) (39340) | OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M MALA- THION, TOTAL (µg/L) (39530) | SULFAN I TOTTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTAL (µg/L) (39480) | WATER UNFLITED REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) (39600) | TOTAL (µg/L) (39398) <.01 MIREX, TOTAL (µg/L) (39755) | ANTHENE TOTAL (µg/L) (34376) M N-BUTYL BENZYL PHTHAL ATE TOTAL (µg/L) (34292) | | OCT 10 DEC 11 FEB 05 MAY 29 AUG 06 DATE OCT 10 DEC 11 FEB | SENE TOTAL (µg/L) (34320) M FLUOR- ENE TOTAL (µg/L) (34381) | NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (µg/L) (82614) <.01 | TOTAL (µg/L) (39040) E.01 HEPTA- CHLOR EPOXIDE TOTAL (µg/L) (39420) <.009 | AZINON, TOTAL (μg/L) (39570) .02 HEPTA- CHLOR, TOTAL (μg/L) (39410) <.01 | ELDRIN TOTAL (µg/L) (39380) <.006 HEXA- CHLORO- BENZENE TOTAL (µg/L) (39700) | PHTHAL- ATE TOTAL (µg/L) (34336) <2 INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) M | METHYL PHTHAL- ATE TOTAL (µg/L) (34341) <2 ISO- PHORONE TOTAL (µg/L) (34408) | BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M LINDANE TOTAL (µg/L) (39340) <.006 | OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M MALA- THION, TOTAL (µg/L) (39530) <.20 | SULFAN I TOTTAL (µg/L) (39388) <.02 | WATER UNFLITED REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) (39600) <.01 | TOTAL (µg/L) (39398) <.01 MIREX, TOTAL (µg/L) (39755) <.006 | N-BUTYL BENZYL PHTHAL ATE TOTAL (µg/L) (34376) M N-BUTYL BENZYL PHTHAL ATE TOTAL (µg/L) (34292) | | OCT | SENE TOTAL (µg/L) (34320) M FLUOR-ENE TOTAL (µg/L) (34381) <2 | NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 FONOFOS (DY- FONATE) WATER WHOLE TOT. REC (µg/L) (82614) <.01 | TOTAL (μg/L) (39040) E.01 HEPTA-CHLOR EPOXIDE TOTAL (μg/L) (39420) <.009 | AZINON, TOTAL (μg/L) (39570) .02 HEPTA- CHLOR, TOTAL (μg/L) (39410) <.01 | ELDRIN TOTAL (µg/L) (39380) <.006 HEXA- CHLORO- BENZENE TOTAL (µg/L) (39700) <2 | PHTHAL- ATE TOTTAL (µg/L) (34336) <2 INDENO (1,2,3- CD) PYRENE TOTTAL (µg/L) (34403) M | METHYL PHTHAL- ATE TOTAL (µg/L) (34341) <2 ISO- PHORONE TOTAL (µg/L) (34408) M | BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M LINDANE TOTAL (µg/L) (39340) <.006 | OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M MALA- THION, TOTAL (µg/L) (39530) <.20 | SULFAN I TOTTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTTAL (µg/L) (39480) <.020 | WATER UNFLITED REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) (39600) <.01 | TOTAL (µg/L) (39398) <.01 MIREX, TOTAL (µg/L) (39755) <.006 | ANTHENE TOTAL (µg/L) (34376) M N-BUTYL BENZYL PHTHAL ATE TOTAL (µg/L) (34292) <4 | | OCT | SENE TOTAL (µg/L) (34320) M FLUOR-ENE TOTAL (µg/L) (34381) <2 | NTADIEN HEXA- CHLORO-
UNFLTRD RECOVER (µg/L) (34386) <2 FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (µg/L) (82614) <.01 | TOTAL (µg/L) (39040) E.01 HEPTA- CHLOR EPOXIDE TOTAL (µg/L) (39420) <.009 | AZINON, TOTAL (μg/L) (39570) .02 HEPTA- CHLOR, TOTAL (μg/L) (39410) <.01 | ELDRIN TOTAL (µg/L) (39380) <.006 HEXA- CHLORO- BENZENE TOTAL (µg/L) (39700) <2 | PHTHAL- ATE TOTAL (µg/L) (34336) <2 INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) M | METHYL PHTHAL- ATE TOTAL (µg/L) (34341) <2 ISO- PHORONE TOTAL (µg/L) (34408) M | BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M LINDANE TOTAL (µg/L) (39340) <.006 | OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M MALA- THION, TOTAL (µg/L) (39530) <.20 | SULFAN I TOTTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTAL (µg/L) (39480) <.020 | WATER UNFLTRD REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) (39600) <.01 | TOTAL (µg/L) (39398) <.01 MIREX, TOTAL (µg/L) (39755) <.006 | ANTHENE TOTAL (µg/L) (34376) M N-BUTYL BENZYL PHTHAL ATE TOTAL (µg/L) (34292) <4 | ## 07019072 KIEFER CREEK NEAR BALLWIN, MO--Continued (Metropolitan Sewer District) | DATE | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO
-SODI-
PHENYL-
AMINE
TOTAL
(µg/L)
(34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(μg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | PHORATE
TOTAL
(µg/L)
(39023) | |------------------|---|---|---|--|---|---|---|---|--|--|---|---|---------------------------------------| | OCT
10
DEC | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | <.02 | | 11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAY
29 | | | | | | | | | | | | | | | AUG
06 | | | | | | | | | | | | | | | | DA | TE | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE
HEXA-
CHLORO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(µg/L)
(34696) | | | | | OCI
1
DEC | .0 | М | <1 | <2 | <2 | <2 | <2 | <2 | <3 | <5 | | | | | | 1 | | | | | | | | | | | | | | 0 | 5 | | | | | | | | | | | | | | MAY
2
AUG | 9 | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ## 07019090 WILLIAMS CREEK NEAR PEERLESS PARK, MO LOCATION.--Lat 38°32'04", long 90°30'51", St. Louis County, Hydrologic Unit 07140102, on left downstream wingwall of Meramec Station Road bridge, 0.1 mi south of Interstate 44, 1.01 mi west of Highway 141, and 0.6 mi upstream of Meramec River. DRAINAGE AREA.--7.62 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1997 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 415.75 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair except estimated daily discharges, which are poor. | | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP | | | | | | | | | | | | | | |--|--|---|--|--------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---|--------------------------------------|--|--|--------------------------------------|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | | 1
2
3
4
5 | 0.63
0.63
0.63
0.63 | 0.84
1.1
1.5
1.2
0.85 | 12
6.6
4.6
3.4
2.7 | 2.3
2.0
1.9
1.8 | 60
30
20
13
9.8 | 1.2
8.7
17
9.6
6.9 | 8.8
7.7
5.5
4.4
4.5 | 17
13
8.9
7.0
5.5 | 4.3
3.9
3.7
3.2
3.1 | 1.4
1.3
1.2
1.2 | 0.84
0.84
0.72
0.53
0.53 | 0.36
0.36
0.35
0.29
0.29 | | | | 6
7
8
9
10 | 2.3
1.3
0.96
0.78
6.9 | 0.69
0.63
0.63
0.63
0.63 | 2.3
2.0
1.8
1.6 | 1.8
1.7
1.5
1.5 | 8.0
6.3
5.1
4.5
3.7 | 6.2
5.0
4.3
29
24 | 3.8
3.6
8.4
7.9
6.0 | 7.1
42
94
89
43 | 3.0
2.6
2.5
2.4
2.5 | 1.1
1.0
0.96
0.96
0.99 | 0.53
0.53
0.47
0.45
0.45 | 0.29
0.29
0.31
0.29
0.29 | | | | 11
12
13
14
15 | 10
15
5.4
4.3
3.2 | 0.63
0.57
0.53
0.53
0.62 | 1.3
2.2
8.8
16 | 1.3
1.2
1.2
1.2 | 2.6
2.4
1.9
1.7 | 17
13
8.9
6.9
8.0 | 5.8
5.3
4.6
4.5
4.2 | e19
e34
e74
38
e20 | 4.6
25
18
9.4
6.3 | 1.1
1.1
1.1
1.1
0.99 | 0.45
0.62
0.71
1.2
0.95 | 0.33
0.36
0.36
0.35
0.42 | | | | 16
17
18
19
20 | 9.8
5.0
2.9
2.0
1.5 | 0.59
0.53
0.53
0.53
0.53 | 43
78
31
19
13 | 1.0
0.96
0.84
0.84
0.95 | 1.4
1.2
1.0
2.2
5.0 | 20
15
11
15
27 | 3.5
3.0
2.6
2.9
7.1 | e22
e62
40
29
e20 | 5.0
3.8
3.3
3.0
2.5 | 0.87
0.84
0.78
0.73 | 0.66
0.53
1.8
2.6
1.2 | 0.45
0.50
1.5
1.6
2.9 | | | | 21
22
23
24
25 | 1.1
1.0
1.1
5.3
6.6 | 0.47
0.53
0.51
21
7.9 | 10
8.7
7.5
6.3
5.2 | 1.1
1.1
1.0
1.5
1.6 | 2.8
2.0
1.9
1.9 | 21
15
13
10
32 | 19
30
18
14
13 | e16
14
12
10
9.4 | 2.4
2.2
2.1
1.9
1.9 | 0.73
0.75
0.76
0.73
0.73 | 0.92
0.68
0.54
0.60
0.63 | 2.4
1.2
0.79
0.53
0.40 | | | | 26
27
28
29
30
31 | 3.0
2.0
1.4
1.2
1.0
0.84 | 3.7
2.7
4.5
9.1
24 | 4.6
4.1
3.9
3.2
2.7
2.5 | 1.4
1.2
1.2
1.2
9.5 | 1.8
1.6
1.3
 | 33
29
23
18
14 | 8.8
32
69
34
23 | 7.9
7.0
6.3
5.9
5.5
4.8 | 1.8
1.7
1.6
1.6 | 0.73
0.73
0.73
0.73
0.73
0.81 | 0.58
0.50
0.45
0.41
0.36
0.36 | 0.36
0.42
0.39
0.35
0.32 | | | | MEAN
MAX
MIN | 3.22
15
0.63 | 2.96
24
0.47 | 10.4
78
1.3 | 4.36
86
0.84 | 7.02
60
1.0 | 15.2
33
1.2 | 12.2
69
2.6 | 25.3
94
4.8 | 4.36
25
1.5 | 0.93
1.4
0.73 | 0.73
2.6
0.36 | 0.64
2.9
0.29 | | | | STATIS | TICS OF MC | NTHLY MEA | N DATA FO | R WATER Y | EARS 1997 | - 2002, | BY WATER | YEAR (WY) | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.56
3.22
2002
0.75
2000 | 1.80
2.96
2002
0.62
2000 | 3.12
10.4
2002
0.91
1999 | 4.68
11.1
1999
0.76
2000 | 9.98
21.5
1999
1.96
2000 | 11.7
30.5
1998
1.69
2000 | 9.13
17.8
1998
1.25
2000 | 9.98
25.3
2002
1.71
2001 | 6.78
16.7
1998
1.98
2001 | 3.35
8.27
1998
0.93
2002 | 2.44
5.75
1998
0.73
2002 | 1.17
1.75
2000
0.56
1999 | | | | SUMMAR | Y STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 | WATER YEAR | R | WATER YE | ARS 1997 | - 2002 | | | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI INSTAN' 10 PERO 50 PERO | MEAN I ANNUAL ME ANNUAL ME I DAILY ME SEVEN-DAY M PEAK FLO M PEAK STA TANEOUS LO CENT EXCER CENT EXCER CENT EXCER | CAN CAN IN MINIMUM OW LGE OW FLOW CDS CDS | | 3.79 78 0.47 0.52 8.7 1.9 0.74 | Dec 1
Nov 2
Nov 1 | 1 | 0.29
212
6.74 | May :
Pp 4-7,9,1
Sep :
May :
May :
everal Day: | 0
4
9 | 5.45
9.20
2.61
208
0.29 Se
0.29
583 ^a
9.31
0.29 Se
13
1.6
0.64 | Sep 4 | 0 2002
4 2002
7 2000 | | | e Estimated a From rating extended above 305 $\mathrm{ft^3/s.}$ # 07019090 WILLIAMS CREEK NEAR PEERLESS PARK, MO--Continued (Metropolitan Sewer District) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1997 to
current year. | DATE OCT | TIME 1403 1320 0856 1715 1716 | SAMPLE
TYPE
ENVIRONM
ENVIRONM
ENVIRONM
REPLICAT | IENTAL
IENTAL
IENTAL
IENTAL | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061)
25
1.2 | OXYGEN,
DIS-
SOLVED (mg/L) (00300)
7.6
10.5
9.7 | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301)
76
98
88
96 | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400)
7.4
7.1
7.2 | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095)
361
607
401
523 | TEMPER-
ATURE
WATER
(deg C)
(00010)
13.8
11.8
10.8 | HARD-NESS
TOTAL (mg/L as CaCO ₃) (00900)
83
240
170
250
250 | CALCIUM DIS- SOLVED (mg/L as Ca) (00915) 26.6 73.0 53.0 83.0 83.0 | MAGNE-
SIUM,
DIS-
SOLVED (mg/L
as Mg) (00925)
4.11
13.9
8.40
11.0 | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 29 177 133 200 | |--|--|---|--|--|---|---|--|---|--|--|---|---|---| | 06 | 1215 | ENVIRONM | IENTAL | .53 | 9.1 | 98 | 7.7 | 599 | 18.3 | 240 | 73.0 | 13.0 | 205 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN
DEMAND,
CHEM-
ICAL
(high
level)
(mg/L)
(00340) | | OCT 24 | 29 | 35 | 0 | | 244 | E1.5 | .08 | .650 | <.01 | .310 | E.49 | 2.1 | 14 | | DEC
11 | 178 | 217 | 0 | 47.9 | E3 | <.20 | .03 | 2.80 | <.01 | E.220 | E.19 | 27 | 11 | | FEB
05 | 132 | 162 | 0 | 27.0 | 4 | <.20 | <.01 | 1.50 | <.01 | .100 | .10 | 16 | <5 | | MAY
29 | 200 | 245 | 0 | | 3 | <.20 | <.01 | 1.30 | <.01 | .090 | .07 | 22 | 6 | | 29
AUG | | | | | 4 | <.20 | <.01 | 1.20 | <.01 | .080 | .12 | | 7 | | 06 | 206 | 252 | 0 | | 3 | .20 | <.01 | 2.40 | <.01 | .220 | .21 | 7.9 | 7 | | | | | | | | | | | | | | | | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | DATE OCT 24 | MTEC MF
WATER
(col./
100 mL) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL) | STREP,
KF STRP
MF,
WATER
(col./
100 mL) | INUM,
DIS-
SOLVED
(µg/L
as Al) | DIS-
SOLVED
(µg/L
as As) | LIUM,
DIS-
SOLVED
(µg/L
as Be) | DIS-
SOLVED
(µg/L
as Cd) | MIUM,
DIS-
SOLVED
(µg/L
as Cr) | DIS-
SOLVED
(µg/L
as Cu) | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(μg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | | OCT | MTEC MF
WATER
(col./
100 mL)
(31633) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | DIS-
SOLVED
(µg/L
as As)
(01000) | LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
24
DEC
11
FEB
05 | MTEC MF
WATER
(col./
100 mL)
(31633) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | DIS-
SOLVED
(µg/L
as As)
(01000) | LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) |
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) | | OCT 24 DEC 11 FEB 05 MAY 29 | MTEC MF
WATER
(col./
100 mL)
(31633)
26000
84
K13
380 | FORM, FECAL, 0.7 0.7 µm-MF (col./100 mL) (31625) 30000 224 K56 K300 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475 | INUM, DIS- SOLVED (µg/L as Al) (01106) 256 12 15 | DIS-
SODIVED
(µg/L
as As)
(01000)
<1
<1
<1 | LIUM,
DIS-
SOLVED (µg/L
as Be)
(01010)
<1
1
<1 | DIS-
SOLVED (µg/L
as Cd)
(01025)
1.0
1.0
<1.0 | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030)
1.0
 | DIS-
SOLVED
(µg/L
as Cu)
(01040)
2.9
1.8
<1.0 | DIS-
SOLVED (µg/L
as Fe) (01046)
262
15
13 | DIS-
SOLVED (µg/L
as Pb) (01049)
2 <1 <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
95
20
5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.1 <.1 <.1 <.1 | | OCT 24 DEC 11 FEB 05 MAY 29 29 | MTEC MF
WATER
(col./
100 mL)
(31633)
26000
84
K13
380
360 | FORM, FECAL, 0.7 µm-MF (col./ 100 mL) (31625) 30000 224 K56 K300 K300 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475
465 | INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106)
256
12
15 | DIS-
SOLVED
(µg/L
as As)
(01000)
<1
<1
<1
<1
<1 | LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010)
<1
1
<1
<1 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
<1.0
<1.0 | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030)
1.0
 | DIS-
SOLVED
(µg/L
as Cu)
(01040)
2.9
1.8
<1.0
<1.0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
262
15
13
16 | DIS-
SOLVED
(µg/L
as Pb)
(01049)
2
<1
<1
<1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
95
20
5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.1 <.1 <.1 <.1 <.1 | | OCT 24 DEC 11 FEB 05 MAY 29 | MTEC MF
WATER
(col./
100 mL)
(31633)
26000
84
K13
380 | FORM, FECAL, 0.7 0.7 µm-MF (col./100 mL) (31625) 30000 224 K56 K300 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475 | INUM, DIS- SOLVED (µg/L as Al) (01106) 256 12 15 | DIS-
SODIVED
(µg/L
as As)
(01000)
<1
<1
<1 | LIUM,
DIS-
SOLVED (µg/L
as Be)
(01010)
<1
1
<1 | DIS-
SOLVED (µg/L
as Cd)
(01025)
1.0
1.0
<1.0 | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030)
1.0
 | DIS-
SOLVED
(µg/L
as Cu)
(01040)
2.9
1.8
<1.0 | DIS-
SOLVED (µg/L
as Fe) (01046)
262
15
13 | DIS-
SOLVED (µg/L
as Pb) (01049)
2 <1 <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
95
20
5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.1 <.1 <.1 <.1 | | OCT 24 DEC 11 FEB 05 MAY 29 29 | MTEC MF
WATER
(col./
100 mL)
(31633)
26000
84
K13
380
360 | FORM, FECAL, 0.7 µm-MF (col./ 100 mL) (31625) 30000 224 K56 K300 K300 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475
465 | INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106)
256
12
15 | DIS-
SOLVED
(µg/L
as As)
(01000)
<1
<1
<1
<1
<1 | LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010)
<1
1
<1
<1 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
 | MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030)
1.0
 | DIS-
SOLVED
(µg/L
as Cu)
(01040)
2.9
1.8
<1.0
<1.0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
262
15
13
16 | DIS-
SOLVED
(µg/L
as Pb)
(01049)
2
<1
<1
<1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
95
20
5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.1 <.1 <.1 <.1 <.1 | | OCT 24 DEC 11 FEB 05 MAY 29 29 AUG 06 | MTEC MF WATER (col./100 mL) (31633) 26000 84 K13 380 360 3200 NICKEL, DIS-SOLVED (µg/L as Ni) (01065) | FORM, FECAL, 0.7 pm-MF (col./100 mL) (31625) 30000 224 K56 K300 K300 3200 SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475
465
12600
SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | INUM, DIS- SOLVED (µg/L as Al) (01106) 256 12 15 21 <3 ZINC, DIS- SOLVED (µg/L as Zn) (01090) | DIS-
SOLVED
(µg/L
as As)
(01000)
<1
<1
<1
<1
<1
<1
<1
CIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 <1 <1 (1 <1 (1) <1 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
(1.0) | MIUM,
DIS-
SOLVED (μg/L
as Cr) (01030)
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
(1.0)
(1.0)
(1.0)
(1.0)
(1.0)
(1.0)
(1.0) | DIS-
SOLVED (µg/L as Cu) (01040) 2.9 1.8 <1.0 <1.0 <1.0 1.0 2,4-DI-METHYL-PHENOL TOTPAL (µg/L) (34606) | DIS-
SOLVED
(µg/L)
as Fe)
(01046)
262
15
13
16
16
4
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L
as Pb)
(01049)
2
<1
<1
<1
<1
<1
<1
VI
PHENOL
TOTAL
(µg/L)
(34616) | NESE,
DIS-
SOLVVED
(µg/L
as Mn)
(01056)
95
20
5
12
12
18
2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.1 <.1 <.1 <.1 <.1 <.1 (.1) <.1 (.1) (.1) (.1) (.1) (.1) (.1) (.1) (. | | OCT 24 DEC 11 FEB 05 MAY 29 29 AUG 06 DATE | MTEC MF WATER (col./100 mL) (31633) 26000 84 K13 380 360 3200 NICKEL, DIS-SOLVED (µg/L as Ni) (01065) | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) 30000 224 K56 K300 K300 3200 SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475
465
12600
SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | INUM, DIS-SOLVED (µg/L as A1) (01106) 256 12 15 21 21 23 ZINC, DIS-SOLVED (µg/L as Zn) (01090) | DIS-
SOLVED
(µg/L as As)
(01000)
<1
<1
<1
<1
<1
<1
<1
<1
OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 <1 <1 (1) <1 (1) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(µg/L)
as Cd)
(01025)
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0 | MIUM,
DIS-
SOLVED (μg/L
as Cr) (01030)
1.0
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | DIS-
SOLVED (µg/L as Cu) (01040) 2.9 1.8 <1.0 <1.0 <1.0 1.0 1.0 2,4-DI-METHYL-PHENOL TOTAL (µg/L) (34606) <3.0 | DIS-
SOLVED
(µg/L)
as Fe)
(01046)
262
15
13
16
16
4
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L)
as Pb)
(01049)
2
<1
<1
<1
<1
<1
<1
<1
(1
<1
(1)
(1)
(2)
(4)
(1)
(1)
(1)
(2)
(4)
(1)
(4)
(5)
(6)
(7)
(7)
(7)
(8)
(8)
(9)
(9)
(9)
(9)
(9)
(9)
(9)
(9 | NESE,
DIS-
SOLVED (µg/L
as Mn) (01056)
95
20
5
12
12
18
2,4-DI-
NITRO-
TOLUENE
TOTAL (µg/L) (34611) | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | | OCT 24 DEC 11 FEB 05 MAY 29 29 AUG 06 DATE OCT 24 DEC 11 FEB | MTEC MF WATER (col./100 mL) (31633) 26000 84 K13 380 360 3200 NICKEL, DIS- SOLVED (µg/L as Ni) (01065) 1.6 1.1 | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) 30000 224 K56 K300 K300 3200 SELLE-NIUM, DIS-SOLVED (µg/L as Se) (01145) <1 <1 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475
465
12600
SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075)
<1.0 | INUM, DIS- SOLVED (µg/L as Al) (01106) 256 12 15 21 21 23 ZINC, DIS- SOLVED (µg/L as Zn) (01090) 70 51 | DIS-
SOLVED
(µg/L
as As)
(01000)
<1
<1
<1
<1
<1
<1
<1
METALE
(mg/L)
(00556) | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 <1 <1 (1) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(µg/L
as
Cd)
(01025)
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1. | MIUM,
DIS-
SOLVED (μg/L
as Cr) (01030)
1.0
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | DIS-
SOLVED (µg/L as Cu) (01040) 2.9 1.8 <1.0 <1.0 <1.0 1.0 2,4-DI-METHYL-PHENOL TOTAL (µg/L) (34606) <3.0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
262
15
13
16
16
16
4
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L
as Pb)
(01049)
2
<1
<1
<1
<1
<1
<1
(1
<1
(1)
(1)
(2)
(34616)
<20 | NESE,
DIS-
SOLVVED (μg/L
as Mn) (01056)
95
20
5
12
12
18
2,4-DI-
NITRO-
TOLUENE
TOTAL (μg/L) (34611) | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.1 <.1 <.1 <.1 <.1 <.1 (.1) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | | OCT 24 DEC 11 FEB 05 MAY 29 AUG 06 DATE OCT 24 DEC 11 FEB 05 MAY | MTEC MF WATER (col./100 mL) (31633) 26000 84 K13 380 360 3200 NICKEL, DIS-SOLVED (µg/L as Ni) (01065) 1.6 1.1 <1.0 | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) 30000 224 K56 K300 K300 3200 SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) <1 <1 <1 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475
465
12600
SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075)
<1.0
<1.0 | INUM, DIS- SOLVED (µg/L as Al) (01106) 256 12 15 21 21 <3 ZINC, DIS- SOLVED (µg/L as Zn) (01090) 70 51 3 | DIS-
SOLVED
(μg/L
as As)
(01000)
<1
<1
<1
<1
<1
<1
<1
OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 <1 <1 (1) <1 (1) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(µg/L
as Cd)
(01025)
1.0
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0 | MIUM,
DIS-
SOLVED (μg/L
as Cr) (01030)
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | DIS-
SOLVED (µg/L as Cu) (01040) 2.9 1.8 <1.0 <1.0 <1.0 1.0 1.0 2,4-DI-METHYL-PHENOL (µg/L) (34606) <3.0 | DIS-
SOLVED (µg/L)
as Fe) (01046)
262
15
13
16
16
4
2,4-DI-
CHLORO-
PHENOL
TOTAL (µg/L) (34601) | DIS-
SOLVED (µg/L as Pb) (01049) 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | NESE, DIS- SOLVVED (µg/L as Mn) (01056) 95 20 5 12 12 18 2,4-DI- NITRO- TOLUENE TOTAL (µg/L) (34611) <3 | TOTAL RECOV-ERABLE (µg/L) as Hg) (71900) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | | OCT 24 DEC 11 FEB 05 MAY 29 AUG 06 DATE OCT 24 DEC 11 FEB 05 | MTEC MF WATER (col./100 mL) (31633) 26000 84 K13 380 360 3200 NICKEL, DIS- SOLVED (µg/L as Ni) (01065) 1.6 1.1 | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) 30000 224 K56 K300 K300 3200 SELLE-NIUM, DIS-SOLVED (µg/L as Se) (01145) <1 <1 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
11400
160
K91
475
465
12600
SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075)
<1.0 | INUM, DIS- SOLVED (µg/L as Al) (01106) 256 12 15 21 21 23 ZINC, DIS- SOLVED (µg/L as Zn) (01090) 70 51 | DIS-
SOLVED
(µg/L
as As)
(01000)
<1
<1
<1
<1
<1
<1
<1
METALE
(mg/L)
(00556) | LIUM, DIS- SOLVED (µg/L as Be) (01010) <1 1 <1 <1 <1 <1 <1 <1 <1 (1) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | DIS-
SOLVED
(µg/L
as
Cd)
(01025)
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1. | MIUM,
DIS-
SOLVED (μg/L
as Cr) (01030)
1.0
1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 | DIS-
SOLVED (µg/L as Cu) (01040) 2.9 1.8 <1.0 <1.0 <1.0 1.0 2,4-DI-METHYL-PHENOL TOTAL (µg/L) (34606) <3.0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
262
15
13
16
16
16
4
2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | DIS-
SOLVED
(µg/L
as Pb)
(01049)
2
<1
<1
<1
<1
<1
<1
(1
<1
(1)
(1)
(2)
(34616)
<20 | NESE,
DIS-
SOLVVED (μg/L
as Mn) (01056)
95
20
5
12
12
18
2,4-DI-
NITRO-
TOLUENE
TOTAL (μg/L) (34611) | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.1 <.1 <.1 <.1 <.1 <.1 (.1) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | # 07019090 WILLIAMS CREEK NEAR PEERLESS PARK, MO--Continued (Metropolitan Sewer District) | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(μg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | |---|---|--|---|--|--|---|--|---|---|---|--|--|---| | OCT 24 | <2 | <2 | М | <3 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | <2 | <2 | | DEC 11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAY
29 | | | | | | | | | | | | | | | 29
AUG | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLIRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT 24 | <40 | М | М | М | М | М | <3 | <2 | <2 | <19 | <.02 | <.1 | <.01 | | DEC
11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAY
29
29 | | | | | | | | | | | | | | | AUG
06 | | | | | | | | | | | | | | | 00 | | | | | | | | | | | | | | | DATE | CHRY-
SENE
TOTAL
(µg/L) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER | DEF
TOTAL | DI-
AZINON, | DI-
ELDRIN | DIETHYL
PHTHAL-
ATE
TOTAL | DI-
METHYL
PHTHAL-
ATE | DI-N-
BUTYL
PHTHAL-
ATE | DI-N-
OCTYL
PHTHAL-
ATE | DISUL-
FOTON
UNFILT | ENDO-
SULFAN
I | ENDRIN
WATER | ETHION, | | | (34320) | (μg/L)
(34386) | (μg/L)
(39040) | TOTAL
(µg/L)
(39570) | TOTAL
(µg/L)
(39380) | (µg/L)
(34336) | TOTAL
(µg/L)
(34341) | TOTAL
(µg/L)
(39110) | TOTAL
(µg/L)
(34596) | RECOVER
(µg/L)
(39011) | TOTAL
(µg/L)
(39388) | UNFLTRD
REC
(µg/L)
(39390) | TOTAL
(µg/L)
(39398) | | OCT 24 | (34320)
M | | $(\mu g/L)$ | TOTAL
(µg/L) | TOTAL
(µg/L) | RECOVER
(µg/L) | TOTAL
(µg/L) | REC
(µg/L) | TOTAL (µg/L) | | | | (34386) | (µg/L)
(39040) | (μg/L)
(39570) | (µg/L)
(39380) | (µg/L)
(34336) | (μg/L)
(34341) | TOTAL
(µg/L)
(39110) | TOTAL
(µg/L)
(34596) | RECOVER
(µg/L)
(39011) | TOTAL
(µg/L)
(39388) | REC
(µg/L)
(39390) | TOTAL
(µg/L)
(39398) | | 24
DEC
11
FEB
05 | | (34386) | (µg/L)
(39040) | (μg/L)
(39570) | (µg/L)
(39380) | (µg/L)
(34336) | (μg/L)
(34341) | TOTAL
(µg/L)
(39110) | TOTAL
(µg/L)
(34596) | RECOVER
(µg/L)
(39011) | TOTAL
(µg/L)
(39388) | REC
(µg/L)
(39390) | TOTAL
(µg/L)
(39398) | | 24
DEC
11
FEB
05
MAY
29 | | (34386) | (µg/L)
(39040)
<.02 | (µg/L)
(39570)
<.02 | (µg/L)
(39380)
<.006 | (µg/L)
(34336)
M
 | (µg/L)
(34341)
M
 | TOTAL
(µg/L)
(39110) | TOTAL
(µg/L)
(34596) | RECOVER
(µg/L)
(39011) | TOTAL
(µg/L)
(39388)
<.02 | REC
(µg/L)
(39390) | TOTAL
(µg/L)
(39398)
<.01 | | 24 DEC 11 FEB 05 MAY 29 AUG | | (34386)
<2

 | (µg/L)
(39040)
<.02 | (µg/L)
(39570)
<.02 | (µg/L)
(39380)
<.006
 | (µg/L)
(34336)
M
 | (µg/L)
(34341)
M
 | TOTAL
(µg/L)
(39110) | TOTAL (µg/L) (34596) <5 | RECOVER
(µg/L)
(39011)
<.10
 | TOTAL
(µg/L)
(39388)
<.02 | REC
(µg/L)
(39390) | TOTAL (µg/L) (39398) <.01 | | 24 DEC 11 FEB 05 MAY 29 29 | | (34386)
<2

 | (µg/L)
(39040)
<.02 | (µg/L)
(39570)
<.02 | (µg/L)
(39380)
<.006
 | (µg/L)
(34336)
M
 | (µg/L)
(34341)
M
 | TOTAL
(µg/L)
(39110) | TOTAL (µg/L) (34596) <5 | RECOVER
(µg/L)
(39011)
<.10
 | TOTAL
(µg/L)
(39388)
<.02 | REC
(µg/L)
(39390) | TOTAL (µg/L) (39398) <.01 | | 24 DEC 11 FEB 05 MAY 29 AUG | | (34386)
<2

 | (µg/L)
(39040)
<.02

 | (µg/L)
(39570)
<.02 | (µg/L)
(39380)
<.006
 | (μg/L)
(34336)
M

 | (µg/L)
(34341)
M

 | TOTAL
(µg/L)
(39110) | TOTAL (µg/L)
(34596) <5 | RECOVER
(µg/L)
(39011)
<.10
 | TOTAL
(µg/L)
(39388)
<.02 | REC
(µg/L)
(39390) | TOTAL (µg/L) (39398) <.01 | | 24 DEC 11 FEB 05 MAY 29 29 AUG 06 | M FLUOR- ANTHENE TOTAL (µg/L) (34376) | (34386) <2 FLUOR- ENE TOTAL (µg/L) (34381) | (µg/L)
(39040)
<.02

FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT. REC
(µg/L)
(82614) | (µg/L)
(39570)
<.02

HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | (µg/L)
(39380)
<.006

HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | (µg/L)
(34336)
М ———————————————————————————————————— | (µg/L) (34341) M INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) | TOTAL (µg/L) (39110) M USO- PHORONE TOTAL (µg/L) (34408) | TOTAL (µg/L) (34596) <5 LINDANE TOTAL (µg/L) (39340) | MALA-
THION,
TOTAL
(J89530) | TOTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTAL (µg/L) (39480) | REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) (39600) | TOTAL (µg/L) (39398) <.01 (µg/L) (39398) | | 24 DEC 11 FEB 05 MAY 29 29 AUG 06 DATE | M FLUOR- ANTHENE TOTAL (µg/L) | (34386) <2 FLUOR- ENE TOTAL (µg/L) | (µg/L)
(39040)
<.02

FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | (µg/L) (39570) <.02 HEPTA- CHLOR EPOXIDE TOTAL (µg/L) (39420) <.009 | (µg/L)
(39380)
<.006

HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410)
<.01 | (µg/L) (34336) M | (µg/L) (34341) M INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) | TOTAL (µg/L) (39110) M | TOTAL (µg/L) (34596) <5 LINDANE TOTAL (µg/L) (39340) <.006 | RECOVER (µg/L) (39011) <.10 MALA-THION, TOTAL (µg/L) (39530) <.01 | TOTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTAL (µg/L) (39480) <.020 | REC (µg/L) (39390) <.01 | TOTAL (µg/L) (39398) <.01 (µg/L) (39398) <.01 | | 24 DEC 11 FEB 05 MAY 29 29 AUG 06 DATE OCT 24 DEC 11 FEB | M FLUOR- ANTHENE TOTAL (µg/L) (34376) | (34386) <2 FLUOR- ENE TOTAL (µg/L) (34381) <2 | (µg/L)
(39040)
<.02

FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | (µg/L)
(39570)
<.02

HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420)
<.009 | (µg/L)
(39380)
<.006

HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410)
<.01 | (µg/L)
(34336)
M

HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | (µg/L) (34341) M INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) M | TOTAL (µg/L) (39110) M ISO- PHORONE TOTAL (µg/L) (34408) M | TOTAL (µg/L) (34596) <5 LINDANE TOTAL (µg/L) (39340) <.006 | MALA-
THION,
TOTAL
(J89530) | TOTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTAL (µg/L) (39480) <.020 | REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) (39600) <.01 | TOTAL (µg/L) (39398) <.01 MIREX, TOTAL (µg/L) (39755) <.006 | | 24 DEC 11 FEB 05 MAY 29 29 AUG 06 DATE OCT 24 DEC 11 FEB 05 MAY | M FLUOR- ANTHENE TOTAL (µg/L) (34376) | (34386) <2 FLUOR- ENE TOTAL (µg/L) (34381) | (μg/L) (39040) <.02 FONOFOS (DY- FONATE) WATER WHOLE TOT.REC (μg/L) (82614) <.01 | (µg/L)
(39570)
<.02

HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420)
<.009 | (µg/L)
(39380)
<.006

HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410)
<.01 | (µg/L)
(34336)
М —— —— —— —— —— —— —— —— —— —— —— —— —— | (µg/L) (34341) M INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) M | TOTAL (µg/L) (39110) M | TOTAL (µg/L) (34596) <5 | RECOVER (µg/L) (39011) <.10 MALA-THION, TOTAL (µg/L) (39530) <.01 | TOTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTAL (µg/L) (39480) <.020 | REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) (39600) <.01 | TOTAL (µg/L) (39398) <.01 | | 24 DEC 11 FEB 05 MAY 29 AUG 06 DATE CCT 24 DEC 11 FEB 05 | M FLUOR- ANTHENE TOTAL (µg/L) (34376) | (34386) <2 FLUOR- ENE TOTAL (µg/L) (34381) <2 | (µg/L)
(39040)
<.02

FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | (µg/L)
(39570)
<.02

HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420)
<.009 | (µg/L)
(39380)
<.006

HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410)
<.01 | (µg/L)
(34336)
M

HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | (µg/L) (34341) M INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) M | TOTAL (µg/L) (39110) M ISO- PHORONE TOTAL (µg/L) (34408) M | TOTAL (µg/L) (34596) <5 LINDANE TOTAL (µg/L) (39340) <.006 | RECOVER (µg/L) (39011) <.10 MALA-THION, TOTAL (µg/L) (39530) <.01 | TOTAL (µg/L) (39388) <.02 METH- OXY- CHLOR, TOTAL (µg/L) (39480) <.020 | REC (µg/L) (39390) <.01 METHYL PARA- THION, TOTAL (µg/L) (39600) <.01 | TOTAL (µg/L) (39398) <.01 MIREX, TOTAL (µg/L) (39755) <.006 | ## 07019090 WILLIAMS CREEK NEAR PEERLESS PARK, MO--Continued (Metropolitan Sewer District) | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO
-SODI-
METHYL-
AMINE
TOTAL
(µg/L)
(34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO
-SODI-
PHENYL-
AMINE
TOTAL
(µg/L)
(34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | |------------------|---|---|---|---|---|---|---|---|---|--|---|---|---| | OCT
24
DEC | <4 | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | 11 | | | | | | | | | | | | | | | FEB
05
MAY | | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | | 29
AUG | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | | DATE | PHORATE
TOTAL
(µg/L)
(39023) | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE HEXA- CHLORO- WATER UNFLTRD RECOVER (µg/L) (34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(µg/L)
(34696) | | | | | OCT
24
DEC | <.02 | М | <1 | <2 | <2 | <2 | <2 | <2 | <3 | <5 | | | | | 11 | | | | | | | | | | | | | | | FEB
05
MAY | | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | | 29
AUG
06 | | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 07019120 FISHPOT CREEK AT VALLEY PARK, MO LOCATION.--Lat 38°33'07", long 90°30'41", in NE $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.13, T.44 N., R.4 E., St. Louis County, Hydrologic Unit 07140102, on right downstream abutment of Hanna Road bridge, 4.4 mi west of Interstate 270, 1.0 mi north of Interstate 44, and 1.7 mi upstream of confluence of Meramec River. DRAINAGE AREA.--9.58 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 1996 to current year. Annual peaks only for 1972-1974 water years published in WRD MO 1974. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 422.02 ft above National Geodetic Vertical Datum of 1929. Prior to July 1996, at datum 420.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records fair except for estimated daily discharges and those above 2,000 ft^3/s , which are poor. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of April 11, 1979 reached a stage of 12.00 ft, former datum, discharge 6,200 ft³/s. | | | DISCHA | RGE, CUB | IC FEET PER | SECOND, | WATER Y | EAR OCTOBER | R 2001 TO | SEPTEMBE | R 2002 | 5 | , | |---|--|---|---|--|--------------------------------------|--|---|---|---|---|--|--| | | | | | | | Y MEAN V | ALUES | | | | | | | DAY
| OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
16 | 0.11
0.19
0.11
0.06
0.04 | | e0.15
e0.14
e0.13
e0.12
e0.11 | 0.97
0.74 | 0.22
32
e16
e0.90
0.65 | 0.50
0.48
0.48
0.48
0.44 | 0.38
0.27
0.22
0.18
0.15 | 0.28
0.28
0.28
0.36
4.9 | 0.00
0.00
33
1.0
0.32 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.35
0.18
0.12
0.09
98 | 0.04
0.12
0.22
0.15
0.13 | 0.21
0.18
0.15
0.15
0.13 | e0.10
e0.09
e0.09
e0.08
e0.08 | 0.61
0.54
0.45
0.39
0.45 | 0.54
0.45
0.41
39
1.1 | 0.37
0.35
19
0.61
0.39 | 2.8
120
130
130
1.8 | 0.39
0.27
0.24
0.34
3.5 | 0.24
0.19
0.14
0.09
0.08 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 72
11
0.99
0.50
23 | 0.10
0.08
0.06
0.04
0.03 | 0.11
18
2.7
25
0.97 | 0.07
0.07
0.06
0.06
0.05 | | 0.70
0.55
0.50
0.48 | 0.28
0.35
0.24
0.24 | 1.1
53
148
2.2
1.5 | 81
288
2.3
1.2
0.82 | 0.08
0.05
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 8.1
0.26
0.18
0.16
0.13 | 0.02
0.01
0.01
0.03
0.02 | 142
91
2.8
1.6
1.1 | 0.05
0.04
0.04
0.12
0.12 | 0.37
0.37
0.33
5.6
0.97 | 2.0
0.83
0.65
6.8
2.6 | 0.18
0.19
0.16
8.3 | 8.8
81
4.1
1.4
0.99 | 0.64
0.49
0.39
0.30
0.25 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
13
0.17
0.10 | 0.00
0.02
0.12
38
2.0 | | 21
22
23
24
25 | 0.11
0.16
0.27
23
0.42 | 0.00
0.00
0.00
144
0.65 | 0.78
0.81
0.64
0.46
0.38 | 0.08
0.06
0.11
0.27
0.13 | 0.51
0.38
0.33
0.32
0.28 | 0.84
0.65
0.61
0.62 | 13
0.72
0.36
21
0.92 | 0.71
0.57
0.50
0.48
0.39 | 0.19
0.14
0.08
0.05
0.03 | 0.00
0.00
0.00
0.00
0.00 | 0.07
0.04
0.04
0.04
0.01 | 0.08
0.05
0.04
0.03
0.03 | | 27
28 | 0.28
0.25
0.21
0.17
0.15
0.13 | 0.46
0.27
10
15
34 | 0.32
0.27
0.22
e0.20
e0.18
e0.16 | 0.09
0.08
0.07
0.16
96
199 | 0.32
0.28
0.25
 | 3.7
1.3
0.81
0.68
0.62
0.62 | 0.34
54
16
0.78
0.51 | 0.37
0.37
0.36
0.33
0.31
0.29 | 0.02
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.02
0.01
0.00
0.00
0.00 | | MEAN
MAX
MIN
IN. | 8.26
98
0.00
0.99 | 6.86
144
0.00
0.80 | 9.44
142
0.11
1.14 | 9.61
199
0.04
1.16 | 1.00
7.6
0.25
0.11 | 6.45
66
0.22
0.78 | 5.30
54
0.16
0.62 | 22.3
148
0.15
2.69 | 12.9
288
0.00
1.50 | 1.14
33
0.00
0.14 | 0.44
13
0.00
0.05 | 1.35
38
0.00
0.16 | | STATIST | TICS OF M | ONTHLY ME | AN DATA | FOR WATER Y | EARS 199 | 6 - 2002 | , BY WATER | YEAR (W | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.67
8.26
2002
0.42
1999 | 5.78
20.9
1997
0.17
2000 | 2.29
9.44
2002
0.16
1999 | 5.60
9.61
2002
0.22
2000 | 12.1
19.0
2000
1.00
2002 | 6.66
21.5
1998
0.78
2000 | 3.97
6.23
1998
0.26
2000 | 11.4
28.2
2000
1.48
1997 | 13.0
31.5
2000
0.80
1999 | 3.87
12.5
1998
0.83
1997 | 2.20
4.95
1998
0.09
2001 | 3.27
16.3
1996
0.07
1999 | | SUMMARY | STATIST | CICS | F | OR 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER Y | EAR | WATER YE | ARS 1996 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUN
MAXIMUN
INSTANTI
ANNUAL
10 PERC
50 PERC | C ANNUAL | MEAN MEAN MAN MINIMUM MOW MAGE MOW FLOW INCHES) MEDS MEDS | | 5.01
149
0.00
0.00

7.10
8.3
0.14
0.00 | Feb:
Many Day
At Time | 24
ys
es | 7.14
288
0.00
0.00
3810 ⁸
8.73
0.00
10.13
12
0.24
0.00 | Jun
Many Da
At Tir
Jun
Jun
Many Da | 12
ays
nes
12
12
12
ays | 5.86
7.88
3.38
710
0.00
5.320 ^a
10.08
0.00
8.30
5.2
0.22
0.22 | Jun :
Man
A
Jun :
Jun :
Man | 1998
2001
24 2000
y Years
t Times
24 2000
24 2000
y Years | e Estimated $^{\rm a}$ From rating extended above 995 ${\rm ft^3/s.}$ # 07019120 FISHPOT CREEK AT VALLEY PARK, MO--Continued (Metropolitan Sewer District) ## WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1996 to current year. | DATE | TIME | SAMPLE
TYPE | : | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
10 | 0715 | ENVIRONM | IENTAL | 808 | 7.5 | 80 | 8.0 | 124 | 16.9 | 45 | 14.5 | 2.25 | 51 | | DEC
11 | 1055 | ENVIRONM | IENTAL | .10 | 6.1 | 51 | 6.9 | 562 | 7.3 | 210 | 67.8 | 10.4 | 155 | | FEB
05 | 1250 | ENVIRONM | IENTAL | .79 | 12.3 | 95 | 7.1 | 614 | 4.4 | 200 | 64.0 | 10.0 | 146 | | MAR
09 | 0426 | ENVIRONM | IENTAL | 89 | 9.2 | 88 | 7.6 | 1040 | 12.1 | 150 | 47.0 | 7.30 | 73 | | MAY
29 | 1055 | ENVIRONM | IENTAL | .32 | 4.9 | 55 | 7.3 | 644 | 19.5 | 230 | 73.0 | 11.0 | 165 | | AUG
06 | 0900 | ENVIRONM | IENTAL | e.01 | 2.6 | 32 | 7.1 | 657 | 26.1 | 210 | 66.0 | 9.80 | 198 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
10
DEC | 44 | E53 | 0 | | 2160 | E3.6 | .04 | .580 | .01 | .290 | 1.20 | 1.1 | 19 | | 11
FEB | 157 | 192 | 0 | 46.2 | <1 | <.20 | .03 | .400 | <.01 | .140 | E.13 | 40 | 12 | | 05
MAR | 146 | 178 | 0 | 72.0 | <1 | .30 | <.01 | 1.40 | <.01 | .110 | .12 | 25 | 8 | | 09
MAY | 73 | 89 | 0 | | 594 | 2.0 | .11 | .740 | .03 | .170 | .60 | 3.6 | 25 | | 29
AUG | 170 | 207 | 0 | | 4 | <.20 | .04 | .300 | <.01 | .120 | .13 | 16 | 6 | | 06 | 200 | 244 | 0 | | 5 | .30 | .02 | .020 | <.01 | .100 | .15 | 29 | 10 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
10 | 40000 | 60000 | 39200 | 1060 | 2 | <1 | 1.0 | 1.0 | 2.5 | 997 | 2 | 52 | .1 | | DEC 11 | K20 | K53 | K48 | <3 | <1 | 1 | 1.0 | 1.0 | 1.0 | 45 | <1 | 97 | <.1 | | FEB 05 | K5 | K10 | 250 | 27 | 1 | <1 | <1.0 | <1.0 | 1.0 | 26 | <1 | 30 | <.1 | | MAR
09 | 4800 | 9000 | 11600 | 274 | 2 | <1 | <1.0 | 2.6 | 2.3 | 170 | <1 | 50 | <.1 | | MAY
29 | 25 | 33 | 72 | 6 | <1 | <1 | <1.0 | <1.0 | 1.1 | 14 | <1 | 153 | <.1 | | AUG
06 | К7 | K60 | 164 | <3 | 1 | <1 | <1.0 | <1.0 | <1.0 | 4 | <1 | 800 | <.1 | # 07019120 FISHPOT CREEK AT VALLEY PARK, MO--Continued (Metropolitan Sewer District) | DATE
 NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |---|---|--|--|--|---|--|---|---|--|--|---|---|--| | OCT
10 | 1.5 | <1 | <1.0 | 34 | <7 | М | <2 | <3 | <3.0 | <3 | E2 | <3 | <2 | | DEC
11 | <1.0 | 1 | <1.0 | 56 | | | | | | | | | | | FEB
05 | <1.0 | <1 | <1.0 | 22 | | | | | | | | | | | MAR
09 | 2.4 | <1 | <1.0 | 95 | <7 | М | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
29 | 1.4 | <1 | <1.0 | 160 | | | | | | | | | | | AUG
06 | 2.3 | <1 | <1.0 | <2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLITED
RECOVER
(µg/L)
(34447) | | OCT
10 | <2 | <2 | <3 | <3 | <3 | <2 | <2 | E1 | М | М | <.01 | М | <2 | | DEC 11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | MAY
29 | | | | | | | | | | | | | | | AUG
06 | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786) | CHLOR-
DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | ОСТ
10 | DINE
TOTAL
(µg/L) | A-
PYRENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L) | [GHI]-
PERY-
LENE
TOTAL
(µg/L) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L) | PHENO-
THION
WATER
UNFLTRD
(µg/L) | DANE,
TECH-
NICAL
TOTAL
(µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L) | | OCT
10
DEC
11 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10
DEC
11
FEB
05 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
10
DEC
11
FEB
05
MAR
09 | DINE
TOTAL
(µg/L)
(39120)
<40 | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYLL)
ETHER
UNFLIRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT
10
DEC
11
FEB
05
MAR
09
MAY
29 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M |
CHLORO-
ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 10 DEC 11 FEB 05 MAR 09 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-
ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT
10
DEC
11
FEB
05
MAR
09
MAY
29 | DINE
TOTAL
(µg/L)
(39120)
<40
 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-
ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02

<.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) (134230) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M
M
M
DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <methyl (34341)<="" (µg="" l)="" phthal-ate="" td="" total=""><td>CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110)</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596)</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <196 DISUL- FOTON UNFILT RECOVER (µg/L) (39011)</td><td>PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) (39388)</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD (µg/L) (39390)</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01</td></methyl> | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <196 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO-SULFAN I TOTAL (µg/L) (39388) | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD (µg/L) (39390) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 10 DEC 11 FEB 05 MAR 09 AUG 06 DATE OCT 10 DEC | DINE TOTAL (µg/L) (39120) <40 <40 CHRY- SENE TOTAL (µg/L) | A- PYRENE TOTAL (µg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M AZINON, TOTAL (µg/L) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M M DIETHYL PHTHAL- ATE TOTAL (µg/L) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <methyl (µg="" l)<="" phthal-ate="" td="" total=""><td>CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L)</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L)</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL ((µg/L)) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER ((µg/L))</td><td>PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L)</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (µg/L)</td></methyl> | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) | ETHYL HEXYL) PHTHAL- ATE TOTAL ((µg/L)) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER ((µg/L)) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (µg/L) | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) (39040) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M M AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <methyl (34341)<="" (µg="" l)="" phthal-ate="" td="" total=""><td>CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 S2 BUT-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110)</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596)</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <196 DISUL- FOTON UNFILT RECOVER (µg/L) (39011)</td><td>PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02</td><td>DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01</td></methyl> | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 S2 BUT-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <196 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 <.02 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) | A- PYRENE TOTAL (µg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) (39040) E.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M DI- AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <methyl (34341)="" (µg="" ate="" l)="" m<="" phthal-="" td="" total=""><td>CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10</td><td>PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01</td></methyl> | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <6 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 <ho (34320)="" (µg="" l)="" m<="" sene="" td="" total=""><td>A- PYRENE TOTAL (μg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2</td><td>FLUOR- AN- THENE TOTAL (μg/L) (34230) M M DEF TOTAL (μg/L) (39040) E.02</td><td>FLUOR- AN- THENE TOTAL (μg/L) (34242) M M AZINON, TOTAL (μg/L) (39570) .25</td><td>[A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M BI- ELDRIN TOTAL (µg/L) (39380) <.006</td><td>[GHI]- PERY- LENE TOTAL (µg/L) (34521) M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M</td><td>CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M</td><td>CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N-BUTYL PHTHAL-ATE TOTAL (µg/L) (39110) M</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL-
ATE TOTAL (µg/L) (34596) M</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <66 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10</td><td>PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01</td></ho> | A- PYRENE TOTAL (μg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (μg/L) (34230) M M DEF TOTAL (μg/L) (39040) E.02 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M M AZINON, TOTAL (μg/L) (39570) .25 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M BI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 DI-N-BUTYL PHTHAL-ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <66 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT | DINE TOTAL (µg/L) (39120) <40 <40 SENE TOTAL (µg/L) (34320) M M | A- PYRENE TOTAL (μg/L) (34247) M M CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M DEF TOTAL (µg/L) (39040) E.02 <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M DI- AZINON, TOTAL (µg/L) (39570) .2503 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M ELDRIN TOTAL (µg/L) (39380) <.006 <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M < < < < < - M < - DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL- ATE TOTAL (µg/L) (34341) M M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 SIDI-N-BUTYL PHTHAL ATE TOTAL (µg/L) (39110) M M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) <19 <66 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <.10 | PHENO- THION WATER UNFLTRD (µg/L) (39786) <.02 <.02 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02 <.01 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 <.01 <.01 | ## 07019120 FISHPOT CREEK AT VALLEY PARK, MO--Continued (Metropolitan Sewer District) | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(μg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(μg/L)
(39755) | |------------------|---|---|--|--|--|---|--|--|--|--|---|---|---| | OCT
10 | E1 | М | <.01 | <.009 | <.01 | <2 | E1 | М | <.006 | <.20 | <.020 | <.01 | <.006 | | DEC
11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR
09 | М | М | <.01 | <.009 | <.01 | <2 | М | М | <.006 | E.23 | <.015 | <.02 | <.006 | | MAY
29 | | | | | | | | | | | | | | | AUG
06 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
10
DEC | <4 | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | 11
FEB | | | | | | | | | | | | | | | 05
MAR | | | | | | | | | | | | | | | 09 | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | M | <3.0 | | MAY
29 | | | | | | | | | | | | | | | AUG
06 | | | | | | | | | | | | | | | | DATE | PHOR
TOT
(µg
(390 | AL TOT
(μ9 | 'AL TOT
(μg | X- CHLO
NE, WAT
AL RE
/L) (µg | 4- 1,3- RI- CHLO DRO- WAT UNF UNFI CC RE | ·DI- 1,4- DRO- CHLO TER WAT TRD UNFI C RE | -DI- O-D
DRO- CHLC
PER WAT
LTRD UNFL
EC RE
1/L) (µg | OI – HEX
ORO – CHLO
TER WAT
TRD UNFL
CC RECO
/L) (µg. | A- HEX
RO- CHLO
ER BUT
TRD ADIE
VER TOT
/L) (µg | ORO-
'- NAPE
'NE ALE
'AL TOI
/L) (µg | NE
AL
L) | | | | OCT
10 | <. | 02 E1 | . <1 | <2 | 2 <2 | 2 <2 | 2 <2 | <2 | <3 | , M | I | | | | DEC
11 | _ | | | | | | | | | | _ | | | | FEB
05 | _ | | | | | | | | | | _ | | | | MAR
09 | <. | 02 M | I <1 | <2 | 2 <2 | ? <2 | 2 <2 | <2 | <1 | . M | I | | | | MAY
29 | - | | | | | | | | | | - | | | | AUG
06 | - | | | | | | | | | | - | | e--Estimated discharge value. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ## 07019150 GRAND GLAIZE CREEK NEAR MANCHESTER, MO LOCATION.--Lat 38°35'33", long 90°29'35", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ Sec.31, T.45 N., R.5 E., St. Louis County, Hydrologic Unit 07140102, on left downstream abutment of Weidmann Road bridge, 0.15 mi south of Highway 100, 1.1 mi west of Interstate 270, and 6.9 mi upstream of confluence of Meramec River. DRAINAGE AREA.--5.09 mi². PERIOD OF RECORD. -- May 1997 to current year. ${\tt GAGE.--Water-stage}$ recorder and crest-stage gage. Datum of gage unknown. REMARKS.--Records poor. | | 1 | DISCHAF | GE, CUBIC | C FEET PER | | WATER YE
Y MEAN VA | | R 2001 TO |) SEPTEMBE | R 2002 | | | |--|---|---|--|---|--------------------------------------|--------------------------------------|--|--|---|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.11
0.11
0.10
0.10
23 | 0.24
1.3
0.16
0.13
0.13 | 2.1
1.3
1.1
0.98
1.1 | 0.32
0.33
0.40
0.58
0.61 | 5.4
1.9
1.4
0.97
0.72 | 0.60
29
3.3
1.8
2.0 | 1.2
1.6
1.0
0.88
0.88 | 0.99
0.80
0.69
0.63
0.59 | 1.0
0.96
0.90
1.7 | e0.21
e0.23
22
1.6
0.70 | 0.47
0.25
0.16
0.13
0.08 | 0.11
0.09
0.11
0.06
0.10 | | 6
7
8
9
10 | 0.10 | | 1.4
0.83
0.68
0.63
0.60 | | 0.65
0.55
0.43
0.49
1.6 | 1.6
1.2
1.2
27
2.2 | 0.84
1.7
18
2.9
1.4 | 6.5
78
63
74
5.1 | 1.5
1.00
0.89
2.0 | 0.39
0.32
0.36
0.38
1.3 | 2.8
0.40
0.14
0.12
0.10 | 0.12
0.08
0.06
0.18
0.11 | | 11
12
13
14
15 | 41
7.7
2.7
0.22
19 | 0.15
0.15
0.13
0.14
0.12 | 0.60
23
4.2
23
4.2 | 2.5
0.45
0.40
0.42
0.35 | 0.72
0.57
0.50
0.51
0.57 | 1.7
1.5
1.2
1.2 | 1.1
2.1
1.1
1.2
0.84 | 3.6
44
79
3.9
2.6 | e2.8
e0.94
e0.66 | 0.44
0.68
0.39
0.28
0.25 | 0.13
0.63
6.9
1.9
0.50 | 0.06
0.00
0.08
0.15
0.63 | | 16
17
18
19
20 | 6.2
0.23
0.17
0.19
0.16 | | 88
48
4.1
2.2
1.5 | 0.36
0.31
0.32
2.8
0.99 | 0.52 | 3.1
1.7
1.4
13 | 0.75
1.8
0.67
11 | 9.6
45
5.8
2.8
2.1 | e0.56
e0.49
e0.46
e0.42
e0.39 |
6.7
0.91
0.36
0.29
0.29 | 0.39
0.28
23
1.1
0.90 | 0.14
11
0.83
32
10 | | 21
22
23
24
25 | 0.15
5.8 | | | 0.81
0.67
2.9
3.1
0.75 | 1.1
0.78
0.64
0.62
1.7 | 39 | 13
1.5
0.75
12
1.3 | 1.7
1.6
1.4
3.4
1.6 | e0.35
e0.31
e0.29
e2.5
e0.70 | 0.33
1.3
2.6
0.42
0.38 | 0.30
0.20
1.5
0.49
0.17 | 0.60
0.19
0.14
0.34
0.13 | | 26
27
28
29
30
31 | 0.34
0.30
0.27
0.27
0.28
0.25 | 3.3
1.3
16
22
21 | 0.74
0.98
0.70
0.59
0.45
0.39 | 0.59
0.56
0.55
3.2
75
94 | 1.6
0.74
0.63
 | 9.8
3.1
2.1
2.0
1.5 | 0.55
32
7.6
1.2
0.83 | 1.2
1.1 | e0.35
e0.33
e0.31
e0.27
e0.23 | 0.29
0.19
0.16
0.11
0.31
0.12 | 0.13
0.13
0.10
0.61
0.41
0.13 | 0.12
0.14
0.18
0.19
0.19 | | MEAN
MAX
MIN | 5.96
54
0.10 | 5.17
85
0.10 | 7.18
88
0.39 | 6.45
94
0.31 | 1.42
11
0.43 | 5.91
39
0.60 | 4.62
32
0.55 | 14.4
79
0.59 | 9.88
194
0.23 | 1.43
22
0.11 | 1.44
23
0.08 | 1.94
32
0.00 | | STATIST | rics of Mo | ONTHLY MEA | N DATA FO | OR WATER Y | EARS 199 | 7 - 2002, | BY WATER | YEAR (W) | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.92
5.96
2002
1.39
2000 | 3.26
5.17
2002
1.03
2000 | 2.52
7.17
2002
0.38
1999 | 5.74
13.0
1999
0.89
2000 | 7.73
12.6
1999
1.43
2002 | 7.87
19.9
1998
2.96
2001 | 5.72
9.61
1999
2.92
2000 | 10.5
22.0
2000
3.61
1998 | 11.2
27.7
2000
2.13
1997 | 3.56
9.57
1998
0.43
1997 | 3.00
5.92
1998
0.78
2001 | 1.74
2.67
1998
0.30
1999 | | SUMMARY | Y STATIST | ICS | FO | R 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | EAR | WATER YE | ARS 1997 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT 10 PERCE 50 PERCE | T ANNUAL M
ANNUAL ME
T DAILY ME
DAILY ME | EAN EAN AN Y MINIMUM DW AGE DW FLOW EDS EDS | | 4.27 116 0.01 0.09 12 0.40 0.12 | Feb :
Aug :
Aug | 24
15
1 | 194
0.00
0.08
3600 ^a
7.95
0.00 Sep
12
0.74
0.13 | Jun
Sep
Sep
Jun
Jun
o 4,5,11- | 12
12
7
12
12
12 | 5.65
7.66
3.41
562
0.00
0.00
5430 ^a
9.37
0.00
11
0.52
0.13 | | 1998
2001
24 2000
1 Years
t Times
24 2000
24 2000
1 Years | e Estimated From rating extended above 466 ft³/s. ### 07019175 SUGAR CREEK AT KIRKWOOD, MO LOCATION.--Lat 38°34'36", long 90°27'52", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.4, T.44 N., R.5 E., St. Louis County, Hydrologic Unit 07140102, gage attached to left upstream abutment of Barrett Station Road bridge, 2.3 mi north of Interstate 44, 1.1 mi west of Interstate 270, and 4.7 mi upstream from confluence of Meramec River. DRAINAGE AREA. -- 5.08 mi². PERIOD OF RECORD. -- June 1997 to current year. ${\tt GAGE.--Water-stage}$ recorder and crest-stage gage. Datum of gage unknown. REMARKS.--Records poor. | | - | DISCHA | RGE, CUBI | C FEET PER | | WATER Y | EAR OCTOBEI | R 2001 TO |) SEPTEMBE | R 2002 | | | |--|--|---|--------------------------------------|---|--------------------------------------|---|--|---|--------------------------------------|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.13
0.12
0.12
0.11
8.5 | 0.30
0.74
0.40
0.33
0.31 | 1.4
0.78
0.74
0.66
0.67 | 0.27
0.27
0.27
0.26
0.23 | 8.5
3.1
1.8
1.1
0.86 | 5.3
21
5.2
2.2
2.1 | 0.79
1.2
0.91
1.5 | 1.7
1.3
1.2
1.3 | 0.80
0.71
0.71
0.66
4.4 | 0.21
0.21
0.25
0.24
0.29 | 0.19
0.21
0.24
0.18
0.24 | 0.26
0.20
0.17
0.15
0.11 | | 6
7
8
9
10 | 0.26
0.11
0.11
0.10
52 | 0.31
0.31
0.33
0.32
0.31 | 1.1
0.62
0.48
0.46
0.41 | 0.27
0.26
0.23
0.24
0.22 | 0.75
0.82
0.75
0.74
0.91 | 1.7
1.6
2.9
30
2.5 | 0.73
0.59
9.4
1.8 | 7.8
93
62
89
6.4 | 1.6
1.1
0.67
0.76
2.1 | 0.22
0.19
0.20
0.24
0.32 | 0.87
0.41
0.34
0.33
0.35 | 0.18
0.18
0.17
0.14
0.14 | | 11
12
13
14
15 | 50
5.0
2.6
0.50
9.4 | 0.34
0.35
0.36
0.35
0.38 | 0.40
13
3.1
19
2.5 | 0.23
0.26
0.26
0.29
0.29 | 0.78
0.66
0.58
0.62
0.48 | 1.7
1.4
0.95
0.83 | 0.97
2.1
1.1
1.2
0.90 | 4.3
24
92
6.1
4.1 | 86
186
2.3
0.89
0.64 | 0.37
0.37
0.35
0.26
0.23 | 0.36
0.40
1.7
0.70
0.59 | 0.15
0.12
0.10
0.10
0.35 | | 16
17
18
19
20 | 3.7
0.39
0.24
0.22
0.17 | 0.37
0.38
0.44
0.66
0.44 | 67
57
4.7
2.0
1.1 | 0.30
0.33
0.29
0.41
0.42 | 0.36
0.24
0.26
8.1
3.7 | 3.2
1.5
1.0
11
4.6 | 0.79
0.77
0.68
9.9
8.7 | 7.2
53
8.3
4.4
3.1 | 0.54
0.47
0.43
0.39
0.37 | 0.23
0.28
0.78
0.29
0.21 | 0.63
0.33
10
1.3
1.7 | 0.25
6.0
0.77
5.6
6.8 | | 21
22
23
24
25 | 3.0
16 | 0.39
0.35
0.31
87
1.1 | 0.80
1.6
0.70
0.52
0.43 | 0.48
0.60
1.3
1.8
0.70 | 1.9
1.4
e0.90
e0.70
e1.2 | 1.9
1.4
1.1
1.6 | 12
2.7
1.6
21
3.3 | 2.4
2.1
2.0
2.3
1.8 | 0.34
0.31
0.30
2.1
0.65 | 0.20
0.19
0.44
0.36
0.26 | 0.53
0.48
0.62
0.63
0.51 | 0.31
0.18
0.16
0.15
0.13 | | 26
27
28
29
30
31 | 0.59
0.52
0.47
0.52
0.43
0.36 | 1.2
0.66
9.9
6.5
18 | 0.38
0.37
0.36
0.32
0.29 | 0.56
0.42
0.34
4.8
63 | e2.1
e0.80
e0.58 | 7.1
3.0
2.0
1.5
2.2
0.94 | 1.8
37
12
3.4
2.3 | 1.4
1.2
5.3
1.9
1.1
0.90 | 0.32
0.26
0.27
0.23
0.23 | 0.25
0.23
0.18
0.14
0.18
0.17 | 0.42
0.40
0.31
0.30
0.35
0.25 | 0.14
0.16
0.13
0.15
0.15 | | MEAN
MAX
MIN | 5.06
52
0.10 | 4.44
87
0.30 | 5.91
67
0.27 | 6.05
108
0.22 | 1.60
8.5
0.24 | 5.40
30
0.83 | 4.77
37
0.59 | 15.9
93
0.90 | 9.88
186
0.23 | 0.27
0.78
0.14 | 0.83
10
0.18 | 0.79
6.8
0.10 | | STATIS | TICS OF MO | ONTHLY ME. | AN DATA F | OR WATER Y | EARS 199 | 7 - 2002 | , BY WATER | YEAR (WY | ") | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.18
5.06
2002
1.19
1998 | 2.47
4.44
2002
0.71
2000 | 2.40
5.91
2002
0.75
2001 | 4.71
10.1
1999
1.18
2000 | 6.90
16.2
1999
1.60
2002 | 6.63
19.4
1998
1.89
2001 | 4.59
7.97
1998
1.43
2000 | 9.58
18.7
2000
2.31
1998 | 11.0
19.2
2000
2.54
1999 | 3.78
10.6
1998
0.27
2002 | 2.05
3.64
2000
0.40
2001 | 0.91
1.51
2001
0.20
1999 | | SUMMAR | Y STATIST | ICS | FC | R 2001 CAI | LENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1997 - | - 2002 | | LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN 10 PER 50 PER | MEAN T ANNUAL M ANNUAL M T DAILY ME SEVEN-DA: M PEAK FIA TANBOUS LA CENT EXCEL CENT EXCEL CENT EXCEL | EAN EAN AN Y MINIMUM OW AGE OW FLOW EDS | | 98
0.10
0.13

6.0
0.52
0.24 | Jun
Oct
Sep | 20
9
28 | 5.11
186
0.10 Oct 9
0.13
1160°
15.24
0.08
8.4
0.64
0.19 | Jun
9,Sep 13,
Sep
Jun
Jun
Oct 9, | 12
14
8
12
12 | 4.79
6.73
2.46
465
0.02
0.04
1620 ^a
17.50
0.01
6.7
0.75 | May Sep 26
Sep 26
Jun 24
Jun 24
Sep 25,26 | 1998
2001
7 2000
5 1999
5 1999
4 2000
4 2000
5 1999 | e Estimated $^{\rm a}$ From rating extended above 259 ${\rm ft}^3/{\rm s}$. ### 07019185 GRAND GLAIZE CREEK NEAR VALLEY PARK, MO LOCATION.--Lat $38^{\circ}33^{\circ}59^{\circ}$, long $90^{\circ}28^{\circ}21^{\circ}$, in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.9, T.44 N., R.5 E., St. Louis County, Hydrologic Unit 07140102, on right upstream abutment of Quinette Road bridge, 1.7 mi north of Interstate 44, 1.8 mi west of Interstate 270, and 3.46 mi upstream of confluence of Meramec River. DRAINAGE AREA. -- 21.8 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- May 1997 to current year. GAGE. -- Water-stage recorder and crest-stage gage. Datum of gage unknown. $REMARKS.--Water-discharge\ records\ fair\ except\ for\ discharges\ below\ 1\ ft^3/s\ and\ above\ 3,000\ ft^3/s,\ which\ are\ poor.$ | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | CAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|---------------------------------------|--|--|--------------------------------------|--------------------------------------
--|--|--------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.33
0.39
1.7
1.7 | 2.0
19
4.6
2.0
1.9 | 13
7.6
6.1
5.4
5.3 | 2.5
2.3
2.5
2.3
3.2 | 57
22
16
11
9.5 | 2.6
130
22
8.8
8.4 | 9.1
10
7.3
5.8
6.9 | 12
9.2
7.0
6.5
4.4 | 3.9
3.0
2.6
3.7
45 | 1.2
1.0
26
6.1
1.3 | 0.51
0.64
0.67
0.55
0.53 | 0.57
0.54
0.49
0.47
0.38 | | 6
7
8
9
10 | 5.3
1.1
1.5
2.1
205 | 1.8
1.6
2.0
3.2
3.3 | 8.2
6.2
5.1
4.2
4.0 | 4.3
3.7
3.4
4.2
7.7 | 8.9
7.7
6.7
6.3
8.8 | 7.8
5.3
4.4
144
15 | 8.0
12
87
21
11 | 43
292
287
327
30 | 9.7
3.8
2.0
4.0 | 1.2
0.73
0.63
0.64
1.5 | 5.9
2.1
0.84
0.73
0.61 | 0.59
0.70
0.44
0.42
0.45 | | 11
12
13
14
15 | 169
53
25
9.1
55 | 2.0
1.8
1.8
2.1
3.2 | 4.6
75
27
101
14 | 6.7
3.3
2.7
2.7
2.7 | 6.7
5.4
5.1
4.6
4.7 | 9.6
9.1
7.4
6.5
77 | 4.9
11
7.0
7.3
5.5 | 19
110
371
31
19 | 261
718
26
13
8.8 | 1.6
1.2
1.2
0.80
0.62 | 0.65
0.65
20
8.6
2.3 | 0.49
0.38
0.36
0.35
0.86 | | 16
17
18
19
20 | 46
3.8
1.6
1.6
2.6 | 2.2
2.3
2.9
16
8.5 | 333
278
30
17
12 | 2.8
2.0
2.2
7.6
5.5 | 4.7
4.5
4.1
52
19 | 36
20
15
77
46 | 6.6
6.9
2.8
32
81 | 42
200
45
21
15 | 6.2
5.1
5.1
3.8
2.9 | 11
4.9
3.6
1.6
0.83 | 1.4
0.94
73
9.3
6.2 | 2.6
32
9.4
88
57 | | 21
22
23
24
25 | 6.9
2.9
13
95 | 4.3
3.2
2.7
307
11 | 11
20
9.7
7.4
6.2 | 3.8
3.8
4.6
20
4.0 | 7.3
4.2
3.5
2.9
4.6 | 16
10
13
12
188 | 70
19
10
82
22 | 12
12
10
17
11 | 2.8
1.9
1.8
5.6
5.8 | 1.5
0.66
11
1.4
0.85 | 1.9
1.1
2.3
4.0
1.4 | 7.9
2.4
1.5
1.3 | | 26
27
28
29
30
31 | 1.7
1.1
2.0
3.1
1.9
1.6 | 11
7.9
62
56
107 | 5.1
5.2
5.1
4.7
3.4
2.9 | 2.4
2.0
2.2
8.8
254
476 | 8.4
3.2
2.9
 | 65
35
25
19
16
11 | 10
163
73
21
15 | 7.5
6.1
15
11
5.8
4.4 | 2.2
1.5
1.6
1.3
1.3 | 0.68
0.72
0.67
0.58
0.63
0.58 | 0.92
0.90
0.72
0.63
0.90
0.77 | 0.94
0.94
0.81
0.81
0.76 | | MEAN
MAX
MIN | 25.5
205
0.33 | 21.9
307
1.6 | 33.5
333
2.9 | 27.6
476
2.0 | 10.8
57
2.9 | 34.2
188
2.6 | 27.6
163
2.8 | 64.6
371
4.4 | 39.8
718
1.3 | 2.80
26
0.58 | 4.89
73
0.51 | 7.17
88
0.35 | | STATIS | TICS OF MC | ONTHLY MEA | N DATA FO | R WATER Y | EARS 199 | 7 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 11.1
25.5
2002
5.23
2000 | 11.4
21.9
2002
3.68
2000 | 12.4
33.5
2002
4.52
2001 | 22.2
47.2
1999
5.16
2000 | 30.6
64.3
1999
10.8
2002 | 31.8
78.5
1998
11.1
2001 | 22.5
35.3
1998
5.64
2000 | 32.2
64.6
2002
12.5
1998 | 33.1
67.2
1998
8.40
1999 | 14.7
39.4
1998
2.80
2002 | 11.4
19.2
1998
2.01
2001 | 7.19
9.39
2001
5.04
1998 | | SUMMAR | Y STATISTI | ICS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | WATER YE | ARS 1997 | - 2002 | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
10 PER
50 PER | MEAN T ANNUAL M ANNUAL M T DAILY ME DAILY ME SEVEN-DAY M PEAK FL M PEAK STL CENT EXCER CENT EXCER | EAN EAN AN MINIMUM OW AGE OW FLOW EDS | | 333
0.21
0.47

44
3.2
0.65 | Dec
Aug
Aug | 14 | 718
0.33
0.41
3650 ^a
11.76
0.20
57
5.1
0.73 | Jun :
Oct
Sep
Jun :
Jun :
Oct | 1
8
12
12 | 20.4
28.4
11.4
1150
0.21
0.26
5100 ^a
14.95 ^b
0.01
42
3.8
0.84 | Jun 2
Jun 1
Jun 2
Jun 2 | 1998
2001
7 1999
22 1999
14 2000
24 2000
30 1997 | $^{^{\}rm a}$ $\,$ From rating extended above 1,440 ${\rm ft^3/s.}$ $^{\rm b}$ $\,$ From crest-stage gage. ## 07019185 GRAND GLAIZE CREEK NEAR VALLEY PARK, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1997 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |-----------------|---|---|--|---|--|---|---|--|---|---|--|---|--| | OCT
05 | 0856 | ENVIRONM | IENTAL | 161 | 7.1 | 74 | 7.6 | 958 | 16.1 | 260 | 70.9 | 21.3 | 157 | | DEC
11 | 0830 | ENVIRONM | IENTAL | 4.8 | 11.4 | 88 | 7.5 | 1290 | 4.1 | 390 | 108 | 28.9 | 236 | | FEB
05 | 1010 | ENVIRONM | | 9.7 | 11.6 | 84 | 7.7 | 1250 | 2.0 | 370 | 103 | 28.0 | 222 | | 19
MAY | 1554 | ENVIRONM | | 210 | 10.6 | 93 | 8.0 | 1030 | 8.4 | 300 | 79.0 | 24.0 | 182 | | 29
AUG
09 | 1225
0820 | ENVIRONM
ENVIRONM | | 9.7 | 5.8
3.2 | 65
39 | 7.8
7.7 | 922
991 | 20.0 | 300
290 | 87.0
80.0 | 21.0 | 198
190 | | 09 | 0820 | ENVIRONM | ENTAL | .05 | 3.2 | 39 | 7.7 | 991 | 23.9 | 290 | 80.0 | 22.0 | 190 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN
DEMAND,
CHEM-
ICAL
(high
level)
(mg/L)
(00340) | | OCT
05 | 154 | 192 | 0 | | 190 | E1.1 | .07 | .150 | <.01 | .110 | .28 | 8.0 | 45 | | DEC
11 | 237 | 289 | 0 | 173 | E4 | E.30 | .03 | .150 | <.01 | .050 | E.07 | 15 | 19 | | FEB
05
19 | 224
182 | 273
222 | 0 | 170 | 11
307 | .40
1.3 | .01 | 1.20
.260 | <.01
<.01 | .060
.050 | .07 | 9.2
3.5 | 11
22 | | MAY
29 | 199 | 243 | 0 | | 38 | .60 | .10 | .670 | .03 | .060 | .12 | 5.5 | 18 | | AUG
09 | 191 | 233 | 0 | | 39 | .70 | .03 | .030 | <.01 | .060 | .13 | 7.3 | 13 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | | OCT
05 | 14000 | 29000 | 13800 | 54 | 2 | <1 | 1.0 | 1.0 | 2.0 | 57 | <1 | 84 | <.1 | | DEC
11 | K37 | K67 | K30 | 16 | <1 | 1 | 1.0 | 1.0 | 1.2 | 30 | <1 | 114 | <.1 | | FEB
05
19 | K27
K670 | K10
K333 | К97
5800 | 14
164 | <1
<1 | <1
<1 | <1.0
<1.0 | <1.0
<1.0 | <1.0
1.4 | 15
118 | <1
<1 | 176
186 |
<.1
<.1 | | MAY
29 | 3200 | 2900 | 4850 | 41 | 1 | <1 | <1.0 | <1.0 | 1.5 | 43 | <1 | 120 | <.1 | | AUG
09 | K83 | 220 | K88 | <3 | 3 | <1 | <1.0 | <1.0 | 1.5 | 3 | <1 | 172 | <.1 | | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | | OCT
05 | 1.5 | <1 | <1.0 | 67 | <7 | М | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC
11 | 1.9 | <1 | <1.0 | 48 | | | | | | | | | | | FEB
05
19 | 1.3
1.5 | <1
<1 | <1.0
<1.0 | 11
97 |
E3 |
M |
<2 |
<3 |
<.7 |
<3 |
<3 |
<3 |
<2 | | MAY | | | | | | | | | | | | | | | 29 | 2.2 | <1 | <1.0 | 56 | | | | | | | | | | | 29
AUG
09 | | | | | | | | | | | | | | ## 07019185 GRAND GLAIZE CREEK NEAR VALLEY PARK, MO--Continued (Metropolitan Sewer District) | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | |---|---|---|--|---|--|---|--|---|---|---|--|---|---| | OCT
05 | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | М | <2 | | DEC 11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | 19
MAY | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | <2 | <2 | <.01 | <2 | <2 | | 29
AUG
09 | | | | | | | | | | | | | | | 03 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
05 | <40 | М | М | М | М | М | <3 | <2 | <2 | М | <.02 | <.1 | <.01 | | DEC 11 | | | | | | | | | | | | | | | FEB
05
19 |
<40 |
M |
M |
M |
M |
M |
<3 |
<2 |
<2 |
E2 |
<.04 |
<.1 |
<.01 | | MAY
29 | | | | | | | | | | | | | | | AUG
09 | | | | | | | | | | | | | | | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) | DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | ETHION,
TOTAL
(µg/L)
(39398) | | OCT
05 | М | <2 | <.02 | .03 | <.006 | М | М | М | М | | <.02 | <.01 | <.01 | | DEC 11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | =- | | | | | | 19
MAY
29 | M | <4 | <.04 | .05 | <.006 | <2 | <2 | <2 | <5 | <.30 | <.02 | <.01 | <.01 | | AUG
09 | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-CHLOR EPOXIDE TOTAL (µg/L) (39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO (1,2,3- CD) PYRENE TOTAL (µg/L) (34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(µg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(µg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | —————————————————————————————————————— | | DATE OCT 05 | ANTHENE
TOTAL
(µg/L) | ENE
TOTAL
(µg/L) | (DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L) | CHLOR
EPOXIDE
TOTAL
(µg/L) | CHLOR,
TOTAL
(µg/L) | CHLORO-
BENZENE
TOTAL
(µg/L) | (1,2,3-
CD)
PYRENE
TOTAL
(µg/L) | PHORONE
TOTAL
(µg/L) | TOTAL
(µg/L) | THION,
TOTAL
(µg/L) | OXY-
CHLOR,
TOTAL
(µg/L) | PARA-
THION,
TOTAL
(µg/L) | TOTAL
(µg/L) | | OCT
05
DEC
11 | ANTHENE
TOTAL
(µg/L)
(34376) | ENE
TOTAL
(µg/L)
(34381) | (DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | CHLOR,
TOTAL
(µg/L)
(39410) | CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | (1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | PHORONE
TOTAL
(µg/L)
(34408) | TOTAL
(µg/L)
(39340) | THION,
TOTAL
(µg/L)
(39530) | OXY-
CHLOR,
TOTAL
(µg/L)
(39480) | PARA-
THION,
TOTAL
(µg/L)
(39600) | TOTAL
(µg/L)
(39755) | | OCT
05
DEC
11
FEB
05 | ANTHENE
TOTAL
(µg/L)
(34376)
M | ENE
TOTAL
(µg/L)
(34381)
<2 | (DY-FONATE) WATER WHOLE TOT.REC (µg/L) (82614) <.01 | CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420)
<.009 | CHLOR,
TOTAL
(µg/L)
(39410)
<.01 | CHLORO-BENZENE TOTAL (µg/L) (39700) <2 | (1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403)
M | PHORONE
TOTAL
(µg/L)
(34408)
M | TOTAL (µg/L) (39340) <.006 | THION,
TOTAL
(µg/L)
(39530)
<.10 | OXY-
CHLOR,
TOTAL
(µg/L)
(39480)
<.020 | PARA-
THION,
TOTAL
(µg/L)
(39600)
<.01 | TOTAL (µg/L) (39755) <.006 | | OCT
05
DEC
11
FEB
05
19 | ANTHENE
TOTAL
(µg/L)
(34376)
M

M | ENE
TOTAL
(µg/L)
(34381)
<2

M | (DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614)
<.01 | CHLOR EPOXIDE TOTAL (µg/L) (39420) <.009 <.009 | CHLOR,
TOTAL
(µg/L)
(39410)
<.01

<.01 | CHLORO-BENZENE TOTAL (µg/L) (39700) <2 <2 | (1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403)
M | PHORONE
TOTAL
(µg/L)
(34408)
M

<2 | TOTAL (µg/L) (39340) <.006 <.006 | THION,
TOTAL
(µg/L)
(39530)
<.10

<.30 | OXY-
CHLOR,
TOTAL
(µg/L)
(39480)
<.020

<.020 | PARA-
THION,
TOTAL
(µg/L)
(39600)
<.01

<.02 | TOTAL (µg/L) (39755) <.006 <.006 | | OCT
05
DEC
11
FEB
05 | ANTHENE
TOTAL
(µg/L)
(34376)
M | ENE
TOTAL
(µg/L)
(34381)
<2 | (DY-FONATE) WATER WHOLE TOT.REC (µg/L) (82614) <.01 | CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420)
<.009 | CHLOR,
TOTAL
(µg/L)
(39410)
<.01 | CHLORO-BENZENE TOTAL (µg/L) (39700) <2 | (1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403)
M | PHORONE
TOTAL
(µg/L)
(34408)
M | TOTAL (µg/L) (39340) <.006 | THION,
TOTAL
(µg/L)
(39530)
<.10 | OXY-
CHLOR,
TOTAL
(µg/L)
(39480)
<.020 | PARA-
THION,
TOTAL
(µg/L)
(39600)
<.01 | TOTAL (µg/L) (39755) <.006 | ### 07019185 GRAND GLAIZE CREEK NEAR VALLEY PARK, MO--Continued (Metropolitan Sewer District) | | | | N- | | | | | | | | | | | |------|-----------------------------------|-------------------------------------
-------------------------------------|-------------------------------------|------------------------------------|----------------------------------|------------------------------------|-----------------------------------|------------------------------------|-------------------------|--------------------------------------|--------------------------------------|--------------------------------------| | | N-BUTYL | N-NITRO | NITRO- | N-NITRO | | | | PARA- | | | | | | | | BENZYL | -SODI- | SODI-N- | -SODI- | P,P'- | | P,P'- | CHLORO- | | | PENTA- | | | | DATE | PHTHAL-
ATE
TOTAL
(µg/L) | METHYL-
AMINE
TOTAL
(µg/L) | PROPYL-
AMINE
TOTAL
(µg/L) | PHENYL-
AMINE
TOTAL
(µg/L) | DDD
UNFILT
RECOVER
(µg/L) | P,P'-
DDE,
TOTAL
(µg/L) | DDT
UNFILT
RECOVER
(µg/L) | META
CRESOL
TOTAL
(µg/L) | PARA-
THION,
TOTAL
(µg/L) | PCB,
TOTAL
(µg/L) | CHLORO-
PHENOL
TOTAL
(µg/L) | PHENAN-
THRENE
TOTAL
(µg/L) | PHENOL
UNFILT.
WATER
(µg/L) | | | (34292) | (34438) | (34428) | (34433) | (39360) | (39365) | (39370) | (34452) | (39540) | (39516) | (39032) | (34461) | (34694) | | OCT | | | | | | | | | | | | | | | 05 | M | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | M | M | <3.0 | | DEC | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | 19 | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | M | M | <3.0 | | MAY | | | | | | | | | | | | | | | 29 | | | | | | | | | | | | | | | AUG | | | | | | | | | | | | | | | 09 | BENZENE | BENZENE | BENZENE | BENZENE | ETHANE | | | |------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------| | | | | | 1,2,4- | 1,3-DI- | 1,4-DI- | O-DI- | HEXA- | HEXA- | | | | | | | TRI- | CHLORO- | CHLORO- | CHLORO- | CHLORO- | CHLORO- | | | | | | TOX- | CHLORO- | WATER | WATER | WATER | WATER | BUT- | NAPHTH- | | | PHORATE | PYRENE | APHENE, | WAT UNF | UNFLTRD | UNFLTRD | UNFLTRD | UNFLTRD | ADIENE | ALENE | | DATE | TOTAL | TOTAL | TOTAL | REC | REC | REC | REC | RECOVER | TOTAL | TOTAL | | | $(\mu g/L)$ | | (39023) | (34469) | (39400) | (34551) | (34566) | (34571) | (34536) | (34396) | (39702) | (34696) | | OCT | | | | | | | | | | | | 05 | <.06 | M | <1 | <2 | <2 | <2 | <2 | <2 | <3 | M | | DEC | | | | | | | | | | | | 11 | | | | | | | | | | | | FEB | | | | | | | | | | | | 05 | | | | | | | | | | | | 19 | <.06 | M | <1 | <2 | <2 | <2 | <2 | <2 | <1 | <5 | | MAY | | | | | | | | | | | | 29 | | | | | | | | | | | | AUG | | | | | | | | | | | | 09 | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 07019195 YARNELL CREEK AT FENTON, MO LOCATION.--Lat 38°31'38", long 90°26'50", St. Louis County, Hydrologic Unit 07140102, on right downstream abutment of Fabick Drive bridge, 0.9 mi north of Highway 30, 1.05 mi south of Interstate 44, and 1.09 mi upstream from confluence of Meramec River. DRAINAGE AREA. -- 2.71 mi². PERIOD OF RECORD. -- May 1997 to current year. ${\tt GAGE.--Water-stage}$ recorder and crest-stage gage. Datum of gage unknown. REMARKS.--Records fair except estimated daily discharges and those below 1 ${\rm ft}^3/{\rm s}$ and above 400 ${\rm ft}^3/{\rm s}$, which are poor. | . 1000 | ido idii (| _ | | C FEET PER | SECOND, | | AR OCTOBE | | | | on are pe | | |--|--|---|--|---|--------------------------------------|--|---|--|---|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.15
0.14
0.16
0.13
8.5 | 0.14
1.8
0.27
0.32
0.23 | 1.0
0.34
0.30
0.26
0.25 | 0.35
0.35
0.34
0.35
0.34 | 6.9
2.1
1.6
1.0
0.76 | 0.63
14
2.7
1.0
e1.3 | e1.7
e1.9
e1.6
e1.5
e1.5 | 1.6
1.3
1.1
0.92
0.92 | 0.74
0.69
0.63
0.63
4.5 | e0.41
e0.38
e0.41
e0.42
e0.44 | 0.23
0.23
0.25
0.26
0.23 | 0.18
0.17
0.29
0.23
0.18 | | 6
7
8
9
10 | 0 00 | 0 19 | 0 24 | 0.39
0.35
0.34
0.34 | | e1.1
e0.92
e0.80
e23
e1.7 | e1.5
e1.9
e12
2.1
1.3 | 8.6
46
51
61
4.4 | 1.1
0.69
0.63
1.5 | e0.42
e0.42
e0.40
e0.42
e0.50 | 1.1
0.30
0.22
0.20
0.20 | 0.17
0.17
0.16
0.21
0.17 | | 11
12
13
14
15 | 26
5.3
3.3
1.1
9.4 | 0.18
0.18
0.18
0.18
0.18 | 0.19
11
2.5
13
2.1 | 0.34
0.34
0.31
0.28
0.26 | 0.60
0.50
0.47
0.45
0.45 | e1.6
e1.5
e1.2
e0.99
e16 | 1.1
1.3
1.2
1.5
0.99 | e3.1
e26
e46
e3.2
e3.5 | | e0.82
0.42
0.37
0.34
0.30 | 0.46
0.25
1.3
1.2
0.34 | 0.16
0.20
0.16
0.16
0.25 | | 16
17
18
19
20 | 4.1
0.42
0.26
0.20
0.16 | 0.19
0.20
0.21
0.26
0.23 | 51
37
3.2
1.7 | 0.26
0.26
0.26
0.86
0.71 | 0.45
0.45
0.45
8.0
1.9 | e3.0
e1.9
e1.4
e12
e3.6 | 0.81
0.76
0.95
7.0
6.5 | e9.4
e46
e6.6
e3.8
e3.0 | e0.74
e0.71
e0.70
e0.63
e0.59 | 0.30
0.30
0.27
0.30
0.28 | 0.48
0.87
14
0.72
0.34 | 0.20
5.0
0.76
3.0
8.8 | | 21
22
23
24
25 | 2.0
7.5 | | 0.85
1.7
1.00
0.71
0.60 | 0.66
0.57
1.3
2.0
0.55 | | e2.0
e1.6
e1.4
e2.0
e19 | 2.3 | 1.4 | e1.7 | 0.30
3.0
1.9
0.34
0.25 | 0.27
0.25
0.25
0.26
0.23 | 0.53
0.21
0.18
0.18
0.17 | | 26
27
28
29
30
31 | 0.45
0.28
0.23
0.17
0.16
0.14 | 0.80
0.54
7.6
5.8
11 | 0.53
0.50
0.56
0.48
0.42
0.37 | 0.39
0.34
0.30
0.85
33
65 | 1.1
0.82
0.70
 | e6.1
e2.5
e2.0
e2.4
e1.9
e1.8 | 1.3
39
17
2.5
1.8 | 0.90
0.84
2.9
1.4
0.83
0.76 | e0.49
e0.48
e0.47
e0.45
e0.43 | 0.20
0.20
0.21
0.21
0.23
0.23 | 0.23
0.23
0.24
0.22
0.23
0.18 | 0.18
0.61
0.21
0.15
0.15 | | MEAN
MAX
MIN | 2.96
26
0.13 | 2.57
44
0.14 | 4.32
51
0.19 | 3.62
65
0.26 | 1.26
8.0
0.45 | 4.29
23
0.63 | 4.79
39
0.76 | 11.1
61
0.76 | 3.25
43
0.43 | 0.48
3.0
0.20 | 0.83
14
0.18 | 0.77
8.8
0.15 | | STATIST | rics of Mo | ONTHLY MEA | AN DATA FO | OR WATER Y | EARS 199 | 97 - 2002, | BY WATER | R YEAR (WY | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.86
2.96
2002
1.37
2000 | 1.80
2.57
2002
0.40
2000 | 1.69
4.32
2002
0.44
1999 | 3.08
6.59
1999
0.77
2000 | 4.36
9.37
1999
1.25
2002 | 4.46
11.8
1998
1.18
2000 | 3.61
6.08
1998
0.81
2000 | 4.79
11.1
2002
1.61
1998 | 5.96
11.7
1998
2.17
2001 | 2.96
7.82
1998
0.48
2002 | 2.07
3.76
1997
0.65
2001 | 1.22
2.40
2001
0.34
1999 | | SUMMAR | Y STATIST | ICS | FOI | R 2001 CAL | ENDAR YE | EAR | FOR 2002 | WATER YE | EAR | WATER YE | ARS 1997 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT 10 PERCE 50 PERCE | I ANNUAL M
ANNUAL MI
I DAILY MI
DAILY MEA | EAN EAN AN Y MINIMUM OW AGE OW FLOW EDS | | 2.38
51
0.13
0.15

5.5
0.51
0.20 | Dec
Oct
Sep | 16
4
28 | 3.37
65
0.13
0.17
803
7.54
0.13
0.60 | Jan
Oct
Sep
Jun
Jun
Oct | 31
4
5
12
12
14,5 | 3.15
4.64
1.88
165
0.13
0.15
882 ²
7.82
0.13
5.6
0.53 | | 1998
2001
7 1999
4 2001
24 2001
30 1998
30 1998
4 2001 | e Estimated $^{\rm a}$ From rating extended above 123 ${\rm ft}^3/{\rm s}$. #### 07019220 FENTON CREEK NEAR FENTON, MO LOCATION.--Lat 38°30'41", long 90°26'41", St. Louis County, Hydrologic Unit 07140102, on left bank 100 ft downstream of Highway 141 bridge, 0.66 mi north of county line, 0.24 mi south of Highway 30, and 1.4 mi upstream from confluence of Meramec River. DRAINAGE AREA.--4.29 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--June 1997 to current year. GAGE.--Water-stage recorder. Datum of gage is 416.09 ft above National Geodetic Vertical Datum of 1929. Prior to May 1, 2001, gage was located on left downstream abutment of Highway 141 bridge, 100 ft upstream at same datum. ${\tt REMARKS.--Water-discharge\ records\ fair.}$ | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBER | R 2002 | | | |--|---|---|--|---|--------------------------------------|---------------------------------------|---
--|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.30
0.33
0.33
0.36
5.9 | 0.46
2.1
0.49
0.43
0.43 | 1.5
0.94
0.85
0.75
0.71 | 0.82
0.78
0.75
0.71
0.71 | 8.4
2.8
2.0
1.4
1.1 | 0.81
21
3.2
1.6
1.8 | 2.5
2.8
2.3
2.2
2.2 | 3.6
3.3
2.6
2.3
2.3 | 1.1
1.1
1.1
8.5
1.5 | 0.51
0.48
0.50
0.50
0.51 | 0.36
0.37
0.35
0.33 | 0.40
0.39
0.41
0.40
0.40 | | 6
7
8
9
10 | 0.63
0.38
0.37
0.38 | 0 43 | 0.77
0.64
0.59
0.53
0.55 | 0.80
0.72
0.70
0.63
0.70 | 1.1
0.99
0.86
0.80
0.93 | 1.5
1.2
1.2
37
3.1 | 2.2
3.0
20
3.9
2.8 | 18
62
77
83
6.0 | 1.1
0.91
0.93
1.8
3.4 | 0.51
0.50
0.49
0.52
0.56 | 0.81
0.38
0.35
0.34
0.34 | 0.39
0.38
0.37
0.37
0.61 | | 11
12
13
14
15 | 27
4.6
4.2
0.98 | 0.48
0.49
0.50
0.48
0.48 | 0.60
14
3.5
24
4.7 | 0.64
0.61
0.60
0.59
0.56 | 0.74
0.71
0.67
0.66
0.67 | 2.4
2.1
1.6
1.5
26 | 2.6
5.1
2.4
2.5
2.1 | 4.3
34
58
5.2
3.7 | 40
56
3.4
1.2
1.0 | 0.95
0.76
0.68
0.49
0.49 | 1.4
0.41
1.6
0.72
0.50 | 0.59
0.31
0.31
0.49
0.33 | | 16
17
18
19
20 | 4.0
1.0
0.49
0.51
0.43 | 0.41 | 84
59
4.9
2.7
1.9 | 0 55 | 0.64
0.61
0.62
13
2.5 | 5.4
2.9
2.2
20
6.4 | | | 0.94
0.89
0.88
0.83
0.76 | 0.45
0.44
0.42
0.43
0.41 | 0.44
0.43
13
1.3
0.68 | 0.31
3.8
0.65
1.4
7.4 | | 21
22
23
24
25 | 0.41
0.43
1.4
9.2
0.99 | 0.37
0.37
0.43
50
1.2 | 1.5
2.1
1.5
1.2 | 0.92
0.76
1.7
2.2
0.93 | 1.2
0.94
0.90
0.92
1.3 | 3.1
2.4
2.1
3.2
35 | 6.8 | 2.4
2.1
1.7
2.1
1.8 | 0.73
0.69
0.65
0.68
2.1 | 0.40
4.6
0.94
0.48
0.44 | 0.52
0.47
0.55
0.47
0.44 | 0.60
0.47
0.43
0.43
0.39 | | 26
27
28
29
30
31 | 0.46
0.41
0.37
0.38
0.39
0.43 | 0.98
0.75
9.1
10
17 | 1.0
1.0
0.96
0.86
0.80
0.84 | 0.84
0.78
0.77
1.2
44 | 1.0
0.88
0.84
 | 12
4.3
3.2
3.7
2.9
2.7 | 5.7
95
22
4.7
3.4 | | 0.72
0.62
0.58
0.56
0.53 | 0.42
0.40
0.38
0.37
0.36 | 0.44
0.42
0.40
0.39
0.39
0.40 | 0.37
0.37
0.37
0.31
0.34 | | MEAN
MAX
MIN | 3.03
27
0.30 | 3.36
50
0.37 | 7.10
84
0.53 | 5.03
88
0.55 | 1.76
13
0.61 | 7.02
37
0.81 | 10.4
95
1.9 | 15.3
83
1.2 | 4.51
56
0.53 | 0.64
4.6
0.36 | 0.95
13
0.33 | 0.79
7.4
0.31 | | STATIST | TICS OF M | ONTHLY MEA | N DATA FO | R WATER Y | EARS 1997 | 7 - 2002, | BY WATER | ZEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 2.15
3.04
2002
1.08
1998 | 2.40
3.36
2002
0.91
2000 | 2.59
7.09
2002
0.37
1999 | 5.04
12.7
1999
1.22
2000 | 6.36
12.6
1999
1.76
2002 | 6.89
18.1
1998
1.69
2000 | 5.84
10.5
2002
1.23
2000 | 6.82
16.1
2002
1.87
1998 | 7.55
14.3
1998
2.83
2001 | 3.32
8.12
1998
0.64
2002 | 2.55
4.80
2000
0.82
2001 | 1.06
1.95
2000
0.26
1999 | | SUMMARY | STATIST | ICS | FOR | 2001 CAL | ENDAR YEA | AR. | FOR 2002 V | VATER YE | AR | WATER YE | ARS 1997 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
10 PERC
50 PERC | T ANNUAL 1
ANNUAL M
T DAILY M
DAILY ME | EAN EAN AN Y MINIMUM OW AGE OW FLOW EDS EDS | | 3.16
84
0.19
0.23

7.3
0.71
0.32 | Dec 1
Sep 15,1
Sep 2 | L6
L6
22 | 95
0.30
0.36
1130 ^a
5.26
0.26
12
0.88
0.38 | Apr
Oct
Jul
May
May
Oct | 27
1
30
9
9 | 4.14
6.07
2.51
171
0.13
0.17
1260 ^b
9.71
0.07
7.9
0.69
0.27 | Feb
Sep 2
Sep 2
Jun 1
Jun 1
Sep 2 | 1998
2001
7 1999
7 1999
1 1999
1 1998
1 1998
2 1999 | $^{^{\}rm a}$ From rating extended above 150 ft $^{\rm 3}/{\rm s.}$ b From rating extended above 325 ft $^{\rm 3}/{\rm s.}$ ## 07019220 FENTON CREEK NEAR FENTON, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1997 to current year. | DATE | TIME | SAMPLE
TYPE | Σ | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |-----------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
15 | 2030 | ENVIRONN | MENTAL | 92 | 8.4 | 80 | 6.7 | 340 | 12.2 | 140 | 40.0 | 9.00 | 85 | | DEC
11
FEB | 1405 | ENVIRON | MENTAL | .59 | 11.1 | 96 | 7.4 | 1240 | 8.4 | 550 | 150 | 41.5 | 235 | | 05
19
19 | 0742
1522
1530 | ENVIRONN
ENVIRONN
BLANK | | 1.1
97
 | 10.9
9.9
 | 83
91
 | 7.3
7.7
 | 1380
456
 | 3.9
9.9
 | 530
150
 | 143
39.0
.28 | 42.0
12.0
.04 | 234
110
 | | MAY
29
AUG | 1530 | ENVIRON | MENTAL | 1.54 | 8.6 | 98 | 7.7 | 679 | 21.2 | 500 | 137 | 38.0 | 226 | | 06 | 0810 | ENVIRON | MENTAL | 2.32 | 4.7 | 57 | 7.6 | 711 | 24.8 | 220 | 62.0 | 16.0 | 136 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON DIOXIDE DIS- SOLVED (mg/L as CO ₂) (00405) | OXYGEN
DEMAND,
CHEM-
ICAL
(high
level)
(mg/L)
(00340) | | OCT
15
DEC | 88 | 108 | 0 | | 336 | <.20 | .03 | .520 | .01 | .180 | .30 | 30 | 21 | | 11
FEB | 239 | 292 | 0 | 82.8 | <1 | E.30 | .12 | 4.70 | .01 | .030 | E.05 | 17 | 13 | | 05
19
19 | 238
110
 | 290
134
 | 0
0
 | 110

 | 10
336
16 | .40
1.3
<.20 | <.01
.05
<.01 | 4.70
.480
<.020 | <.01
.02
<.01 | .040
.060
.010 | .04
.26
<.02 | 23
4.0
 | 8
25
<5 | | MAY
29 | 226 | 276 | 0 | | 10 | .30 | .04 | 4.50 | .02 | .020 | .03 | 7.9 | 11 | | AUG
06 | 135 | 164 | 0 | | 20 | 2.0 | <.01 | 1.80 | .08 | .020 | .15 | 7.2 | 90 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
15 | K5600 | K41000 | K8400 | 350 | 1 | <1 | <1.0 | 1.1 | 2.7 | 365 | 1 | 108 | <.1 | | DEC 11 | K50 | K100 | K33 | 3 | <1 | 1 | 1.0 | 1.0 | 1.0 | 7 | <1 | 85 | <.1 | | FEB
05
19
19 | 420
K1200 | 1500
K1500 | 100
29000
 | 17
1210
<3 | <1
<1
<1 | <1
<1
<1 | <1.0
<1.0
<1.0 | <1.0
1.1
<1.0 | <1.0
1.8
<1.0 | 9
761
<2 | <1
<1
<1 | 107
103
<1 | <.1
<.1
<.1 | | MAY
29
| 390 | K300 | 385 | 14 | <1 | <1 | <1.0 | <1.0 | 1.2 | 17 | <1 | 55 | <.1 | | AUG
06 | K16000 | K12000 | K46400 | 16 | 2 | <1 | <1.0 | 1.1 | 4.7 | 31 | <1 | 108 | <.1 | ## 07019220 FENTON CREEK NEAR FENTON, MO--Continued (Metropolitan Sewer District) | DATE OCT 15 DEC 11 FEB 05 | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065)
2.2
2.7
3.0 | SELE-NIUM, DIS-SOLVED (µg/L as Se) (01145) <1 <1 | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075)
<1.0
<1.0 | ZINC,
DIS-
SOLVED (µg/L
as Zn)
(01090)
109
42 | OIL AND GREASE, TOTAL RECOV. GRAVI- METRIC (mg/L) (00556) | 1,2,5,6 -DIBENZ -ANTHRA -CENE TOTAL (µg/L) (34556) M | HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606)
<3.0 | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |--|--|--|--|--|---|---|---|--|---|---|---|---|---| | 19
19 | 1.3
<1.0 | <1
<1 | <1.0
<1.0 | 52
24 | E4
<7 | M
<3 | <2
<2 | <3
<3 | <.7
<.7 | <3
<3 | <3
<3 | <3
<3 | <2
<2 | | MAY
29 | 2.8 | <1 | <1.0 | 70 | | | | | | | | | | | AUG
06 | 4.5 | <1 | <1.0 | 36 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE
NITRO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34447) | | OCT
15 | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | DEC
11 | | | | | | | | | | | | | | | FEB
05
19
19 |
<2
<2 |
<2
<2 |
<1
<1 |
<5
<5 |
<3
<3 |
<2
<2 |
<2
<2 |
<3
<3 |
M
<2 |
<2
<2 |
<.01
<.01 |
M
<2 |
<2
<2 | | MAY
29 | | | | | | | | | | | | | | | AUG
06 | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLITED
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-
PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | CHLOR-DANE,
TECH-NICAL
TOTAL
(µg/L)
(39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | ОСТ
15 | DINE
TOTAL
(µg/L) | A-
PYRENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | FLUOR-
AN-
THENE
TOTAL
(µg/L) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L) | [GHI]-
PERY-
LENE
TOTAL
(µg/L) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L) | PHENO-
THION
WATER
UNFLTRD
(µg/L) | DANE,
TECH-
NICAL
TOTAL
(µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L) | | OCT
15
DEC
11 | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
15
DEC
11
FEB
05 | DINE
TOTAL
(µg/L)
(39120)
<40 | A- PYRENE TOTAL (µg/L) (34247) M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M | CHLORO-
ETHOXY) METHANE TOTAL (µg/L) (34278) <3 | CHLORO-
ETHYL)
ETHER
UNFLITED
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 | PHENO-
THION
WATER
UNFLIRD
(µg/L)
(39786)
<.02 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01 | | OCT 15 DEC 11 FEB 05 19 MAY | DINE
TOTAL
(µg/L)
(39120) | A-
PYRENE
TOTAL
(µg/L)
(34247) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | [A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786) | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
15
DEC
11
FEB
05
19
MAY
29 | DINE
TOTAL
(μg/L)
(39120)
<40

<40
<40 | A- PYRENE TOTAL (µg/L) (34247) M M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M
M <2 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M < M <2 | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M

M
<3 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <33 <3 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100)
E2

<
<6
E14 | PHENO-
THION
WATER
UNFLTRD
(µg/L)
(39786)
<.02

<.04
<.04 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01

<.01
<.01 | | OCT
15
DEC
11
FEB
05
19
19 | DINE
TOTAL
(µg/L)
(39120)
<40

-40 | A- PYRENE TOTAL (µg/L) (34247) M M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M |
CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <33 <3 | CHLORO-
ETHYLL)
ETHER
UNFLIRD
RECOVER
(µg/L)
(34273)
<2

-2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100)
E2

<6 | PHENO-
THION WATER UNFLTRD (µg/L) (39786) <.02 <.04 | DANE,
TECH-
NICAL
TOTAL
(µg/L)
(39350)
<.1

<.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01

<.01
<.01 | | OCT
15
DEC
11
FEB
05
19
MAY
29 | DINE
TOTAL
(μg/L)
(39120)
<40

<40
<40 | A- PYRENE TOTAL (µg/L) (34247) M M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230)
M | FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242)
M
M <2 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M < M <2 | [GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521)
M

M
<3 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <33 <3 | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 <2 | CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100)
E2

<
<6
E14 | PHENO-
THION
WATER
UNFLTRD (µg/L)
(39786)
<.02

<.04
<.04 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01

<.01
<.01 | | OCT 15 DEC 11 FEB 05 19 19 MAY 29 AUG 06 DATE | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) | A-PYRENE TOTAL (µg/L) (34247) M M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLIRD RECOVER (µg/L) (34386) | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M <2 DEF TOTAL (µg/L) (199/L) (199/L) (199/L) (199/L) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M <2 DI- AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M <2 ELDRIN TOTAL (µg/L) (39380) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M <3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 HETHYL PHTHAL-ATE TOTAL (µg/L) (34341) | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 <2 PDI-N-BUTYL PHTHAL-ATE TOTAL (µg/L) (39110) | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <6 E14 DISUL- FOTON UNFILT RECOVER (µg/L) | PHENO- THION WATER UNFLTRD (µg/L) (39786) <.02 <.04 <.04 ENDO- SULFAN I TOTAL (µg/L) (39388) | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) (39390) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01

<.01
<.01

ETHION,
TOTAL
(µg/L)
(39398) | | OCT 15 DEC 11 FEB 05 19 19 MAY 29 AUG 06 | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) | A- PYRENE TOTAL (µg/L) (34247) M M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M <2 DEF TOTAL (µg/L) | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M <2 DI- AZINON, TOTAL (µg/L) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M <2 DI- ELDRIN TOTAL (µg/L) | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M <3 DIETHYL PHTHAL- ATE TOTAL (µg/L) | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 <theorem< td=""><td>CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L)</td><td>CHLORO-ISO-PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 <2 PDI-N- OCTYL PHTHAL- ATE TOTAL (µg/L)</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <-6 E14 DISUL- FOTON UNFILT RECOVER (µg/L) (39011)</td><td>PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.04 <.04 ENDO-SULFAN I TOTAL (µg/L)</td><td>DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L)</td><td>PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01

<.01
<.01

ETHION,
TOTAL
(µg/L)</td></theorem<> | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) | CHLORO-ISO-PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 <2 PDI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <-6 E14 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 <.04 <.04 ENDO-SULFAN I TOTAL (µg/L) | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) | PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932)
<.01

<.01
<.01

ETHION,
TOTAL
(µg/L) | | OCT 15 DEC 11 FEB 05 19 19 AUG 06 DATE OCT 15 DEC 11 FEB 05 | DINE TOTAL (µg/L) (39120) <40 <40 <40 SENE TOTAL (µg/L) (34320) M | A- PYRENE TOTAL (μg/L) (34247) M M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M <2 DEF TOTAL (µg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M <2 AZINON, TOTAL (µg/L) (39570) .04 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M <2 DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M <3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 <total control="" of="" of<="" td="" the=""><td>CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <22 <2 <2BUTYL BUTYL PHTHAL ATE TOTAL (µg/L) (39110) M</td><td>CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M</td><td>ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <-6 E14 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) </td><td>PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02</td><td>DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 <.1 (.1) ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01</td><td>PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01</td></total> | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <22 <2 <2BUTYL BUTYL PHTHAL ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <2 <2 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <-6 E14 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO-THION WATER UNFLTRD (µg/L) (39786) <.02 | DANE, TECH- TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 <.1 (.1) ENDRIN WATER UNFLIRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 ETHION, TOTAL (µg/L) (39398) <.01 | | OCT 15 DEC 11 FEB 05 19 MAY 29 AUG 06 DATE OCT 15 DEC 11 FEB 05 19 | DINE TOTAL (µg/L) (39120) <4040 <40 SENE TOTAL (µg/L) (34320) M | A- PYRENE TOTAL (µg/L) (34247) M M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (µg/L) (34386) <2 | FLUOR- AN- THENE TOTAL (µg/L) (34230) M M <2 DEF TOTAL (µg/L) (39040) <.02 | FLUOR- AN- THENE TOTAL (µg/L) (34242) M M <2 DI- AZINON, TOTAL (µg/L) (39570) | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M <2 DI- ELDRIN TOTAL (µg/L) (39380) <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M <3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) M | CHLORO-ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <22 <21 BUTYL BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <22 <2 <2 DI-N- OCTYL PHTHAL- ATE TOTAL (µg/L) (34596) M | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E26 E14 DISUL- FOTON UNFILT RECOVER (µg/L) (39011) | PHENO- THION WATER UNFLTRD (µg/L) (39786) <.02 <.04 <.04 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 ENDRIN WATER UNFLTRD REC (µg/L) (39390) <.01 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 | | OCT 15 DEC 11 FEB 05 19 MAY 29 AUG 06 DATE OCT 15 DEC 11 FEB 05 19 | DINE TOTAL (µg/L) (39120) <40 <40 <40 CHRY- SENE TOTAL (µg/L) (34320) M M | A- PYRENE TOTAL (μg/L) (34247) M M <1 CYCLOPE NTADIEN HEXA- CHLORO- UNFLTRD RECOVER (μg/L) (34386) <2 <4 | FLUOR- AN- THENE TOTAL (μg/L) (34230) M M <2 DEF TOTAL (μg/L) (39040) <.02 <.04 | FLUOR- AN- THENE TOTAL (μg/L) (34242) M M <2 AZINON, TOTAL (μg/L) (39570) .04 <.04 | [A]- ANTHRA- CENE WAT UNF (µg/L) (34526) M M <2 ELDRIN TOTAL (µg/L) (39380) <.006 <.006 | [GHI]- PERY- LENE TOTAL (µg/L) (34521) M M <3 DIETHYL PHTHAL- ATE TOTAL (µg/L) (34336) M <2 | CHLORO-ETHOXY) METHANE TOTAL (µg/L) (34278) <3 <3 <3 METHYL PHTHAL-ATE TOTAL (µg/L) (34341) M M | CHLORO- ETHYL) ETHER UNFLTRD RECOVER (µg/L) (34273) <2 <2 <2 <2 DI-N- BUTYL PHTHAL- ATE TOTAL (µg/L) (39110) M <2 | CHLORO- ISO- PROPYL) ETHER TOTAL (µg/L) (34283) <22 <2 <2 NOTYL PHTHAL ATE TOTAL (µg/L) (34596) M <5 | ETHYL HEXYL) PHTHAL- ATE TOTAL (µg/L) (39100) E2 <-6 E14 SOURCE (µg/L) (39011) DISUL- FOTON UNFILT RECOVER (µg/L) (39011) <-30 | PHENO- THION WATER UNFLTRD (µg/L) (39786) <.02 <.04 <.04 ENDO- SULFAN I TOTAL (µg/L) (39388) <.02 <.02 | DANE, TECH- NICAL TOTAL (µg/L) (39350) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 | PYRIFOS TOTAL RECOVER (µg/L) (38932) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 | ### 07019220 FENTON CREEK NEAR FENTON, MO--Continued (Metropolitan Sewer District) | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(μg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(μg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(μg/L)
(39600) |
MIREX,
TOTAL
(μg/L)
(39755) | |------------------|---|---|--|--|---|---|---|---|--|--|---|---|---| | OCT
15 | М | М | <.01 | <.009 | <.01 | <2 | М | М | <.006 | E.05 | <.020 | <.01 | <.006 | | DEC
11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | 19
19 | M
<2 | M
<2 | <.01
<.01 | <.009
<.009 | <.01
<.01 | <2
<2 | M
<3 | M
<2 | <.006
<.006 | <.30
<.30 | <.020
<.020 | <.02
<.02 | <.006
<.006 | | 29
AUG | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
15
DEC | М | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | 11 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | 19
19 | <4
<4 | <3
<3 | <2
<2 | <2
<2 | <.007
<.007 | <.006
<.006 | <.009
<.009 | <3
<3 | <.01
<.01 | <.1
<.1 | M
<4 | M
<2 | <3.0
<3.0 | | MAY
29 | | | | | | | | | | | | | | | AUG
06 | DATE | PHORATE
TOTAL
(µg/L)
(39023) | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE
HEXA-
CHLORO-
WATER
UNFLTRD
RECOVER
(µg/L)
(34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(µg/L)
(34696) | | | | | OCT | | | _ | _ | _ | _ | _ | _ | | | | | | | 15
DEC | <.06 | М | <1 | <2 | <2 | <2 | <2 | <2 | <3 | М | | | | | 11
FEB | | | | | | | | | | | | | | | 05
19 |
<.06 |
M |
<1 |
<2 |
<2 |
<2 |
<2 |
<2 |
<1 |
M | | | | | 19 | <.06 | <2 | <1 | <2 | <2 | <2 | <2 | <2 | <1 | <5 | | | | | MAY
29 | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 07019280 MERAMEC RIVER AT PAULINA HILLS, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 38°27'46", long 90°24'53", Jefferson County, Hydrologic Unit 07140102, at bridge on State Highway 21 at Paulina Hills, 0.3 mi downstream from Saline Creek, and 10 mi upstream from mouth of Meramec River. DRAINAGE AREA. -- 3,920 mi². PERIOD OF RECORD.--August 1963 to July 1975, October 1981 to current year. August 1963 to September 1970 published as Meramec River at Paulina Hills (07019045). | DATE | TIME | SAMPLE
TYPE | 3 | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|--|--|---|---|---|--|--|--|---|---|---|---| | OCT
16
16 | 0740
0741 | ENVIRONME
REPLICATE | | 846 | 5.8 | 57
 | 7.7 | 440 | 14.5 | | | | | | NOV
14 | 1520 | ENVIRONME | NTAL | 744 | 11.0 | 109 | 8.1 | 454 | 14.1 | 210 | 43.8 | 25.3 | 1.45 | | DEC 11 | 1450 | ENVIRONME | NTAL | 1210 | 6.6 | 57 | 7.5 | 382 | 8.4 | | | | | | JAN
15 | 1430 | ENVIRONME | NTAL | 1070 | 12.6 | 103 | 7.8 | 411 | 6.4 | 200 | 42.2 | 22.4 | 1.00 | | FEB 12 | 0845 | ENVIRONME | NTAL | 2380 | 11.0 | 89 | 7.9 | 315 | 6.3 | | | | | | MAR
12 | 1535 | ENVIRONME | NTAL | 7460 | 9.8 | 85 | 7.6 | 228 | 8.6 | | | | | | APR
03 | 1215 | ENVIRONME | NTAL | 3680 | 8.0 | 75 | 8.0 | 319 | 11.7 | | | | | | MAY
28 | 1100 | ENVIRONME | NTAL | 4410 | 5.3 | 59 | 7.7 | 289 | 19.9 | 140 | 31.8 | 15.3 | 1.25 | | JUN
04 | 0800 | ENVIRONME | | 2580 | 6.9 | 86 | 8.0 | 318 | 25.8 | | | | | | 04
JUL | 0801 | REPLICATE | | 1060 | | | | | | 100 | | | | | 10
AUG | 1430 | ENVIRONME | | 1260 | 6.4 | 88 | 8.0 | 384 | 31.2 | 190 | 41.4 | 21.3 | 2.15 | | 14
SEP | 1145 | ENVIRONME | | 2860 | 5.7 | 73 | 7.8 | 448 | 27.2 | | | | | | 04 | 1430 | ENVIRONME | INT'AL | 1020 | 5.3 | 70 | 8.5 | 347 | 29.5 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | FET
FIELD
(mg/L as
CaCO ₃) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
16
16 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
16
16
NOV
14 |
DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
16
16
NOV
14
DEC
11 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT 16 16 NOV 14 DEC 11 JAN 15 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITRD FET FIELD (mg/L as CaCO ₃) (00410) 159 182 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 51 49 24 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (Mg/L as N) (00608) .10 .12 .21 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .63 .65 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .47 .48 .31 | | OCT
16
16
NOV
14
DEC
11
JAN
15
FEB
12 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
159

182
223 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
160

184
230 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 51 49 24 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L (ms/N) (00608) .10 .12 .21 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .63 .65 .68 | GEN, NO2+NO3 DIS-SOLVED (mg/L as N) (00631) .47 .48 .31 .37 | | OCT
16
NOV
14
DEC
11
JAN
15
FEB
12
MAR
12 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITED FET FILLD (mg/L as CaCO ₃) (00410) 159 182 223 169 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
160

184
230
170 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
194

225
281
207 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

29.0

25.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 51 49 24 <10 14 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .10 .12 .21 .21 .21 | GEN, AM- MONIA + ORGANIC TOTTAL (mg/L as N) (00625) .63 .65 .68 .50 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.47
.48
.31
.37 | | OCT 16 16 NOV 14 DEC 11 JAN 15 FEB 12 MAR 12 APR 03 | DIS-
SOLVED (mg/L as Na) (00930) | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 159 182 223 169 126 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
160

184
230
170
126 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
194

225
281
207
153 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.3

14.7 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

29.0

25.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 51 49 24 <10 14 10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .10 .12 .21 .21 .21 <.04 E.14 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .63 .65 .68 .50 .59 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .47 .48 .31 .37 .54 E.65 | | OCT 16 16 NOV 14 DEC 11 JAN 15 FEB 12 MAR 12 APR 03 MAY 28 | DIS-
SOLVED
(mg/L
as Na)
(00930)

15.3

9.32 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 159 182 223 169 126 97 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
160

184
230
170
126
96 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
194

225
281
207
153
118 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

20.3

14.7 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

29.0

25.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 51 49 24 <10 14 10 56 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .10 .12 .21 .21 .21 <.04 E.14 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .63 .65 .68 .50 .59 .41 .60 | GEN, NO2+NO3 DIS-SOLVED (mg/L as N) (00631) .47 .48 .31 .37 .54 E.65 .28 | | OCT 16 16 NOV 14 DEC 11 JAN 15 FEB 12 MAR 12 APR 03 MAY 28 JUN 04 04 | DIS-
SOLVED (mg/L as Na) (00930) | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 159 182 223 169 126 97 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
160

184
230
170
126
96
130 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
194

225
281
207
153
118 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0 0
0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

20.3

14.7 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

29.0

25.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 51 49 24 <10 14 10 56 38 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .10 .12 .21 .21 .21 <.04 E.14 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .63 .65 .68 .50 .59 .41 .60 .39 | GEN, NO2+NO3 DIS-SOLVED (mg/L as N) (00631) .47 .48 .31 .37 .54 E.65 .28 .40 | | OCT 16 16 NOV 14 DEC 11 JAN 15 FEB 12 MAR 12 APR 03 MAY 28 JUN 04 04 JULL 10 | DIS-
SOLVED (mg/L as Na) (00930) | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 159 182 223 169 126 97 129 128 138 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
160

184
230
170
126
96
130
128
139 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
194

225
281
207
153
118
159
156
170 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 | RIDE, DIS- SOLVED (mg/L as C1) (00940) 20.3 14.7 6.97 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

29.0

25.0

15.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 51 49 24 <10 14 10 56 38 20 38 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 260 230 172 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .10 .12 .21 .21 .21 <.04 E.14 <.04 .07 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .63 .65 .68 .50 .59 .41 .60 .39 .33 .45 | GEN, NO2+NO3 DIS-SOLVED (mg/L as N) (00631) .47 .48 .31 .37 .54 E.65 .28 .40 .55 .06 | | OCT 16 16 NOV 14 DEC 11 JAN 15 FEB 12 MAR 12 APR 03 APR 28 JUN 04 04 JUL | DIS-
SOLVED (mg/L as Na) (00930) | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 159 182 223 169 126 97 129 128 138 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
160

184
230
170
126
96
130
128 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 194 225 281 207 153 118 159 156 170 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0 0
0 0
0 0
0 0 | RIDE, DIS- DIS- SOLVED (mg/L as C1) (00940) 20.3 14.7 6.97 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS- SOLVED (mg/L as SO ₄) (00945) 29.0 25.0 15.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) 51 49 24 <10 14 10 56 38 20 38 44 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 260 230 172 172 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .10 .12 .21 .21 .21 <.04 E.14 <.04 .07 <.04 .04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .63 .65 .68 .50 .59 .41 .60 .39 .33 .45 .41 | GEN, NO2+NO3
DIS-
SOLVED (mg/L as N)
(00631)
.47
.48
.31
.37
.54
E.65
.28
.40
.55 | ## 07019280 MERAMEC RIVER AT PAULINA HILLS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) |
PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |-----------------|--|--|--|---|--|--|--|--|---|--|--|--|---| | OCT
16
16 | .052 | .12 | .10 | .18 | 92
 | 88 | 115 | | | | | | | | NOV
14 | .028 | .09 | .07 | .14 | 98 | 144 | K17 | 31 | 326 | .7 | E.03 | <.1 | <6 | | DEC 11 | .044 | .07 | .06 | .10 | K460 | K300 | 49 | | | | | | | | JAN
15 | .017 | E.04 | .03 | .08 | К4 | K20 | K22 | 11 | 124 | . 4 | E.02 | <.1 | <6 | | FEB 12 | E.008 | <.06 | E.04 | E.06 | 48 | 145 | 58 | | | | | | | | MAR
12 | .014 | E.04 | .02 | .11 | 290 | K413 | 420 | | | | | | | | APR 03 | .012 | E.03 | E.01 | .08 | <2 | к7 | К9 | | | | | | | | MAY
28 | .016 | E.03 | E.01 | .07 | K33 | 100 | 56 | 43 | 322 | .5 | E.03 | <.1 | <6 | | JUN
04
04 | .018
.016 | <.06
<.06 | <.02
<.02 | .07
E.05 | K31
K26 | K26
K20 | K33
K33 | | | | | | | | JUL
10 | .015 | E.04 | .03 | .11 | K14 | 84 | K4 | 4 | 399 | 1.3 | <.04 | E.1 | <6 | | AUG
14 | .028 | .07 | .06 | .14 | K27 | 62 | 48 | | | | | | | | SEP
04 | .019 | E.04 | .02 | .12 | 21 | K24 | K8 | | | | | | | | | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT | | | | | | | | | | | | | | | | .6
.6 | | | | | | | | | | | | | | 1 | 4 | 30 | .63 | 8 | 34.0 | <.01 | E.2 | 15 | 16 | | | | | | DEC
1
JAN | 1 | | | | | | | | | | | | | | | 5 | 19 | .28 | 6 | 63.8 | <.01 | .4 | 10 | 9 | | | | | | | 2 | | | | | | | | | | | | | | | 2 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 8 | 72 | 1.52 | 13 | 56.6 | <.01 | E.3 | | 8 | | | | | | 0 | 14
14 | | | | | | | | | | | | | | JUL | | <10 | .61 | 20 | 47.4 | <.01 | E.2 | 2 | 9 | | | | | | AUG | 4 | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### 07019317 MATTESE CREEK NEAR MATTESE, MO LOCATION.--Lat $38^{\circ}28^{\circ}59^{\circ}$, long $90^{\circ}20^{\circ}27^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.10, T.43 N., R.6 E., St. Louis County, Hydrologic Unit 07140102, on right downstream pier of Ringer Road bridge, 0.86 mi east of Interstate 55, 1.4 mi south of Interstate 255, and 3.4 mi above confluence to Meramec River. DRAINAGE AREA. -- 7.88 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 1996 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 413.57 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records poor. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER Y
Y MEAN V | YEAR OCTOBER | R 2001 TO |) SEPTEMBE | R 2002 | | | |---|---|--------------------------------------|---|---|--------------------------------------|---------------------------------------|--|--------------------------------------|--------------------------------------|---------------------------------------|--------------------------------------|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
24 | 0.00
12
0.62
0.11
0.00 | 3.0
2.4
1.9
1.6
2.0 | e0.60
e0.55
e0.48
e0.40
e0.37 | 15
5.0
3.6
2.9
2.7 | 0.90
e25
e7.0
e2.8
2.4 | 2.9
3.9
2.5
2.4
2.0 | 6.5
6.8
5.1
4.7
4.2 | 1.1
0.99
0.87
0.70
1.1 | 0.00
0.00
2.0
0.12
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 2.9
0.02
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 1.8
0.79
0.49
0.18
0.14 | e0.70
e0.46
0.25
0.26
0.29 | 2.6
1.8
1.4
1.3 | 2.2
1.6
1.6
64
4.8 | 1.8
3.7
29
5.9
3.0 | 28
66
89
108
11 | 0.89
0.49
0.44
0.34
22 | 0.00
0.00
0.00
0.00
0.20 | 14
0.26
0.00
0.14
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 87
15
13
2.8
27 | 0.00
0.00
0.00
0.00
0.00 | 0.09
36
13
63
13 | 0.20
0.17
0.12
0.11
0.07 | 1.2
0.96
0.82
0.68
0.73 | 3.4
3.1
2.3
1.9 | 2.6
4.8
2.6
3.9
2.0 | 7.4
41
57
9.4
6.2 | 124
150
4.5
1.2
0.54 | 0.02
0.71
0.00
0.00
0.01 | 45
1.3
2.4
1.9
0.76 | 0.00
0.00
0.00
33
2.0 | | 16
17
18
19
20 | 12
1.7
1.2
1.0
0.47 | 0.00
0.00
0.00
0.00
0.00 | 105
79
6.5
4.2
2.9 | 0.14
0.15
0.05
e4.6
1.0 | 0.66
0.41
0.37
21
4.1 | 11
5.2
3.7
28
9.9 | 1.5
2.1
1.2
11 | 14
50
12
6.2
4.7 | 0.28
0.13
0.08
0.05
0.02 | 0.00
0.00
0.03
0.00
0.00 | 0.49
0.00
22
13
3.5 | 0.00
19
3.2
17
19 | | 21
22
23
24
25 | 0.08
0.00
5.8
35
3.1 | 0.00
0.00
0.00
98
2.7 | 2.4
2.8
1.8
1.4 | 0.56
e0.60
5.3
5.4
0.93 | 1.7
1.3
1.0
1.0
3.8 | 4.8
3.7
3.3
4.2
e50 | 22
4.5
2.8
12
3.7 | 3.7
3.1
2.8
4.4
3.0 | 0.00
0.00
0.00
0.00 | 0.00
28
3.5
0.00
0.00 | 0.38
0.04
0.68
0.07
0.00 | 2.4
0.74
0.04
0.00
0.73 | | 26
27
28
29
30
31 | 1.2
0.63
0.25
0.06
0.10
0.00 | 1.6
1.1
23
30
39 | 1.0
0.97
0.91
0.75
e0.70
e0.66 | 0.75
0.64
0.51
0.69
55 | e3.5
1.6
0.98
 | 24
6.6
5.0
8.5
3.8
3.1 | 2.2
92
27
9.4
7.3 | 2.0
6.2
27
4.0
2.0 | 1.1
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.10
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN
IN. | 8.11
87
0.00
1.19 | 6.94
98
0.00
0.98 | 11.3
105
0.09
1.66 | 6.43
118
0.05
0.94 | 3.00
21
0.37
0.40 | 11.6
64
0.90
1.69 | 9.42
92
1.2
1.33 | 19.2
108
1.5
2.82 | 10.7
150
0.00
1.51 | 1.12
28
0.00
0.16 | 3.42
45
0.00
0.50 | 3.24
33
0.00
0.46 | | | | | | | | | 2, BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 3.50
8.11
2002
1.58
2000 | 6.82
19.7
1997
0.96
2000 | 4.08
11.3
2002
0.66
1999 | 7.92
16.0
1997
1.05
2001 | 11.4
23.9
1997
3.00
2002 | 11.5
31.9
1998
2.63
2001 | 8.62
19.6
1998
2.33
2000 | 10.8
19.3
2002
3.50
1999 | 16.4
30.8
2000
3.01
2001 | 8.56
18.7
1998
1.12
2002 | 5.14
10.7
1998
1.85
2001 | 3.94
10.7
1996
0.27
1999 | | SUMMARY | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 W | ATER YEAF | 2 | WATER Y | EARS 1996 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE | | ı | 0.00 | Jul 24
Many Days
At Times | | 3310 ^a
10.09 | Jun 12
ral Days
At Times
Jun 12
Jun 12
any Days | 0.00
8310
12.82 | Many Day
a
Many Day | s 1997,200
Jul :
Jul :
Jul : | 30 1997
24 2001
24 2001 | | e Estimated a From rating extended above 571 $\mathrm{ft^3/s.}$ ## 07019317 MATTESE CREEK NEAR MATTESE, MO--Continued (Metropolitan Sewer District) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1996 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) |
OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | |------------------|---|--|--|---|--|---|--|--|---|---|---|---|--| | OCT
15 | 1943 | ENVIRONM | ENTAL | 121 | 8.7 | 84 | 6.9 | 655 | 13.2 | 210 | 63.0 | 12.0 | 111 | | DEC
10 | 1405 | ENVIRONM | ENTAL | .14 | 11.1 | 95 | 7.6 | 1170 | 7.5 | 390 | 119 | 23.1 | 244 | | FEB
04 | 1532 | ENVIRONM | ENTAL | 2.9 | 13.8 | 111 | 7.2 | 1200 | 5.8 | 380 | 116 | 23.0 | 251 | | MAR
09 | 0226 | ENVIRONM | ENTAL | 107 | 9.5 | 94 | 7.7 | 2050 | 13.5 | 140 | 43.0 | 7.60 | 93 | | MAY
28 | 1240 | ENVIRONM | ENTAL | 2.0 | 10.8 | 123 | 7.8 | 848 | 20.5 | 300 | 93.0 | 17.0 | 218 | | AUG
05
05 | 1030
1031 | ENVIRONM
BLANK | ENTAL | e.01
 | 6.7 | 89
 | 8.1 | 508
 | 29.6 | 260
 | 79.0
<.02 | 16.0
<.03 | 188 | | DATE | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
AMMONIA
TOTAL
(mg/L
as N)
(00610) | NITRO-
GEN,
NO ₂ +NO ₃
TOTAL
(mg/L
as N)
(00630) | NITRO-
GEN,
NITRITE
TOTAL
(mg/L
as N)
(00615) | PHOS-
PHORUS
ORTHO
TOTAL
(mg/L
as P)
(70507) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON
DIOXIDE
DIS-
SOLVED
(mg/L
as CO ₂)
(00405) | OXYGEN DEMAND, CHEM- ICAL (high level) (mg/L) (00340) | | OCT
15
DEC | 112 | 136 | 0 | | 121 | <.20 | .01 | .690 | .01 | .110 | . 22 | 26 | 23 | | 10
FEB | 252 | 308 | 0 | 160 | <1 | E.40 | .04 | .560 | <.01 | .050 | E.06 | 11 | 16 | | 04
MAR | 255 | 311 | 0 | 170 | <1 | .20 | <.01 | 1.00 | <.01 | .050 | .05 | 28 | 13 | | 09
MAY | 90 | 110 | 0 | | 803 | 3.3 | .13 | .420 | .02 | .110 | .72 | 3.8 | 44 | | 28
AUG | 219 | 267 | 0 | | 5 | .20 | .05 | .730 | .02 | .050 | .05 | 6.4 | 16 | | 05
05 | 188 | 230 | 0 | | <1
<1 | .40
<.20 | .02
<.01 | .050
<.020 | <.01
<.01 | .070
<.010 | .08
<.02 | 3.1 | 14
8 | | DATE | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | | OCT
15
DEC | K2700 | K5600 | K44000 | 151 | 1 | <1 | <1.0 | <1.0 | 2.6 | 164 | <1 | 55 | <.1 | | 10
FEB | K150 | 230 | К92 | 9 | <1 | 1 | 1.0 | 1.0 | 1.3 | 29 | <1 | 21 | <.1 | | 04
MAR | K15 | 285 | 153 | 8 | <1 | <1 | <1.0 | <1.0 | 1.2 | 25 | <1 | 47 | <.1 | | 09
MAY | K200 | 5400 | 7000 | 401 | 2 | <1 | <1.0 | 3.2 | 3.3 | 244 | 1 | 82 | <.1 | | 28
AUG | 720 | 1140 | 1000 | 37 | <1 | <1 | <1.0 | <1.0 | 1.6 | 33 | <1 | 26 | <.1 | | 05
05 | 680
 | 1000 | 104
 | <3
<3 | 2
<1 | <1
<1 | <1.0
<1.0 | <1.0
<1.0 | 1.7
<1.0 | 5
2 | <1
<1 | 209
<1 | <.1
<.1 | ## 07019317 MATTESE CREEK NEAR MATTESE, MO--Continued (Metropolitan Sewer District) | DATE | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | OIL AND
GREASE,
TOTAL
RECOV.
GRAVI-
METRIC
(mg/L)
(00556) | 1,2,5,6
-DIBENZ
-ANTHRA
-CENE
TOTAL
(µg/L)
(34556) | 1,2-DI-
PHENYL-
HYDRA-
ZINE
WATER
TOT.REC
(µg/L)
(82626) | 2,4,6-
TRI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34621) | 2,4-DI-
METHYL-
PHENOL
TOTAL
(µg/L)
(34606) | 2,4-DI-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34601) | 2,4,-
DI-
NITRO-
PHENOL
TOTAL
(µg/L)
(34616) | 2,4-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34611) | 2,6-DI-
NITRO-
TOLUENE
TOTAL
(µg/L)
(34626) | |------------------|---|--|---|---|--|---|---|---|---|---|--|--|--| | OCT
15 | 1.7 | 2 | <1.0 | 140 | <7 | М | <2 | <3 | <3.0 | <3 | <20 | <3 | <2 | | DEC 10 | 1.7 | 1 | <1.0 | 35 | | | | | | | | | | | FEB
04 | <1.0 | 3 | <1.0 | 20 | | | | | | | | | | | MAR
09 | 2.4 | <1 | <1.0 | 108 | <7 | М | <2 | <3 | <.7 | <3 | <3 | <3 | <2 | | MAY
28 | 1.7 | <1 | <1.0 | 39 | | | | | | | | | | | AUG
05
05 | 2.6
<1.0 | 1
<1 | <1.0
<1.0 | <2
<2 | | | | | | | | | | | DATE | 2-
CHLORO-
NAPH-
THALENE
TOTAL
(µg/L)
(34581) | 2-
CHLORO-
PHENOL
TOTAL
(µg/L)
(34586) | 2-
NITRO-
PHENOL
TOTAL
(µg/L)
(34591) | 3,3'-
DI-
CHLORO-
BENZI-
DINE
TOTAL
(µg/L)
(34631) | 4,6-
DINITRO
-ORTHO-
CRESOL
TOTAL
(µg/L)
(34657) | 4-
BROMO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34636) | 4-
CHLORO-
PHENYL
PHENYL
ETHER
TOTAL
(µg/L)
(34641) | 4-
NITRO-
PHENOL
TOTAL
(µg/L)
(34646) | ACE-
NAPHTH-
ENE
TOTAL
(µg/L)
(34205) | ACE-
NAPHTH-
YLENE
TOTAL
(µg/L)
(34200) | ALDRIN,
TOTAL
(µg/L)
(39330) | ANTHRA-
CENE
TOTAL
(µg/L)
(34220) | BENZENE NITRO- WATER UNFLTRD RECOVER (µg/L) (34447) | | OCT
15 | <2 | <2 | <3 | <3 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | DEC 10 | | | | | | | | | | | | | | | FEB 04 | | | | | | | | | | | | | | | MAR
09 | <2 | <2 | <1 | <5 | <3 | <2 | <2 | <3 | М | М | <.01 | М | <2 | | MAY
28 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | DATE | BENZI-
DINE
TOTAL
(µg/L)
(39120) | BENZO-
A-
PYRENE
TOTAL
(µg/L)
(34247) | BENZO B
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34230) | BENZO K
FLUOR-
AN-
THENE
TOTAL
(µg/L)
(34242) | BENZO-
[A]-
ANTHRA-
CENE
WAT UNF
(µg/L)
(34526) | BENZO-
[GHI]-
PERY-
LENE
TOTAL
(µg/L)
(34521) | BIS(2-
CHLORO-
ETHOXY)
METHANE
TOTAL
(µg/L)
(34278) | BIS(2-
CHLORO-
ETHYL)
ETHER
UNFLTRD
RECOVER
(µg/L)
(34273) | BIS(2-
CHLORO-
ISO-
PROPYL)
ETHER
TOTAL
(µg/L)
(34283) | BIS(2-
ETHYL
HEXYL)
PHTHAL-
ATE
TOTAL
(µg/L)
(39100) | CARBO-PHENO-THION WATER UNFLTRD (µg/L) (39786) | CHLOR-DANE, TECH-NICAL TOTAL (µg/L) (39350) | CHLOR-
PYRIFOS
TOTAL
RECOVER
(µg/L)
(38932) | | OCT
15
DEC | <40 | М | М | М | М | М | <3 | <2 | <2 | <19 | <.02 | <.1 | <.01 | | 10
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09
MAY | <40 | E2 | 3 | M | E1 | E2 | <3 | <2 | <2 | E2 | <.02 | <.1 | <.01 | | 28
AUG | | | | | | | | | | | | | | | 05
05 | ## 07019317 MATTESE CREEK NEAR MATTESE, MO--Continued (Metropolitan Sewer District) | DATE | CHRY-
SENE
TOTAL
(µg/L)
(34320) | CYCLOPE
NTADIEN
HEXA-
CHLORO-
UNFLTRD
RECOVER
(µg/L)
(34386) | DEF
TOTAL
(µg/L)
(39040) | DI-
AZINON,
TOTAL
(µg/L)
(39570) |
DI-
ELDRIN
TOTAL
(µg/L)
(39380) | DIETHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34336) | DI-
METHYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34341) | DI-N-
BUTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(39110) | DI-N-
OCTYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34596) | DISUL-
FOTON
UNFILT
RECOVER
(µg/L)
(39011) | ENDO-
SULFAN
I
TOTAL
(µg/L)
(39388) | ENDRIN
WATER
UNFLTRD
REC
(µg/L)
(39390) | ETHION,
TOTAL
(μg/L)
(39398) | |-----------|---|---|--|--|--|---|--|--|--|---|---|---|---| | OCT
15 | М | <2 | <.02 | .04 | <.006 | М | М | М | <5 | | <.02 | <.01 | <.01 | | DEC 10 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | MAR
09 | E3 | <4 | <.02 | <.02 | E.005 | <2 | М | <2 | <5 | <.10 | <.01 | <.01 | <.01 | | MAY
28 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | DATE | FLUOR-
ANTHENE
TOTAL
(µg/L)
(34376) | FLUOR-
ENE
TOTAL
(µg/L)
(34381) | FONOFOS
(DY-
FONATE)
WATER
WHOLE
TOT.REC
(µg/L)
(82614) | HEPTA-
CHLOR
EPOXIDE
TOTAL
(µg/L)
(39420) | HEPTA-
CHLOR,
TOTAL
(µg/L)
(39410) | HEXA-
CHLORO-
BENZENE
TOTAL
(µg/L)
(39700) | INDENO
(1,2,3-
CD)
PYRENE
TOTAL
(µg/L)
(34403) | ISO-
PHORONE
TOTAL
(µg/L)
(34408) | LINDANE
TOTAL
(µg/L)
(39340) | MALA-
THION,
TOTAL
(μg/L)
(39530) | METH-
OXY-
CHLOR,
TOTAL
(µg/L)
(39480) | METHYL
PARA-
THION,
TOTAL
(µg/L)
(39600) | MIREX,
TOTAL
(µg/L)
(39755) | | OCT
15 | М | М | <.01 | <.009 | <.01 | <2 | М | <2 | <.006 | E.02 | <.020 | <.01 | <.006 | | DEC
10 | | | | | | | | | | | | | | | FEB
04 | | | | | | | | | | | | | | | MAR
09 | 5 | M | <.01 | <.009 | <.01 | <2 | E3 | M | <.006 | <.10 | <.015 | <.02 | <.006 | | MAY
28 | | | | | | | | | | | | | | | AUG
05 | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | DATE | N-BUTYL
BENZYL
PHTHAL-
ATE
TOTAL
(µg/L)
(34292) | N-NITRO -SODI- METHYL- AMINE TOTAL (µg/L) (34438) | N-
NITRO-
SODI-N-
PROPYL-
AMINE
TOTAL
(µg/L)
(34428) | N-NITRO -SODI- PHENYL- AMINE TOTAL (µg/L) (34433) | P,P'-
DDD
UNFILT
RECOVER
(µg/L)
(39360) | P,P'-
DDE,
TOTAL
(µg/L)
(39365) | P,P'-
DDT
UNFILT
RECOVER
(µg/L)
(39370) | PARA-
CHLORO-
META
CRESOL
TOTAL
(µg/L)
(34452) | PARA-
THION,
TOTAL
(µg/L)
(39540) | PCB,
TOTAL
(µg/L)
(39516) | PENTA-
CHLORO-
PHENOL
TOTAL
(µg/L)
(39032) | PHENAN-
THRENE
TOTAL
(µg/L)
(34461) | PHENOL
UNFILT.
WATER
(µg/L)
(34694) | | OCT
15 | <4 | <3 | <2 | <3 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | М | <3.0 | | DEC | \± | \3 | | \ 3 | <.007 | | | | | | | 1*1 | | | 10
FEB | | | | | | | | | | | | | | | 04
MAR | | | | | | | | | | | | | | | 09
MAY | <4 | <3 | <2 | <2 | <.007 | <.006 | <.009 | <3 | <.01 | <.1 | М | 3 | <3.0 | | 28
AUG | | | | | | | | | | | | | | | 05
05 | | | | | | | | | | | | | | ### 07019317 MATTESE CREEK NEAR MATTESE, MO--Continued (Metropolitan Sewer District) | DATE | PHORATE
TOTAL
(µg/L)
(39023) | PYRENE
TOTAL
(µg/L)
(34469) | TOX-
APHENE,
TOTAL
(µg/L)
(39400) | BENZENE
1,2,4-
TRI-
CHLORO-
WAT UNF
REC
(µg/L)
(34551) | BENZENE
1,3-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34566) | BENZENE
1,4-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34571) | BENZENE
O-DI-
CHLORO-
WATER
UNFLTRD
REC
(µg/L)
(34536) | ETHANE HEXA- CHLORO- WATER UNFLTRD RECOVER (µg/L) (34396) | HEXA-
CHLORO-
BUT-
ADIENE
TOTAL
(µg/L)
(39702) | NAPHTH-
ALENE
TOTAL
(μg/L)
(34696) | |------|---------------------------------------|--------------------------------------|---|---|---|---|---|---|--|--| | OCT | | | | | | | | | | | | 15 | <.06 | M | <1 | <2 | <2 | <2 | <2 | <2 | <3 | <5 | | DEC | | | | | | | | | | | | 10 | | | | | | | | | | | | FEB | | | | | | | | | | | | 04 | | | | | | | | | | | | MAR | | | | | | | | | | | | 09 | <.02 | 4 | <1 | <2 | <2 | <2 | <2 | <2 | <1 | M | | MAY | | | | | | | | | | | | 28 | | | | | | | | | | | | AUG | | | | | | | | | | | | 05 | | | | | | | | | | | | 05 | | | | | | | | | | | e--Estimated discharge value. K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07020500 MISSISSIPPI RIVER AT CHESTER, IL LOCATION.--Lat $37^{\circ}54^{\circ}10^{\circ}$, long $89^{\circ}50^{\circ}10^{\circ}$, in SW $\frac{1}{4}$ sec.24, T.7 S., R.7 W., third principal meridian, Randolph County, Hydrologic Unit 07140105, on downstream side of left pier of main truss of highway bridge at Chester, 8.1 mi downstream from Kaskaskia River, and at mile 109.9 above Ohio River. DRAINAGE AREA. -- 708,600 mi², approximately. #### WATER-DISCHARGE RECORDS #### PERIOD OF RECORD. -- DISCHARGE: October 1927 to current year. Monthly discharge only for some periods, published in WSP 1311. Since August 1873, results of discharge measurements in reports of the Mississippi River Commission. GAGE HEIGHT: July 1942 to current year. Since May 1891, in reports of the Mississippi River Commission and National Weather Service. REVISED RECORDS.--WDR MO-76-1: Drainage area. WDR MO-98-1: Extreme outside period of record. GAGE.--Water-stage recorder. Datum of gage is 341.05 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 1, 1962, nonrecording gage 0.4 mi downstream at present datum. REMARKS.--Water-discharge records good. Natural flow of stream affected by many reservoirs and navigation dams in upper Mississippi River Basin and by many reservoirs and diversions for irrigation in Missouri River Basin. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 30, 1844, reached a gage height of 39.8 ft, discharge, 1,050,000 $\rm ft^3/s$, computed by the U.S. Army Corps of Engineers. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | DAILY MEAN VALUES | | | | | | | | | | | | | |----------|--------------------------------------|------------------|------------------|-----------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1 | 134000 | 143000 | 149000 | 95000 | 193000 | 154000 | 177000 | 413000 | 391000 | 235000 | 147000 | 181000 | | | 2 | 127000 | 137000 | 149000 | 94400 | 270000 | 159000 | 164000 | 418000 | 356000 | 226000 | 143000 | 172000 | | | 3
4 | 118000
106000 | 135000
136000 | 149000
150000 | 88900
86500 | 271000
244000 | 164000
166000 | 161000
164000 | 411000
399000 | 338000
332000 | 221000
218000 | 135000
128000 | 163000
155000 | | | 5 | 99400 | 137000 | 151000 | 86400 | 210000 | 159000 | 165000 | 387000 | 324000 | 214000 | 127000 | 145000 | | | 6 | 104000 | 139000 | 148000 | 91500 | 188000 | 142000 | 165000 | 370000 | 313000 | 210000 | 124000 | 134000 | | | 7 | 103000 | 138000 | 140000 | 93500 | 171000 | 130000 | 166000 | 370000 | 312000 | 206000 | 124000 | 127000 | | | 8
9 | 107000
112000 | 133000
125000 | 132000
128000 | 92500
93700 | 159000
147000 | 137000
157000 | 173000
182000 | 417000
495000 | 323000
332000 | 202000
196000 | 123000
122000 | 123000
121000 | | | 10 | 115000 | 126000 | 125000 | 102000 | 143000 | 180000 | 199000 | 554000 | 343000 | 192000 | 116000 | 122000 | | | 11 | 113000 | 128000 | 128000 | 104000 | 144000 | 188000 | 223000 | 592000 | 354000 | 190000 | 117000 | 120000 | | | 12 | 116000 | 125000 | 135000 | | 141000 | 199000 | 231000 | 616000 | 378000 | 189000 | 118000 | 119000 | | | 13 | 132000 | 121000 | 144000 | 103000 | 140000 | 195000 | 226000 | 655000 | 399000 | 192000 | 117000 | 124000 | | | 14 | 139000 | 118000 | 147000 | 104000 | 139000 | 186000 | 222000 | 678000 | 424000 | 192000 | 123000 | 125000 | | | 15 | 141000 | 114000 | 155000 | 105000 | 143000 | 183000 | 221000 | 698000 | 445000 | 186000 | 130000 | 125000 | | | 16
17 | 139000
139000 | 111000
110000 | 162000
199000 | 101000
96800 | 144000
139000 | 191000
194000 | 211000
209000 | 715000
732000 | 450000
443000 | 178000
165000 | 134000
134000 |
125000
123000 | | | 18 | 140000 | 108000 | 223000 | 98100 | 132000 | 190000 | 213000 | 732000 | 428000 | 156000 | 138000 | 126000 | | | 19 | 147000 | 104000 | 218000 | 93500 | 132000 | 190000 | 215000 | 716000 | 408000 | 155000 | 134000 | 124000 | | | 20 | 151000 | 104000 | 205000 | 94200 | 134000 | 200000 | 221000 | 693000 | 382000 | 152000 | 137000 | 127000 | | | 21 | 157000 | 102000 | 190000 | 93100 | 131000 | 196000 | 238000 | 659000 | 351000 | 152000 | 155000 | 130000 | | | 22 | 153000 | 103000 | 175000 | 89900 | 129000 | 192000 | 277000 | 616000 | 320000 | 159000 | 158000 | 124000 | | | 23 | 138000 | 99200 | 173000 | 85100 | 142000 | 189000 | 313000 | 570000 | 299000 | 159000 | 156000 | 114000 | | | 24
25 | 147000
168000 | 96300
112000 | 169000
153000 | 85000
91400 | 153000
163000 | 181000
190000 | 316000
322000 | 524000
482000 | 280000
268000 | 158000
157000 | 160000
199000 | 112000
113000 | | | | | | | | | | | | | | | | | | 26
27 | 179000
167000 | 123000
118000 | 133000 | 89500 | 170000 | 205000
198000 | 327000
324000 | 453000
439000 | 264000
256000 | 154000
150000 | 217000
214000 | 108000
102000 | | | 28 | 154000 | 118000 | 129000
118000 | 97100 | 162000
152000 | 191000 | 329000 | 440000 | 249000 | 146000 | 207000 | 94600 | | | 29 | 157000 | 121000 | 99400 | | | 192000 | 356000 | 449000 | 242000 | 144000 | 196000 | 89700 | | | 30 | 150000 | 136000 | 90300 | 94600 | | 196000 | 392000 | 442000 | 240000 | 141000 | 189000 | 92800 | | | 31 | 145000 | | 86900 | 110000 | | 188000 | | 422000 | | 147000 | 187000 | | | | MEAN | 135400 | 120700 | 150100 | 94350 | 163800 | 180100 | 236700 | 534100 | 341500 | 178800 | 148700 | 125400 | | | MAX | 179000 | 143000 | 223000 | 110000 | 271000 | 205000 | 392000 | 732000 | 450000 | 235000 | 217000 | 181000 | | | MIN | 99400
0.22 | 96300
0.19 | 86900
0.24 | 85000
0.15 | 129000
0.24 | 130000
0.29 | 161000
0.37 | 370000
0.87 | 240000
0.54 | 141000
0.29 | 116000
0.24 | 89700
0.20 | | | IN. | | | | | | | | | | 0.29 | 0.24 | 0.20 | | | STATIS | STICS OF 1 | MONTHLY MI | EAN DATA | FOR WATER | YEARS 19 | 42 - 2002 | , BY WATER | R YEAR (W | Y) | | | | | | MEAN | 150600 | 157200 | | 131200 | 161900 | 251200 | 334500 | 326100 | 288600 | 243400 | 161200 | 146800 | | | MAX | 588300 | 380400 | | 323200 | 331000 | 528400 | 719100 | 630900 | 597200 | 795300 | 769500 | 551000 | | | (WY) | 1987 | | 1983 | | | | 1973 | 1995 | 1947 | 1993
69050 | 1993 | 1993 | | | MIN | 59490 | 59320 | 51070 | 47810 | 52860 | 84200 | | | | | | | | | (WY) | 1957 | | 1964 | 1964 | 1964 | 1964 | 2000 | | | 1988 | 1988 | 1976 | | | SUMMAI | RY STATISTICS FOR 2001 CALENDAR YEAR | | | | | | FOR 2002 | 2 WATER Y | EAR | WATER Y | ZEARS 1942 | 2 - 2002 | | | | L MEAN | MIDAN | | 235300 | 0 | 11
1
1 | 201000 |) | | 207700 |) | 1002 | | | T.OMEG | ST ANNUAL | MEVN | | 590000
70700
72600 | | | | | | 96770 |) | 1993 | | | HIGHES | ST DATLY I | MEAN | | 59000 | 0 Jun | 11 | 732000 |) Mav | 17 | 1000000 |) Aug | 6 1993 | | | LOWEST | r DAILY M | EAN | | 7070 | 0 Jan | 1 | 85000 | Jan | 24 | 37600 |) Jan | 1 1964 | | | ANNUA | L SEVEN-D | AY MINIMU | N. | 72600 | 0 Jan | 1 | 87600 |) Jan | 23 | 38500 |) Dec | 20 1963 | | | MAXIM | JM PEAK F | LOW | | | - | | 738000 | May 17 | ,18 | 1000000 |) Aug | 7 1993 | | | MAXIM | JM PEAK S' | TAGE | | | - | | 40.95 | May 17 | , 18 | 49.74 | a Aug | 7 1993 | | | TNS.LYI | NIANEOUS : | LOW FLOW | | 4 5 | -
1 | | 82600 | Jan | ∠4 | 30000 |) Dec | 12 1937 | | | 10 PER | CENT EXC | EEDS | | 44000 | 0 | | 391000 |) | | 401000 |) | | | | 50 PE | RCENT EXC | EEDS | | 179000 | 0 | | 154000 |) | | 167000 |) | | | | 90 PEI | RCENT EXC | EEDS | | 4.55
440000
179000
99400 | 0 | | 102000 |) | | 78200 |) | | | #### 07020500 MISSISSIPPI RIVER AT CHESTER, IL--Continued WATER-QUALITY RECORDS PERIOD OF DAILY RECORD. -- SUSPENDED-SEDIMENT: August 1980 to current year. REMARKS.--Sediment records poor. Sediment record was computed from transport curve. EXTREMES FOR PERIOD OF DAILY RECORD.-SUSPENDED-SEDIMENT CONCENTRATIONS: Maximum daily mean, 3,380 mg/L, Apr. 13, 1987; minimum daily mean, 13 mg/L, Mar. 18, 1981. SUSPENDED-SEDIMENT LOADS: Maximum daily, 3,330,000 tons, Feb. 25, 1997; minimum daily, 3,580 tons, Mar. 18, 1981. EXTREMES FOR CURRENT YEAR.-SUSPENDED-SEDIMENT CONCENTRATIONS.--Maximum daily mean, 973 mg/L, May 10; minimum daily mean, 76 mg/L, Jan. 23 and 30. SUSPENDED-SEDIMENT LOADS.--Maximum daily, 1,450,000 tons, May 10; minimum daily 17,500 tons, Jan. 23. | | | MEAN | | | MEAN | | | MEAN | | |-----|----------------------------|------------------------------|-------------------------------------|----------------------------|------------------------------|-------------------------------------|----------------------------|------------------------------|-------------------------------------| | DAY | MEAN
DISCHARGE
(cfs) | CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | | DAI | (CLB) | (1119/11) | (cons/day) | (CIB) | (1119/11) | (cons/day) | (CLB) | (1119/11) | (cons, day) | | | | OCTOBER | | NO | OVEMBER | | DEC | CEMBER | | | 1 | 134000 | 191 | 69300 | 143000 | 171 | 66200 | 149000 | 142 | 57000 | | 2 | 127000 | 188 | 64800 | 137000 | 158 | 58300 | 149000 | 140 | 56400 | | | 118000 | 176 | 56200 | 135000 | 149 | 54100 | 149000 | 132 | 53000 | | 4 | 106000 | 163 | 46900 | 136000 | 145 | 53500 | 150000 | 124 | 50100 | | 5 | 99400 | 153 | 41200 | 137000 | 143 | 52800 | 151000 | 117 | 47700 | | 6 | 104000 | 151 | 42600 | 139000 | 141 | 52800 | 148000 | 110 | 44000 | | 7 | 103000 | 151 | 42200 | 138000 | 141 | 52600 | 140000 | 105 | 39700 | | 8 | 107000 | 155 | 45100 | 133000 | 138 | 49200 | 132000 | 103 | 37000 | | 9 | 112000 | 159 | 48300 | 125000 | 130 | 43700 | 128000 | 102 | 35200 | | 10 | 115000 | 163 | 50700 | 126000 | 128 | 43500 | 125000 | 101 | 34100 | | 11 | 113000 | 159 | 48500 | 128000 | 129 | 44500 | 128000 | 105 | 36300 | | 12 | 116000 | 159 | 49700 | 125000 | 124 | 41800 | 135000 | 109 | 39600 | | 13 | 132000 | 175 | 62300 | 121000 | 119 | 38700 | 144000 | 114 | 44300 | | 14 | 139000 | 188 | 70500 | 118000 | 114 | 36100 | 147000 | 121 | 47800 | | 15 | 141000 | 190 | 72300 | 114000 | 114 | 34900 | 155000 | 127 | 53000 | | 16 | 139000 | 181 | 68300 | 111000 | 113 | 33900 | 162000 | 143 | 62900 | | 17 | 139000 | 174 | 65200 | 110000 | 110 | 32500 | 199000 | 323 | 175000 | | 18 | 140000 | 169 | 64200 | 108000 | 106 | 30900 | 223000 | 328 | 198000 | | 19 | 147000 | 166 | 65700 | 104000 | 106 | 29600 | 218000 | 278 | 164000 | | 20 | 151000 | 165 | 67300 | 104000 | 110 | 30800 | 205000 | 246 | 136000 | | 21 | 157000 | 176 | 74700 | 102000 | 113 | 31200 | 190000 | 220 | 113000 | | 22 | 153000 | 170 | 69500 | 103000 | 109 | 30300 | 175000 | 198 | 93400 | | 23 | 138000 | 165 | 61600 | 99200 | 105 | 28200 | 173000 | 202 | 94400 | | 24 | 147000 | 201 | 79800 | 96300 | 111 | 28700 | 169000 | 197 | 90200 | | 25 | 168000 | 280 | 127000 | 112000 | 148 | 45000 | 153000 | 177 | 73200 | | 26 | 179000 | 282 | 136000 | 123000 | 157 | 52100 | 133000 | 149 | 53700 | | 27 | 167000 | 254 | 115000 | 118000 | 130 | 41700 | 129000 | 140 | 48700 | | 28 | 154000 | 211 | 88100 | 118000 | 118 | 37700 | 118000 | 136 | 43600 | | 29 | 157000 | 210 | 89100 | 121000 | 116 | 37800 | 99400 | 119 | 32100 | | 30 | 150000 | 190 | 77400 | 136000 | 125 | 45900 | 90300 | 105 | 25500 | | 31 | 145000 | 174 | 68000 | | | | 86900 | 96 | 22400 | ### 07020500 MISSISSIPPI RIVER AT CHESTER, IL--Continued | DAY | MEAN
DISCHARGE
(cfs) | | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | |----------------------------------|---|------------------------------------|--|--|--|--|--|--|--| | | | JANUARY | | FE | BRUARY | | M | ARCH | | | 1 | 95000 | 111 | 28400 | 193000 | 255 | 140000 | 154000 | 175 | 72700 | | 2 | 94400 | 116 | 29800 | 270000 | 523 | 381000 | 159000 | 190 | 81700 | | 3 | 88900 | 105 | 25200 | 271000 | 471 | 346000 | 164000 | 200 | 88400 | | 4 | 86500 | 93 | 21800 | 244000 | 393 | 259000 | 166000 | 185 | 83000 | | 5 | 86400 | 82 | 19200 | 210000 | 331 | 188000 | 159000 | 168 | 71900 | | 6 | 91500 | 81 | 19800 | 188000 | 277 | 140000 | 142000 | 151 | 57800 | | 7 | 93500 | 82 | 20600 | 171000 | 233 | 107000 | 130000 | 140 | 49000 | | 8 | 92500 | 82 | 20600 | 159000 | 196 | 83900 | 137000 | 160 | 59100 | | 9 | 93700 | 83 | 21100 | 147000 | 167 | 66400 | 157000 | 324 | 140000 | | 10 | 102000 | 84 | 23100 | 143000 | 158 | 61300 | 180000 | 509 | 247000 | | 11 | 104000 | 85 | 23700 | 144000 | 151 | 58700 | 188000 | 424 | 214000 | | 12 | 100000 | 85 | 23100 | 141000 | 143 | 54400 | 199000 | 365 | 195000 | | 13 | 103000 | 86 | 23900 | 140000 | 134 | 50700 | 195000 | 345 | 181000 | | 14 | 104000 | 85 | 23800 | 139000 | 126 | 47200 | 186000 | 327 | 165000 | | 15 | 105000 | 85 | 24000 | 143000 | 124 | 47600 | 183000 | 316 | 156000 | | 16
17
18
19
20 | 101000
96800
98100
93500
94200 | 84
82
79
77
79 | 22900
21400
20900
19400
20000 | 144000
139000
132000
132000
134000 | 133
140
137
134
131 |
51800
52300
48800
47800
47600 | 191000
194000
190000
190000
200000 | 321
322
308
293
277 | 166000
169000
158000
150000 | | 21 | 93100 | 81 | 20300 | 131000 | 128 | 45200 | 196000 | 251 | 133000 | | 22 | 89900 | 78 | 19100 | 129000 | 130 | 45400 | 192000 | 225 | 116000 | | 23 | 85100 | 76 | 17500 | 142000 | 142 | 54800 | 189000 | 199 | 102000 | | 24 | 85000 | 107 | 24700 | 153000 | 156 | 64600 | 181000 | 178 | 87300 | | 25 | 91400 | 118 | 29200 | 163000 | 178 | 78600 | 190000 | 197 | 101000 | | 26
27
28
29
30
31 | 89500
87000
87100
88000
94600
110000 | 100
90
84
78
76
100 | 24100
21100
19700
18500
19300
30200 | 170000
162000
152000

 | 189
170
160
 | 86700
74300
65700

 | 205000
198000
191000
192000
196000
188000 | 222
203
182
175
175
165 | 123000
108000
93500
90900
92600
83800 | | | | APRIL | | | MAY | | J | UNE | | | 1 | 177000 | 144 | 69000 | 413000 | 646 | 721000 | 391000 | 327 | 345000 | | 2 | 164000 | 124 | 55000 | 418000 | 626 | 707000 | 356000 | 295 | 283000 | | 3 | 161000 | 123 | 53500 | 411000 | 541 | 600000 | 338000 | 276 | 252000 | | 4 | 164000 | 131 | 57900 | 399000 | 468 | 503000 | 332000 | 261 | 235000 | | 5 | 165000 | 131 | 58600 | 387000 | 417 | 436000 | 324000 | 246 | 215000 | | 6 | 165000 | 128 | 57300 | 370000 | 367 | 368000 | 313000 | 231 | 195000 | | 7 | 166000 | 125 | 56100 | 370000 | 344 | 344000 | 312000 | 219 | 185000 | | 8 | 173000 | 206 | 96800 | 417000 | 487 | 554000 | 323000 | 245 | 214000 | | 9 | 182000 | 214 | 105000 | 495000 | 819 | 1100000 | 332000 | 281 | 253000 | | 10 | 199000 | 210 | 113000 | 554000 | 973 | 1450000 | 343000 | 326 | 302000 | | 11 | 223000 | 229 | 138000 | 592000 | 803 | 1280000 | 354000 | 437 | 418000 | | 12 | 231000 | 258 | 160000 | 616000 | 688 | 1140000 | 378000 | 547 | 559000 | | 13 | 226000 | 262 | 160000 | 655000 | 652 | 1150000 | 399000 | 601 | 647000 | | 14 | 222000 | 250 | 150000 | 678000 | 625 | 1150000 | 424000 | 649 | 743000 | | 15 | 221000 | 232 | 138000 | 698000 | 599 | 1130000 | 445000 | 682 | 819000 | | 16 | 211000 | 214 | 122000 | 715000 | 571 | 1100000 | 450000 | 618 | 750000 | | 17 | 209000 | 204 | 115000 | 732000 | 530 | 1050000 | 443000 | 537 | 642000 | | 18 | 213000 | 200 | 115000 | 732000 | 479 | 948000 | 428000 | 482 | 556000 | | 19 | 215000 | 204 | 118000 | 716000 | 409 | 790000 | 408000 | 436 | 480000 | | 20 | 221000 | 210 | 126000 | 693000 | 380 | 711000 | 382000 | 391 | 404000 | | 21 | 238000 | 263 | 170000 | 659000 | 360 | 640000 | 351000 | 350 | 331000 | | 22 | 277000 | 382 | 287000 | 616000 | 337 | 560000 | 320000 | 321 | 277000 | | 23 | 313000 | 498 | 421000 | 570000 | 314 | 483000 | 299000 | 292 | 235000 | | 24 | 316000 | 524 | 447000 | 524000 | 291 | 412000 | 280000 | 264 | 200000 | | 25 | 322000 | 457 | 397000 | 482000 | 271 | 353000 | 268000 | 241 | 174000 | | 26
27
28
29
30
31 | 327000
324000
329000
356000
392000 | 439
439
546
628
650 | 388000
384000
486000
604000
687000 | 453000
439000
440000
449000
442000
422000 | 258
246
249
346
395
360 | 316000
292000
296000
419000
472000
411000 | 264000
256000
249000
242000
240000 | 222
204
186
168
151 | 159000
141000
125000
110000
98000 | ### 07020500 MISSISSIPPI RIVER AT CHESTER, IL--Continued | DAY | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | |----------------------------------|--|--------------------------------------|--|--|--|---|---|--------------------------------------|---| | | | JULY | | I | AUGUST | | SEE | PTEMBER | | | 1 | 235000 | 147 | 93000 | 147000 | 126 | 49800 | 181000 | 155 | 75700 | | 2 | 226000 | 144 | 88200 | 143000 | 122 | 47000 | 172000 | 149 | 69100 | | 3 | 221000 | 142 | 84700 | 135000 | 118 | 43100 | 163000 | 141 | 62000 | | 4 | 218000 | 140 | 81900 | 128000 | 114 | 39600 | 155000 | 132 | 55300 | | 5 | 214000 | 137 | 79400 | 127000 | 111 | 37900 | 145000 | 125 | 48800 | | 6 | 210000 | 135 | 76400 | 124000 | 108 | 36000 | 134000 | 118 | 42900 | | 7 | 206000 | 132 | 73400 | 124000 | 105 | 35100 | 127000 | 110 | 37700 | | 8 | 202000 | 130 | 70500 | 123000 | 102 | 33900 | 123000 | 102 | 33800 | | 9 | 196000 | 127 | 67100 | 122000 | 98 | 32500 | 121000 | 98 | 31900 | | 10 | 192000 | 126 | 65300 | 116000 | 94 | 29500 | 122000 | 98 | 32200 | | 11 | 190000 | 134 | 68700 | 117000 | 96 | 30200 | 120000 | 98 | 31700 | | 12 | 189000 | 144 | 73500 | 118000 | 98 | 31100 | 119000 | 98 | 31500 | | 13 | 192000 | 148 | 77000 | 117000 | 95 | 29800 | 124000 | 95 | 31600 | | 14 | 192000 | 141 | 73100 | 123000 | 102 | 33700 | 125000 | 90 | 30500 | | 15 | 186000 | 134 | 67000 | 130000 | 108 | 38100 | 125000 | 86 | 29000 | | 16 | 178000 | 126 | 60600 | 134000 | 111 | 40100 | 125000 | 82 | 27500 | | 17 | 165000 | 119 | 52900 | 134000 | 113 | 40700 | 123000 | 82 | 27300 | | 18 | 156000 | 112 | 47100 | 138000 | 114 | 42500 | 126000 | 84 | 28300 | | 19 | 155000 | 105 | 43900 | 134000 | 109 | 39300 | 124000 | 79 | 26400 | | 20 | 152000 | 101 | 41200 | 137000 | 118 | 43600 | 127000 | 99 | 34100 | | 21 | 152000 | 98 | 40300 | 155000 | 146 | 61000 | 130000 | 107 | 37700 | | 22 | 159000 | 96 | 41200 | 158000 | 148 | 63000 | 124000 | 97 | 32300 | | 23 | 159000 | 94 | 40200 | 156000 | 143 | 60500 | 114000 | 90 | 27500 | | 24 | 158000 | 91 | 38900 | 160000 | 161 | 70000 | 112000 | 89 | 27100 | | 25 | 157000 | 89 | 37800 | 199000 | 195 | 105000 | 113000 | 91 | 28000 | | 26
27
28
29
30
31 | 154000
150000
146000
144000
141000
147000 | 89
90
90
91
104
129 | 37300
36500
35600
35200
39500
51300 | 217000
214000
207000
196000
189000
187000 | 201
192
180
170
164
159 | 118000
111000
101000
89800
83600
80500 | 108000
102000
94600
89700
92800 | 92
89
85
81
81 | 26900
24600
21600
19700
20300 | 364 SALINE CREEK BASIN ### 07020550 SOUTH FORK SALINE CREEK NEAR PERRYVILLE, MO LOCATION.--Lat $37^{\circ}44^{\circ}13^{\circ}$, long $89^{\circ}55^{\circ}42^{\circ}$, Perry County, Hydrologic Unit 07140105, on State Route T, 0.13 mi northeast of junction of State Highways M and T, .25 mi west of I-55, 2.5 mi west of Perryville. DRAINAGE AREA.--55.3 \min^2 . PERIOD OF RECORD.--June 10, 1998 to current year. GAGE.--Water stage recorder. Datum of gage 444.70 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair. U.S.G.S. satellite telemeter at station. | DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | | | | | | | | | | | | | | |--|--------------------------------------|--------------------------------------|---|-------------------------------------|-------------------------------------|--|--|------------------------------------|--|---------------------------------------|---|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | | 1
2
3
4
5 | 8.3
8.0
8.0
6.2
5.0 | 14
13
12
11 | 143
87
66
51
43 | 21
20
18
17
17 | 734
230
148
108
82 | 38
41
51
43
40 | 81
74
68
59
53 | 125
110
97
86
73 | 28
26
24
23
25 | 14
14
14
13
14 | 8.9
9.0
9.1
8.9
8.3 | 9.7
9.8
8.7
8.9
8.6 | | | 6
7
8
9
10 | 6.9
6.9
5.9
4.4
7.2 | 9.1
9.5
9.5
9.4
9.1 | 92
85
61
47
37 | 18
18
17
17 | 72
63
54
49
44 | 38
36
35
1510
310 | 50
49
380
203
128 | 74
83
3910
904
278 | 25
22
21
25
26 | 14
13
12
12
32 | 8.5
8.2
7.6
7.5
7.4 | 8.3
8.0
8.9
7.9
8.4 | | | 11
12
13
14
15 | 24
15
50
58
30 | 8.8
8.4
8.0
8.1
8.0 | 33
33
41
225
148 | 16
15
15
15
14 | 40
36
33
31
29 | 175
178
140
113
133 | 102
118
286
663
257 | 150
731
4100
417
174 | 23
25
22
21
19 | 31
18
15
13
12 | 9.8
9.1
11
13
11 | 8.2
8.0
7.9
8.3 | | | 16
17
18
19
20 | 32
23
18
16
13 | 8.0
7.9
8.1
8.3
7.5 | 675
1640
383
206
134 | 14
14
13
15 | 27
27
25
69
247 | 231
140
113
557
645 | 162
122
100
88
91 | 112
1850
431
177
109 | 19
18
17
17
17 | 12
12
11
11
10 | 11
11
12
12
214 | 8.5
15
13
11
65 | | | 21
22
23
24
25 | 12
11
38
98
60 | 7.3
7.4
8.2
19 | 99
87
73
58
47 |
14
14
16
93
61 | 129
90
70
59
54 | 269
164
125
104
334 | 210
115
85
78
73 | 80
64
55
47
42 | 16
16
16
16
16 | 10
10
10
9.9
9.6 | 27
19
17
15
14 | 29
18
14
12
10 | | | 26
27
28
29
30
31 | 36
26
21
19
16
15 | 15
15
40
129
643 | 42
36
32
29
26
23 | 49
41
37
34
34
1060 | 57
48
42
 | 483
216
154
125
103
90 | 62
151
344
160
117 | 38
35
45
39
33 | 15
16
17
16
15 | 9.5
9.3
9.5
8.9
10
9.6 | 13
12
11
10
9.7
9.6 | 9.8
9.5
9.0
9.1
7.9 | | | MEAN
MAX
MIN | 22.5
98
4.4 | 36.3
643
7.3 | 154
1640
23 | 57.4
1060
13 | 96.3
734
25 | 217
1510
35 | 151
663
49
BY WATER | 468
4100
30 | 20.1
28
15 | 13.0
32
8.9 | 17.9
214
7.4 | 12.4
65
7.9 | | | MEAN
MAX
(WY)
MIN
(WY) | 12.7
22.5
2002
7.55
2001 | 19.4
36.3
2002
9.23
2000 | 51.6
154
2002
16.0
1999 | 55.8
130
1999
14.8
2001 | 95.1
152
1999
47.9
2000 | 90.7
217
2002
19.7
2001 | 127
309
1999
17.9
2000 | 141
468
2002
15.8
2000 | 28.4
48.0
2000
13.4
2001 | 30.2
87.8
2001
9.27
2000 | 20.0
33.6
2001
6.31
2000 | 8.48
12.3
2002
4.69
2000 | | | SUMMARY | STATIST | ICS | FOR | 2001 CAL | ENDAR YEA | AR. | FOR 2002 | WATER YEA | AR. | WATER Y | EARS 1998 | - 2002 | | | ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 1640
4.4
6.1

82
17
8.3 | Dec 1
Oct
Oct | 9 | 106 4100 4.4 6.1 11800 ^a 16.04 4.4 177 25 8.5 | May 1
Oct
Oct
May
May
Oct | 9
4
8
8 | 56.7
106
20.0
4540
2.7
3.2
18700
19.13
0.99
94
15
7.4 | Apr
Sep 1
Sep 1
Apr
Apr | 2002
2000
3 1999
9 2000
7 2000
3 1999
3 1999
22 2000 | | | $^{^{\}rm a}$ From rating extended above 5,000 ft $^{\rm 3}/{\rm s}$. #### HEADWATER DIVERSION CHANNEL BASIN #### 07021000 CASTOR RIVER AT ZALMA, MO LOCATION.--Lat $37^{\circ}08^{\circ}48^{\circ}$, long $90^{\circ}04^{\circ}32^{\circ}$, in SE $\frac{1}{4}$ sec.29, T.29 N., R.9 E., Bollinger County, Hydrologic Unit 07140107, on downstream side of left bridge pier on State Highway 51 in Zalma and 2.5 mi downstream from Perkins Creek. DRAINAGE AREA. -- 423 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--January 1920 to September 1991, November 8, 2000 to current year. Prior to October 1921 monthly discharge only published in WSP 1311. REVISED RECORDS.--WSP 1147: 1922-23(M). WSP 1281: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 350.38 ft above National Geodetic Vertical Datum of 1929. January 1920 to Oct. 1, 1925, at site 500 ft upstream at datum 49.82 ft lower; Oct. 1, 1925 to Nov. 12, 1930, at site 500 ft upstream at datum 0.18 ft higher; Nov. 13, 1930 to June 8, 1953, nonrecording gage at present site and datum; June 1953 to September 1991 and October 2000 to current year, water-stage recorder at present site and datum; Dec. 18, 1949 to September 1991, auxiliary nonrecording gage 6.0 mi downstream; October 2000 to current year, auxiliary water-stage recorder 6.0 mi downstream. $REMARKS.--Water-discharge\ records\ good\ except\ for\ estimated\ daily\ discharges\ and\ those\ above\ 2,000\ ft^3/s,\ which\ are\ fair.$ EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of 1915 reached a stage of 28.0 ft, present datum, from floodmarks by local residents. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | DISCIM | GE, COD. | IC PEET PER | | Y MEAN VA | | 10 2001 10 | OBF TEMBE | K 2002 | | | |-------------------|-----------------------|-----------|-----------|--|-----------|-----------|-------------|------------|-----------|--|----------|-------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 67 | 127 | 1190 | 280 | 4450 | 427 | 729 | 1420 | 321 | 117 | 92 | 146 | | 2 | 67 | 124 | 819 | 261 | 3920 | 408 | 643 | 1250 | 294 | 111 | 88 | 137 | | 3 | 65 | 121 | 596 | 246 | 1770 | 420 | 577 | 1060 | 274 | 107 | 85 | 129 | | 4 | 64 | 115 | 488 | 233 | 1180 | 397 | 516 | 859 | 252 | 104 | e82 | 121 | | 5 | 68 | 111 | 421 | 224 | 964 | 382 | 468 | 723 | 286 | 103 | e80 | 115 | | 6 | 71 | 107 | 407 | 227 | 745 | 371 | 429 | 632 | 433 | 99 | e76 | 109 | | 7 | 72 | 103 | 412 | 225 | 645 | 358 | 401 | 609 | 307 | 95 | 72 | 104 | | 8 | 73 | 100 | 425 | 215 | 567 | 346 | 530 | 3860 | 261 | 91 | 69 | 100 | | 9 | 74 | 98 | 403 | 209 | 509 | 1980 | 1310 | 12500 | 238 | 87 | 66 | 98 | | 10 | 78 | 96 | 368 | 203 | 462 | 5540 | 1120 | 9190 | 229 | 93 | 64 | 95 | | 11 | 146 | 95 | 339 | 196 | 423 | 2880 | 856 | 3550 | 222 | 98 | 63 | 92 | | 12 | 180 | 93 | 340 | 190 | 392 | 1650 | 725 | 1530 | 217 | 204 | 61 | 89 | | 13 | 220 | 92 | 373 | 185 | 363 | 1390 | 960 | 15200 | 228 | 253 | 375 | 86 | | 14 | 264 | 91 | 551 | 181 | 338 | 1120 | 3240 | 21600 | 207 | 196 | 1210 | 85 | | 15 | 268 | 90 | 827 | 175 | 319 | 905 | 4670 | 6140 | 190 | 172 | 295 | 88 | | 16 | 245 | 90 | 1590 | 170 | 302 | 1850 | 2300 | 1990 | 184 | 149 | 210 | 99 | | 17 | 218 | 89 | 5670 | 167 | 285 | 1790 | 1460 | 5070 | 189 | 137 | 177 | 99 | | 18 | 198 | 87 | 8920 | 166 | 271 | 1270 | 1110 | 18400 | 176 | 128 | 158 | 108 | | 19 | 182 | 89 | 3960 | 172 | 324 | 2040 | | 6810 | 162 | 120 | 157 | 120 | | 20 | 169 | 91 | 1540 | 171 | 1890 | 4380 | 1720 | 2370 | 154 | 116 | 200 | 304 | | 21 | 157 | 89 | 1010 | 167 | 1980 | 4760 | 2230 | 1400 | 147 | 112 | 292 | 569 | | 22 | 147 | 87 | 974 | 167 | 1240 | 2410 | 1750 | 1110 | 141 | 108 | 228 | 372 | | 23 | 140 | 88 | 734 | 177 | 895 | 1500 | 1230 | 1030 | 134 | 109 | 191 | 285 | | 24 | 138 | 95 | 591 | 798 | 726 | 1200 | 2620 | 806 | 128 | 104 | e500 | 239 | | 25 | 145 | 109 | 514 | 891 | 629 | 1180 | 4500 | 613 | 127 | 97 | e400 | 211 | | 26 | 158 | 127 | 461 | 693
592
526
478
456
992 | 572 | 4030 | 2530 | 528 | 127 | 92 | e300 | 193 | | 27 | 163 | 150 | 420 | 592 | 512 | 3720 | 1660 | 453 | 122 | 88 | 250 | 181 | | 28 | 156 | 175 | 386 | 526 | 463 | 1980 | 1580 | 415 | 128 | 85 | 210 | 169 | | 29 | 147 | 288 | 355 | 478 | | 1450 | 1430 | 407 | 120 | 82 | 187 | 157 | | 30 | 140 | 995 | 325 | 456 | | 1140 | 1120 | 377 | 116 | 79 | 170 | 148 | | 31 | 133 | | 302 | 992 | | 887 | | 354 | | 88 | 156 | | | MEAN | 142 | 140 | 1152 | 324 | 969 | 1747 | 1512 | 3944 | 204 | 117 | 212 | 162 | | MAX | 268 | 995 | 8920 | 992 | 4450 | 5540 | 4670 | 21600 | 433 | 253 | 1210 | 569 | | MIN | 64 | 87 | 302 | 166 | 271 | 346 | 401 | 354 | 116 | 79 | 61 | 85 | | IN. | 0.39 | 0.37 | 3.14 | 0.88 | 2.39 | 4.76 | 3.99 | 10.8 | 0.54 | 0.32 | 0.58 | 0.43 | | STATIST | ICS OF MO | NTHLY MEA | AN DATA I | FOR PERIOD | OF RECORI | O, BY WAT | ER YEAR (| WY) | | | | | | MEAN | 161 | 404 | 591 | 714 | 714 | 1035 | 1025 | 820 | 425 | 167 | 108 | 1178 | | MAX | 1576 | 2045 | 5507 | 3735 | 2279 | 3521 | 3645 | 3944 | 4082 | 1195 | 298 | 883 | | (WY) | 1985 | | 1983 | 1937 | 1989 | 1945 | 1927 | 2002 | 1928 | 1976 | 1982 | 1965 | | MIN | 37.0 | 59.1 | 72.1 | 60.7 | 95.4 | 98.0 | 142 | 90.2 | 43.9 | 33.4 | 22.5 | 31.5 | | (WY) | 1921 | 1921 | 1956 | 1956 | 1934 | 1941 | 1971 | 1932 | 1936 | 1936 | 1936 | 1953 | | SUMMARY | STATISTI | CS | | FOR 2001 C | ALENDAR | YEAR | FOR 20 | 02 WATER | YEAR | FOR P | ERIOD OF | RECORD | | ANNUAL
HIGHEST | MEAN
'ANNUAL M | EAN | | 324 | | | 889 | | | 523
1088 | | 1950 | | | ANNUAL ME | | | | | | | | | 149 | | 1941 | | | DAILY ME | | | 8920 | Dec 1 | | 21600 | May | 14 | 42700
16
19
97100 ^a
29.92
16 | Dec | 4 1982 | | | DAILY MEA | | | 64 | Jul 1 | | 61 | Aug | 12 | 16 | Aug | 31 1936 | | | SEVEN-DAY
PEAK FLO | | | 66
 | Jul 1 | LΙ | 67
45600 | Aug | 12 | 07100 ^a | Aug | 25 1936
4 1982 | | | PEAK FLO | | | | | | 27.78 | Masz | 13 | 29 92 | Dec | 4 1982 | | | ANEOUS LO | | | | | | 61 | Διια 12 | 13 | 16 | Διια | 31 1936 | | | RUNOFF (I | | | 10.40 | | | 28.53 | 1103 127 | | 16.82 | 1103 | 31 1330 | | | ENT EXCEE | | | 596 | | | 1870 | | | 1070 | | | | | ENT EXCEE | | | 156 | | | 261 | | | 181 | | | | 90 PERC | ENT EXCEE | DS | | 72 | | | 89 | | | 59 | | | | | | | | | | | | | | | | | e Estimated a Discharge determined by indirect measurement. #### HEADWATER DIVERSION CHANNEL BASIN ## 07021000 CASTOR RIVER AT ZALMA, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF REOCRD.--November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---
---|--|---|--|---|--|---|---| | NOV
07 | 1145 | ENVIRONM | ENTAL | 103 | 8.2 | 77 | 7.7 | 237 | 12.3 | 130 | 26.3 | 15.0 | .21 | | JAN
17 | 0930 | ENVIRONM | ENTAL | 167 | 11.7 | 91 | 7.8 | 192 | 4.8 | | | | | | MAR
25 | 1420 | ENVIRONM | ENTAL | 1100 | 10.0 | 88 | 7.5 | 115 | 9.1 | | | | | | MAY
13 | 1505 | ENVIRONM | ENTAL | 8690 | 8.0 | 84 | 6.8 | 38 | 17.4 | 23 | 5.18 | 2.55 | E.08 | | JUL
10
SEP | 1400 | ENVIRONM | ENTAL | 103 | 6.0 | 79 | 7.8 | 212 | 29.2 | | | | | | 10 | 1630 | ENVIRONM | ENTAL | 94 | 7.2 | 90 | 7.8 | 208 | 26.1 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
07
JAN | 2.69 | 121 | 122 | 149 | 0 | 2.79 | <.1 | 3.6 | 18 | 138 | <.04 | .11 | <.05 | | 17
MAR | | 88 | 88 | 107 | 0 | | | | <10 | | <.04 | E.06 | . 25 | | 25
MAY | | 50 | 49 | 60 | 0 | | | | 34 | | <.04 | .24 | .20 | | JUL | 1.64 | 23 | 21 | 26 | 0 | 1.56 | <.1 | 3.1 | 348 | 67 | E.04 | 1.3 | .11 | | 10
SEP | | 100 | 100 | 122 | 0 | | | | 21 | | <.04 | .22 | <.05 | | 10 | | 111 | 112 | 137 | 0 | | | | 22 | | <.04 | .12 | <.05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-PHORUS TOTAL (mg/L as P) (00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLIRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | . 000 | . 05 | | . 00 | A1 | 41 | 50 | 1.0 | 0.4 | 2 | . 04 | . 1 | -6 | | 07
JAN
17 | <.008 | <.06
<.06 | <.02 | <.06
<.06 | 41
29 | 41
52 | 58
56 | 16 | 84 | .2 | <.04 | <.1 | <6
 | | MAR
25 | .008 | <.06 | <.02 | <.06
E.06 | 160 | 340 | 540 | | | | | | | | MAY
13 | .032 | E.05 | .05 | .30 | 6200 | 7800 | 33000 | 651 | 2590 | .5 | <.04 | E.1 | E4 | | JUL
10 | <.008 | <.06 | <.02 | <.06 | 72 | K180 | 740 | | | | | | | | SEP
10 | <.008 | <.06 | <.02 | E.04 | K25 | 46 | 74 | #### HEADWATER DIVERSION CHANNEL BASIN ## 07021000 CASTOR RIVER AT ZALMA, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 07 | 154 | .09 | M | 40.8 | E.01 | <.3 | | 2 | | JAN | | | | | | | | | | 17 | | | | | | | | | | MAR | | | | | | | | | | 25 | | | | | | | | | | MAY | | | | | | | | | | 13 | 705 | 1.95 | 17 | 27.8 | .04 | <.3 | | 21 | | JUL | | | | | | | | | | 10 | | | | | | | | | | SEP | | | | | | | | | | 10 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07022000 MISSISSIPPI RIVER AT THEBES, IL LOCATION.--Lat 37°13'00", long 89°27'50", in NW $\frac{1}{4}$ sec.17, T.15 S., R.3 W., Alexander County, Hydrologic Unit 07140105, near center span on downstream side of railroad bridge at Thebes, 5.0 mi downstream from Headwater Diversion Channel, and at mile 43.7 above Ohio River. DRAINAGE AREA. -- 713, 200 mi², approximately. #### WATER-DISCHARGE RECORDS #### PERIOD OF RECORD. -- DISCHARGE: October 1932 to current year. Monthly discharge only for some periods, published in WSP 1311. Prior to April 1941, DISCHARGE: October 1932 to current year. Monthly discharge only for some periods, published in Mor 1911. File to April 1911, published as "at Cape Girardeau, Mo". GAGE HEIGHT: March 1933 to February 1938 and October 1939 to current year. Prior to April 1941, published as "at Cape Girardeau, Mo". Since November 1878, under name of "at Grays Point" in files of the U.S. Army Corps of Engineers; January 1879 to May of 1896, published as "at Grays Point"; since May 1896, published as "at Cape Girardea, in reports of the Mississippi River Commission; February 1891 to February 1894 and since 1904, published as "at Cape Girardeau in reports of the Mathematical Mathem the National Weather Service. REVISED RECORDS.--WSP 1341: 1844(M). WDR MO-76-1: Drainage area, WDR MO-98-1: Extreme outside period of record. GAGE.--Water-stage recorder. Datum of gage is 300.00 ft above National Geodetic Vertical Datum of 1929. Mar. 17, 1933, to Dec. 21 1934, nonrecording gage; Dec. 22, 1934, to Apr. 4, 1941, water-stage recorder, at site 8.2 mi upstream at datum 4.65 ft higher; Apr. 5, 1941, to Sept. 30, 1941, nonrecording gage at present site and datum; Oct. 1, 1941, to Oct. 11, 1943, at datum 0.07 ft higher. Prior to Apr. 5, 1941, various auxiliary gages used. Since Oct. 1, 1943, former gage at Cape Girardeau used as auxiliary gage. REMARKS.--Water-discharge records good. Natural flow of stream affected by many reservoirs and navigation dams in the upper Mississippi River Basin and by many reservoirs and diversions for irrigation in the Missouri River Basin. U.S. Army Corps of Engineers satellite telemeter and telemark at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of July 4, 1844, reached an elevation of 345.14 ft, present datum, at Grays Point, from floodmarks, discharge, 1,075,000 ${\rm ft}^3/{\rm s}$, computed by the U.S. Army Corps of Engineers. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | 1
2
3
4
5 | 136000
131000
125000
116000 | 146000
143000
138000
136000
137000 | 157000
163000
163000
164000
164000 | 99600
104000
101000
96200
94000 | 173000
272000
313000
293000
257000 | 157000
159000
164000
168000 | 206000
192000
180000
181000
182000 | 439000
454000
454000
441000
427000 | 445000
406000
375000
360000
351000 | 246000
240000
232000
227000
222000 | 149000
147000
143000
136000
130000 | 186000
179000
170000
162000
153000 | | 6 | 102000 | 137000 | 163000 | 94200 | 222000 | 159000 | 182000 | 410000 | 339000 | 219000 | 128000 | 144000 | | 7 | 105000 | 139000 | 157000 | 97700 | 200000 | 143000 | 181000 | 401000 | 327000 | 214000 | 125000 | 134000 | | 8 | 105000 | 137000 | 148000 | 99500 | 183000 | 136000 | 183000 | 441000 | 330000 | 209000 | 125000 | 127000 | | 9 | 108000 | 131000 | 140000 | 98500 | 169000 | 152000 | 193000 | 508000 | 342000 | 204000 | 125000 | 124000 | | 10 | 112000 | 125000 | 134000 |
101000 | 160000 | 192000 | 201000 | 564000 | 353000 | 198000 | 123000 | 122000 | | 11 | 118000 | 126000 | 132000 | 107000 | 156000 | 198000 | 221000 | 606000 | 363000 | 196000 | 118000 | 123000 | | 12 | 118000 | 127000 | 135000 | 108000 | 154000 | 207000 | 239000 | 640000 | 378000 | 193000 | 120000 | 121000 | | 13 | 124000 | 124000 | 143000 | 106000 | 149000 | 212000 | 243000 | 704000 | 402000 | 194000 | 122000 | 121000 | | 14 | 141000 | 121000 | 155000 | 108000 | 147000 | 205000 | 247000 | 749000 | 420000 | 196000 | 125000 | 125000 | | 15 | 145000 | 118000 | 164000 | 108000 | 147000 | 197000 | 245000 | 757000 | 441000 | 194000 | 128000 | 126000 | | 16 | 145000 | 114000 | 175000 | 109000 | 149000 | 205000 | 234000 | 771000 | 453000 | 186000 | 133000 | 126000 | | 17 | 144000 | 112000 | 227000 | 105000 | 148000 | 209000 | 224000 | 814000 | 453000 | 177000 | 135000 | 126000 | | 18 | 142000 | 111000 | 262000 | 103000 | 142000 | 207000 | 225000 | 828000 | 444000 | 165000 | 136000 | 126000 | | 19 | 144000 | 108000 | 261000 | 103000 | 137000 | 209000 | 228000 | 807000 | 427000 | 159000 | 139000 | 127000 | | 20 | 148000 | 106000 | 247000 | 99500 | 146000 | 230000 | 233000 | 775000 | 405000 | 157000 | 136000 | 126000 | | 21 | 152000 | 105000 | 232000 | 99500 | 147000 | 231000 | 248000 | 738000 | 378000 | 153000 | 144000 | 131000 | | 22 | 156000 | 104000 | 212000 | 97900 | 140000 | 222000 | 275000 | 692000 | 347000 | 155000 | 156000 | 131000 | | 23 | 148000 | 104000 | 202000 | 95800 | 140000 | 220000 | 318000 | 649000 | 320000 | 161000 | 158000 | 123000 | | 24 | 141000 | 101000 | 199000 | 103000 | 151000 | 213000 | 340000 | 606000 | 301000 | 160000 | 157000 | 116000 | | 25 | 156000 | 101000 | 187000 | 104000 | 160000 | 213000 | 344000 | 559000 | 287000 | 159000 | 171000 | 115000 | | 26
27
28
29
30
31 | 175000
180000
168000
159000
158000
151000 | 115000
124000
122000
127000
140000 | 167000
152000
145000
131000
114000
103000 | 108000
105000
103000
103000
106000
117000 | 170000
173000
164000
 | 247000
242000
226000
220000
223000
220000 | 353000
352000
356000
373000
408000 | 520000
494000
482000
487000
486000
472000 | 280000
271000
262000
255000
249000 | 157000
155000
150000
147000
144000 | 206000
218000
213000
205000
195000
189000 | 114000
110000
104000
98800
96200 | | MEAN | 137400 | 122600 | 170900 | 102700 | 177200 | 198500 | 252900 | 586300 | 358800 | 184300 | 149500 | 129600 | | MAX | 180000 | 146000 | 262000 | 117000 | 313000 | 247000 | 408000 | 828000 | 453000 | 246000 | 218000 | 186000 | | MIN | 102000 | 101000 | 103000 | 94000 | 137000 | 136000 | 180000 | 401000 | 249000 | 144000 | 118000 | 96200 | | IN. | 0.22 | 0.19 | 0.28 | 0.17 | 0.26 | 0.32 | 0.40 | 0.95 | 0.56 | 0.30 | 0.24 | 0.20 | | STATIS | STICS OF I | MONTHLY M | EAN DATA | FOR WATER | YEARS 193 | 33 - 2002 | , BY WATER | YEAR (W | Y) | | | | | MEAN | 149800 | 157200 | 142100 | 134600 | 164600 | 252500 | 329700 | 325700 | 290300 | 239600 | 157100 | 142900 | | MAX | 589600 | 389000 | 531700 | 333300 | 350400 | 542000 | 731000 | 655800 | 584100 | 765500 | 768000 | 539300 | | (WY) | 1987 | 1986 | 1983 | 1973 | 1974 | 1985 | 1973 | 1973 | 1947 | 1993 | 1993 | 1993 | | MIN | 45500 | 50080 | 53850 | 33650 | 46920 | 80260 | 115600 | 88170 | 72350 | 73290 | 45000 | 59890 | | (WY) | 1940 | 1940 | 1956 | 1940 | 1940 | 1934 | 1934 | 1934 | 1934 | 1936 | 1936 | 1937 | ### 07022000 MISSISSIPPI RIVER AT THEBES, IL--Continued | SUMMARY STATISTICS | FOR 2001 CALEN | IDAR YEAR | FOR 2002 W | ATER YEAR | WATER YEAR | S 1933 - 2002 | |--|----------------|-----------|------------|-----------|---------------------------|---------------| | ANNUAL MEAN
HIGHEST ANNUAL MEAN
LOWEST ANNUAL MEAN | 241400 | | 214500 | | 207600
446000
71730 | 1993
1934 | | HIGHEST DAILY MEAN | 613000 | Jun 13 | 828000 | May 18 | 978000 | Aug 7 1993 | | LOWEST DAILY MEAN | 76200 | Jan 2 | 94000 | Jan 5 | 24700 | Jan 21 1940 | | ANNUAL SEVEN-DAY MINIMUM | 77400 | Jan 1 | 97300 | Jan 3 | 26700 | Jan 20 1940 | | MAXIMUM PEAK FLOW | | | 838000 | May 18 | 996000 | Aug 7 1993 | | MAXIMUM PEAK STAGE | | | 44.32 | May 18 | 45.91 | May 23 1995 | | INSTANTANEOUS LOW FLOW | | | 93300 | Jan 5,6 | 23400 | Dec 13 1937 | | ANNUAL RUNOFF (INCHES) | 4.60 | | 4.08 | | 3.96 | | | 10 PERCENT EXCEEDS | 446000 | | 414000 | | 405000 | | | 50 PERCENT EXCEEDS | 187000 | | 159000 | | 167000 | | | 90 PERCENT EXCEEDS | 104000 | | 106000 | | 75900 | | #### 07022000 MISSISSIPPI RIVER AT THEBES, IL--Continued (National Stream-Quality Accounting Network) PERIOD OF RECORD. -- January 1973 to current year. PERIOD OF DAILY RECORD . -- SPECIFIC CONDUCTANCE: October 1974 to September 1981. WATER TEMPERATURE: October 1974 to September 1981. SUSPENDED-SEDIMENT: October 1980 to current year. REMARKS.--National Stream-Quality Accounting Network (NASQAN) station January 1973 to September 1986. Illinois Environmental Protection Agency station October 1986 to September 1994 (during this period, samples were analyzed by the Illinois EPA). Re-established as a NASQAN station October 1994 to current year. Sediment records fair except for estimated daily loads, which are poor. EXTREMES FOR PERIOD OF DAILY RECORD. -- SPECIFIC CONDUCTANCE: Maximum daily, 705 microsiemens per centimeter, Aug. 5-7, 1980; minimum daily, 272 microsiemens per centimeter, Apr. 6, 1979. WATER TEMPERATURE: Maximum daily, 31.5 °C, July 10, 11, 1975, and July 17, 1977; minimum daily, 0.0 °C, on several days during winter periods. SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean, 3,890 mg/L, Dec. 22, 1985; minimum daily mean, 13 mg/L, Jan. 28, 1981. SUSPENDED-SEDIMENT LOAD: Maximum daily, 6,280,000 tons, Mar. 1, 1985; minimum daily, 2,530 tons, Jan. 28, 1981. EXTREMES FOR CURRENT YEAR . -- SUSPENDED-SEDIMENT CONCENTRATION.--Maximum daily mean, 987 mg/L, May 11; minimum daily mean, 72 mg/L, Jan. 29, 30. SUSPENDED-SEDIMENT LOAD.--Maximum daily, 161,000 tons, May 11; minimum daily 20,100 tons, Jan. 29. | HARD-
NESS
TOTAL | TEMPER- | SPE-
CIFIC
CON- | PH
WATER
WHOLE
FIELD | OXYGEN,
DIS-
SOLVED
(per- | OXYGEN, | UV
ABSORB-
ANCE
280 NM, | UV
ABSORB-
ANCE
254 NM, | TURBID-
ITY LAB | DIS-
CHARGE,
INST.
(cubic | | | | |------------------------|----------------------|-----------------------|-------------------------------|------------------------------------|------------|----------------------------------|----------------------------------|--------------------|------------------------------------|---|--------------------------------------|--| | (mg/L | ATURE | DUCT- | (stand- | cent | DIS- | WTR FLT | WTR FLT | HACH | feet | SAMPLE | | | | as | WATER | ANCE | ard | satur- | SOLVED | (units | (units | 2100AN | per | TYPE | TIME | DATE | | CaCO ₃) | (deg C) | (µS/cm)
(00095) | units) | ation) | (mg/L) | /cm) | /cm) | (NTU) | second)
(00061) | | | | | (00900) | (00010) | (00095) | (00400) | (00301) | (00300) | (61726) | (50624) | (99872) | (00001) | | | | | | | | | | | | | | | | | OCT | | 180 | 16.2 | 501 | 8.0 | 114 | 11.2 | .093 | .127 | 39 | 144000 | ENVIRONMENTAL | 1415 | 17 | | 100 | 10.2 | 501 | 0.0 | | | .055 | , | 3, | 111000 | 2111 2110111 1211112 | 1110 | NOV | | 230 | 12.4 | 623 | 8.0 | 86 | 8.8 | .069 | .098 | 31 | 117000 | ENVIRONMENTAL | 1510 | 26 | | | | | | | | | | | | | | JAN | | 240 | 2.5 | 577 | 7.9 | 151 | 19.8 | .085 | .118 | 18 | 108000 | ENVIRONMENTAL | 1500 | 14 | | | | | | | | | | | | | | FEB | | 220 | 4.7 | 533 | 8.3 | 108 | 13.6 | .076 | .104 | 45 | 149000 | ENVIRONMENTAL | 1355 | 13 | | | | | | | | | | | | | | MAR | | 220 | 3.8 | 564 | 8.1 | 105 | 13.8 | .086 | .115 | 53 | 158000 | ENVIRONMENTAL | 1420 | 06 | | | | | | | | | | | | BLANK | 1428 | 06 | | 220 | 7.4 | 543 | 7.7 | 94 | 11.2 | | | 45 | 211000 | ENVIRONMENTAL | 1455 | 25 | | | | | | | | | | | | | | APR | | 210 | 9.3 | 524 | 8.4 | 100 | 11.5 | .079 | .108 | 59 | 179000 | ENVIRONMENTAL | 1340 | 03 | | 210 | | | | | | .082 | .111 | 63 | | REPLICATE | 1350 | 03 | | 190 | 14.9 | 463 | 8.1 | 86 | 8.6 | .101 | .136 | 96 | 244000 | ENVIRONMENTAL | 1335 | 15 | | 160 | 15.5 | 387 | 7.8 | 79 | 7.8 | .117 | .159 | 260 | 376000 | ENVIRONMENTAL | 1410 | 29 | | 1.50 | 1 | 266 | | | | 104 | 3.55 | 0.40 | 504000 | | 1010 | MAY | | 150 | 17.8
18.0 | 366
270 | 7.8 | 75
58 | 7.0
5.4 | .124
.146 | .166
.193 | 240
370 | 504000 | ENVIRONMENTAL | 1010 | 09 | | 120 | 18.0 | 270 | 7.8 | 58 | 5.4 | .146 | .193 | 370 | 751000 | ENVIRONMENTAL | 1050 | 14
JUN | | 180 | 24.6 | 433 | 8.0 | 73 | 6.0 | .105 | .144 | 110 | 377000 | ENVIRONMENTAL | 1300 | 12 | | 180 | 24.0 | 433 | 8.0 | /3 | 6.0 | .105 | .144 | 110 | 377000 | ENVIRONMENTAL | 1300 | JUL | | 200 | 30.7 | 500 | 8.2 | 91 | 6.6 | .104 | .144 | 36 | 197000 | ENVIRONMENTAL | 1510 | 10 | | 200 | | | | | | | | | | | | | | 200 | | | | | | | | | | | | | | 200 | | | | | | .101 | .111 | 27 | | REFLICATE | 1320 | | | 200 | 27 4 | 491 | 8 2 | 84 | 6 5 | 111 | 154 | 45 | 128000 | ENT/TDOMMENTAL | 1415 | | | 200 | | | | | | | | | | | | | | 200 | 27.5 | 303 | 0.5 | 00 | 0.5 | | . 133 | 30 | | | 1123 | | | 200 | 27 9 | 517 | 8 3 | 93 | 7 2 | 106 | 148 | 3.0 | 123000 | ENVIRONMENTAL. | 1305 | | | | | | | | | | | | | BLANK | 1313 | | | | 27.4
27.5
27.9 | 491
503 | 8.2
8.3 |

84
88 | 6.5
6.9 | .104
.111
.112 | .144
.154
.155 | 27
45
38 | 128000

123000 | BLANK REPLICATE ENVIRONMENTAL REPLICATE ENVIRONMENTAL | 1518
1520
1415
1425
1305 | 10
10
AUG
14
14
SEP
11 | ## 07022000 MISSISSIPPI RIVER AT THEBES, IL--Continued (National Stream-Quality Accounting Network) | DATE |
CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ALKA-
LINITY
WAT DIS
FIX END
FIELD
(mg/L as
CaCO ₃)
(39036) | ALKA-
LINITY
WAT DIS
TOT IT
FIELD
(mg/L as
CaCO ₃)
(39086) | BICAR-
BONATE
WATER
DIS IT
FIELD
(mg/L as
HCO ₃)
(00453) | CAR-BONATE WATER DIS IT FIELD (mg/L as CO ₃) (00452) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SILICA,
DIS-
SOLVED
(mg/L
as
SiO ₂)
(00955) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | |---|--|--|--|---|---|---|---|--|--|--|--|--|---| | OCT
17 | 45.0 | 17.2 | 5.45 | 29.8 | 123 | 128 | 156 | 0 | 27.5 | .3 | 6.89 | 74.8 | 316 | | NOV
26 | 56.6 | 22.6 | 4.31 | 38.1 | 159 | 160 | 195 | 0 | 29.7 | .3 | 5.48 | 96.6 | 390 | | JAN
14 | 57.7 | 22.2 | 3.92 | 28.4 | 184 | 184 | 224 | 0 | 27.8 | .3 | 8.99 | 65.1 | 358 | | FEB
13 | 53.2 | 20.2 | 3.70 | 24.5 | 166 | 167 | 189 | 7 | 32.2 | .2 | 7.76 | 57.3 | 326 | | MAR
06 | 55.4 | 21.0 | 3.41 | 26.5 | 167 | 169 | 206 | 0 | 33.6 | .3 | 6.66 | 58.9 | 332 | | 06
25 | <.01
54.2 | <.008
21.3 | 3.42 | <.09
29.7 |
173 |
177 | 216 | 0 | 36.9 | .2 | <.13
7.27 | 58.2 | 334 | | APR 03 | 49.3 | 20.3 | 3.48 | 26.8 | 160 | 161 | 179 | 8 | 30.1 | .3 | 6.08 | 60.9 | 323 | | 03
15 | 49.8
45.9 | 20.6 | 3.52 | 26.9
23.6 | 120 | 122 | 149 | 0 | 30.7
26.7 | .3 | 6.02
4.63 | 61.5
58.0 | 323
293 | | 29
MAY | 39.3 | 14.9 | 3.42 | 16.8 | 99 | 100 | 122 | 0 | 21.1 | .2 | 6.88 | 38.3 | 244 | | 09
14
JUN | 36.8
30.5 | 13.6
9.93 | 3.54
3.52 | 13.2
9.30 | 134
93 | 128
93 | 157
113 | 0 | 16.1
10.4 | .1
.1 | 6.22
6.43 | 35.6
25.7 | 228
183 | | 12
JUL | 44.5 | 17.4 | 3.51 | 16.8 | 130 | 133 | 162 | 0 | 21.1 | .2 | 5.68 | 44.6 | 260 | | 10 | 48.7 | 18.5 | 3.64 | 21.2 | 154 | 154 | 188 | 0 | 22.7 | .3 | 7.11 | 59.4 | 307 | | 10
AUG | 48.8 | 18.8 | 4.08 | 21.7 | | | | | 22.0 | .3 | 7.12 | 59.0 | 287 | | 14
14
SEP | 46.5
46.5 | 19.2
19.3 | 3.97
3.83 | 30.2
30.7 | 151
 | 151
 | 184 | 0 | 21.5
22.0 | .3 | 4.46
4.34 | 70.4
71.7 | 294
300 | | 11
11 | 49.0 | 19.4 | 4.10 | 30.2 | 150 | 149 | 177 | 2 | 20.4 | .3 | 7.75 | 74.3 | 320 | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | NITRO-
GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | CARBON,
INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | CARBON,
INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | CARBON,
ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | CARBON,
ORGANIC
PARTIC-
ULATE
TOTAL
(mg/L
as C)
(00689) | | ОСТ
17 | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N) | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N) | PHORUS
DIS-
SOLVED
(mg/L
as P) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P) | PHORUS
TOTAL
(mg/L
as P) | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C) | ORGANIC
DIS-
SOLVED
(mg/L
as C) | ORGANIC
PARTIC-
ULATE
TOTAL
(mg/L
as C) | | OCT
17
NOV
26 | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | GEN,PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(mg/L
as C)
(00689) | | OCT
17
NOV
26
JAN
14 | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | ORGANIC
PARTIC-
ULATE
TOTAL
(mg/L
as C)
(00689) | | OCT
17
NOV
26
JAN
14
FEB
13 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 | GEN, AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | GEN, PAR
TICULTE
WAT FLT
SUSP
(mg/L
as N)
(49570) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.140 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694) | INOR-
GANIC,
PARTIC.
TOTAL
(mg/L
as C)
(00688) | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681) | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 .09 .07 .07 | GEN, AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623)
.41
.45
.44
.35 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.82
.98
.97
.96 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.90
1.20
2.32
3.19
2.80 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .010 .017 | GEN,PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .53 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.140
.093
.091
.111 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074
.103 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694)
3.7
4.2
2.6
3.8
3.5 | INOR-
GANIC,
PARTIC.
TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
30.6
3.9
4.4
4.0 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.7 4.1 2.6 3.8 3.5 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 .09 .07 | GEN, AM-
MONIA +
ORGANIC
DIS.
(mg/L
as N)
(00623)
.41
.45
.44 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.82
.98
.97 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.90
1.20
2.32
3.19 | GEN, NITRITE
DIS- SOLVED (mg/L as N) (00613) .016 .010 .017 | GEN,PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.140
.093
.091 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074 | PHORUS
TOTAL
(mg/L
as P)
(00665)
.26
.23
.169 | INORG +
ORGANIC
PARTIC.
TOTAL
(mg/L
as C)
(00694)
3.7
4.2
2.6
3.8 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
30.6
3.9
4.4 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.7 4.1 2.6 3.8 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 .09 .07 .07 E.03 <.015 .05 .04 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .41 .45 .44 .35 .4141 .40 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 .98 .97 .96 .90 1.0 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .90 1.20 2.32 3.19 2.80 <.013 2.99 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .010 .017 .014 <.002 .017 .011 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .5343 | PHORUS DIS- SOLVED (mg/L as P) (00666) .140 .093 .091 .111 .081084 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074
.103
.060
<.007
.063 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 .23 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.7 4.2 2.6 3.8 3.5 3.7 4.1 | INOR- GANIC, PARTIC. TOTAL (mg/L as c) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
30.6
3.9
4.4
4.0
4.4
4.2 | ORGANIC PARTIC- ULATE TOTAL (mg/L as c) (00689) 3.7 4.1 2.6 3.8 3.5 3.7 4.0 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03
03 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 .09 .07 .07 E.03 <.015 .05 .04 E.03 .06 | GEN, AM- MONTA + ORGANIC DIS. (mg/L as N) (00623) .41 .45 .44 .35 .4141 .40 .41 .47 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 .98 .97 .96 .90 1.0 1.1 1.0 1.4 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 1.20 2.32 3.19 2.80 <.013 2.99 2.44 2.47 2.11 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .017 .014 <.002 .017 .011 .012 .020 | GEN,PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .5343 .50 .47 .58 | PHORUS DIS- SOLVED (mg/L as P) (00666) .140 .093 .091 .111 .081084 .061 .064 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074
.103
.060
<.007
.063 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 .2322 .232333 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.7 4.2 2.6 3.8 3.5 3.7 4.1 4.1 4.7 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
30.6
3.9
4.4
4.0
4.4
4.2
4.4 | ORGANIC PARTIC- ULATE TOTAL (mg/L as C) (00689) 3.7 4.1 2.6 3.8 3.5 3.7 4.0 4.0 4.7 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
25
APR
03 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 .09 .07 .07 E.03 <.015 .05 .04 E.03 .06 <.04 | GEN, AM- MONTA + ORGANIC DIS. (mg/L as N) (00623) .41 .45 .44 .35 .4141 .40 .41 .47 .50 | GEN, AM- MONTA + ORGANIC TOTAL (mg/L as N) (00625) .82 .98 .97 .96 .90 1.0 1.1 1.0 1.4 1.7 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 1.20 2.32 3.19 2.80 <.013 2.99 2.44 2.47 2.11 2.13 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .017 .014 <.002 .017 .011 .012 .020 .071 | GEN,PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .5343 .50 .47 .58 1.06 | PHORUS DIS- SOLVED (mg/L as P) (00666) .140 .093 .091 .111 .081084 .061 .064 .081 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074
.103
.060
<.007
.063 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 .2322 .23 .33 .57 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.7 4.2 2.6 3.8 3.5 3.7 4.1 4.1 4.7 9.2 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 30.6 3.9 4.4 4.0 4.4 4.2 4.4 4.8 5.3 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.7 4.1 2.6 3.8 3.53.7 4.0 4.0 4.7 9.0 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
25
APR
03
03
15
29 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 .09 .07 .07 E.03 <.015 .05 .04 E.03 .06 | GEN, AM- MONTA + ORGANIC DIS. (mg/L as N) (00623) .41 .45 .44 .35 .4141 .40 .41 .47 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 .98 .97 .96 .90 1.0 1.1 1.0 1.4 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 1.20 2.32 3.19 2.80 <.013 2.99 2.44 2.47 2.11 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .017 .014 <.002 .017 .011 .012 .020 | GEN,PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .5343 .50 .47 .58 | PHORUS DIS- SOLVED (mg/L as P) (00666) .140 .093 .091 .111 .081084 .061 .064 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074
.103
.060
<.007
.063 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 .2322 .232333 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.7 4.2 2.6 3.8 3.5 3.7 4.1 4.1 4.7 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC
DIS-
SOLVED
(mg/L
as C)
(00681)
30.6
3.9
4.4
4.0
4.4
4.2
4.4 | ORGANIC PARTIC- ULATE TOTAL (mg/L as C) (00689) 3.7 4.1 2.6 3.8 3.5 3.7 4.0 4.0 4.7 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03
03
29
MAY | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 .09 .07 .07 E.03 <.015 .05 .04 E.03 .06 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC DIS. (mg/L as N) (00623) .41 .45 .44 .35 .4141 .40 .41 .47 .50 .46 .43 .36 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .82 .98 .97 .96 .90 1.0 1.1 1.0 1.4 1.7 2.2 1.5 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .90 1.20 2.32 3.19 2.80 <.013 2.99 2.44 2.47 2.11 2.13 2.19 1.64 2.96 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .017 .014 <.002 .017 .011 .012 .020 .071 .041 .055 .017 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .5343 .50 .47 .58 1.06 .60 .88 .44 | PHORUS DIS- SOLVED (mg/L as P) (00666) .140 .093 .091 .111 .081084 .061 .089 .090 .079 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074
.103
.060
<.007
.063
.064
.050
.061
.067 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 .2322 .23 .23 .33 .57 .62 .53 .38 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.7 4.2 2.6 3.8 3.5 3.7 4.1 4.7 9.2 5.8 9.4 3.4 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 30.6 3.9 4.4 4.0 4.4 4.4 4.2 4.4 4.8 5.3 5.6 6.0 5.0 | ORGANIC PARTIC-ULATE TOTAL (mg/L as C) (00689) 3.7 4.1 2.6 3.8 3.53.7 4.0 4.7 9.0 | | OCT | GEN, AMMONIA DIS-SOLVED (mg/L as N) (00608) .05 .09 .07 .07 E.03 <.015 .05 .04 E.03 .06 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONTA + ORGANIC DIS. (mg/L as N) (00623) .41 .45 .44 .35 .4141 .47 .50 .46 .43 | GEN, AM- MONTA + ORGANIC TOTAL (mg/L as N) (00625) .82 .98 .97 .96 .90 1.0 1.1 1.0 1.4 1.7 2.2 1.5 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 1.20 2.32 3.19 2.80 <.013 2.99 2.44 2.47 2.11 2.13 2.19 1.64 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .017 .014 <.002 .017 .011 .012 .020 .071 .041 .055 .017 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .5343 .50 .47 .58 1.06 .60 .88 | PHORUS DIS- SOLVED (mg/L as P) (00666) .140 .093 .091 .111 .081084 .061 .064 .081 .089 .090 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074
.103
.060
<.007
.063
.048
.050
.061
.067 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 .2322 .23 .33 .57 .62 .53 .38 .22 | INORG + ORGANIC PARTIC. TOTAL (mg/L as C) (00694) 3.7 4.2 2.6 3.8 3.5 3.7 4.1 4.7 9.2 5.8 9.4 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 30.6 3.9 4.4 4.0 4.4 4.4 4.8 5.3 5.6 6.0 5.0 4.8 | ORGANIC PARTIC-ULATE TOTAL (mg/L as c) (00689) 3.7 4.1 2.6 3.8 3.53.7 4.0 4.7 9.0 5.5 9.3 3.3 1.8 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03
03
15
29
MAY
09
14
JUN
12
JUN | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .05 .09 .07 .07 E.03 <.015 .05 .04 E.03 .06 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM-MONTA + ORGANIC DIS. (mg/L as N) (00623) .41 .45 .44 .35 .4141 .47 .50 .46 .43 .36 .33 .31 | GEN, AM- MONTA + ORGANIC TOTAL (mg/L as N) (00625) .82 .98 .97 .96 .90 1.0 1.1 1.0 1.4 1.7 2.2 1.5 1.1 .8173 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 1.20 2.32 3.19 2.80 <.013 2.99 2.44 2.47 2.11 2.13 2.19 1.64 2.96 2.54 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .017 .014 <.002 .017 .011 .012 .020 .071 .041 .055 .017 .008008 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .5343 .50 .47 .58 1.06 .60 .88 .44 .2047 | PHORUS DIS- SOLVED (mg/L as P) (00666) .140 .093 .091 .111 .081084 .061 .064 .081 .089 .090 .079 .106 .129 | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) .125 .079 .074 .103 .060 <.007 .063 .048 .050 .061 .067 .071 .067 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 .2322 .23 .33 .57 .62 .53 .38 .22 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.7 4.2 2.6 3.8 3.5 3.7 4.1 4.7 9.2 5.8 9.4 3.4 1.8 2.9 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 30.6 3.9 4.4 4.0 4.4 4.2 4.4 4.8 5.3 5.6 6.0 5.0 4.8 4.6 | ORGANIC PARTIC-ULATE TOTAL (mg/L as c) (00689) 3.7 4.1 2.6 3.8 3.5 3.7 4.0 4.0 4.7
9.0 5.5 9.3 3.3 1.8 2.7 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
05
25
APR
03
03
15
29
MAY
09
14
JUN
12
JUL
10 | GEN, AMMONIA DIS-SOLVED (mg/L as N) (00608) .05 .09 .07 .07 E.03 <.015 .05 .04 E.03 .06 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONTA + ORGANIC DIS. (mg/L as N) (00623) .41 .45 .44 .35 .4141 .47 .50 .46 .43 .36 .33 | GEN, AM- MONTA + ORGANIC TOTAL (mg/L as N) (00625) .82 .98 .97 .96 .90 - 1.0 1.1 1.0 1.4 1.7 2.2 1.5 1.1 .81 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .90 1.20 2.32 3.19 2.80 <.013 2.99 2.44 2.47 2.11 2.13 2.19 1.64 2.96 2.54 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .016 .010 .017 .014 <.002 .017 .011 .012 .020 .071 .041 .055 .017 | GEN, PAR TICULTE WAT FLT SUSP (mg/L as N) (49570) .45 .48 .28 .55 .5343 .50 .47 .58 1.06 .60 .88 .44 .20 | PHORUS DIS- SOLVED (mg/L as P) (00666) .140 .093 .091 .111 .081084 .061 .089 .090 .079 .106 .129 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.125
.079
.074
.103
.060
<.007
.063
.050
.061
.067
.067 | PHORUS TOTAL (mg/L as P) (00665) .26 .23 .169 .25 .2322 .23 .33 .57 .62 .53 .38 .22 | INORG + ORGANIC PARTIC. TOTAL (mg/L as c) (00694) 3.7 4.2 2.6 3.8 3.5 3.7 4.1 4.7 9.2 5.8 9.4 3.4 1.8 | INOR-GANIC, PARTIC. TOTAL (mg/L as C) (00688) <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <.1 <. | ORGANIC DIS- SOLVED (mg/L as C) (00681) 30.6 3.9 4.4 4.0 4.4 4.4 4.8 5.3 5.6 6.0 5.0 4.8 | ORGANIC PARTIC-ULATE TOTAL (mg/L as c) (00689) 3.7 4.1 2.6 3.8 3.53.7 4.0 4.7 9.0 5.5 9.3 3.3 1.8 | ## 07022000 MISSISSIPPI RIVER AT THEBES, IL--Continued (National Stream-Quality Accounting Network) | DATE | PHEO-
PHYTIN
A,
PHYTO-
PHYTON
(µg/L)
(62360) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | CHLOR-A PHYTO- PLANK- TON CHROMO FLUOROM (µg/L) (70953) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ANTI-
MONY,
DIS-
SOLVED
(µg/L
as Sb)
(01095) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | BARIUM,
DIS-
SOLVED
(µg/L
as Ba)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | BORON,
DIS-
SOLVED
(µg/L
as B)
(01020) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | |---|--|---|---|---|---|--|--|---|--|--|--|--|---| | OCT
17 | 24.2 | 170 | 270 | 48 | 22.4 | | | 2.2 | | | 74 | | | | NOV
26 | 24.3 | 380 | к365 | 405 | 16.1 | 6 | .28 | 1.8 | 60 | <.06 | 74 | E.02 | <.8 | | JAN
14 | 10.4 | 58 | 88 | 142 | 32.0 | | | 1.4 | | | 72 | | | | FEB
13 | 14.2 | K25 | K54 | 44 | 32.2 | | | 1.3 | | | 52 | | | | MAR
06 | 22.9 | 44 | 92 | 115 | 32.5 | | | 1.1 | | | 50 | | | | 06
25 | 19.4 | K52 | K320 | K62 | 30.5 | <1
3 | .16
.05 | <.2
1.2 | <1
61 | <.06
<.06 | <7
52 | <.04
.08 | <.8
<.8 | | APR
03 | 25.5 | 50 | 62 | 48 | 33.2 | | | 1.3 | | | 44 | | | | 03
15 | 26.3 | 320 | 480 | 516 | 22.3 | | | 1.3 | | | 44
48 | | | | 29
MAY
09 | 27.6
19.4 | K110
1400 | 840
2800 | 1060
9800 | 17.0
15.3 | | | 1.3 | | | 35
30 | | | | 14
JUN | 12.1 | 1300 | 1850 | 3200 | 8.8 | | | 1.3 | | | 29 | | | | 12
JUL | 9.9 | 120 | K362 | 105 | 6.9 | 3 | .23 | 1.7 | 70 | <.06 | 40 | E.02 | <.8 | | 10 | 17.9 | 46 | 105 | K17 | 36.5 | | | 2.3 | | | 51
 | | | | 10
AUG | 20.2 | | | | 40.4 | | | 2.3 | | | 52 | | | | 14
14 | 22.8 | 400 | 440 | 1480 | 44.4 | | | 2.8
2.7 | | | 73
74 | | | | SEP
11
11 | 27.7 | 21 | 34 | 85
 | 52.8 | 3 | .41 | 2.7 | 71
 | <.06 | 69
 | E.02 | <.8 | | | | | | | | | | | | | | | | | DATE | COBALT,
DIS-
SOLVED
(µg/L
as Co)
(01035) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LITHIUM
DIS-
SOLVED
(µg/L
as Li)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MOLYB-
DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | SILVER,
DIS-
SOLVED
(µg/L
as Ag)
(01075) | STRON-
TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT | DIS-
SOLVED
(µg/L
as Co) | DIS-
SOLVED
(µg/L
as Cu) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb) | DIS-
SOLVED
(µg/L
as Li)
(01130) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | DENUM,
DIS-
SOLVED
(µg/L
as Mo) | DIS-
SOLVED
(µg/L
as Ni) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Ag) | TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | DIS-
SOLVED
(µg/L
as Zn) | | | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED
(µg/L
as Sr) | DIUM,
DIS-
SOLVED
(µg/L
as V) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT
17
NOV | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li)
(01130) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT
17
NOV
26
JAN | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | DIS-
SOLVED (µg/L
as Zn)
(01090) | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06 | DIS-
SOLVED
(µg/L
as Co)
(01035) | DIS-
SOLVED
(μg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10
<10 | DIS-
SOLVED
(μg/L
as Pb)
(01049) | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6
8.2
8.5 | NESE,
DIS-
SOLVED (µg/L
as Mn)
(01056) | DENUM, DIS- SOLVED (µg/L as Mo) (01060) 2.9 | DIS-
SOLVED
(µg/L
as Ni)
(01065) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
1.3
.9
1.1
1.0 | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED (µg/L
as Sr) (01080)
221
280
246
186 | DIUM,
DIS-
SOLVED (µg/L
as V)
(01085)
3.3
2.2
2.7
2.1 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06 | DIS-
SOLVED (µg/L
as Co) (01035) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.10 | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | DENUM,
DIS-
SOLVED
(μg/L
as Mo)
(01060) |
DIS-
SOLVED
(µg/L
as Ni)
(01065)

.60 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)
1.3
.9
1.1 | DIS-
SOLVED
(µg/L
as Ag)
(01075) | TIUM,
DIS-
SOLVED (µg/L
as Sr)
(01080)
221
280
246 | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085)
3.3
2.2
2.7 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03 | DIS-
SOLVED (µg/L as Co) (01035)2422 .29 | DIS-
SOLVED
(μg/L
as Cu)
(01040)

1.5

<.2
1.8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10
<10
<10
e6
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.10

<.08
E.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6
8.2
8.5
<.3
8.8 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

2.2

<.1
1.7 | DENUM, DIS- SOLVED (µg/L as Mo) (01060) 2.9 <.2 1.8 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

.60

<.06
2.32 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
1.3
.9
1.1
1.0
<.3
1.0 | DIS-
SOLVED
(µg/L
as Ag)
(01075)

<1

<1
<1
<1 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 221 280 246 186 199 <.08 187 | DIUM,
DIS-
SOLVED (µg/L
as V)
(01085)
3.3
2.2
2.7
2.1
1.1
<.2
.8 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

3

<1
2 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
05
APR
03
03 | DIS- SOLVED (µg/L as Co) (01035) 24 <.02 .29 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

1.5

<.2
1.8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10
<10
<10
<10
56 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.10

<.08
E.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6
8.2
8.5
<.3
8.8
9.2
8.9 | NESE,
DIS-
SOLVED (µg/L
as Mn)
(01056)

2.2

<.1
1.7 | DENUM, DIS- SOLVED (μg/L as Mo) (01060) 2.9 <.2 1.8 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

.60

<.06
2.32 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)
1.3 .9 1.1 1.0 .3 1.0 .3 1.0 | DIS-
SOLVED
(µg/L
as Ag)
(01075)

<1

<1
<1

<1
<1 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 221 280 246 186 199 <.08 187 | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085)
3.3
2.2
2.7
2.1
1.1
<.2
.8
2.2
2.0
2.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

3

<1
2 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
05
APR
03
03
15 | DIS-
SOLVED
(µg/L
as Co)
(01035)

.24

<.02
.29

 | DIS-
SOLVED
(μg/L
as Cu)
(01040)

1.5

<.2
1.8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10
<10
<10
57
E6 | DIS-
SOLVED
(μg/L
as Pb)
(01049)

.10

<.08
E.08 | DIS-
SOLVED (µg/L as Li) (01130)
15.2
19.5
11.6
8.2
8.5
<.3
8.8
9.2
8.9
8.0
6.1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

2.2

<.1
1.7 | DENUM, DIS- SOLVED (µg/L as Mo) (01060) 2.9 <.2 1.8 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

.60

<.06
2.32 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
1.3
.9
1.1
1.0
1.0
<.3
1.0 | DIS-
SOLVED
(µg/L
as Ag)
(01075)

<1

<1
<1

 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 221 280 246 186 199 <.08 187 193 190 171 132 | DIUM,
DIS-
SOIVED (µg/L
as V)
(01085)
3.3
2.2
2.7
2.1
1.1
<.2
.8
2.2
2.0
2.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

3

<1
2

 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03
03
15
29
MAY | DIS- SOLVED (µg/L as Co) (01035) 24 <.02 .29 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

1.5

<.2
1.8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10
<10
<10
<10
56 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.10

<.08
E.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6
8.2
8.5
<.3
8.8
9.2
8.9 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

2.2

<.1
1.7 | DENUM, DIS- SOLVED (µg/L as Mo) (01060) 2.9 <.2 1.8 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

.60

<.06
2.32 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)
1.3 .9 1.1 1.0 .3 1.0 .3 1.0 | DIS-
SOLVED
(µg/L
as Ag)
(01075)

<1

<1
<1

<1
<1 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 221 280 246 186 199 <.08 187 | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085)
3.3
2.2
2.7
2.1
1.1
<.2
.8
2.2
2.0
2.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

3

<1
2 | | OCT 17 NOV 26 JAN 14 FEB 13 MAR 06 06 25 APR 03 15 29 MAY 09 | DIS- SOLVED (µg/L as Co) (01035) 24 <.02 .29 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

1.5

<.2
1.8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10
<10
<10
<10
57
E6 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.10

<.08
E.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6
8.2
8.5
<.3
8.8
9.2
8.9
8.0
6.1
4.8 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

2.2

<.1
1.7 | DENUM, DIS- SOLVED (μg/L as Mo) (01060) 2.9 <.2 1.8 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

.60

<.06
2.32 | NIUM,
DIS-
SOLVED (µg/L
as Se) (01145)
1.3 .9 1.1 1.0 1.0 4.3 1.0 1.1 1.1 8 .5 | DIS-
SOLVED (µg/L as Ag) (01075) | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 221 280 246 186 199 <.08 187 193 190 171 132 | DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085)
3.3
2.2
2.7
2.1
1.1
<.2
.8
2.2
2.0
2.2
2.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

3

<1
2 | | OCT 17 NOV 26 JAN 14 FEB 13 MAR 06 06 25 APR 03 15 29 MAY 09 14 JUN 12 | DIS- SOLVED (µg/L as Co) (01035) 24 <.02 .29 | DIS-
SOLVED (μg/L
as Cu) (01040) 1.5 <.2 1.8 | DIS-
SOLVED (µg/L as Fe) (01046)
<10
E6
E8
<10
<10
<10
E6
<10
57
E6 | DIS-
SOLVED
(μg/L
as Pb)
(01049)

.10

<.08
E.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6
8.2
8.5
<.3
8.8
9.2
8.9
8.0
6.1
4.8
3.2 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

2.2

<.1
1.7 | DENUM, DIS- SOLVED (μg/L as Mo) (01060) 2.9 <.2 1.8 | DIS- SOLVED (µg/L as Ni) (01065) 60 <.06 2.32 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
1.3
.9
1.1
1.0
.3
1.0
.3
1.0 | DIS-
SOLVED (µg/L as Ag) (01075) <1 <1 <1 <1 <1 <1 <1 <1 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 221 280 246 186 199 <.08 187 193 190 171 132 113 | DIUM,
DIS-
SOIVED (µg/L
as V)
(01085)
3.3
2.2
2.7
2.1
1.1
<.2
.8
2.2
2.0
2.2
2.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090) 3 <1 2 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03
03
15
29
MAY
09
14
JUN
12
JUL
10 | DIS- SOLVED (µg/L as Co) (01035) 24 <.02 .2920 | DIS-
SOLVED (μg/L as Cu) (01040) 1.5 <.2 1.8 1.9 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10
<10
E6
<10
<10
57
E6
11
20
<10
<10 | DIS-
SOLVED
(μg/L
as Pb)
(01049)

.10

<.08
E.08

<.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6
8.2
8.5
<.3
8.8
9.2
8.9
8.0
6.1
4.8
3.2
7.2
11.4 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

2.2

<.1
1.7

 | DENUM, DIS- SOLVED (µg/L as Mo) (01060) 2.9 <.2 1.8 1.9 | DIS-
SOLVED
(µg/L
as Ni)
(01065)

.60

<.06
2.32

2.66 | NIUM, DIS- SOLVED (µg/L as Se) (01145) 1.3 .9 1.1 1.0 1.0 <.3 1.0 1.1 1.1 .8 .5 .6 .5 .9 1.2 | DIS-
SOLVED (µg/L as Ag) (01075) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 < < < < < < < < < | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 221 280 246 186 199 <.08 187 193 190 171 132 113 147 181 | DIUM, DIS- SOLVED (µg/L as V) (01085) 3.3 2.2 2.7 2.1 1.1 <.2 .8 2.2 2.0 2.2 2.5 2.1 3.4 3.3 | DIS-
SOLVED (µg/L as Zn) (01090) 3 <1 2 <1 2 <1 <1 <1 <1 | | OCT 17 NOV 26 JAN 14 FEB 13 MAR 06 06 25 APR 03 15 29 MAY 09 14 JUN 12 JUL 10 10 | DIS-
SOLVED (μg/L as Co) (01035) 24 <.02 .292020 | DIS-
SOLVED (µg/L as Cu) (01040) 1.5 <.2 1.8 1.9 1.9 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
E6
E8
<10
<10
<10
<10
20
<10
57
E6
11
20
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.10

<.08
E.08

<.08 | DIS-
SOLVED
(µg/L
as Li)
(01130)
15.2
19.5
11.6
8.2
8.5
<.3
8.8
9.2
8.9
8.0
6.1
4.8
3.2
7.2 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

2.2

<.1
1.7 | DENUM, DIS- SOLVED (μg/L as Mo) (01060) 2.9 <.2 1.8 1.9 | DIS-
SOLVED (µg/L as Ni) (01065) 60 <.06 2.32 2.66 | NIUM, DIS- SOLVED (µg/L as Se) (01145) 1.3 .9 1.1 1.0 1.0 <.3 1.0 1.1 1.1 .8 .5 .6 .5 .9 1.2 | DIS-
SOLVED (µg/L as Ag) (01075) <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 | TIUM, DIS- SOLVED (µg/L as Sr) (01080) 221 280 246 186 199 <.08 187 193 190 171 132 113 147 181 | DIUM,
DIS-
SOLVED (µg/L
as V)
(01085)
3.3
2.2
2.7
2.1
1.1
<.2
.8
2.2
2.0
2.2
2.5
2.1
2.6
3.4 | DIS-
SOLVED
(µg/L
as
Zn)
(01090)

3

<1
2

<1
2 | ## 07022000 MISSISSIPPI RIVER AT THEBES, IL--Continued (National Stream-Quality Accounting Network) | DATE | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | |--|--|--|--|--|--|--|--|---|--|--|--|--|--| | OCT
17 | <.002 | .034 | <.002 | <.005 | .225 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.067 | | NOV
26 | <.002 | .027 | .010 | <.005 | .085 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.051 | | JAN
14 | <.006 | .039 | .005 | <.005 | .151 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.052 | | FEB
13 | <.006 | .025 | <.004 | <.005 | .190 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.053 | | MAR
06 | <.002 | .027 | <.002 | <.005 | .131 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.026 | | 06
25 | <.006 | .015 | .016 | <.005 | .093 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.036 | | APR
03 | <.006 | <.010 | .005 | <.005 | .099 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.036 | | 03
15
29 | <.006
<.006 | .052
.434 | <.004
.040 | <.005
<.005 | .304
4.35 | <.010
<.010 | <.002
<.002 | <.041
<.041 | <.020
<.020 | <.005
<.005 | <.018
<.020 | <.003
<.003 | E.035
E.105 | | MAY
09
14 | <.006
<.006 | .322 | .031 | <.005
<.005 | 3.03
4.09 | <.010
<.010 | <.002
<.002 | E.005
E.004 | <.020
E.004 | <.005
<.005 | <.018
E.015 | <.003
<.003 | E.174
E.259 | | JUN
12 | <.006 | .679 | .019 | <.005 | 2.80 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.177 | | JUL
10 | <.006 | .117 | .015 | <.005 | 1.04 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.221 | | 10 | <.006
<.006 | <.006 | <.004 | <.005
<.005 | <.007
1.14 | <.010
<.010 | <.002 | <.041
<.041 | <.020 | <.005
<.005 | <.018
E.010 | <.003 | <.006
E.165 | | AUG
14
14 | <.006 | .016 | .005 | <.005 | .354 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.097 | | SEP
11
11 | <.006
<.006 | .014
<.006 | <.004
<.004 | <.005
<.005 | .180
<.007 | <.010
<.010 | <.002
<.002 | <.041
<.041 | <.020
<.020 | <.005
<.005 | <.018
<.018 | <.003
<.003 | E.053 | | | | | | | | | | | | | | | | | DATE | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(μg/L)
(39415) | | OCT | AZINON,
DIS-
SOLVED
(µg/L) | ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | | | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | ELDRIN
DIS-
SOLVED
(µg/L) | FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L) | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L)
 | OCT
17
NOV | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLITRD 0.7µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | | OCT
17
NOV
26
JAN
14
FEB
13 | AZINON,
DIS-
SOLVED
(µg/L)
(39572)
.007 | ELDRIN
DIS-
SOLVED
(µg/L)
(39381)
<.005 | FOTON WATER FLTRD 0.7 µ GF, REC (µg/L) (82677) <.02 | WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82668)
<.002 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663)
<.009 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <.005 | WATER DISS REC (µg/L) (04095) < .003 < .003 | DIS-
SOLVED
(µg/L)
(39341)
<.004 | URON WATER FLTRD 0.7μ GF, REC (μg/L) (82666) <.035 <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)
<.027
<.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006 | LACHLOR
WATER
DISSOLV
(µg/L)
(39415)
.047 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06 | AZINON,
DIS-
SOLVED
(µg/L)
(39572)
.007
.007 | ELDRIN
DIS-
SOLVED
(µg/L)
(39381)
<.005
<.005 | FOTON WATER FLTRD 0.7 µ GF, REC (µg/L) (82677) < .02 < .02 < .02 | WATER FLIRD 0.7 µ GF, REC (µg/L) (82668) < .002 < .002 < .002 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663)
<.009
<.009 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672)
<.005
<.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)
<.004
<.004 | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)
<.027
<.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)
<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
25 | AZINON,
DIS-
SOLVED
(μg/L)
(39572)
.007
.007
<.005 | ELDRIN
DIS-
SOLVED
(µg/L)
(39381)
<.005
<.005
<.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) < .02 < .02 < .02 < .02 | WATER FLIRD 0.7 µ GF, REC (µg/L) (82668) <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 | PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672)
<.005
<.005
<.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 | DIS-
SOLVED
(µg/L)
(39341)
<.004
<.004
<.004 | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 | AZIN-
PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
25
APR
03 | AZINON, DIS- SOLVED (μg/L) (39572) .007 .007 .005 .005 .005 .005 .005 .00 | ELDRIN DTS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) | WATER FLITRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 < .005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) (39341) (3904 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 0 0 | URON WATER FLITRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 | PARA- THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.006 <.020 <.006053 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 .068 .053039 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03
03 | AZINON, DIS- SOLVED (µg/L) (39572) .007 .007 .005 .005 E.003 .005 E.003 | ELDRIN DTS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | WATER FLITRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FITTRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005005 <.005005 <.005005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)
<.004
<.004
<.004
<.004

<.004
<.004

<.004 | URON WATER FITRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
<.006
<.006
<.020
<.006

.053
<.006

.053 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 .068 .053039 .029 .066 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
25
APR
03
03
15 | AZINON, DIS- SOLVED (μg/L) (39572) .007 .007 .005 .005 .005 E.003 .008 | ELDRIN DIS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITED 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668)
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002
<.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341)
<.004
<.004
<.004
<.004

<.004

<.004

<.004

<.004 | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7
µ
GF, REC
(µg/L)
(82667)
<.006
<.006
<.006
<.020
<.006
 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 .068 .053039 .029066 .652 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
06
25
APR
03
03
15
29
MAY | AZINON, DIS- SOLVED (µg/L) (39572) .007 .007 .005 .005 E.003 .005 E.003 | ELDRIN DTS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITRD 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | WATER FLITRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FITTRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005005 <.005005 <.005005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)
<.004
<.004
<.004
<.004

<.004
<.004

<.004 | URON WATER FITRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)
<.006
<.006
<.006
<.020
<.006

.053
<.006

.053 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 .068 .053039 .029 .066 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
05
25
APR
03
03
15
29
MAY
09
14
JUN | AZINON, DIS- SOLVED (µg/L) (39572) .007 .007 .005 .005 E.003 .005 E.003 .008 | ELDRIN DTS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FILTRD 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | WATER FLITRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FITRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS WAT FLT 0.7 μ GF, REC (μg/L) (82686) < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 < .050 | PARA-THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.020 <.06053 <.006 <.006 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 .068 .053039 .029 .066 .652 .396 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
25
APR
03
03
15
29
MAY | AZINON, DIS- SOLVED (μg/L) (39572) .007 .007 .005 .005 .005 E.003 .008 .011 .009 | ELDRIN DTS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITED 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.0 | WATER FLTRD 0.7 μ GF, REC (μg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 <.050 | PARA-THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.006 <.020 <.006053 <.006 <.006 <.006 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 .068 .053039 .029066 .652 .396 .680 | | OCT
17
NOV
26
JAN
14
FEB
13
MAR
06
05
25
APR
03
03
15
29
MAY
09
14
JUN
12
JUN
12
JUL
10 | AZINON, DIS- SOLVED (µg/L) (39572) .007 .007 .005 .005 E.003 .008 .011 .009 .005 E.003 .005 E.003 | ELDRIN DTS- SOLVED (µg/L) (39381) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | FOTON WATER FLITED 0.7 µ GF, REC (µg/L) (82677) <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | WATER FLITRD 0.7 µ GF, REC (µg/L) (82668) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITED 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FITTRD 0.7µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)
<.050
<.050
<.050
<.050
<.050
<.050
<.050
<.050
<.050
<.050
<.050
<.050 | PARA-THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.006 <.020 <.006053 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) .047 .031 .051 .068 .053039 .029 .066 .652 .396 .680 .727 .211 <.013 | #### 07022000 MISSISSIPPI RIVER AT THEBES, IL--Continued (National Stream-Quality Accounting Network) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | WATER- | QUALITY DA | ATA, WATE | R YEAR OC | TOBER 200 | 1 TO SEPT | EMBER 200 | 2 | | | | |-----------|--|--|---|--|--|---|---|--|--|---|---|---|--| | DATE | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) |
NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | | OCT
17 | <.006 | <.002 | <.007 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | | NOV
26 | <.006 | <.002 | <.007 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | JAN
14 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | FEB
13 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | MAR
06 | <.006 | <.002 | <.007 | <.003 | <.007 | <.002 | <.010 | <.006 | <.011 | <.01 | <.001 | <.010 | <.011 | | 06 | | | | | | | | | | | | | | | 25
APR | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | 03
03 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | M
 | <.004 | <.010 | <.011 | | 15
29 | .010
<.010 | <.002
<.002 | <.007
<.007 | <.003
<.003 | <.010
<.010 | <.004
<.004 | <.022
<.022 | <.006
<.006 | <.011
<.011 | M
<.01 | <.004
<.004 | <.010
<.010 | <.011
<.011 | | MAY
09 | .009 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | М | <.004 | <.010 | <.011 | | 14
JUN | .020 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | M | <.004 | <.010 | <.011 | | 12 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | | JUL
10 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | | 10
10 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.003
<.003 | <.010
<.010 | <.004
<.004 | <.022
<.022 | <.006
<.006 | <.011
<.011 | <.01
E.01 | <.004
<.004 | <.010
<.010 | <.011
<.011 | | AUG
14 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | | 14
SEP | | | | | | | | | | | | | | | 11
11 | <.006
<.006 | <.002
<.002 | <.007
<.007 | <.003
<.003 | <.010
<.010 | <.004
<.004 | <.022
<.022 | <.006
<.006 | <.011
<.011 | E.01
<.01 | <.004
<.004 | <.010
<.010 | <.011
<.011 | | | | | | | | | | | | | | | | | DATE | PRO
PARG:
WAT!
FLT!
0.7
GF, 1
(µg, | ITE SI-
ER MAZI
RD WAT
µ DIS
REC REC
/L) (µg | NE, WATER, FLTS, 0.7
S, 0.7
S, GF, | JRON BACTER WATE
TRD FLTE
μ 0.7
REC GF, I | $^{\mathrm{LL}}$ BUF $^{\mathrm{RR}}$ WAT $^{\mathrm{RD}}$ FLT $^{\mathrm{\mu}}$ 0.7 REC GF, $^{^{\prime}}$ L) ($^{\mathrm{\mu}}$ g | OS BENC
ER WAT
RD FLT
µ 0.7
REC GF,
/L) (µg | CARB LATER WATER WATER FLT \[\mu \] 0.7 \[\text{REC GF,} \] (\mu \] | E FLU
ER ALI
RD WAT
μ 0.7
REC GF,
/L) (μg | N NATU
FLT DI
μ SOLV
REC (μg
/L) as | IUM SURAL SIES- DI
/ED % FI
/L TH
U) .062 | IAM. MEN
NER SUS
HAN PEN
mm (mg | TT,
-
DED
/L) | | | OCT
17 | < | 02 .0 | 17 <. | 02 <.03 | 34 <. | 02 <.0 | 05 <.0 | 002 <.0 | 109 - | - 88 | 3 11 | .0 | | | NOV
26 | <.0 | 02 .0 | 24 <. | 02 <.03 | 34 <. | 02 <.0 | 105 <.0 | 102 <.0 | 109 2. | 10 92 | 2 8 | 5 | | | JAN
14 | < | 02 .0 | 173 <. | 02 <.03 | 34 <. | 02 <.0 | 105 <.0 | 002 <.0 | 109 | - 61 | 4 | .6 | | | FEB
13 | < | 02 .0 | 42 <. | 02 <.03 | 34 <. | 02 <.0 | 105 <.0 | 102 <.0 | 109 | - 56 | 5 13 | 1 | | | MAR | | | | | | | | | | | | | | <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 < .005 <.005 <.005 <.005 <.005 <.02 <.02 <.02 < .02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.002 <.002 <.002 <.002 <.002 < .002 <.002 <.002 <.002 < .002 <.002 <.002 <.002 <.002 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 <.009 75 81 85 85 80 85 66 73 82 83 89 87 <.02 1.80 -- 1.62 -- -- 2.10 113 108 113 230 600 663 633 399 88 88 123 103 60 <.034 <.034 <.034 < .034 <.034 < .034 <.034 <.034 <.034 < .034 <.034 <.034 <.034 <.034 <.01 <.02 <.02 <.02 <.02 < .02 E.01 <.02 <.02 < .02 <.02 E.01 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 < .02 <.02 <.02 <.02 <.02 .048 .037 .047 .039 .231 .344 .308 .057 .030 <.005 .027 .014 .010 <.005 06... 06... 25... 03... 15... 29... 14... 12... 10... 10... 14... 11... SEP APR 03... MAY 09... JUN JUL 10... AUG 14... K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result less than the value shown. 07022000 MISSISSIPPI RIVER AT THEBES, IL--Continued (National Stream-Quality Accounting Network) | DAY | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | |----------------------------------|--|--------------------------------------|--|--|---------------------------------|--|--|--|--| | | | OCTOBER | | NC | VEMBER | | DEC | CEMBER | | | 1 | 136000 | 188 | 69000 | 146000 | 125 | 49300 | 157000 | 171 | 72300 | | 2 | 131000 | 223 | 78900 | 143000 | 131 | 50600 | 163000 | 121 | 53300 | | 3 | 125000 | 243 | 81700 | 138000 | 141 | 52400 | 163000 | 101 | 44400 | | 4 | 116000 | 223 | 70100 | 136000 | 139 | 50800 | 164000 | 108 | 48000 | | 5 | 106000 | 204 | 58600 | 137000 | 137 | 50500 | 164000 | 105 | 46400 | | 6 | 102000 | 196 | 54100 | 137000 | 141 | 52200 | 163000 | 96 | 42300 | | 7 | 105000 | 174 | 49100 | 139000 | 125 | 46900 | 157000 | 93 | 39600 | | 8 | 105000 | 157 | 44500 | 137000 | 122 | 45100 | 148000 | 97 | 38900 | | 9 | 108000 | 140 | 41000 | 131000 | 127 | 44900 | 140000 | 105 | 39400 | | 10 | 112000 | 133 | 40400 | 125000 | 127 | 42900 | 134000 | 108 | 39000 | | 11 | 118000 | 149 | 47400 | 126000 | 123 | 41800 | 132000 | 109 | 38900 | | 12 | 118000 | 174 | 55500 | 127000 | 116 | 39700 | 135000 | 98 | 35700 | | 13 | 124000 | 180 | 60200 | 124000 | 121 | 40400 | 143000 | 96 | 36900 | | 14 | 141000 | 211 | 80400 | 121000 | 111 | 36200 | 155000 | 95 | 39900 | | 15 | 145000 | 217 | 84800 | 118000 | 98 | 31200 | 164000 | 105 | 46500 | | 16 | 145000 | 170 | 66800 | 114000 | 89 | 27400 | 175000 | 148 | 70700 | | 17 | 144000 | 150 | 58200 | 112000 | 90 | 27100 | 227000 | 307 | 189000 | | 18 | 142000 | 130 | 49900 | 111000 | 97 | 29100 | 262000 | 381 | 269000 | | 19 | 144000 | 122 | 47400 | 108000 | 104 | 30200 | 261000 | 354 | 250000 | | 20 | 148000 | 106 | 42500 | 106000 | 105 | 30100 | 247000 | 310 | 207000 | | 21
22
23
24
25 | 152000
156000
148000
141000
156000 | 119
129
126
143
166 | 48800
54500
50400
54700
70000 | 105000
104000
104000
101000
101000 | 98
98
94
93
111 | 27700
27700
26400
25500
30600 | 232000
212000
202000
199000
187000 | 293
260
252
 | 183000
149000
137000
e128000
e108000 | | 26
27
28
29
30
31 | 175000
180000
168000
159000
158000
151000 | 163
180
168
156
150 | 77100
87800
76400
67000
64200
53400 | 115000
124000
122000
127000
140000 | 145
158
156
143
140 | 45100
52800
51400
48700
53200 | 167000
152000
145000
131000
114000
103000 |

 | e84900
e70600
e66600
e51700
e37400
e29800 | | | | JANUARY | | FE | BRUARY | | И | MARCH | | | 1
2
3
4
5 | 99600
104000
101000
96200
94000 |

91 | e26600
e29100
e26400
e23300
23100 | 173000
272000
313000
293000
257000 | 363
426
497
549
479 | 173000
314000
419000
435000
333000 | 157000
159000
164000
168000
168000 | 162
154
156
204
188 | 68900
66100
69200
92700
85500 | | 6 | 94200 | 97 | 24800 | 222000 | 403 | 242000 | 159000 | 145 | 62300 | | 7 | 97700 | 90 | 23700 | 200000 | 321 | 174000 | 143000 | 141 | 54400 | | 8 | 99500 | 80 | 21500 | 183000 | 240 | 119000 | 136000 | 141 | 51600 | | 9 | 98500 | 82 | 21900 | 169000 | 184 | 84300 | 152000 | 216 | 91800 | | 10 | 101000 | 86 | 23300 | 160000 | 159 | 68500 | 192000 | 561 | 291000 | | 11 | 107000 | 92 | 26700 | 156000 | 141 | 59100 | 198000 | 467 | 250000 | | 12 | 108000 | 92 | 26700 | 154000 | 129 | 53600 | 207000 | 360 | 200000 | | 13 | 106000 | 90 | 25800 | 149000 | 145 | 58700 | 212000 | 280 | 160000 | | 14 | 108000 | 92 | 26700 | 147000 | 127 | 50600 | 205000 | 274 | 151000 | | 15 | 108000 | 86 | 25000 | 147000 | 129 | 51000 | 197000 | 281 | 149000 | | 16 | 109000 | 82 | 24200 | 149000 | 114 | 45900 | 205000 | 336 | 186000 | | 17 | 105000 | 94 | 26800 | 148000 | 122 | 48700 | 209000 | 300 | 170000 | | 18 | 103000 | 83 | 23100 | 142000 | 131 | 50100 | 207000 | 294 | 164000 | | 19 | 103000 | 78 | 21500 | 137000 | 134 | 49600 | 209000 | 270 | 152000 | | 20 | 99500 | 79 | 21300 |
146000 | 141 | 55600 | 230000 | 249 | 154000 | | 21 | 99500 | 76 | 20300 | 147000 | 126 | 50000 | 231000 | 228 | 142000 | | 22 | 97900 | 80 | 21100 | 140000 | 143 | 54100 | 222000 | 200 | 120000 | | 23 | 95800 | 87 | 22500 | 140000 | 140 | 52900 | 220000 | 189 | 112000 | | 24 | 103000 | 117 | 32600 | 151000 | 122 | 49700 | 213000 | 171 | 98400 | | 25 | 104000 | 125 | 35300 | 160000 | 130 | 56500 | 213000 | 166 | 95500 | | 26
27
28
29
30
31 | 108000
105000
103000
103000
106000
117000 | 99
86
73
72
72
88 | 28600
24400
20500
20100
20600
28500 | 170000
173000
164000
 | 145
145
159
 | 66500
67600
70200

 | 247000
242000
226000
220000
223000
220000 | 210
228
186
172
178
174 | 140000
149000
114000
102000
107000
103000 | # 07022000 MISSISSIPPI RIVER AT THEBES, IL--Continued (National Stream-Quality Accounting Network) SEDIMENT DISCHARGE, SUSPENDED (TONS/DAY), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | MEAN
DISCHARGE
(cfs) | MEAN
CONCEN-
TRATION
(mg/L) | SEDIMENT
DISCHARGE
(tons/day) | |----------------------------------|--|--------------------------------------|--|--|--|--|--|--------------------------------------|---| | | | APRIL | | | MAY | | J | UNE | | | 1 | 206000 | 178 | 99000 | 439000 | 639 | 758000 | 445000 | 369 | 444000 | | 2 | 192000 | 171 | 88900 | 454000 | 681 | 835000 | 406000 | 337 | 370000 | | 3 | 180000 | 144 | 70300 | 454000 | 682 | 835000 | 375000 | 308 | 312000 | | 4 | 181000 | 131 | 63800 | 441000 | 587 | 700000 | 360000 | 263 | 256000 | | 5 | 182000 | 126 | 61600 | 427000 | 490 | 565000 | 351000 | 247 | 235000 | | 6 | 182000 | 129 | 63300 | 410000 | 376 | 416000 | 339000 | 224 | 204000 | | 7 | 181000 | 125 | 61200 | 401000 | 333 | 360000 | 327000 | 220 | 194000 | | 8 | 183000 | 133 | 65500 | 441000 | 405 | 487000 | 330000 | 202 | 180000 | | 9 | 193000 | 169 | 87800 | 508000 | 686 | 944000 | 342000 | 222 | 205000 | | 10 | 201000 | 170 | 92200 | 564000 | 891 | 1360000 | 353000 | 236 | 225000 | | 11 | 221000 | 180 | 108000 | 606000 | 987 | 1610000 | 363000 | 253 | 248000 | | 12 | 239000 | 231 | 149000 | 640000 | 766 | 1320000 | 378000 | 302 | 309000 | | 13 | 243000 | 240 | 158000 | 704000 | 675 | 1280000 | 402000 | 447 | 486000 | | 14 | 247000 | 276 | 184000 | 749000 | 601 | 1210000 | 420000 | 550 | 623000 | | 15 | 245000 | 271 | 179000 | 757000 | 546 | 1120000 | 441000 | 570 | 679000 | | 16 | 234000 | 228 | 144000 | 771000 | 588 | 1220000 | 453000 | 641 | 785000 | | 17 | 224000 | 203 | 123000 | 814000 | 562 | 1240000 | 453000 | 661 | 808000 | | 18 | 225000 | 183 | 111000 | 828000 | 534 | 1190000 | 444000 | 582 | 698000 | | 19 | 228000 | 194 | 119000 | 807000 | 490 | 1070000 | 427000 | 431 | 497000 | | 20 | 233000 | 214 | 134000 | 775000 | 407 | 852000 | 405000 | 368 | 402000 | | 21 | 248000 | 214 | 143000 | 738000 | 357 | 712000 | 378000 | 329 | 336000 | | 22 | 275000 | 243 | 181000 | 692000 | 318 | 594000 | 347000 | 276 | 259000 | | 23 | 318000 | 366 | 315000 | 649000 | 299 | 525000 | 320000 | 258 | 223000 | | 24 | 340000 | 457 | 421000 | 606000 | 269 | 440000 | 301000 | 264 | 214000 | | 25 | 344000 | 473 | 440000 | 559000 | 274 | 413000 | 287000 | 248 | 191000 | | 26
27
28
29
30
31 | 353000
352000
356000
373000
408000 | 478
472
509
586
600 | 456000
449000
490000
591000
661000 | 520000
494000
482000
487000
486000
472000 | 266
267
266
287
372
403 | 373000
356000
347000
378000
488000
513000 | 280000
271000
262000
255000
249000 | 216
197
172
155
145 | 161000
144000
122000
106000
97600 | | | | JULY | | 1 | AUGUST | | SEP | TEMBER | | | 1 | 246000 | 138 | 91900 | 149000 | 85 | 33900 | 186000 | 127 | 63900 | | 2 | 240000 | 141 | 91100 | 147000 | 81 | 32000 | 179000 | 111 | 53500 | | 3 | 232000 | 145 | 90800 | 143000 | 85 | 32600 | 170000 | 103 | 47000 | | 4 | 227000 | 129 | 78800 | 136000 | 89 | 32700 | 162000 | 110 | 48100 | | 5 | 222000 | 127 | 76200 | 130000 | 101 | 35400 | 153000 | 110 | 45600 | | 6 | 219000 | 134 | 79400 | 128000 | 111 | 38200 | 144000 | 116 | 45000 | | 7 | 214000 | 133 | 76900 | 125000 | 118 | 39800 | 134000 | 121 | 43700 | | 8 | 209000 | 129 | 72600 | 125000 | 149 | 50100 | 127000 | 131 | 44900 | | 9 | 204000 | 129 | 71000 | 125000 | 159 | 53500 | 124000 | 131 | 43700 | | 10 | 198000 | 128 | 68700 | 123000 | 128 | 42500 | 122000 | 110 | 36400 | | 11 | 196000 | 136 | 72100 | 118000 | 108 | 34400 | 123000 | 101 | 33300 | | 12 | 193000 | 142 | 73800 | 120000 | 103 | 33200 | 121000 | 96 | 31300 | | 13 | 194000 | 125 | 65600 | 122000 | 127 | 41800 | 121000 | 94 | 30600 | | 14 | 196000 | 121 | 63900 | 125000 | 150 | 50900 | 125000 | 111 | 37400 | | 15 | 194000 | 111 | 57600 | 128000 | 117 | 40300 | 126000 | 120 | 40700 | | 16 | 186000 | 104 | 52100 | 133000 | 102 | 36400 | 126000 | 96 | 32800 | | 17 | 177000 | 99 | 47500 | 135000 | 109 | 39900 | 126000 | 104 | 35300 | | 18 | 165000 | 105 | 46600 | 136000 | 113 | 41500 | 126000 | 123 | 41700 | | 19 | 159000 | 101 | 43400 | 139000 | 118 | 44000 | 127000 | 121 | 41600 | | 20 | 157000 | 95 | 40200 | 136000 | 107 | 39000 | 126000 | 116 | 39400 | | 21 | 153000 | 97 | 40200 | 144000 | 128 | 49400 | 131000 | 106 | 37400 | | 22 | 155000 | 90 | 37600 | 156000 | 91 | 38200 | 131000 | 105 | 37100 | | 23 | 161000 | 85 | 37000 | 158000 | 104 | 44200 | 123000 | 122 | 40500 | | 24 | 160000 | 84 | 36400 | 157000 | 110 | 46600 | 116000 | 94 | 29400 | | 25 | 159000 | 89 | 38500 | 171000 | 117 | 54100 | 115000 | 102 | 31400 | | 26
27
28
29
30
31 | 157000
155000
150000
147000
144000 | 83
75
78
78
92
108 | 35100
31300
31700
30900
35700
42000 | 206000
218000
213000
205000
195000
189000 | 156
174
185
187
170
148 | 86800
103000
107000
103000
89400
75500 | 114000
110000
104000
98800
96200 | 82
83
90
91
97 | 25300
24600
25500
24400
25200 | e Estimated ### 07035800 ST. FRANCIS RIVER NEAR MILL CREEK, MO LOCATION.--Lat $37^{\circ}30^{\circ}09^{\circ}$, long $90^{\circ}27^{\circ}28^{\circ}$, in NE $\frac{1}{4}$ sec.35, T.33 N., R.5 E., Madison County, Hydrologic Unit 08020202, on downstream side of Highway E bridge, 8.7 mi southwest of Mill Creek, and 2.9 mi downstream from Little St. Francis River. DRAINAGE AREA.--505 mi². PERIOD OF RECORD.--February 1987 to September 1997, October 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is 556.27 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHA | RGE, CUBI | C FEET PE | | WATER Y | | BER 2001 TO | SEPTEMBE | ER 2002 | | | |--|--|--|--|--|-------------------------------------|---|--|---|------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 11
9.1
8.4
7.6
8.6 | 47
44
40
37
32 | 995
535
390
316
270 | 196
184
173
163
159 | 10100
2500
1410
950
701 | 337
367
640
571
492 | 500
447
427
375
336 | 942
875
802
640
527 | 236
205
183
162
159 | 31
26
24
26
39 | 19
57
37
23
17 | 44
39
34
29
26 | | 6
7
8
9
10 | 9.9
11
11
12
13 | 28
27
28
27
26 | 380
527
425
341
286 | 168
170
163
161
162 | 591
529
459
408
369 | 455
423
388
11200
4480 | 310
298
4460
3010
1420 | 509
947
27600
14200
3590 | 175
161
137
125
141 | 30
24
20
18
18 | 15
13
11
14
20 | 34
42
40
39
38 | | 11
12
13
14
15 | 16
30
53
121
104 | 26
24
22
22
22 | 252
244
339
922
1330 | 157
151
145
138
133 | 327
295
271
248
233 | 1870
2590
1750
1190
928 | 922
699
e1230
e6600
2290 | 1660
4130
39600
6270
1910 | 147
153
232
212
150 | 20
46
56
59
66 | 22
23
40
721
244 | 37
31
21
16
15 | | 16
17
18
19
20 | 106
80
61
51
44 | 21
20
20
20
20
19 | 3860
11500
3830
1700
1020 | 126
122
120
126
129 | 220
206
192
443
3660 | 2070
1430
1010
3940
7890 | 1370
924
693
593
594 | 1250
30100
8600
2260
1270 | 118
101
85
72
66 |
42
30
25
21
20 | 118
72
58
64
1970 | 15
19
24
78
104 | | 21
22
23
24
25 | 37
32
34
267
495 | 19
20
20
42
159 | 731
600
530
444
380 | 126
129
144
343
511 | 1730
985
695
560
479 | 2950
1580
1130
890
1910 | 961
937
629
1060
2410 | 848
622
488
398
337 | 58
52
45
41
38 | 20
18
29
49
29 | 871
434
311
268
236 | 140
127
89
58
44 | | 26
27
28
29
30
31 | 260
155
105
80
64
55 | 160
126
131
286
1790 | 333
301
279
255
228
204 | 444
388
347
320
310
4880 | 455
402
360
 | 2740
1570
1090
852
700
583 | 1240
1260
2970
1720
979 | 289
256
354
801
381
285 | 35
32
39
47
40 | 21
17
15
13
11 | 160
117
90
72
60
52 | 40
37
34
31
27 | | MEAN
MAX
MIN
IN. | 75.9
495
7.6
0.17
TICS OF MC | 110
1790
19
0.24 | 1089
11500
204
2.49 | 354
4880
120
0.81 | 1064
10100
192
2.19 | 1936
11200
337
4.42 | 1389
6600
298
3.07 | 4927
39600
256
11.2 | 115
236
32
0.25 | 28.2
66
11
0.06 | 201
1970
11
0.46 | 45.1
140
15
0.10 | | MEAN
MAX
(WY)
MIN
(WY) | 90.4
438
1994
12.9
2001 | 771
3774
1994
23.9
2000 | 826
2428
1991
32.7
1990 | 791
2187
1993
141
2000 | 845
1745
1989
153
1996 | 888
1936
2002
304
2001 | 1098
2890
1994
159
2000 | 1135
4927
2002
64.5
1987 | 281
899
1997
16.4
1988 | 95.5
200
2001
28.2
2002 | 71.3
201
2002
4.18
1988 | 118
1153
1993
11.5
1987 | | SUMMAR | Y STATISTI | CS | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 | WATER YEAR | | FOR PI | ERIOD OF | RECORD | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
ANNUAL
10 PER
50 PER | MEAN T ANNUAL M ANNUAL M T DAILY MEA SEVEN-DAY M PEAK FLC M PEAK STA TANEOUS LC RUNOFF (I CENT EXCER CENT EXCER CENT EXCER | EAN EAN AN MINIMUM AGE DW FLOW ENCHES) EDS | | 342
11500
7.6
9.4

9.20
733
110
17 | Dec 17
Oct 4
Oct 1 | | 39600
7.6
9.4
68600
26.47
7.2
25.52
1740
168
20 | May 13
Oct 4
Oct 1
May 13
May 13
Oct 4,5 | | 597
949
194
72000
1.8
2.2
130000 ^a
33.10
1.7
16.05
1150
182
16 | Aug
Aug
Nov
Nov | 2002
2000
14 1993
18 1988
16 1988
14 1993
14 1993
18 1988 | e Estimated $$^{\rm a}$$ Discharge determined by indirect measurement. 378 ST. FRANCIS RIVER BASIN ## 07036100 ST. FRANCIS RIVER NEAR SACO, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $37^{\circ}23^{\circ}06^{\circ}$, long $90^{\circ}28^{\circ}27^{\circ}$, in NE $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.10, T.31 N., R.5 E., Madison County, Hydrologic Unit 08020202, 3.5 mi northwest of Saco, and 1.3 mi downstream from Twelve Mile Creek. DRAINAGE AREA.--664 mi². PERIOD OF RECORD--November 1983 to September 1989, November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
13 | 1610 ENVIRONMENTAL | | ENTAL | 96 | 13.0 | 122 | 7.0 | 252 | 11.8 | 120 | 24.9 | 14.2 | 2.21 | | JAN
23 | 0850 | ENVIRONMENTAL | | 234 | 13.9 | 109 | 7.9 | 250 | 3.8 | | | | | | MAR
06 | 1315 | ENVIRONMENTAL | | 781 | 15.3 | 125 | 8.2 | 180 | 5.8 | | | | | | MAY
15 | 1700 ENVIRONMENT 1510 ENVIRONMENT | | ENTAL | 2750 | 8.7 | 93 | 7.5 | 124 | 17.4 | 56 | 12.1 | 6.23 | .79 | | JUL
15 | | | ENTAL | 227 | 8.1 | 105 | 7.9 | 262 | 27.6 | | | | | | SEP
04 | 1430 | ENVIRONMENTAL | | 195 | 7.1 | 93 | 7.5 | 196 | 28.5 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC
WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
13 | 5.03 | 88 | 89 | 109 | 0 | 27.3 | E.1 | 10.8 | 58 | 124 | <.04 | .21 | <.05 | | JAN
23 | | 97 | 97 | 119 | 0 | | | | <10 | | <.04 | .18 | .20 | | MAR
06 | | 71 | 70 | 85 | 0 | | | | <10 | | <.04 | .12 | .11 | | MAY
15 | 2.81 | 47 | 46 | 56 | 0 | 2.10 | <.1 | 10.1 | 15 | 82 | <.04 | .27 | . 29 | | JUL
15 | | 118 | 117 | 143 | 0 | | | | <40 | | <.04 | .17 | <.05 | | SEP
04 | | 75 | 76 | 93 | 0 | | | | <10 | | <.04 | .22 | E.03 | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | . 000 | . 05 | | . 05 | W.O. | *** | 757 | 10 | 01 | _ | . 04 | , 1 | | | 13
JAN | <.008 | <.06 | <.02 | <.06 | K2 | K3 | K1 | 19 | 21 | .6 | <.04 | <.1 | <6 | | 23
MAR | <.008 | <.06 | <.02 | <.06 | K1 | K2 | 30 | | | | | | | | 06
MAY | E.005 | <.06 | <.02 | <.06 | <1 | K1 | К7 | | | | | | | | 15
JUL | <.008 | <.06 | E.01 | .07 | K180 | 900 | 380 | 123 | 270 | . 4 | <.04 | <.1 | <6 | | 15
SEP | <.008 | <.06 | <.02 | <.06 | К6 | K8 | 55 | | | | | | | | 04 | <.008 | <.06 | .02 | <.06 | K5 | K11 | К9 | | | | | | | # 07036100 ST. FRANCIS RIVER NEAR SACO, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |-----------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 13 | 53 | .73 | 1 | 11.7 | <.01 | E.2 | | 2 | | JAN | | | | | | | | | | 23 | | | | | | | | | | MAR | | | | | | | | | | 06 | | | | | | | | | | MAY | 1.55 | 4 00 | 1.0 | | 0.7 | - 0 | | 2 | | 15 | 166 | 4.07 | 19 | 15.7 | <.01 | E.2 | | 3 | | JUL
15 | | | | | | | | | | SEP | | | | | | | | | | 04 | | | | | | | | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric
result is less than the value shown. #### 07037000 BIG CREEK AT DES ARC, MO LOCATION.--Lat $37^{\circ}17^{\circ}35^{\circ}$, long $90^{\circ}37^{\circ}45^{\circ}$, in SE $\frac{1}{4}$ sec.8, T.30 N., R.4 E., Iron County, Hydrologic Unit 08020202, at bridge on State Highway 143 at north edge of Des Arc, 420 ft above Black Creek, and 6.0 mi above Pond Creek. DRAINAGE AREA. -- 99.6 mi². PERIOD OF RECORD.--July 1983 to Sept. 30, 1997, Oct. 1, 1998 to current year. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 507.89 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair. U.S. Army Corps of Engineers satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 9.2 8 1 6.9 6.3 5 8 70 17 25.9 49.3 78.0 53.1 MEAN 49.3 18.9 MAX 5 8 MTN 2.83 2.09 IN. 0.30 0.90 0.55 0.23 0.61 STATISTICS OF MONTHLY MEAN DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) MEAN 62.1 39.5 26.9 30.8 MAX (WY) MIN 16.1 22.5 25 5 37.0 38.5 83.0 45.3 28.9 15.0 11.9 7 67 6.50 (WY) SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR FOR PERIOD OF RECORD ANNUAL MEAN 95.8 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 55.6 HIGHEST DAILY MEAN Jul 29 May 13 May 13 2002 LOWEST DAILY MEAN Sep 5.8 Aug 10 2.8 Sep 4 1999 1 1999 ANNUAL SEVEN-DAY MINIMUM 8.0 Sep 28 Aug Sep May 13 MAXIMUM PEAK FLOW 25700a Nov 14 1993 MAXIMUM PEAK STAGE ---13.54 May 13 16.85 Nov 14 1993 2.5 INSTANTANEOUS LOW FLOW Aug 10,11 Sep 4 1999 ANNUAL RUNOFF (INCHES) 13.06 31.63 20.15 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS $^{^{\}rm a}\,$ Discharge determined by indirect measurement. # 07037300 BIG CREEK AT SAM A. BAKER STATE PARK (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°15'40", long 90°30'23", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.21, T.30 N., R.5 E., Wayne County, Hydrologic Unit 08020202, at Bridge 435 on County Highway NN in Sam A. Baker State Park. DRAINAGE AREA.--189 mi². PERIOD OF RECORD.--November 1992 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|---|--|---|--|---|---| | NOV
13 | 1350 | ENVIRONM | ENTAL | 30 | 10.1 | 94 | 7.4 | 300 | 11.8 | 160 | 32.3 | 18.3 | .55 | | JAN
23 | 1050 | ENVIRONM | ENTTAT | 58 | 12.7 | 106 | 7.6 | 249 | 6.6 | | | | | | MAR | | | | | | | | | | | | | | | 06
06
MAY | 0900
0905 | ENVIRONM
REPLICAT | | 212 | 12.8 | 104 | 8.0 | 197
 | 6.1
 | | | | | | 14
JUL | 1130 | ENVIRONM | ENTAL | 2700 | 9.5 | 96 | 7.5 | 106 | 15.3 | 51 | 11.0 | 5.80 | .32 | | 16 | 0910 | ENVIRONM | ENTAL | 37 | 6.8 | 85 | 7.8 | 278 | 25.6 | | | | | | SEP
04 | 1630 | ENVIRONM | ENTAL | 36 | 7.5 | 98 | 7.7 | 289 | 28.2 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
13 | 4.11 | 129 | 129 | 158 | 0 | 15.7 | E.1 | 12.9 | 24 | 160 | E.02 | <.10 | E.03 | | JAN
23 | | 115 | 116 | 142 | 0 | | | | <10 | | <.04 | E.08 | .17 | | MAR
06 | | 85 | 84 | 102 | 0 | | | | <10 | | <.04 | <.10 | .08 | | 06
MAY | | | | | | | | | <10 | | <.04 | <.10 | .08 | | 14 | 2.31 | 52 | 51 | 63 | 0 | 1.49 | <.1 | 7.1 | 12 | 74 | <.04 | .16 | .07 | | JUL
16 | | 136 | 137 | 167 | 0 | | | | <40 | | <.04 | <.10 | .05 | | SEP
04 | | 127 | 128 | 156 | 0 | | | | <10 | | <.04 | E.07 | .06 | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
mm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(mg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(mg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(mg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(mg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(mg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(mg/L
as Cu)
(01040) | | NOV | | | | | | | | | | | | | | | 13
JAN | <.008 | <.06 | <.02 | <.06 | K1 | К3 | K1 | 6 | 10 | . 2 | <.04 | <.1 | <6 | | 23
MAR | <.008 | <.06 | <.02 | <.06 | <1 | К3 | K1 | | | | | | | | 06
06
MAY | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | <1
 | K6
 | K4
 | | | | | | | | 14 | .008 | <.06 | <.02 | <.06 | 112 | 172 | 274 | 108 | 345 | .2 | .11 | . 2 | <6 | | JUL
16
SEP | <.008 | <.06 | <.02 | <.06 | К5 | K16 | 38 | | | | | | | | 04 | <.008 | <.06 | <.02 | <.06 | K2 | K7 | K26 | | | | | | | # 07037300 BIG CREEK AT SAM A. BAKER STATE PARK--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Zn)
(01090) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |-----------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 13
JAN | <10 | <.08 | <1 | E3.1 | <.01 | E.2 | 4 | 2 | | 23 | | | | | | | | | | MAR | | | | | | | | | | 06 | | | | | | | | | | 06 | | | | | | | | | | MAY | | | | | | | | | | 14 | 137 | 1.12 | 5 | 9.4 | E.01 | E.2 | | 7 | | JUL | | | | | | | | | | 16 | | | | | | | | | | SEP | | | | | | | | | | 04 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. #### 07037500 ST. FRANCIS RIVER NEAR PATTERSON, MO LOCATION.--Lat $37^{\circ}11^{\circ}40^{\circ}$, long $90^{\circ}30^{\circ}12^{\circ}$, in NE $\frac{1}{4}$ sec.16, T.29 N., R.5 E., Wayne County, Hydrologic Unit 08020202, near left bank on downstream side of bridge pier on State Highway 34, 1 mi upstream from Clark Creek, and 3 mi east of Patterson. DRAINAGE AREA. -- 956 mi². PERIOD OF RECORD.--October 1920 to Sept. 30, 1997, Oct. 1, 1998 to current year. Prior to June 1921, monthly discharge only, published in WSP 1311. REVISED RECORDS. -- WSP 732: 1922-23. GAGE.--Water-stage recorder. Datum of gage is 370.45 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1938, nonrecording gage at site 50 ft upstream at datum 2.00 ft higher; Oct. 1, 1938, to Apr. 12, 1939, nonrecording gage; Apr. 13, 1939, to Sept. 5, 1956, water-stage recorder at site 50 ft upstream at present datum; Sept. 6, 1956, to Sept. 26, 1958, nonrecording gage at present site and datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S. Army Corps of Engineer satellite telemeter at station. EXTREMES OUTSIDE PERIOD
OF RECORD.—Flood of August 1915 reached a stage of 33.8 ft, present datum, from floodmarks, discharge, $100,000 \, \mathrm{ft}^3/\mathrm{s}$, from rating curve extended above 55,000 ft $^3/\mathrm{s}$. | | | DISCHAR | RGE, CUBIC | FEET PER | | WATER Y
Y MEAN V | EAR OCTOBER
ALUES | R 2001 TO | SEPTEMBER | R 2002 | | | |--|---|--|---|--|---------------------------------------|--|---|---|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 52
50
49
47
52 | 171
157
147
139
131 | 3610
2050
1420
1120
934 | 528
479
446
416
387 | 19800
8140
3660
2560
1980 | 915
898
1100
1410
1290 | 1490
1330
1210
1110
995 | 2060
1900
1750
1560
1340 | e783
e682
e615
e564
e545 | 125
125
117
113
112 | 72
62
58
57
80 | 174
158
144
132
122 | | 6
7
8
9
10 | 57
56
53
50
57 | 124
119
113
107
104 | 872
1060
1210
1030
886 | 391
383
373
360
346 | 1660
1480
1330
1190
1070 | 1180
1090
1020
11300
16100 | 902
837
4170
8190
3790 | 1190
1360
21300
43400
13700 | e542
e531
e519
e497
e531 | 110
97
96
91
88 | 82
66
53
44
38 | 112
103
97
95
98 | | 11
12
13
14
15 | 151
139
155
208
244 | 102
99
97
95
93 | 776
728
832
1290
2690 | 331
316
305
292
279 | 964
866
781
710
644 | 4930
4160
4120
2930
2500 | 2490
2020
4930
7910
7510 | 5450
4030
56200
e34500
e16000 | e497
e510
e525
e559
e490 | 109
185
133
113
117 | 34
51
115
209
560 | 94
90
88
85
86 | | 16
17
18
19
20 | 275
253
232
202
175 | 90
89
89
89 | 4140
18900
14000
4710
2950 | 267
259
252
261
256 | 593
547
503
641
4440 | 3570
3720
2600
3710
14400 | 3660
2520
1980
1700
2360 | e5790
e45500
e31600
e13400
e5320 | e420
e370
321
281
251 | 126
129
122
113
108 | 382
267
260
186
272 | 87
84
84
83
130 | | 21
22
23
24
25 | 155
143
134
141
168 | 84
83
83
133
211 | 2160
1760
1520
1330
1160 | 254
252
270
644
1180 | 4680
2730
1980
1610
1390 | 8480
4080
2840
2290
2710 | 2610
2720
2130
4260
5590 | e3330
e2130
e1780
e1530
e1350 | 227
210
195
179
170 | 124
121
109
91
82 | 2960
1340
696
714
515 | 157
179
175
166
149 | | 26
27
28
29
30
31 | 654
507
351
274
225
193 | 237
388
472
814
2980 | 1020
901
810
735
662
594 | 1320
1160
1040
938
871
2270 | 1250
1140
1010
 | 6960
4350
2960
2330
1970
1710 | 3880
2660
3190
3930
2480 | e1210
e1180
e1330
e1660
e1260
e990 | 157
145
140
134
128 | 78
92
87
71
79
86 | 436
361
298
251
219
194 | 130
116
107
101
95 | | MEAN
MAX
MIN
IN. | 178
654
47
0.21 | 258
2980
83
0.30 | 2512
18900
594
3.03 | 552
2270
252
0.67 | 2477
19800
503
2.70 | 3988
16100
898
4.81 | 3152
8190
837
3.68
TER YEAR (V | 10490
56200
990
12.6 | 391
783
128
0.46 | 108
185
71
0.13 | 353
2960
34
0.43 | 117
179
83
0.14 | | MEAN
MAX
(WY)
MIN
(WY) | 354
3391
1985
29.0
1954 | 1021
6214
1994
48.1
1954 | 1322
12380
1983
60.9
1954 | 1456
6725
1950
64.9
1956 | 1587
4577
1951
125
1963 | 2129
6981
1945
178
1941 | 2370
9221
1927
287
1981 | 1823
10490
2002
139
1930 | 905
8724
1928
33.6
1936 | 325
2513
1957
21.3
1936 | 213
1478
1985
11.2
1936 | 241
2103
1965
14.8
1955 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YE | AR | FOR PE | ERIOD OF | RECORD | | LOWEST A
HIGHEST
LOWEST DANNUAL S
MAXIMUM
MAXIMUM
INSTANTA
ANNUAL DO
10 PERCE
50 PERCE | MEAN ANNUAL MANUAL ME DAILY MEA SEVEN-DAY PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS DS | | 757 18900 47 51 10.75 1640 246 73 | Dec
Oct
Sep | 4 | 2056
56200
34
52
77500
31.06
31
29.20
4100
497
87 | May
Aug
Oct
May
May
Aug 11, | 13
11
1
1
13
13 | 1143
2731
343
107000
8.0
8.4
155000°
35.77
8.0
16.24
2330
340
54 | Dec
Aug
Aug
Dec
Dec
Aug | 1985
1941
4 1982
28 1936
26 1936
3 1982
3 1982
28 1936 | e Estimated a Discharge determined by indirect measurement. #### 07039000 WAPPAPELLO LAKE AT WAPPAPELLO, MO LOCATION.--Lat 36°55'42", long 90°17'04", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.3, T.26 N., R.7 E., Wayne County, Hydrologic Unit 08020202, at intake tower at dam on St. Francis River, 0.8 mi southwest of Wappapello, and at mile 309. DRAINAGE AREA.--1,310 mi², approximately. PERIOD OF RECORD. -- April 1941 to current year. GAGE.--Datum of gage is National Geodetic Vertical Datum of 1929. Prior to June 19, 1941, nonrecording gage at same site and datum. REMARKS.--Lake is formed by earthfill type dam. Closure of channel at dam began July 10, 1940; river began to flow through outlet structure July 24, 1940. Stop logs placed in outlet structure and storage began Apr. 1, 1941; conservation pool level reached Apr. 20, 1941. Capacity at bottom of outlet tunnels (elevation, 339.0 ft), 2,600 ac-ft; at conservation pool level (elevation, 355.0 ft), 30,900 ac-ft; at spillway crest (elevation, 395.0 ft), 613,000 ac-ft; at maximum pool level (elevation, 410.4 ft), uncontrollable above spillway crest, 1,022,000 ac-ft. Lake is used for flood control, power and recreational purposes. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 729,800 ac-ft, Apr. 16, 1945, elevation, 399.35 ft; minimum, since initial filling to conservation pool level, 23,340 ac-ft, Mar. 1-3, 1970; elevation, 352.20 ft, Sept. 26-27, 1967. EXTREMES FOR CURRENT YEAR.--Maximum contents, 600,000 ac-ft, May 19, elevation, 395.13 ft; minimum, 27,000 ac-ft, Mar. 5, elevation, 353.96 ft. ### ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 0800 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | 1 | 359.91 | 359.75 | 361.10 | 361.98 | 358.38 | 354.76 | 361.52 | 367.07 | 386.10 | 364.51 | 359.72 | 359.76 | | 2 | 359.91 | 359.77 | 361.43 | 361.13 | 362.59 | 354.41 | 360.69 | 366.97 | 385.22 | 363.99 | 359.73 | 359.79 | | 3 | 359.90 | 359.79 | 361.30 | 360.32 | 363.25 | 354.33 | 359.96 | 366.80 | 384.26 | 363.49 | 359.74 | 359.81 | | 4 | 359.90 | 359.78 | 361.02 | 359.60 | 363.02 | 354.03 | 359.18 | 366.62 | 383.36 | 362.99 | 359.74 | 359.84 | | 5 | 359.93 | 359.76 | 360.71 | 358.92 | 362.51 | 353.96 | 358.52 | 366.33 | 382.37 | 362.53 | 359.73 | 359.86 | | 6 | 360.02 | 359.75 | 360.37 | 358.42 | 361.96 | 354.55 | 358.03 | 365.98 | 381.47 | 362.06 | 359.72 | 359.86 | | 7 | 360.02 | 359.74 | 360.17 | 357.99 | 361.37 | 355.05 | 357.56 | 365.62 | 380.42 | 361.59 | 359.71 | 359.85 | | 8 | 360.01 | 359.73 | 360.11 | 357.51 | 360.75 | 355.53 | 357.29 | 367.05 | 379.38 | 361.17 | 359.70 | 359.86 | | 9 | 360.01 | 359.72 | 360.00 | 357.10 | 360.11 | 355.99 | 358.56 | 372.44 | 378.28 | 360.75 | 359.67 | 359.87 | | 10 | 359.99 | 359.69 | 359.92 | 356.71 | 359.54 | 359.96 | 360.09 | 378.21 | 377.20 | 360.37 | 359.65 | 359.87 | | 11 | 360.22 | 359.71 | 359.81 | 356.32 | 358.92 | 362.75 | 360.33 | 378.85 | 376.18 | 360.16 | 359.64 | 359.88 | | 12 | 360.29 | 359.73 | 359.74 | 355.99 | 358.36 | 362.78 | 360.29 | 378.66 | 375.18 | 360.04 | 359.62 | 359.87 | | 13 | 360.27 | 359.74 | 359.74 | 355.76 | 357.81 | 362.60 | 360.42 | 379.77 | 374.27 | 359.92 | 359.68 | 359.85 | | 14 | 360.38 | 359.75 | 359.87 | 355.58 | 357.28 | 362.32 | 361.91 | 386.77 | 373.36 | 359.75 | 360.14 | 359.83 | | 15 | 360.38 | 359.77 | 359.99 | 355.42 | 356.77 | 361.80 | 364.20 | 388.88 | 372.58 | 359.72 | 360.09 | 359.86 | | 16 | 360.36 | 359.80 | 360.50 | 355.21 | 356.30 | 361.57 | 365.22 | 388.49 |
371.93 | 359.72 | 360.07 | 359.88 | | 17 | 360.29 | 359.83 | 363.40 | 355.09 | 355.87 | 361.49 | 365.34 | 388.64 | 371.39 | 359.71 | 360.02 | 359.84 | | 18 | 360.21 | 359.85 | 367.57 | 355.01 | 355.49 | 361.29 | 365.21 | 393.28 | 370.88 | 359.72 | 359.96 | 359.82 | | 19 | 360.14 | 359.87 | 369.33 | 355.01 | 355.08 | 361.07 | 364.92 | 395.13 | 370.37 | 359.72 | 359.88 | 359.77 | | 20 | 360.10 | 359.91 | 369.32 | 354.98 | 355.39 | 362.54 | 364.77 | 394.84 | 369.84 | 359.71 | 359.78 | 359.98 | | 21 | 360.02 | 359.88 | 369.05 | 354.96 | 356.35 | 365.15 | 364.88 | 394.36 | 369.39 | 359.72 | 359.71 | 360.07 | | 22 | 359.99 | 359.85 | 368.60 | 354.91 | 356.88 | 365.72 | 364.88 | 393.76 | 368.90 | 359.72 | 359.78 | 360.06 | | 23 | 359.93 | 359.83 | 368.17 | 354.88 | 356.84 | 365.20 | 364.79 | 393.10 | 368.41 | 359.72 | 359.69 | 359.99 | | 24 | 359.90 | 359.83 | 367.65 | 355.73 | 356.63 | 364.49 | 364.61 | 392.41 | 367.90 | 359.72 | 359.91 | 359.94 | | 25 | 359.92 | 359.85 | 367.04 | 356.06 | 356.32 | 363.77 | 365.89 | 391.69 | 367.44 | 359.72 | 359.97 | 359.89 | | 26
27
28
29
30
31 | 359.90
359.83
359.72
359.73
359.74
359.74 | 359.86
359.97
360.06
360.12
360.43 | 366.43
365.79
365.08
364.43
363.64
362.82 | 356.15
356.21
356.20
356.12
356.08
356.01 | 356.08
355.63
355.13
 | 364.31
364.87
364.58
363.92
363.18
362.37 | 366.61
366.79
366.81
366.95
367.08 | 390.95
390.15
389.35
388.59
387.80
386.97 | 366.93
366.43
366.05
365.55
365.03 | 359.72
359.72
359.72
359.71
359.72
359.72 | 359.92
359.84
359.76
359.75
359.75 | 359.83
359.78
359.74
359.73
359.76 | | MEAN | 360.02 | 359.84 | 363.36 | 356.69 | 358.24 | 360.66 | 362.78 | 382.44 | 373.87 | 360.60 | 359.80 | 359.86 | | MAX | 360.38 | 360.43 | 369.33 | 361.98 | 363.25 | 365.72 | 367.08 | 395.13 | 386.10 | 364.51 | 360.14 | 360.07 | | MIN | 359.72 | 359.69 | 359.74 | 354.88 | 355.08 | 353.96 | 357.29 | 365.62 | 365.03 | 359.71 | 359.62 | 359.73 | ### 07039000 WAPPAPELLO LAKE AT WAPPAPELLO, MO--Continued # RESERVOIR STORAGE, (ACRE-FEET), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 0800 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|---|--|--|-----------------------------|---|--|--|--|--|---|---| | 1 | 62100 | 60900 | 72300 | 80300 | 51000 | 30000 | 76100 | 132000 | 421000 | 105000 | 60700 | 61000 | | 2 | 62100 | 61100 | 75300 | 72600 | 86000 | 28700 | 68700 | 131000 | 405000 | 99500 | 60800 | 61200 | | 3 | 62000 | 61200 | 74100 | 65600 | 92300 | 28400 | 62500 | 129000 | 389000 | 94700 | 60800 | 61400 | | 4 | 62000 | 61100 | 71600 | 59800 | 90100 | 27200 | 56600 | 127000 | 374000 | 89800 | 60800 | 61600 | | 5 | 62300 | 61000 | 68900 | 54700 | 85300 | 27000 | 51900 | 124000 | 357000 | 85500 | 60800 | 61700 | | 6 | 63000 | 60900 | 66000 | 51200 | 80100 | 29200 | 48500 | 120000 | 341000 | 81100 | 60700 | 61700 | | 7 | 63000 | 60800 | 64300 | 48200 | 74800 | 31100 | 45400 | 116000 | 323000 | 76800 | 60600 | 61700 | | 8 | 62900 | 60800 | 63700 | 45100 | 69200 | 33500 | 43700 | 132000 | 305000 | 72900 | 60600 | 61700 | | 9 | 62900 | 60700 | 62800 | 42500 | 63700 | 35800 | 52200 | 198000 | 287000 | 69200 | 60300 | 61800 | | 10 | 62700 | 60500 | 62200 | 40100 | 59400 | 62500 | 63600 | 286000 | 270000 | 66000 | 60200 | 61800 | | 11 | 64700 | 60600 | 61400 | 37800 | 54700 | 87600 | 65600 | 297000 | 253000 | 64200 | 60100 | 61900 | | 12 | 65300 | 60800 | 60800 | 35800 | 50800 | 87800 | 65300 | 293000 | 238000 | 63100 | 59900 | 61800 | | 13 | 65100 | 60800 | 60800 | 34700 | 47100 | 86100 | 66400 | 312000 | 224000 | 62200 | 60400 | 61700 | | 14 | 66100 | 60900 | 61800 | 33800 | 43600 | 83500 | 79700 | 432000 | 211000 | 60900 | 64000 | 61500 | | 15 | 66100 | 61100 | 62700 | 33000 | 40400 | 78700 | 102000 | 468000 | 200000 | 60700 | 63600 | 61700 | | 16 | 65900 | 61300 | 67100 | 31900 | 37700 | 76600 | 112000 | 462000 | 191000 | 60700 | 63400 | 61900 | | 17 | 65300 | 61500 | 93800 | 31300 | 35200 | 75900 | 113000 | 464000 | 184000 | 60600 | 63000 | 61600 | | 18 | 64600 | 61700 | 137000 | 31000 | 33300 | 74000 | 112000 | 559000 | 177000 | 60700 | 62500 | 61500 | | 19 | 64000 | 61800 | 158000 | 31000 | 31300 | 72000 | 109000 | 600000 | 171000 | 60700 | 61900 | 61100 | | 20 | 63700 | 62100 | 158000 | 30800 | 32900 | 85600 | 107000 | 594000 | 164000 | 60600 | 61100 | 62700 | | 21 | 63000 | 61900 | 155000 | 30700 | 38000 | 111000 | 108000 | 583000 | 159000 | 60700 | 60600 | 63400 | | 22 | 62700 | 61700 | 149000 | 30600 | 41100 | 117000 | 108000 | 570000 | 153000 | 60700 | 61100 | 63300 | | 23 | 62300 | 61500 | 144000 | 30400 | 40900 | 112000 | 108000 | 556000 | 147000 | 60700 | 60500 | 62700 | | 24 | 62000 | 61500 | 138000 | 34600 | 39600 | 104000 | 106000 | 540000 | 141000 | 60700 | 62100 | 62400 | | 25 | 62200 | 61700 | 131000 | 36300 | 37800 | 97400 | 119000 | 525000 | 136000 | 60700 | 62600 | 62000 | | 26
27
28
29
30
31 | 62000
61500
60700
60800
60800
60800 | 61700
62600
63300
63800
66500 | 125000
118000
110000
104000
96100
88200 | 36800
37100
37100
36600
36400
36000 | 36400
34100
31600
 | 103000
108000
105000
98800
91600
84000 | 127000
129000
129000
130000
132000 | 508000
491000
476000
463000
450000
436000 | 130000
125000
121000
115000
110000 | 60700
60700
60700
60600
60700
60700 | 62200
61600
61000
60900
60900 | 61500
61100
60800
60800
61000 | | MEAN | 63100 | 61600 | 95500 | 41100 | 52100 | 73300 | 89900 | 373000 | 227000 | 68500 | 61300 | 61700 | | MAX | 66100 | 66500 | 158000 | 80300 | 92300 | 117000 | 132000 | 600000 | 421000 | 105000 | 64000 | 63400 | | MIN | 60700 | 60500 | 60800 | 30400 | 31300 | 27000 | 43700 | 116000 | 110000 | 60600 | 59900 | 60800 | #### 07039500 ST. FRANCIS RIVER AT WAPPAPELLO, MO LOCATION.--Lat 36°55'41", long 90°15'55", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.2, T.26 N., R.7 E., Butler County, Hydrologic Unit 08020202, on right bank at downstream side of highway bridge, 0.5 mi southeast of Wappapello, and 1.25 mi downstream from Wappapello Dam. DRAINAGE AREA.--1,311 mi². PERIOD OF RECORD.--October 1940 to Sept. 30, 1997, Oct. 1, 1998 to current year. Since January 1939 in reports of the Mississippi River Commission. Gage-height records collected in this vicinity since April 1920 in reports of the U.S. Army Corps of Engineers. REVISED RECORDS.--WSP 1211: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 315.15 ft (revised) above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1984, at datum 10.00 ft higher at present site. Prior to Oct. 14, 1940, nonrecording gage at same site. REMARKS.--Records good. Flow completely regulated by Wappapello Lake (07039000), 1.25 mi upstream. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Maximum stage since 1920, 30.7 ft, former datum, May 15, 1933, discharge 82,500 ft^3/s , determined by the U.S. Army Corps of Engineers. Maximum discharge, as determined by the U.S. Army Corps of Engineers, 85,000 ft^3/s , Aug. 1915, stage unknown. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | DISCHAR | GE, CUBI | C FEET PER | | WATER YE
MEAN VA | | ER 2001 TO : | SEPTEMBE | IR 2002 | | | |---|--|---|--|--|--|--|---|--|--------------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 72 | 246 | 1480 | 4660 | 2360 | 2240 | 6310 | 3820 | 9850 | 3130 | 125 | 163 | | 2 | 71 | 248 | 2150 | 4420 | 4560 | 1880 | 5770 | 3820 | 9830 | 2990 | 125 | 157 | | 3 | 71 | 247 | 2470 | 3980 | 5520 | 1690 | 5210 | 3800 | 9830 | 2880 | 124 | 157 | | 4 | 71 | 247 | 2500 | 3600 | 5590 | 1910 | 4580 | 3800 | 9780 | 2720 | 123 | 156 | | 5 | 75 | 246 | 2480 | 3100 | 5360 | 1020 | 3900 | 3770 | 9810 | 2570 | 123 | 154 | | 6 | 72 | 246 | 2290 | 2670 | 5070 | 83 | 3280 | 3740 | 9810 | 2500 | 123 | 153 | | 7 | 71 | 246 | 1900 | 2350 | 4770 | 44 | 2800 | 3730 | 9770 | 2370 | 122 | 153 | | 8 | 70 | 246 | 1780 | 2100 | 4460 | 196 | 2530 | 3960 | 9700 | 2120 | 121 | 153 | | 9 | 71 | 246 | 1620 | 1950 | 4160 | 1260 | 2780 | 4300 | 9690 | 1930 | 120 | 152 | | 10 | 72 | 215 | 1420 | 1820 | 3870 | 3430 | 3310 | 5220 | 9550 | 1660 | 119 | 150 | | 11
12
13
14
15 | 76
179
371
380
377 | 94
85
84
84 | 1250
1070
1010
1090
1520 |
1660
1410
1170
982
905 | 3580
3300
3050
2770
2510 | 5310
5860
5990
5970
5830 | 3400
3410
3430
3810
4060 | 6520
6830
7670
9070
9780 | 9040
8550
8010
7370
6390 | 1390
1130
1030
769
335 | 119
97
54
270
650 | 149
148
147
147
148 | | 16 | 441 | 81 | 1900 | 848 | 2270 | 5620 | 4140 | 9770 | 5390 | 287 | 680 | 216 | | 17 | 520 | 81 | 2470 | 726 | 2030 | 5430 | 4200 | 9900 | 4590 | 266 | 679 | 310 | | 18 | 524 | 81 | 2710 | 594 | 1800 | 5350 | 4190 | 9730 | 4130 | 263 | 676 | 314 | | 19 | 524 | 82 | 4000 | 523 | 1660 | 5420 | 4120 | 9910 | 4010 | 261 | 671 | 320 | | 20 | 518 | 150 | 4920 | 515 | 2150 | 6220 | 3940 | 9900 | 3900 | 258 | 724 | 341 | | 21 | 462 | 240 | 5020 | 512 | 3300 | 7370 | 3910 | 9870 | 3730 | 256 | 1190 | 381 | | 22 | 383 | 244 | 5010 | 486 | 3630 | 7770 | 3900 | 9870 | 3580 | 280 | 1540 | 449 | | 23 | 380 | 245 | 4970 | 517 | 3310 | 7840 | 3880 | 9900 | 3520 | 204 | 1090 | 451 | | 24 | 384 | 249 | 4910 | 1060 | 3040 | 7670 | 3850 | 9890 | 3480 | 133 | 769 | 448 | | 25 | 382 | 247 | 4830 | 1240 | 2870 | 7480 | 3880 | 9870 | 3450 | 128 | 784 | 446 | | 26
27
28
29
30
31 | 507
752
571
260
242
244 | 248
250
374
823
1130 | 4760
4770
4810
4730
4720
4760 | 1500
1520
1510
1500
1500
1590 | 2730
2670
2530
 | 7740
7830
7760
7580
7280
6810 | 3810
3800
3820
3810
3820 | 9900
9910
9880
9890
9890
9860 | 3370
3320
3340
3260
3210 | 125
124
124
125
128
125 | 851
815
636
338
311
261 | 445
388
267
119
68 | | MEAN | 296 | 246 | 3075 | 1707 | 3390 | 4964 | 3922 | 7670 | 6442 | 1052 | 466 | 242 | | MAX | 752 | 1130 | 5020 | 4660 | 5590 | 7840 | 6310 | 9910 | 9850 | 3130 | 1540 | 451 | | MIN | 70 | 81 | 1010 | 486 | 1660 | 44 | 2530 | 3730 | 3210 | 124 | 54 | 68 | | IN. | 0.26 | 0.21 | 2.70 | 1.50 | 2.69 | 4.37 | 3.34 | 6.75 | 5.48 | 0.93 | 0.41 | 0.21 | | MEAN | 415 | 938 | 2022 | 2352 | OF RECORD ⁶ 2364 7796 1949 286 1963 | 2749 | 2877 | 2564 | 1507 | 714 | 381 | 382 | | MAX | 3239 | 4959 | 8897 | 8867 | | 7072 | 11920 | 9243 | 6442 | 4866 | 3385 | 2239 | | (WY) | 1950 | 1952 | 1983 | 1950 | | 1979 | 1945 | 1983 | 2002 | 1945 | 1945 | 1982 | | MIN | 33.9 | 43.8 | 167 | 188 | | 474 | 63.5 | 62.3 | 6.00 | 87.1 | 40.0 | 34.0 | | (WY) | 1949 | 1954 | 1990 | 1981 | | 1981 | 1981 | 1987 | 1978 | 1980 | 1965 | 1955 | | SUMMARY | STATISTI | CS | FOR : | 2001 CALEN | IDAR YEAR | F | OR 2002 T | WATER YEAR | | FOR P | ERIOD OF | RECORDa | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC 50 PERC | ANNUAL M
ANNUAL ME
DAILY ME
DAILY MEA | CAN CAN LIN MINIMUM LIGE LIOW FLOW LINCHES LIDS LIDS LIDS LIDS LIDS LIDS LIDS LID | | 914
5570
70 Seg
71

9.47
2560
370
79 | Feb 28
5 5,0ct 8
Aug 31 | | 2785
9910
44
72
9990
31.44
41
28.85
7700
1820
124 | May 19,27
Mar 7
Oct 2
May 17
May 17
Mar 6 | | 1602
3534
579
21800
0.00
0.00
22300
31.44
0.00
16.60
4110
687
43 | Severa
A
Apr
May | 1985
1954
16 1945
1 Years
t Times
16 1945
17 2002
1 Years | $^{^{\}rm a}$ Post-regulation period, water years 1942-1977 and 1999-2002. ## 07042450 ST. JOHNS DITCH NEAR HENDERSON MOUND, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $36^{\circ}40^{\circ}26^{\circ}$, long $89^{\circ}28^{\circ}30^{\circ}$, in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.6, T.23 N., R.15 E., Madrid County, Hydrologic Unit 08020204, located approximately 2.5 mi east of Interstate 55 on State Highway P, 4.0 mi south of Henderson Mound. DRAINAGE AREA. -- 313 mi². PERIOD OF RECORD.--October 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|--|---|---|---|---|--|---|---|---|--|---|---| | OCT
23 | 1430 | ENVIRONM | ENTAL | 201 | 7.0 | 79 | 7.2 | 249 | 20.0 | | | | | | NOV
07 | 0830 | ENVIRONM | ENTAL | 158 | 8.3 | 76 | 7.5 | 260 | 11.7 | 120 | 37.1 | 7.13 | 1.07 | | DEC
05
05
JAN | 0930
0931 | ENVIRONM
REPLICAT | | 564
 | 8.0 | 76
 | 7.2 | 241 | 13.1 | | | | | | 16
FEB | 1250 | ENVIRONM | ENTAL | 487 | 9.8 | 85 | 7.8 | 247 | 9.0 | 120 | 36.1 | 6.76 | 1.03 | | 06
MAR | 0900 | ENVIRONM | ENTAL | 1160 | 9.8 | 81 | 7.0 | 200 | 7.0 | | | | | | 20
APR | 1640 | ENVIRONM | ENTAL | 2150 | 9.7 | 91 | 7.0 | 141 | 12.0 | | | | | | 16
MAY | 1110 | ENVIRONM | ENTAL | 915 | 6.8 | 78 | 7.6 | 226 | 21.2 | | | | | | 14
JUN | 1440 | ENVIRONM | ENTAL | 932 | 6.1 | 65 | 7.2 | 78 | 18.1 | 35 | 10.3 | 2.12 | .91 | | 10
JUL | 1740 | ENVIRONM | ENTAL | 762 | 4.8 | 58 | 7.3 | 230 | 23.8 | | | | | | 10
AUG | 1035 | ENVIRONM | ENTAL | 340 | 6.5 | 81 | 7.8 | 259 | 25.9 | 120 | 35.6 | 6.88 | 1.45 | | 21
21
SEP | 0840
0841 | ENVIRONM
REPLICAT | | 146 | 6.1
6.2 | 73
76 | 7.7
7.7 | 263
262 | 24.1
25.0 | | | | | | 11 | 0810 | ENVIRONM | ENTAL | 84 | 5.2 | 62 | 7.7 | 279 | 24.0 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC
WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT 23 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
23
NOV
07 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
23
NOV
07
DEC
05 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) |
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
23
NOV
07
DEC | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 90 97 71 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
89
97
71 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 10 20 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .42 .17 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .32 .28 .20 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 90 97 71 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
89
97
71 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
109
118
87 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

15.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 10 20 18 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 E.03 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .42 .17 .42 .42 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.32
.28 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.70

5.03 | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 90 97 71 87 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 89 97 71 87 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 109 118 87 106 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.44

9.13 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

15.9

19.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 10 20 18 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 E.03 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .42 .17 .42 .42 .19 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .32 .28 .20 .29 .24 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 APR 16 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.70

5.03 | WATER UNFLITRD FET FIELD (mg/L as CaCO ₃) (00410) 90 97 71 87 64 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 89 97 71 87 63 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
109
118
87

106
77 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.44

9.13 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

15.9

19.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 10 20 18 <10 22 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 E.03 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .42 .17 .42 .42 .19 .48 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .32 .28 .20 .29 .24 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR 16 MAY | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.70

5.03 | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCC ₃)
(00410)
90
97
71

87
64
41 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
89
97
71

87
63
41 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
109
118
87

106
77
50 | CAR-
BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940)

8.44

9.13 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

15.9

19.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 10 20 18 <10 22 108 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 E.03 <.04 <.04 .05 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .42 .17 .42 .42 .19 .48 1.0 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .32 .28 .20 .29 .24 .20 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.70

5.03 | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 90 97 71 87 64 41 72 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 89 97 71 87 63 41 73 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
109
118
87

106
77
50
89 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.44

9.13
 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

15.9

19.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 10 20 18 <10 22 108 54 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 170 158 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 E.03 <.04 <.04 .05 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .42 .17 .42 .42 .19 .48 1.0 .93 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .32 .28 .20 .29 .24 .20 .45 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 | DIS-
SOLVED (mg/L
as Na) (00930) 6.70 5.03 2.63 | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 90 97 71 87 64 41 72 29 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 89 97 71 87 63 41 73 28 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
109
118
87

106
77
50
89
34 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940)

8.44

9.13

2.73 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.1

.2

E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

15.9

19.5

3.8 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 10 20 18 <10 22 108 54 106 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 170 158 84 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 E.03 <.04 <.04 .05 .13 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .42 .17 .42 .42 .19 .48 1.0 .93 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .32 .28 .20 .29 .24 .20 .45 .71 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 20 APR 16 MAY 14 JUN 10 JUL | DIS-
SOLVED (mg/L as Na) (00930)
6.70
5.03
2.63 | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
90
97
71

87
64
41
72
29
87 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
89
97
71

87
63
41
73
28 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
109
118
87

106
77
50
89
34 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

8.44

9.13

2.73 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) 12 E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

15.9

19.5

3.8 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 10 20 18 <10 22 108 54 106 141 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 170 158 844 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 E.03 <.04 <.04 .05 .13 .07 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .42 .17 .42 .42 .19 .48 1.0 .93 1.0 1.3 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .32 .28 .20 .29 .24 .20 .45 .71 .41 | # 07042450 ST. JOHNS DITCH NEAR HENDERSON MOUND, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |---|--|---|--|---|--
--|--|--|---|--|---|---|---| | OCT 23 | E.005 | .22 | .20 | .32 | K56 | 118 | K150 | | | | | | | | NOV
07 | <.008 | .21 | .20 | .24 | K27 | 76 | 96 | 11 | 41 | 2.3 | <.04 | <.1 | <6 | | DEC
05 | .028 | .20 | .15 | .34 | K140 | 440 | 567 | | | | | | | | 05
JAN | .025 | .22 | .19 | .34 | | | | | | | | | | | 16
FEB | .009 | .10 | .10 | .20 | 52 | 135 | 81 | 15 | 101 | 2.1 | <.04 | <.1 | <6 | | 06
MAR | .012 | .11 | .09 | .24 | K310 | K316 | K423 | | | | | | | | 20
APR | .042 | .18 | .15 | .39 | K640 | K712 | 5400 | | | | | | | | 16 | .049 | .15 | .13 | .39 | 160 | 540 | 236 | | | | | | | | MAY
14 | .048 | .23 | .20 | .37 | к970 | 3750 | 5600 | 360 | 1990 | 2.0 | E.02 | <.1 | E3 | | JUN
10 | .026 | .11 | .06 | .69 | 230 | K370 | 323 | | | | | | | | JUL
10 | E.006 | .16 | .16 | .32 | K180 | 430 | 185 | <1 | 389 | 3.0 | <.04 | <.2 | <6 | | AUG
21
21 | .011 | .21 | .20
.19 | .34 | 240
210 | K890
K630 | 550
620 | | | | | | | | SEP
11 | <.008 | .24 | .24 | .32 | K140 | 118 | 640 | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
23
NOV | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
23
NOV
07
DEC | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLIRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT 23 NOV 07 DEC 05 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT 23 NOV 07 DEC 05 05 JAN 16 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED (µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED (µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS-SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SODIVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 2 | ETHYL ANILINE WAT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260)

<.004 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SODIVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) E.01 E.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 2 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FIITRD
REC
(µg/L)
(49260)

<.004
 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR 16 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SODVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) E.01 E.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 2 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR, WATER FLIRD REC (µg/L) (49260) <.004 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)
 | BHC DIS-
SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

98

123 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.05 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

52.3

135 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 2 | ETHYL ANILINE WAT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 <.006 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004012 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <<.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007

.038 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

98

123
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.05 | TOTAL RECOV- REABLE (μg/L as Pb) (01051) <1 <1 <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

52.3

135 | TOTAL RECOV-
ERABLE (μg/L as Hg) (71900) E.01 E.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 2 3 3 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004012 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 |
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007

.038
3.56 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 | DIS-
SOLVED (µg/L as Fe) (01046) 98 123 529 | DIS-
SODIVED
(µg/L
as Pb)
(01049)

<.08

E.05

 | TOTAL RECOV- REABLE (μg/L as Pb) (01051) <1 <1 <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

52.3

135 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) E.01 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2

<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 2 3 18 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 | CHLOR, WATER FLIRD REC (µg/L) (49260) <.004012 .968 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 .043 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007

.038
3.56
5.55 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 JUL 10 AUG 21 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

98

123

529 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.05

.88 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) <1 <1 <4 4 4 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

52.3

135

79.1 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) E.01 E.01 0.02 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2

<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 2 3 18 | ETHYL ANILINE WAT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004012 .968 .047 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 .043 .405 <.004 | BHC DIS- SOLVED (μg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007

.038
3.56
5.55
.610 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 JUL 10 AUG | DIS-
SOLVED
(µg/L
as Fe)
(01046)

98

123

529 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

E.05

.88 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) <1 <1 <4 4 4 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

52.3

135

79.1 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) E.0102 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2

<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 2 3 18 | ETHYL ANILINE WAT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004012 .968 .047 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <- 004 .043 .405 <.004 <.004 | BHC DIS- SOLVED (μg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007

.038
3.56
5.55
.610 | # 07042450 ST. JOHNS DITCH NEAR HENDERSON MOUND, MO--Continued (Ambient Water-Quality Monitoring Network) 389 | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | |--|--|---|--|--|--|---|---|--|---|---|--|---|---| | OCT 23 | | | | | | | | | | | | | | | NOV
07 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | <.006 | <.010 | <.005 | <.02 | <.002 | <.009 | | DEC
05 | | | | | | | | | | | | | | | 05
JAN | | | | | | | | | | | | | | | 16
FEB | | | | | | | | | | | | | | | 06
MAR | | | | | | | | | | | | | | | 20
APR | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.009 | E.003 | <.005 | <.02 | <.002 | <.009 | | 16
MAY | <.010 | <.002 | <.041 | E.027 | <.005 | E.011 | <.003 | E.057 | <.005 | <.005 | <.02 | <.002 | <.009 | | 14 | <.010 | <.002 | E.009 | <.020 | <.005 | .073 | <.003 | E.155 | <.005 | <.005 | <.02 | <.002 | <.009 | | JUN
10 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.042 | <.005 | <.005 | <.02 | <.002 | <.009 | | JUL
10 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.006 | <.005 | <.005 | <.02 | <.002 | <.009 | | AUG
21 | | | | | | | | | | | | | | | 21
SEP | | | | | | | | | | | | | | | 11 | DATE | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT | PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
23
NOV | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER DISS REC (µg/L) (04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLIRD 0.7 µ GF, REC (µg/L) (82671) | AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
23
NOV
07
DEC | PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
23
NOV
07
DEC
05 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER DISS REC (µg/L) (04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLIRD 0.7 µ GF, REC (µg/L) (82671) | AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT 23 NOV 07
DEC 05 05 JAN 16 | PROP
WATER
FLITED
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684)

<.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 | PROP
WATER
FLITED
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 | MIDE
WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82684)

<.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 | PROP
WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L) (39341) <.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027
 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) E.009 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003

 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR 16 | PROP WATER FLITED 0.7 µ GF, REC (µg/L) (82672) <.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004

 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) E.009 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007

 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR | PROP
WATER
FLITED
0.7 µ
GF, REC
(µg/L)
(82672)

<.005

<.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 | AZIN-
PHOS:
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050 | PARA-THION THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.150 | LACHLOR WATER DISSOLV (µg/L) (39415) E.009041 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 | PROP WATER FLITED 0.7 µ GF, REC (µg/L) (82672) <005 < < < < < < < < <- | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 | AZIN- PHOS WAT FLT 0.7 μ GF, REC (μg/L) (82686) <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.150
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) E.009041 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006 | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 < <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN | PROP WATER FLITED 0.7 µ GF, REC (µg/L) (82672) <-005 < < < < < < < < <- | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 | AZIN-PHOS WAT FIT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006

<.150
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) E.009041 .126 .208 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 .011 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 | | OCT 23 NOV 07 DEC 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 JUL 10 AUG 21 | PROP WATER FLITED 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (μg/L) (39532) <.027 <.027 <.027 <.027 <.027 | AZIN- PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 | PARA-THION THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.150 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) E.009041 .126 .208 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 .011 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010 | | OCT 23 NOV 07 DEC 05 05 JAN 16 FEB 06 MAR 20 APR 16 MAY 14 JUN 10 JUL 10 AUG | PROP WATER FLITED 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FIT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.150
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) E.009041 .126 .208 .043 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.011 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 <.010 <.010 | # 07042450 ST. JOHNS DITCH NEAR HENDERSON MOUND, MO--Continued (Ambient Water-Quality Monitoring Network) | 2100 | PEB-
ULATE
WATER
FILTRD
0.7 µ | PENDI-
METH-
ALIN
WAT FLT
0.7 μ | PER-
METHRIN
CIS
WAT FLT
0.7 µ | PHORATE
WATER
FLTRD
0.7 µ | PRO-
METON,
WATER,
DISS, | PRON-
AMIDE
WATER
FLTRD
0.7 µ | PROPA-
CHLOR,
WATER,
DISS, | PRO-
PANIL
WATER
FLTRD
0.7 µ | PRO-
PARGITE
WATER
FLTRD
0.7 µ | SI-
MAZINE,
WATER,
DISS, | TEBU-
THIURON
WATER
FLTRD
0.7 μ | TER-
BACIL
WATER
FLTRD
0.7 µ | TER-
BUFOS
WATER
FLTRD
0.7 µ | |------------------|---|---|--|------------------------------------|-----------------------------------|---|-------------------------------------|--|--|-----------------------------------|---|--|--| | DATE | GF, REC
(μg/L)
(82669) | GF, REC
(μg/L)
(82683) | GF, REC
(μg/L)
(82687) | GF, REC
(μg/L)
(82664) | REC
(µg/L)
(04037) | GF, REC
(µg/L)
(82676) | REC
(µg/L)
(04024) | GF, REC
(μg/L)
(82679) | GF, REC
(µg/L)
(82685) | REC
(µg/L)
(04035) | GF, REC
(µg/L)
(82670) | GF, REC
(μg/L)
(82665) | GF, REC
(μg/L)
(82675) | | OCT
23
NOV | | | | | | | | | | | | | | | 07
DEC | <.002 | <.010 | <.006 | <.011 | <.01 |
<.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | | 05 | | | | | | | | | | | | | | | 05 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 16
FEB | | | | | | | | | | | | | | | 06
MAR | | | | | | | | | | | | | | | 20
APR | <.004 | <.022 | <.006 | <.011 | M | <.004 | <.010 | <.011 | <.02 | .008 | <.02 | <.034 | <.02 | | 16
MAY | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .041 | <.02 | <.034 | <.02 | | 14 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .039 | <.02 | <.034 | <.02 | | JUN | | | | | | | | | | | | | | | 10
JUL | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | 10
AUG | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | 21 | | | | | | | | | | | | | | | 21 | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | DATE | THIO-
BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82681) | | 0.7 μ
GF, REC
(μg/L) | |-----------|---|-------|----------------------------| | OCT | | | | | 23
NOV | | | | | 07 | <.005 | <.002 | <.009 | | DEC | | | | | 05
05 | | | | | JAN | | | | | 16 | | | | | FEB | | | | | 06
MAR | | | | | 20 | <.005 | <.002 | <.009 | | APR | | | | | 16 | <.005 | <.002 | <.009 | | MAY
14 | <.005 | <.002 | <.009 | | JUN | <.005 | <.002 | <.009 | | 10 | <.005 | <.002 | <.009 | | JUL | | | | | 10
AUG | <.005 | <.002 | <.009 | | 21 | | | | | 21 | | | | | SEP | | | | | 11 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 07043500 LITTLE RIVER DITCH 1 NEAR MOREHOUSE, MO LOCATION.--Lat 36°50'03", long 89°43'48", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.2, T.25 N., R.12 E., Stoddard County, Hydrologic Unit 08020204, on downstream side of second pier right of left abutment of bridge on State Highway 114, 1.5 mi downstream from Little River Ditch 39, and 2.0 mi west of Morehouse. DRAINAGE AREA. -- 450 mi². PERIOD OF RECORD.--October 1945 to September 1991, October 1995 to current year. Prior to January 1946 monthly discharge only, published in WSP 1311. GAGE.--Water-stage recorder. Datum of gage is 280.76 ft above National Geodetic Vertical Datum of 1929. Prior to Nov. 17, 1949 and from June 11, 1951, to Feb. 22, 1962, nonrecording gage at same datum. Nov. 17, 1949, to June 10, 1951, nonrecording gage at site 50 ft downstream at present datum. REMARKS.--Records good. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of June 1945 reached a stage of 19.85 ft, from floodmark, discharge, 5,830 ft^3/s . | | | DISCHAR | GE, CUBI | C FEET PEF | | WATER YI
MEAN V | | BER 2001 TO | SEPTEMBE | ER 2002 | | | |---|--|--|--|--|------------------------------|--|---|---|---------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 59 | 101 | 3070 | 299 | 6930 | 295 | 751 | 1780 | 430 | 293 | 89 | 112 | | 2 | 60 | 102 | 1570 | 284 | 5130 | 300 | 585 | 2110 | 381 | 212 | 79 | 108 | | 3 | 59 | 97 | 924 | 274 | 3120 | 334 | 504 | 2600 | 344 | 199 | 70 | 102 | | 4 | 58 | 95 | 575 | 265 | 2320 | 314 | 401 | 2110 | 315 | 195 | 65 | 95 | | 5 | 70 | 95 | 386 | 258 | 1640 | 290 | 345 | 1530 | 298 | 169 | 70 | 87 | | 6 | 95 | 97 | 414 | 268 | 950 | 274 | 320 | 946 | 324 | 143 | 76 | 82 | | 7 | 76 | 96 | 582 | 266 | 722 | 266 | 316 | 943 | 309 | 125 | 68 | 83 | | 8 | 67 | 95 | 1800 | 273 | 580 | 267 | 327 | 5370 | 281 | 119 | 55 | 84 | | 9 | 64 | 93 | 1180 | 283 | 494 | 573 | 317 | 7300 | 343 | 122 | 58 | 83 | | 10 | 65 | 93 | 662 | 268 | 434 | 1220 | 308 | 6830 | 1570 | 120 | 53 | 82 | | 11 | 110 | 94 | 436 | 251 | 384 | 817 | 290 | 5260 | 1650 | 214 | 52 | 82 | | 12 | 157 | 92 | 439 | 247 | 360 | 539 | 278 | 3520 | 657 | 289 | 51 | 85 | | 13 | 361 | 91 | 767 | 243 | 336 | 467 | 344 | 8420 | 480 | 714 | 62 | 81 | | 14 | 938 | 92 | 2210 | 247 | 327 | 410 | 2150 | 9320 | 392 | 597 | 2230 | 82 | | 15 | 842 | 92 | 2340 | 238 | 319 | 357 | 3610 | 8100 | 334 | 299 | 1980 | 78 | | 16 | 497 | 92 | 4160 | 223 | 320 | 962 | 2160 | 5600 | 307 | 202 | 867 | 75 | | 17 | 303 | 92 | 9800 | 216 | 304 | 1020 | 1450 | 7800 | 303 | 168 | 461 | 82 | | 18 | 219 | 92 | 9670 | 212 | 311 | 667 | 831 | 9550 | 306 | 150 | 286 | 84 | | 19 | 169 | 95 | 8700 | 227 | 332 | 1780 | 641 | 8230 | 283 | 147 | 166 | 108 | | 20 | 143 | 91 | 7140 | 232 | 2180 | 6770 | 2090 | 5630 | 256 | 132 | 317 | 385 | | 21 | 127 | 92 | 4780 | 235 | 2020 | 5300 | 3510 | 3640 | 261 | 123 | 349 | 489 | | 22 | 120 | 93 | 3430 | 250 | 1270 | 3080 | 2250 | 2880 | 244 | 119 | 213 | 373 | | 23 | 118 | 95 | 2920 | 440 | 704 | 2430 | 1200 | 2290 | 218 | 101 | 249 | 242 | | 24 | 117 | 108 | 2080 | 8390 | 468 | 1890 | 2250 | 1610 | 200 | 98 | 796 | 175 | | 25 | 111 | 106 | 1270 | 7710 | 399 | 2150 | 5220 | 1130 | 260 | 101 | 695 | 142 | | 26
27
28
29
30
31 | 105
102
102
102
101
100 | 127
536
1360
3110
4940 | 801
642
554
448
355
320 | 4900
3140
2480
1900
1450
2520 | 363
342
322
 | 8250
6040
3380
2680
2020
1220 | 3420
2540
2360
1470
892 | 877
662
578
764
580
506 | 238
206
931
976
496 | 94
87
84
84
94
100 | 499
303
192
152
132
122 | 138
135
120
104
101 | | MEAN | 181 | 415 | 2401 | 1242 | 1192 | 1818 | 1438 | 3821 | 453 | 184 | 350 | 136 | | MAX | 938 | 4940 | 9800 | 8390 | 6930 | 8250 | 5220 | 9550 | 1650 | 714 | 2230 | 489 | | MIN | 58 | 91 | 320 | 212 | 304 | 266 | 278 | 506 | 200 | 84 | 51 | 75 | | IN. | 0.46 | 1.03 | 6.15 | 3.18 | 2.76 | 4.66 | 3.57 | 9.79 | 1.12 | 0.47 | 0.90 | 0.34 | | | | | | | OF RECORD | | | | 205 | 0.50 | 100 | 1.60 | | MEAN | 169 | 432 | 668 | 791 | 880 | 952 | 872 | 778 | 395 | 268 | 188 | 167 | | MAX | 944 | 2615 | 2875 | 4286 | 3646 | 2800 | 2851 | 3821 | 1564 | 817 | 658 | 703 | | (WY) | 1985 | 1958 | 1983 | 1950 | 1989 | 1979 | 1979 | 2002 | 1989 | 1957 | 1985 | 1975 | | MIN | 30.6 | 45.4 | 73.5 | 72.3 | 115 | 106 | 146 | 139 | 88.7 | 70.9 | 47.6 | 27.4 | | (WY) | 1954 | 2000 | 1954 | 1981 | 1963 | 1981 | 1971 | 2001 | 1988 | 1954 | 1999 | 1999 | | SUMMARY | Y STATISTI | CS | FOR | 2001 CALEN | IDAR YEAR | I | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | RECORD | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUN INSTANT ANNUAL 10 PERC | MEAN F ANNUAL ME ANNUAL ME DAILY ME DAILY ME DAILY ME DAILY ME DAILY ME TO SEVEN-DAY M PEAK STP FANEOUS LC RUNOFF (1) CENT EXCEE CENT EXCEE | EAN EAN INTERPORT OF THE PROPERTY PROPE | | 9800
50 Aug
52

15.21
1220
152
69 | Dec 17
24,25,30
Aug 24 | | 9800
51
57
10300
17.79
4.43
3240
317
86 | Dec 17
Aug 12
Aug 7
Dec 17
Dec 17
Aug 12 | | 547
1261
134
11700
21
24
12000
19.30
20
16.52
1310
204
78 | Sep
Sep
Feb
Feb | 1973
1954
15 1989
18 1954
13 1954
15
1989
15 1989
8 1999 | ### 07046250 LITTLE RIVER DITCHES NEAR RIVES, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $36^{\circ}05^{\circ}25^{\circ}$, long $90^{\circ}04^{\circ}47^{\circ}$, in SW $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.28, T.17 N., R.9 E., Dunklin County, Hydrologic Unit 08020204, located at the Little River Ditches bridge chain on State Highway 164. Samples are taken during high flow from the three western most ditches. PERIOD OF RECORD.--November 1969 to June 1970, August 1972 to September 1973, July 1977 to June 1989, November 1992 to current year. REMARKS.--Analyses represent a composite of water from five ditches. Bacteria is usually taken from Ditch 66. Published as Little River Ditches near Kennett (07046001) for periods of record from November 1969 to September 1993. | DATE | TIME | | MPLE
YPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|---|---|--|---|--|---|--|---|--|--|--|---|--| | OCT
23 | 1115 | ENVIRON | MENTAL | 340 | 4.3 | 48 | 7.4 | 247 | 19.6 | | | | | | NOV
06 | 1015 | ENVIRON | MENTAL | 291 | 5.5 | 54 | 7.5 | 299 | 15.0 | 130 | 36.6 | 9.83 | 7.15 | | DEC
04 | 1400 | ENVIRON | MENTAL | 4590 | 9.2 | 81 | 6.8 | 109 | 9.4 | | | | | | JAN
15
15
FEB | 0918
0919 | ENVIRON
REPLICA | | 983
 | 11.3 | 94
 | 8.0 | 343 | 7.6
 | 160
160 | 45.1
45.2 | 11.3
11.3 | 2.03
2.35 | | 05 | 0945 | ENVIRON | MENTAL | 5040 | 9.5 | 78 | 7.5 | 150 | 7.2 | | | | | | MAR
26
APR | 1515 | ENVIRON | MENTAL | 10900 | 10.6 | 90 | 7.4 | 116 | 8.1 | | | | | | 17
MAY | 1405 | ENVIRON | MENTAL | 4320 | 8.3 | 98 | 7.3 | 145 | 23.0 | | | | | | 15 | 1055 | ENVIRON | MENTAL | 16800 | 5.6 | 60 | 6.9 | 80 | 18.8 | 30 | 8.40 | 2.27 | 2.22 | | 11 JUL | 1405 | ENVIRON | MENTAL | 6790 | 4.8 | 60 | 7.3 | 184 | 25.9 | | | | | | 09
AUG | 1035 | ENVIRON | MENTAL | 590 | 5.3 | 71 | 8.1 | 380 | 30.2 | 180 | 48.5 | 13.1 | 2.82 | | 20
SEP | 1000 | ENVIRON | MENTAL | 520 | 4.8 | 62 | 7.8 | 269 | 28.3 | | | | | | 17 | 0850 | ENVIRON | MENTAL | 320 | 5.6 | 70 | 8.3 | 391 | 25.8 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLITD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT 23 | DIS-
SOLVED
(mg/L
as Na) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as C1) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
23
NOV
06 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
23
NOV
06
DEC
04 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT 23
NOV 06
DEC 04
JAN 15 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS-PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .03 E.03 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 | DIS-
SOLVED (mg/L as Na) (00930)
8.98
9.37 | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
100
113
26 | WATER UNFLITCH IT FIELD (mg/L as CaCO ₃) (00419) 101 113 24 135 | BICAR-BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
123
138
30 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) 19.1 22.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 38 26 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .03 E.03 E.03 <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.73
.64
.94 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .08 .14 E.05 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 | DIS-
SOLVED (mg/L as Na) (00930)
8.98
9.37 9.19 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 100 113 26 135 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 101 113 24 135 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 123 138 30 164 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

13.9

13.7
14.4 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

19.1

22.1
22.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 38 26 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .03 E.03 E.03 <.04 <.04 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
.73
.64
.94 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .08 .14 E.05 .10 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 | DIS-
SOLVED (mg/L as Na)
(00930)

8.98

9.37
9.19 | WATER UNFLIRED FET FIELD (mg/L as CaCO ₃) (00410) 100 113 26 135 50 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 101 113 24 135 48 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 123 138 30 164 58 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

13.9

13.7
14.4 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

19.1

22.1
22.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 38 26 <10 <10 252 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .03 E.03 E.03 <.04 <.04 .06 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .73 .64 .94 .17 .20 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .08 .14 E.05 .10 .12 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 | DIS-
SOLVED (mg/L as Na) (00930)

8.98

9.37
9.19 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 100 113 26 135 50 45 | WATER UNFLTRD 1T FIELD (mg/L as CaCO ₃) (00419) 101 113 24 135 48 43 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
123
138
30
164

58 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0
0
0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

13.9

13.7
14.4 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

19.1

22.1
22.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 38 26 <10 <10 252 584 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .03 E.03 E.03 <.04 <.04 .06 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .73 .64 .94 .17 .20 1.2 2.4 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .08 .14 E.05 .10 .12 .27 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 JUN 11 | DIS- SOLVED (mg/L as Na) (00930) 8.98 9.37 9.19 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 100 113 26 135 50 45 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 101 113 24 135 48 43 61 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 123 138 30 164 58 53 74 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

13.9

13.7
14.4 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

19.1

22.1
22.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 38 26 <10 <10 252 584 130 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .03 E.03 E.03 <.04 <.04 .06 .04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .73 .64 .94 .17 .20 1.2 2.4 1.2 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .08 .14 E.05 .10 .12 .27 .49 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 JUN 11 JUL 09 | DIS-
SOLVED (mg/L as Na) (00930)
8.98
9.37
9.19
2.65 | WATER UNFLIRD (MY/L as CaCO ₃) (00410) 100 113 26 135 50 45 60 24 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 101 113 24 135 48 43 61 25 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 123 138 30 164 58 53 74 30 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃) (00447)
0
0
0
0
0
0
0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

13.9

13.7
14.4

3.32 | RIDE,
DIS-
SOLVED (mg/L as F) (00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

19.1

22.1
22.4

4.6 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 38 26 <10 <10 252 584 130 162 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

188

208
212

150 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .03 E.03 E.03 <.04 <.04 .06 .04 .05 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .73 .64 .94 .17 .20 1.2 2.4 1.2 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .08 .14 E.05 .10 .12 .27 .49 .56 1.21 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 JUN 11 JUL | DIS-
SOLVED (mg/L as Na) (00930)
8.98
9.37
9.19
2.65 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 100 113 26 135 50 45 60 24 93 | WATER UNFLTRD 1T FIELD (mg/L as CaCO ₃) (00419) 101 113 24 135 48 43 61 25 93 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 123 138 30 164 58 53 74 30 114 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0
0
0
0

0
0
0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

13.9

13.7
14.4

3.32 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

19.1

22.1
22.4

4.6 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 38 26 <10 <10 252 584 130 162 300 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

188

208
212

150 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) .03 E.03 E.03 <.04 <.04 .06 .04 .05 .06 <.04 | GEN, AM- MONTA + ORGANIC TOTAL (mg/L as N) (00625) .73 .64 .94 .17 .20 1.2 2.4 1.2 1.5 1.8 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .08 .14 E.05 .10 .12 .27 .49 .56 1.21 .82 | # 07046250 LITTLE RIVER DITCHES NEAR RIVES, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |---|---|---|--|--|--|---|--|--|---|--|---|---|--| | OCT
23 | E.005 | .22 | .19 | .31 | K15 | 54 | 108 | | | | | | | | NOV
06 | .040 | .26 | .23 | .35 | K28 | 54 | K30 | 122 | 476 | 2.5 | E.02 | <.1 | <6 | | DEC 04 | .045 | .39 | .25 | .51 | 470 | 860 | 1980 | | | | | | | | JAN
15
15 | .009
E.007 | E.05 | .06
.07 | .09 | K3 | K11
 | K10 | 17
16 | 75
78 | 1.7
1.7 | <.04
<.04 | <.1
<.1 | <6
E4 | | FEB
05 | .056 | .21 | .19 | .50 | 210 | K1370 | 1160 | | | | | | | | MAR
26 | .052 | .21 | .16 | .96 | K150 | 340 | 3650 | | | | | | | | APR
17 | .055 | .18 | .13 | .41 | 160 | K250 | 107 | | | | | | | | MAY
15
JUN | .088 | .28 | .22 | .59 | K700 | 1100 | 2750 | 598 | 9520 | 1.7 | .04 | E.1 | <6 | | 11
JUL | .126 | .14 | E.01 | .61 | K100 | K360 | K360 | | | | | | | | 09
AUG | <.008 | .13 | .11 | .27 | 42 | 48 | 60 | 2 | 635 | 3.7 | <.04 | <.1 | <6 | | 20
SEP | .018 | .12 | .11 | .18 | 56 | 380 | 240 | | | | | | | | 17 | <.008 | .12 | .12 | .19 | 70 | 220 | 550 | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | | | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) |
TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
23
NOV
06
DEC
04 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT 23 NOV 06 DEC 04 JAN 15 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

265

50 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.25 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.0102 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260)

<.004 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.002 | BHC DIS-
SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT 23 NOV 06 DEC 04 JAN 15 15 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

265

50
49 | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) E.0102 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2
E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

4
2 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 3 3 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.002
 | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.021 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR | DIS-
SOLVED
(µg/L
as Fe)
(01046)

265

50 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.25 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.0102 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLITRD
REC
(µg/L)
(49260)

<.004

 | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.021 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FBB 05 MAR 26 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

265

50
49
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.25

E.04
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 <1 <1 | NESE,
DIS-
SOLVED (µg/L
as Mn) (01056)

1111

139
140 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.0102 .01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2
E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 3 3 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.021

.028 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

265

50
49
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.25

E.04
<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) 1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

1111

139
140 | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) E.0102 .01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3

E.2
E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

4
2

 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 3 3 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004 <.006 | CHLOR, WATER, WATER, PISS, REC, (µg/L) (46342) <.002 <.004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

.021

.028 | | OCT 23 NOV 06 DEC 04 JAN 15 15 45 FEB 05 MAR 26 APR 17 MAY 15 JUN | DIS-
SOLVED
(µg/L
as Fe)
(01046)

265

50
49
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.25

E.04
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 <1 <1 | NESE,
DIS-
SOLVED (µg/L
as Mn) (01056)

1111

139
140 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.0102 .01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2
E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 3 3 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 .354 | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 021021028 11.3 5.97 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 JUN 11 JUL | DIS-
SOLVED (µg/L as Fe) (01046) 265 50 49 937 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.25

E.04
<.08

2.80 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) 1 <1 <11 41 14 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

1111

139
140

54.2 | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) E.0102 .0102 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2
E.2

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 3 3 3 38 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 .354 .032 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 .442 .610 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 021028 11.3 5.97 9.29 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 JUN 11 | DIS-
SOLVED (µg/L as Fe) (01046) 265 50 49 937 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.25

E.04
<.08

2.80 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) 1 <1 <1 11 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

1111

139
140

54.2 | TOTAL RECOV-
ERABLE (μg/L as Hg) (71900) E.0102 .0103 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.2
E.2

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) 4 2 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 6 3 3 3 3 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 .354 | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) 021021028 11.3 5.97 | # 07046250 LITTLE RIVER DITCHES NEAR RIVES, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | |---|---|---|--|--|---|---|---|--
--|--|---|--|---| | OCT 23 | | | | | | | | | | | | | | | NOV
06 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.003 | <.005 | <.005 | <.02 | <.002 | <.009 | | DEC 04 | | | | | | | | | | | | | | | JAN
15 | | | | | | | | | | | | | | | 15
FEB | | | | | | | | | | | | | | | 05
MAR | | | | | | | | | | | | | | | 26
APR | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.004 | E.004 | <.005 | <.02 | <.002 | <.009 | | 17
MAY | <.010 | <.002 | <.041 | E.074 | <.005 | <.018 | <.003 | E.194 | .009 | <.005 | <.02 | <.002 | <.009 | | 15
JUN | <.010 | <.002 | <.041 | E.025 | <.005 | E.012 | <.003 | E.296 | <.005 | <.005 | <.02 | <.002 | <.009 | | 11
JUL | <.010 | <.002 | <.041 | <.020 | <.005 | .031 | <.003 | E.275 | <.005 | <.005 | <.02 | <.002 | <.009 | | 09
AUG | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.062 | <.005 | <.005 | <.02 | <.002 | <.009 | | 20
SEP | | | | | | | | | | | | | | | 17 | DATE | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(μg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
23
NOV | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) | AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
23
NOV
06
DEC | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
23
NOV
06 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

.039 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(μg/L)
(39542)

<.007 | | OCT
23
NOV
06
DEC
04
JAN | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION, DIS-
SOLVED (µg/L) (39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684)

<.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT 23 NOV 06 DEC 04 JAN 15 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095)

<.003 | DIS-
SOLVED (µg/L) (39341)
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION, DIS-
SOLVED (µg/L) (39532) 039 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 101 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82684)

<.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 | PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L) (39341) <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

.039
 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 101 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003
 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007
 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <.005 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) 039 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 101 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003

 | THION, DIS- SOLVED (µg/L) (39542) <.007 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <-005 <-005 | WATER DISS REC (µg/L) (04095) <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) 039 <.027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <- <- <- <- <- <- <- <- <- <- <- <- | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.200 | LACHLOR WATER DISSOLV (µg/L) (39415) 101101101 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.010 | MMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 JUN 11 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <-005 <- <- 0.005 <- 0.005 <- 0.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532)039 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.200 | LACHLOR WATER DISSOLV (µg/L) (39415) 101041 4.05 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006 | INATE WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.010 <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003

<.003
<.003 | THION, DIS- SOLVED (µg/L)
(39542) <.007 <.010 <.010 | | OCT 23 NOV 06 DEC 04 JAN 15 15 15 45 MAR 26 APR 17 MAY 15 JUN 11 JUL 09 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <005 <005 <005 <005 <005 <005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) 039 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.200

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) 101041 4.05 2.70 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
.009 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.010 <.002 .027 | AMIDE WATER FLITRD 0.7 µ GF, REC (µg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 | | OCT 23 NOV 06 DEC 04 JAN 15 15 FEB 05 MAR 26 APR 17 MAY 15 JUN 11 JUL | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <005 <005 <005 <005 <005 <005 <005 <005 <005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) 039 <.027 <.027 <.027 | AZIN- PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) <.050 <.050 <.050 <.050 <.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.200

<.006
.135 | LACHLOR WATER DISSOLV (µg/L) (39415) 101041 4.05 2.70 2.48 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
.009 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.010 <.002 .027 .231 | MIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 <.010 <.010 <.010 | # 07046250 LITTLE RIVER DITCHES NEAR RIVES, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | |-----------|---|---|--|--|---|---|---|--|--|---|---|--|--| | OCT | | | | | | | | | | | | | | | 23
NOV | | | | | | | | | | | | | | | 06 | <.002 | <.010 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | | DEC
04 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | FEB
05 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 26
APR | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .014 | <.02 | <.034 | <.02 | | 17 | <.004 | .025 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .861 | .02 | <.034 | <.02 | | MAY | 004 | 0.770 | 006 | 011 | - 01 | 004 | 010 | - 000 | 0.0 | 005 | 0.0 | 004 | 0.0 | | 15
JUN | <.004 | .079 | <.006 | <.011 | E.01 | <.004 | <.010 | E.009 | <.02 | .096 | <.02 | <.034 | <.02 | | 11 | <.004 | .100 | <.006 | <.011 | <.01 | <.004 | <.010 | .396 | <.02 | .053 | <.02 | <.034 | <.02 | | JUL | . 004 | . 000 | . 006 | . 011 | . 01 | . 004 | . 010 | . 000 | . 00 | 012 | . 00 | . 024 | . 00 | | 09
AUG | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.020 | <.02 | .013 | <.02 | <.034 | <.02 | | 20 | | | | | | | | | | | | | | | SEP
17 | | | | | | | | | | | | | | | 1/ | | | | | | | | | | | | | | | DATE | THIO-
BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | $(\mu g/L)$ | |-----------|---|---|-------------| | OCT | | | | | 23 | | | | | NOV | | | | | 06 | <.005 | <.002 | <.009 | | DEC
04 | | | | | JAN | | | | | 15 | | | | | 15 | | | | | FEB | | | | | 05 | | | | | MAR | | | | | 26 | <.005 | <.002 | E.004 | | APR | <.005 | <.002 | <.009 | | 17
MAY | <.005 | <.002 | <.009 | | 15 | <.005 | <.002 | .010 | | JUN | | | .010 | | 11 | .026 | <.002 | .010 | | JUL | | | | | 09 | .006 | <.002 | <.009 | | AUG | | | | | 20 | | | | | SEP
17 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. ## 07050150 ROARING RIVER SPRING NEAR CASSVILLE, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 36°35'30", long 93°50'00", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.27, T.22 N., R.27 W., Barry County, Hydrologic Unit 11010001, at outlet of spring in Roaring River State Park. PERIOD OF RECORD. -- November 1993 to current year. REMARKS.--Previously sampled downstream from spring and published as Roaring River at Roaring River State Park (07050152) November 1991 to October 1993. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|---|--|---|--|---|---| | NOV
05 | 1205 | ENVIRONM | ENTAL | 190 | 7.2 | 73 | 7.4 | 358 | 14.6 | 180 | 67.1 | 3.33 | 1.08 | | JAN
22 | 1315 | ENVIRONM | ENTAL | 19 | 8.6 | 87 | 7.4 | 322 | 14.0 | | | | | | MAR
19 | 0745 | ENVIRONM | ENTAL | 46 | 8.1 | 81 | 7.3 | 314 | 12.8 | | | | | | MAY
29 | 1005 | ENVIRONM | ENTAL | 116 | 11.6 | 117 | 7.3 | 286 | 14.0 | 140 | 52.6 | 2.12 | .84 | | JUL
23 | 1315 | ENVIRONM | | 32 | 7.6 | 78 | 7.2 | 319 | 14.7 | | | | | | SEP
09 | 1235 | ENVIRONM | | 29 | 7.6 | 77 | 7.1 | 336 | 14.4 | | | | | | | | | | | | | .,_ | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
| | NOV
05
JAN | 4.55 | 156 | 155 | 190 | 0 | 8.26 | <.1 | 4.6 | 14 | 208 | <.04 | <.10 | 3.05 | | 22
MAR | | 142 | 141 | 172 | 0 | | | | <10 | | <.04 | <.10 | 3.57 | | 19
MAY | | 157 | 161 | 197 | 0 | | | | <10 | | <.04 | <.10 | 2.83 | | 29
JUL | 3.40 | 129 | 130 | 158 | 0 | 6.50 | <.1 | 3.1 | <10 | 175 | <.04 | E.06 | 1.52 | | 23
SEP | | 142 | 143 | 175 | 0 | | | | <10 | | <.04 | .11 | 3.06 | | 09 | | 148 | 151 | 184 | 0 | | | | <10 | | <.04 | E.06 | 3.14 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
05 | <.008 | <.06 | E.02 | E.03 | 66 | 175 | 75 | 12 | 21 | E.1 | .06 | <.1 | <6 | | JAN
22 | <.008 | <.06 | E.02 | E.03 | <4 | 175
K8 | 75
K4 | 12 | 21
 | E.I | .06 | <.1 |
 | | MAR
19 | <.008 | E.03 | E.01 | <.06
E.04 | K2 | K8 | K40 | | | | | | | | MAY | | | | | | | | 22 | 16 | | | | | | 29
JUL | .010 | <.06 | <.02 | <.06 | 100
K4 | 145 | 265
K13 | | 46 | E.1 | .04 | <.1 | <6
 | | 23
SEP
09 | <.008
E.004 | <.06
E.03 | E.02 | <.06
E.03 | K4
K1 | K10
K8 | K13
K2 | | | | | | | | 0 | E.004 | E.05 | .02 | د0.0 | IV.I | 100 | 112 | | | | | | | # 07050150 ROARING RIVER SPRING NEAR CASSVILLE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |-------|---|---|--|---|--|--|---|--| | 27077 | | | | | | | | | | NOV | .10 | . 00 | .1 | .0.0 | . 01 | . 2 | | - | | 05 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | | 5 | | JAN | | | | | | | | | | 22 | | | | | | | | | | MAR | | | | | | | | | | 19 | | | | | | | | | | MAY | | | _ | | | _ | | _ | | 29 | 22 | E.06 | <1 | <2.0 | <.01 | <.3 | | 3 | | JUL | | | | | | | | | | 23 | | | | | | | | | | SEP | | | | | | | | | | 0.9 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### 07050690 PEARSON CREEK NEAR SPRINGFIELD, MO LOCATION.--Lat 37°10'41", long 93°11'53", in NW $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec. 35, T.29 N., R.21 W., Greene County, Hydrologic Unit 11010002, 1.4 mi east of Highway 65 and 0.13 mi south of Highway D (Sunshine). DRAINAGE AREA.--21.0 \mbox{mi}^2 . PERIOD OF RECORD.--July 21, 1999 to current year. GAGE.--Water-stage recorder. Datum of gage unknown. REMARKS.--Records fair. U.S.G.S. satellite telemeter at station. | | | DISCHAF | RGE, CUBIO | C FEET PER | SECOND, W | VATER YE
MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|---|--------------------------------------|--------------------------------------|--|---|--------------------------------------|--|---|--------------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 5.9
5.9
5.9
5.9 | 8.1
16
15
13 | 21
18
14
12
11 | 13
11
11
9.8
9.4 | 201
120
83
64
52 | 15
32
40
40
38 | 45
41
37
34
31 | 29
26
24
22
20 | 32
29
27
25
24 | 7.1
7.2
7.8
9.1
8.0 | 4.1
3.9
4.0
3.8
3.6 | 2.6
2.4
2.1
2.0
2.0 | | 6
7
8
9
10 | 13
10
8.9
8.2
26 | 11
9.3
9.1
8.9
8.1 | 9.4
8.6
7.9
6.9 | 9.1
8.7
8.3
8.0
7.6 | 44
39
34
31
28 | 37
35
34
32
29 | 29
27
40
40
39 | 20
45
916
393
227 | 23
21
19
18
17 | 7.1
6.7
6.2
6.6
20 | 3.6
3.7
3.5
3.3
3.2 | 2.0
1.7
1.7
1.7 | | 11
12
13
14
15 | 33
24
21
19
17 | 7.7
7.6
7.8
7.2
6.5 | 5.7
15
27
29
31 | 7.3
7.0
6.9
6.6
6.4 | 25
23
21
19
18 | 27
26
24
22
21 | 37
34
32
30
28 | 142
107
132
110
92 | 16
23
20
17
16 | 24
20
23
15
11 | 3.6
3.6
3.9
3.8 | 1.6
1.6
1.6
1.9
2.2 | | 16
17
18
19
20 | 17
16
14
13 | 5.9
5.8
5.6
7.7
7.4 | 116
236
153
100
72 | 6.5
6.3
6.3
6.4 | 16
15
14
18
19 | 20
19
18
33
52 | 26
24
23
22
53 | 79
354
270
159
110 | 15
14
13
12
11 | 10
9.0
9.1
9.7
9.4 | 3.6
4.5
6.3
4.8
3.9 | 2.1
2.1
2.1
2.3
3.1 | | 21
22
23
24
25 | 12
11
26
24
18 | 6.3
6.1
6.6
11 | 57
46
38
32
28 | 6.5
6.3
6.7
10
9.3 | 19
18
18
17 | 52
48
44
42
121 | 74
61
52
47
42 | 89
77
69
67
56 | 11
11
9.9
9.6
11 | 9.0
7.8
7.0
6.3
5.8 | 3.3
3.2
4.1
7.4
7.6 | 2.6
2.3
2.1
1.9
1.8 | | 26
27
28
29
30
31 | 15
14
12
11
9.7
8.8 | 12
11
13
18
23 | 25
22
20
17
15
14 | 9.1
8.6
8.3
8.1
21 | 16
15
14
 | 99
74
64
58
52
48 | 44
40
36
33
30 | 49
44
43
47
40
35 | 11
9.4
8.8
8.1
7.7 | 5.3
4.9
4.6
4.5
4.6
4.2 | 5.8
4.6
3.8
3.2
2.9
2.6 | 1.8
1.7
1.6
1.5 | | MEAN
MAX
MIN
IN. | 14.6
33
5.9
0.80 | 9.92
23
5.6
0.53 | 39.2
236
5.7
2.15 | 15.0
210
6.3
0.83 | 36.4
201
14
1.80
TEARS 1999 | 41.8
121
15
2.30 | 37.7
74
22
2.00 | 126
916
20
6.90 | 16.3
32
7.7
0.87 | 9.36
24
4.2
0.51 | 4.09
7.6
2.6
0.22 | 1.98
3.1
1.5
0.11 | | MEAN
MAX
(WY)
MIN
(WY) | 7.11
14.7
2002
2.70
2001 | 6.83
9.92
2002
3.77
2000 | 20.1
39.2
2002
3.73
2001 | 9.37
15.0
2002
4.39
2000 | 32.8
53.2
2001
9.62
2000 | 25.6
41.8
2002
11.3
2000 | 16.8
37.7
2002
5.20
2000 | 46.1
126
2002
5.63
2000 | 13.1
16.3
2002
10.6
2001 | 28.8
59.6
2000
9.35
2002 | 7.16
12.4
2001
3.10
1999 | 5.73
15.2
2001
1.98
2002 | | SUMMARY | STATISTI | CS | FOR : | 2001 CALEN | DAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | EARS 1999 | - 2002 | | LOWEST A
HIGHEST
LOWEST I
ANNUAL S
MAXIMUM
MAXIMUM
INSTANTA
ANNUAL I
10 PERCI
50 PERCI | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY MEA SEVEN-DAY PEAK STA ANNEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS | | 375
2.5
2.9

11.69
30
9.8
5.8 | Feb 24
Jan 4,5
Jan 1 | | 916
1.5 Se
1.7 2020
7.36
1.4 Sep
19.02
54
14
3.3 | May 8
ep 29,30
Sep 7
May 8
May 8
7,28-30 | | 18.5
29.4
12.2
916
1.5
1.7
2200
7.53
1.4
\$11.95
8.1
2.8 | Oct 1
Sep
Jul 1 | 2002
2000
8 2002
14 2000
7 2002
12 2000
12 2000
30 2002 | # 07050690 PEARSON CREEK NEAR SPRINGFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 2001 to current year. | DATE | TIME | SAMPI
TYPI | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) |
MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|---|--|--|--|--|---|---|---|---|--|---|---| | OCT
04 | 1415 | ENVIRON | MENTAL | 5.9 | 10.2 | 113 | 8.0 | 501 | 18.6 | | | | | | NOV
07 | 1255 | ENVIRON | MENTAL | 9.7 | 11.0 | 115 | 7.8 | 515 | 15.7 | 250 | 92.6 | 4.93 | 1.64 | | DEC
16
19 | 1430
0950 | ENVIRON
ENVIRON | | 117
103 | 8.8
11.4 | 86
110 | 7.6
7.4 | 407
437 | 11.8
12.1 | 200 | 72.5 | 3.67 | 2.56 | | JAN
24 | 1130 | ENVIRON | MENTAL | 9.7 | 11.7 | 105 | 8.1 | 506 | 8.7 | 240 | 86.8 | 4.89 | 1.45 | | FEB
20
MAR | 0815 | ENVIRON | MENTAL | 19 | 9.0 | 86 | 7.5 | 470 | 10.8 | | | | | | 20
APR | 1200 | ENVIRON | MENTAL | 55 | 11.0 | 107 | 7.7 | 428 | 12.1 | | | | | | 20
22 | 1725
1145 | ENVIRON
ENVIRON | | 75
61 | 7.2
11.6 | 79
117 | 7.4
7.6 | 382
388 | 16.8
14.1 | 170
 | 64.9 | 2.71 | 1.69 | | MAY
28 | 1045 | ENVIRON | MENTAL | 42 | 11.2 | 116 | 7.7 | 429 | 15.1 | 210 | 76.6 | 3.72 | 1.73 | | JUN
18 | 1620 | ENVIRON | MENTAL | 13 | 9.8 | 112 | 7.8 | 454 | 19.4 | | | | | | JUL
22 | 1105 | ENVIRON | MENTAL | 7.9 | 8.5 | 98 | 7.7 | 487 | 20.5 | 250 | 92.6 | 4.70 | 2.11 | | 20
SEP | 1205 | ENVIRON | MENTAL | 4.1 | 7.2 | 85 | 7.9 | 477 | 21.7 | | | | | | 10 | 1425 | ENVIRON | MENTAL | 1.7 | 8.0 | 98 | 7.8 | 486 | 23.0 | 230 | 82.6 | 5.74 | 2.02 | | | | | | | | | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
04 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
04
NOV
07 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
04
NOV
07
DEC
16 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT 04 NOV 07 DEC 16 19 JAN 24 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
205
196 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
205
196 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
250
241 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 78 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .15 .12 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.94 2.69 2.66 | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20 | DIS-
SOLVED (mg/L
as Na) (00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
205
196
167
181 | WATER
UNFLITRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
205
196
168
181 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
250
241
205
220 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 78 16 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .15 .12 .62 .20 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.94 2.69 2.66 3.46 | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20
MAR
20 | DIS-
SOLVED (mg/L as Na) (00930)
11.1 8.16
13.2 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 205 196 167 181 191 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
205
196
168
181
192 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
250
241
205
220
235 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 78 16 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .15 .12 .62 .20 .11 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.94
2.69
2.66
3.46
2.75 | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20
MAR
20
APR
20 | DIS-
SOLVED (mg/L
as Na) (00930)

11.1
8.16

13.2 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 205 196 167 181 191 193 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
205
196
168
181
192 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
250
241
205
220
235
235 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940)

21.1
16.9
29.3 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

E.1
<.1

.2 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

10.6
8.4

10.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 78 16 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N)
(00608) <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .15 .12 .62 .20 .11 .12 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.94 2.69 2.66 3.46 2.75 2.96 | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 | DIS-
SOLVED (mg/L
as Na) (00930)

11.1
8.16

13.2

8.40 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 205 196 167 181 191 193 190 154 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
205
196
168
181
192
192
192 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
250
241
205
220
235
235
235 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃) (00447)
0
0
0
0
0 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940)

21.1
16.9
29.3

15.9 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

E.1
<.1

.2

 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

10.6
8.4

10.7

7.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 78 16 <10 <10 10 36 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .15 .12 .62 .20 .11 .12 .27 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.94 2.69 2.66 3.46 2.75 2.96 2.72 | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 APR 20 APR 20 APR 20 | DIS-
SOLVED (mg/L
as Na) (00930)

11.1
8.16

13.2

8.40 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 205 196 167 181 191 193 190 154 152 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
205
196
168
181
192
192
192
192 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
250
241
205
220
235
235
235
235 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0
0
0
0
0
0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

21.1
16.9

29.3
 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

E.1
<.1

.2

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

10.6
8.4

10.7

7.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

212
222

294

237
 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .15 .12 .62 .20 .11 .12 .27 .50 .22 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L (mg/L 2.69 2.66 3.46 2.75 2.96 2.72 1.91 2.52 | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 APR 28 JUN 18 | DIS-
SOLVED (mg/L as Na) (00930)
11.1 8.16
13.2
8.40
6.80 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 205 196 167 181 191 193 190 154 152 183 | WATER UNFLITED TO THE PROOF PRO | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 250 241 205 220 235 235 235 187 186 225 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

21.1
16.9

29.3
 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

E.1
<.1

.2

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

10.6
8.4

10.7

7.9

7.8 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

212
222

294

237

253 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .15 .12 .62 .20 .11 .12 .27 .50 .22 .12 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.94 2.69 2.66 3.46 2.75 2.96 2.72 1.91 2.52 2.50 | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20
MAR
20
APR
20
APR
21
MAY
22 | DIS-
SOLVED (mg/L
as Na) (00930)

11.1
8.16

13.2

8.40

6.80 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 205 196 167 181 191 193 190 154 152 183 196 | WATER UNFLITED TT FIELD (mg/L as CaCO ₃) (00419) 205 196 168 181 192 192 192 193 153 153 184 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
250
241
205
220
235
235
235
235
235
246 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃) (00447)
0
0
0
0
0
0
0
0
0 | RIDE, DIS- SOLVED (mg/L as C1) (00940) 21.1 16.9 29.3 15.9 13.6 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

E.1
<.1

.2

<.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

10.6
8.4

10.7

7.9

7.8 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

212
222

294

237

253 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .15 .12 .62 .20 .11 .12 .27 .50 .22 .12 E.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.94 2.69 2.66 3.46 2.75 2.96 2.72 1.91 2.52 2.50 2.44 | # 07050690 PEARSON CREEK NEAR SPRINGFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC DIS- SOLVED (μg/L as As) (01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |---|--|--|--|---|---|--|--|--|---|---|---|---|---| | OCT
04 | E.005 | E.03 | .02 | E.04 | 330 | K683 | 157 | | | | | | | | NOV
07 | .009 | <.06 | <.02 | E.04 | 160 | 252 | 213 | 15 | 32 | E.2 | E.03 | <.1 | <6 | | DEC
16
19 | <.008
.021 | .06
E.03 | .06
<.02 | .16
E.04 | 4400
360 | 7800
560 | 3100
550 | 1 | 677
 | .3 | <.04 | .1 | <6
 | | JAN
24 | E.004 | <.06 | <.02 | <.06 | 180 | K477 | 168 | 28 | 67 | .3 | <.04 | <.1 | <6 | | FEB 20 | E.005 | <.06 | <.02 | <.06 | 340 | <5 | 183 | | | | | | | | MAR
20
APR | E.005 | E.03 | <.02 | E.05 | 140 | K2120 | 1000 | | | | | | | | 20
22
MAY | E.007
.021 | E.05
<.06 | .02
<.02 | .08
<.06 | 7200
K6 | K8660
K850 | K16400
326 | 5
 | 309
 | .3 | E.02 | <.1 | <6
 | | 28
JUN | .034 | <.06 | <.02 | E.03 | 1400 | K1200 | 633 | 5 | 52 | E.1 | <.04 | <.1 | <6 | | 18
JUL | <.008 | E.03 | E.01 | <.06 | 240 | K340 | 310 | | | | | | | | 22
AUG | .014 | E.04 | E.01 | E.05 | 220 | 550 | 320 | 3 | 114 | .2 | E.02 | <.1 | <6 | | 20
SEP | E.006 | E.04 | .03 | E.06 | 200 | K1210 | 1500 | | | | | | | | 10 | E.006 | E.04 | .02 | E.05 | 360 | K860 | 410 | 1 | 55 | .3 | <.04 | <.1 | <6 | | | | | | | | | | | | | | | | | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) |
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | | | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV
07
DEC
16
19
JAN
24 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED (µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 3 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED (µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 4 13 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS-
SOLVED (µg/L) (34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

11
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 3 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 4 13 | ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS-
SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20
MAR
20 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

11
<10

15 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
.09

E.06 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 3 M | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

8.8
7.7

4.8 | TOTAL RECOV-
ERABLE (μg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.2
 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 4 13 3 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004 | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)

<.002 | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

E.004 | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

11
<10

15 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
.09

E.06 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 3 M | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

8.8
7.7

4.8 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.2

.6 | DIS-
SODIVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 4 13 3 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) < <.002 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20
MAR
20
APR
20
APR
22
MAY | DIS-
SOLVED (µg/L as Fe) (01046) 11 <10 15 E5 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
.09

E.06

E.04 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 3 M 2 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

8.8
7.7

4.8

8.6 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 E.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3
E.2

.6 | DIS-
SODIVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 4 13 3 10 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) < <.002 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <-0004 <-0006 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)
 | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20
MAR
20
APR
20
APR
20
APR
21
22
MAY
28
JUN
18 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

11
<10

15

E5 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
.09

E.06 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 3 M 2 | NESE,
DIS-
SOLVED
(µg/L
as Mm)
(01056)

8.8
7.7

4.8

8.6 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.2

.6

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 4 13 3 10 | ETHYL ANILINE UNT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <.002 <.004 <.004 | BHC DTS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

E.004

E.003
.009
E.005 | | OCT 04 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 APR 20 JANY 28 JUN 18 JUL 22 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

11
<10

15

E5

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
.09

E.06

E.04 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 3 M 2 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 8.8 7.7 4.8 8.6 6.1 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 <.01 <.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3
E.2

.6

E.2

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

3

2
2 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 4 13 3 10 3 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <-0002 <-0006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) | CHLOR, WATER, DISS, REC, (µg/L) (46342) < | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

E.004

E.003
.009
E.005 | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 APR 22 MAY 18 JUN 18 JUL | DIS-
SOLVED
(µg/L
as Fe)
(01046)

11
<10

15

E5

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
.09

E.06

E.04

.16 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 3 M 2 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

8.8
7.7

4.8

8.6

6.1 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 <.01 <.01 <.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3
E.2

.6

E.2

E.3 | DIS-
SODIVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 4 13 3 10 3 | ETHYL ANILINE WAT FIT 0.7 μ GF, REC (μg/L) (82660) <-002 <-006 <.006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) <.004 <.006 <.006 <.006 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)
 | # 07050690 PEARSON CREEK NEAR SPRINGFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) |
--|--|--|--|--|--|---|--|---|--|---|--|---|---| | OCT
04 | | | | | | | | | | | | | | | NOV
07 | | | | | | | | | | | | | | | DEC
16 | <.010 | <.002 | <.041 | <.020 | E.003 | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | <.002 | <.009 | | 19
JAN | | | | | | | | | | | | | | | 24
FEB | | | | | | | | | | | | | | | 20
MAR | | | | | | | | | | | | | | | 20
APR | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.002 | <.005 | <.005 | <.02 | <.002 | <.009 | | 20
22 | <.010
<.010 | .006
<.002 | E.018 <.041 | <.020
<.020 | <.005
<.005 | <.018
<.018 | <.003
<.003 | E.005
E.004 | .181
.023 | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | | MAY
28 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.005 | <.005 | <.005 | <.02 | <.002 | <.009 | | JUN
18 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | <.002 | <.009 | | JUL
22 | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | E.006 | E.005 | <.005 | <.02 | <.002 | <.009 | | AUG
20 | | | | | | | | | | | | | | | SEP
10 | DATE | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
04 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
04
NOV
07 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
04
NOV
07
DEC
16 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLIRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SEMCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLIRD 0.7 μ GF, REC (μg/L) (82684) | DDE DISSOLV (µg/L) (34653) <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT 04 NOV 07 DEC 16 19 JAN | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLIRD 0.7 µ GF, REC (µg/L) (82671) | AMIDE
WATER
FLIRD
0.7 μ
GF, REC
(μg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653)

<.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007 | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005
 | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027
 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) <.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007
 | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004
 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) < <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) < < | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) < <.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007
 | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20
MAR
20 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) | WATER DISS REC (µg/L) (04095) <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <-0.035 <-0.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)

<.050

<.050 | PARA- THION THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) < < < < < < < < <- | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <-002 <-002 <-002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) | DDE DISSOLV (µg/L) (34653) <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.010 | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004
 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) < <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) < < | AMIDE WATER FLTRD 0.7 µ GF, REC (µg/L) (82684) < <.007 | DDE DISSOLV (µg/L) (34653) <.003 | THION,
DIS-
SOLVED
(µg/L)
(39542)

<.007
 | | OCT
04
NOV
07
DEC
16
19
JAN
24
FEB
20
MAR
20
APR
20
APR
20 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) | WATER DISS REC (µg/L) (04095) < <.003 <.003 <.003 | DIS-
SOLVED
(µg/L)
(39341)

<.004

<.004
<.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) < <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) | PARA-
THION
WAT FLT
0.7 µ
GF,
REC
(µg/L)
(82667)

<.006

<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <-002 <-002 <-002 <-002 <-002 | AMIDE WATER FLITRD 0.7 µ GF, REC (µg/L) (82684) <-0007 <-007 <-007 | DDE DISSOLV (µg/L) (34653) < | THION, DIS- SOLVED (µg/L) (39542) < <.007 <.010 <.010 | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 APR 21 APR 22 MAY 18 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <-003 <-003 <-003 <-003 <.003 <.003 | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <-027 <-027 <-027 <-027 <-027 | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) | PARA- THION THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) < < < < < < < < <- | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 <.013 <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <-002 <-002 <-002 <-002 <.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) < <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) < < < < < < | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 APR 21 JUN 18 JUN 18 JUL 22 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) < .005 < .005 < .005 < .005 < .005 < .005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | AZIN-PHOS WAT FLT 0.7 μ GF, REC (μg/L) (82686) | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006

<.006
<.006
<.006
<.006
<.020 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 <.013 <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) < <.003 < <.003 <-003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) < | | OCT 04 NOV 07 DEC 16 19 JAN 24 FEB 20 MAR 20 APR 20 APR 20 APR 30 APR 18 JUN 18 JUL | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050

<.050
<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006

<.006
<.006
<.006
<.020
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006

<.006
<.006
<.006
<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | MMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) < < < < < < < < | ## 07050690 PEARSON CREEK NEAR SPRINGFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | | PEB- | PENDI- | PER- | | | PRON- | | PRO- | PRO- | | TEBU- | TER- | TER- | |------|-------------|-------------|-------------|---------|---------|-------------|-------------|---------|---------|-------------|-------------|---------|-------------| | | ULATE | METH- | METHRIN | PHORATE | PRO- | AMIDE | PROPA- | PANIL | PARGITE | SI- | THIURON | BACIL | BUFOS | | | WATER | ALIN | CIS | WATER | METON, | WATER | CHLOR, | WATER | WATER | MAZINE, | WATER | WATER | WATER | | | FILTRD | WAT FLT | WAT FLT | FLTRD | WATER, | FLTRD | WATER, | FLTRD | FLTRD | WATER, | FLTRD | FLTRD | FLTRD | | | 0.7 μ | 0.7 μ | 0.7 μ | 0.7 μ | DISS, | 0.7 μ | DISS, | 0.7 μ | 0.7 μ | DISS, | 0.7 μ | 0.7 μ | 0.7 μ | | DATE | GF, REC | GF, REC | GF, REC | GF, REC | REC | GF, REC | REC | GF, REC | GF, REC | REC | GF, REC | GF, REC | GF, REC | | | $(\mu g/L)$ | $(\mu g/L)$ | $(\mu g/L)$ | (uq/L) | (µq/L) | $(\mu g/L)$ | $(\mu g/L)$ | (µq/L) | (µq/L) | $(\mu g/L)$ | $(\mu g/L)$ | (uq/L) | $(\mu g/L)$ | | | (82669) | (82683) | (82687) | (82664) | (04037) | (82676) | (04024) | (82679) | (82685) | (04035) | (82670) | (82665) | (82675) | | | | | | | | | | | | | | | | | OCT | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | NOV | | | | | | | | | | | | | | | 07 | | | | | | | | | | | | | | | DEC | | | | | | | | | | | | | | | 16 | <.002 | <.010 | <.006 | <.011 | .02 | <.004 | <.010 | <.011 | <.02 | <.011 | .02 | <.034 | <.02 | | 19 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 20 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | <.005 | E.01 | <.034 | <.02 | | APR | | | | | | | | | | | | | | | 20 | <.004 | .066 | <.006 | <.011 | .02 | <.004 | <.010 | <.011 | <.02 | <.005 | .02 | <.034 | <.02 | | 22 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | <.005 | E.01 | <.034 | <.02 | | MAY | | | | | | | | | | | | | | | 28 | <.004 | <.022 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | <.005 | E.01 | <.034 | <.02 | | JUN | | | | | | | | | | | | | | | 18 | <.004 | <.022 | <.006 | <.011 | .02 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | JUL | | | | | | | | | | | | | | | 22 | <.004 | <.022 | <.006 | <.011 | .02 | <.004 | <.010 | <.011 | <.02 | <.005 | .02 | <.034 | <.02 | | AUG | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | DATE | GF, REC
(µg/L) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | GF, REC
(µg/L) | |-----------|-------------------|---|-------------------| | OCT | | | | | 04
NOV | | | | | 07 | | | | | DEC | . 005 | . 000 | . 000 | | 16
19 | <.005 | <.002 | <.009 | | JAN | | | | | 24 | | | | | FEB
20 | | | | | MAR | | | | | 20 | <.005 | <.002 | <.009 | | APR | | | | | 20
22 | <.005
<.005 | <.002
<.002 | <.009
<.009 | | MAY | <.003 | <.002 | <.009 | | 28 | <.005 | <.002 | <.009 | | JUN | . 005 | . 000 | . 000 | | 18
JUL | <.005 | <.002 | <.009 | | 22 | <.005 | <.002 | <.009 | | AUG | | | | | 20
SEP | | | | | 10 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 07050700 JAMES RIVER NEAR SPRINGFIELD, MO LOCATION.--Lat 37°09'00", long 93°12'12", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.2, T.28 N., R.21 W., Greene County, Hydrologic Unit 11010002, on right bank on county road at Kinser Bridge, 1.1 mi downstream from Pearson Creek, and 2.5 mi southeast of Springfield. DRAINAGE AREA. -- 246 mi². PERIOD OF RECORD. -- October 1955 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,143.27 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Prior to Dec. 19, 1955, nonrecording gage at same site and datum. REMARKS.--Records fair. Flows are affected by the pumping of Blackman Water Treatment Plant, 1.0 mi upstream. Springfield City Utilities gage-height and U.S.G.S satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of July 1909 reached a stage of about 22 ft, from information by local resident, discharge not determined. | | | DISCHAF | RGE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--
--|--------------------------------------|--|------------------------------------|--|---|--|------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 12
14
14
13
25 | 15
35
32
42
29 | 87
85
67
54
46 | 70
63
52
47
47 | 3410
976
653
488
390 | 84
407
703
476
373 | 241
205
176
151
136 | 203
177
155
141
126 | 164
149
130
118
133 | 47
45
40
43
47 | 31
25
28
29
27 | 17
17
17
11
14 | | 6
7
8
9
10 | 20
18
13
18
32 | 32
27
24
21
21 | 38
31
30
27
20 | 49
40
40
35
34 | 321
272
236
206
187 | 359
327
286
288
296 | 125
119
426
701
516 | 115
142
13500
5170
1960 | 136
118
103
96
84 | 43
42
39
37
74 | 25
27
25
23
22 | 12
10
8.2
9.6
10 | | 11
12
13
14
15 | 50
30
43
41
30 | 21
19
21
13
19 | 18
24
44
83
121 | 31
33
32
27
25 | 158
141
122
112
102 | 252
227
200
179
160 | 392
316
272
289
259 | 1040
741
1360
951
642 | 73
100
128
97
82 | 75
45
56
52
48 | 23
21
117
117
58 | 12
9.0
9.7
9.5
9.9 | | 16
17
18
19
20 | 27
26
20
29
32 | 19
13
26
29
23 | 854
4020
1470
758
522 | 24
20
21
25
26 | 95
89
80
83
92 | 150
149
135
524
1890 | 223
200
178
161
329 | 506
6070
3640
1280
784 | 73
68
71
69
59 | 46
47
51
81
94 | 23
40
71
45
34 | 9.2
7.2
8.8
9.3 | | 21
22
23
24
25 | 28
26
34
36
26 | 22
16
15
17
9.5 | 407
333
272
224
187 | 20
35
29
40
99 | 95
90
89
86
80 | 768
525
424
352
1330 | 885
557
410
346
313 | 600
468
427
389
354 | 53
65
62
59
60 | 51
54
49
46
48 | 39
26
24
28
37 | 11
12
17
15
13 | | 26
27
28
29
30
31 | 27
37
23
21
18
16 | 16
22
28
31
40 | 157
131
114
104
89
82 | 105
91
81
70
104
2740 | 74
67
74
 | 883
591
477
398
333
279 | 293
315
294
244
222 | 301
263
239
242
209
181 | 60
57
54
52
49 | 45
42
39
39
37
35 | 55
35
30
18
20
16 | 9.3
10
9.4
8.6
7.9 | | MEAN
MAX
MIN
IN. | 25.8
50
12
0.12 | 23.2
42
9.5
0.11 | 339
4020
18
1.59 | 134
2740
20
0.63 | 317
3410
67
1.34 | 446
1890
84
2.09 | 310
885
119
1.41 | 1367
13500
115
6.41 | 87.4
164
49
0.40 | 49.6
94
35
0.23 | 36.7
117
16
0.17 | 11.2
17
7.2
0.05 | | | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 94.9
587
1971
2.74
1957 | 246
1327
1973
9.39
1964 | 285
1370
1983
8.26
1956 | 213
881
1995
5.56
1981 | 280
972
1985
8.35
1981 | 416
1055
1998
16.4
1981 | 430
1396
1994
16.3
1981 | 407
1672
1961
27.6
2000 | 193
873
1985
28.1
1972 | 107
1148
1958
12.2
1962 | 37.3
262
1958
3.22
1962 | 108
1566
1993
1.05
1956 | | SUMMARY | STATISTI | CS | FOF | 2001 CAL | ENDAR YEA | AR. | FOR 2002 | WATER YEA | R | WATER YE | ARS 1956 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME SEVEN-DAY PEAK FLC PEAK STE CRUNOFF (I CENT EXCER CENT EXCER | EAN EAN INTERPORT OF THE PROPERTY PROPE | | 7220
9.5
12

7.97
237
46
16 | Feb 2
Nov 2
Aug 2 | 25 | 263
13500
7.2
9.0
21500
17.34
4.0
14.54
481
58
16 | May
Sep 1
Sep 1
May
May
Sep 2 | 7
2
8
8 | 234
465
52.8
24500
0.30
0.53
41100
19.45
0.10
12.94
504
74 | Sep 1
Sep 1
Sep 2
Sep 2 | 1985
1956
25 1993
16 1956
12 1956
25 1993
25 1993
16 1956 | #### 07052000 WILSON CREEK AT SPRINGFIELD, MO LOCATION.--Lat 37°11'12", long 93°19'52", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec. 28, T.29 N., R.22 W., Greene County, Hydrologic Unit 11010002, 1,600 ft downstream from confluence of Jordan and Fassnight Creeks, at bridge on Scenic Drive in Springfield. DRAINAGE AREA.--17.8 mi². PERIOD OF RECORD.--May 1932 to November 1939, June 28, 1973 to Sept. 22, 1977, June 4, 1998 to present. GAGE.--Water-stage recorder. Datum of gage is 1200.86 ft above National Geodetic Vertical Datum of 1929. May 1932 to January 1939, recorder 0.5 mi downstream and at datum 4.7 ft lower. REMARKS. -- Records fair. U.S.G.S. satellite telemeter at station. REVISIONS.--The maximum instantaneous discharge for the 1999 water year has been revised to 3,560 ${\rm ft^3/s}$, May 4, 1999. The maximum instantaneous discharge for 2000 water year and the period of record has been revised to 6,750 ${\rm ft^3/s}$, July 12, 2000; the maximum daily discharge for the 2000 water year revised to 1,710 ${\rm ft^3/s}$, July 12, 2000, superseding figures published in WDR MO-99-1 and WDR MO-00-1. | | | DISCHA | RGE, CUBIO | | R SECOND,
DAILY | | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---|--|--|--------------------------------------|--------------------------------------|--|---|-------------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.0
3.2
3.4
3.8
96 | 6.0
73
8.8
6.5
6.1 | 7.4
5.8
5.4
5.1
4.8 | 5.1
4.9
4.9
4.9
4.6 | 33
20
16
13
12 | 9.1
70
12
9.4
9.4 | 9.0
8.4
7.8
7.6
7.2 | 7.8
6.7
6.2
5.7
5.2 | 10
9.5
8.9
8.7 | | 1.9
2.8
1.7
1.6
1.6 | 1.6
1.5
1.5
1.3 | | 6
7
8
9
10 | 8.9
4.9
4.2
4.2 | 5.6
5.5
8.2
5.7
5.1 | 4.7
4.2
3.9
3.6
3.5 | 4.5
4.3
4.1
3.9
3.8 | 12
11
9.4
9.2
7.8 | 8.9
7.9
7.4
9.7
7.1 | 6.9
24
67
19
9.2 | 6.3
242
878
201
43 | 8.9
8.0
7.8
7.5
7.2 | 2.1
2.0
2.2
2.1
55 | 1.6
1.6
1.7
1.7 | 1.3
2.0
1.2
0.92
0.91 | | 11
12
13
14
15 | 67
13
13
9.1
14 | 4.8
4.7
4.8
4.8 | 3.5
68
11
15
28 | 3.7
3.5
3.6
3.3 | 7.3
6.9
6.6
6.6 | 6.8
6.5
5.9
5.6
5.9 | 8.3
7.9
7.8
8.3
6.7 |
29
91
93
27
21 | 7.0
47
10
4.7
4.2 | 6.8
74
37
4.6
3.3 | 1.9
1.9
2.0
2.2
2.1 | 0.93
0.93
0.97
3.4
1.6 | | 16
17
18
19
20 | 14
6.9
6.1
5.7
5.3 | 4.8
4.8
4.8
19
4.7 | 216
96
25
17
14 | 3.1
3.3
3.3
4.5
4.1 | 6.1
5.9
5.6
41
15 | 5.1
4.9
14
90
17 | 8.6
7.7
9.2
19
264 | 18
300
46
28
23 | 4.0
3.9
3.8
3.7
3.7 | 3.3
3.1
3.2
15
13
4.6 | 2.0
96
5.2
3.1
2.8 | 1.1
1.2
1.0
23
2.7 | | 21
22
23
24
25 | 5.0
4.8
100
9.8
6.7 | 4.2
3.9
3.8
13
4.3 | 12
11
9.4
8.6
7.7 | 3.9
3.5
40
12
4.9 | 7.1
6.1
5.8
5.4
5.4 | 9.5
8.8
8.3
192 | 25
14
11
13
9.2 | 20
18
16
57
16 | 3.6
3.7
3.5
3.3 | 3.6
2.6
3.0
2.3
2.3 | 2.7
2.6
32
35
4.8 | 1.2
0.97
0.96
0.93
0.90 | | 26
27
28
29
30
31 | 6.2
5.8
5.6
5.6
5.3 | 4.0
4.1
16
22
16 | 7.1
7.0
6.6
6.3
5.9
5.5 | 4.1
3.7
3.5
22
93
205 | 5.3
5.1
4.9
 | 20
15
14
12
11
9.7 | 39
24
10
8.0
12 | 14
13
17
38
12 | 4.8
3.8
10
3.4
3.3 | 2.2
2.1
2.0
2.4
2.0
1.9 | 2.7
2.3
2.1
2.0
1.9 | 0.84
0.86
0.91
0.82
0.81 | | MEAN
MAX
MIN
IN. | 17.9
108
3.0
1.06 | 9.46
73
3.8
0.54 | 20.3
216
3.5
1.21 | 15.4
205
3.1
0.91 | | 20.1
192
4.9
1.20 | 22.6
264
6.7
1.30 | 74.5
878
5.2
4.43 | 8.80
47
3.3
0.51 | 9.23
74
1.9
0.55 | 7.32
96
1.6
0.44 | 1.98
23
0.81
0.11 | | STATIS | TICS OF MO | ONTHLY MEA | AN DATA FO | OR PERIOD | OF RECORD | , BY WAT | ER YEAR (| WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.4
27.7
1937
5.02
2001 | 16.5
42.6
1974
7.45
1938 | 14.1
29.4
2000
5.33
2001 | 18.3
59.7
1937
4.33
2000 | 20.3
41.0
2001
6.30
1934 | 22.4
57.6
1935
7.90
1936 | 24.1
52.9
1933
4.13
2000 | 32.1
74.5
2002
8.84
1936 | 32.5
119
1935
6.60
1936 | 20.2
100
2000
5.62
1936 | 9.93
15.9
1975
4.37
1999 | 35.8
361
1975
1.99
2002 | | SUMMAR | Y STATIST | ICS | FOR 2 | 2001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | FOR PE | ERIOD OF | RECORD | | LOWEST HIGHES' LOWEST ANNUAL MAXIMU INSTAN ANNUAL 10 PER 50 PER | MEAN T ANNUAL M ANNUAL M T DAILY ME SEVEN-DA: M PEAK FIA R PEAK STA TANEOUS IA RUNOFF (: CENT EXCEI CENT EXCEI | EAN EAN AN Y MINIMUM DW AGE DW FLOW INCHES) EDS EDS | | 15.6
550
1.8
2.3

10.94
32
5.7
3.2 | Feb 24
Sep 4
Aug 30 | | 18.3
878
0.81
0.87
4360 ^a
11.29
0.81
12.82
32
5.9
1.9 | May 8
Sep 30
Sep 24
May 8
May 8
Sep 30 | | 18.8
29.9
8.26
2160
0.81
0.87
6750 ^a
12.70
0.57
13.20
37
9.0 | | 1937
1936
12 1975
16 2000
24 2002
12 2000
12 2000
7 1999 | $^{^{\}rm a}$ From rating extended above 600 ft $^{\rm 3}/{\rm s}$ by indirect measurement. #### 07052100 WILSON CREEK NEAR SPRINGFIELD, MO LOCATION.--Lat $37^{\circ}10^{\circ}06^{\circ}$, long $93^{\circ}22^{\circ}14^{\circ}$, in NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec. 6, T.28 N., R.22 W., Greene County, Hydrologic Unit 11010002 on right bank just downstream from bridge on County Road 156, 1 mile upstream of Sewage Treatment Plant, and 0.75 mi upstream of South Creek. DRAINAGE AREA. -- 31.4 mi². PERIOD OF RECORD.--Sept. 21, 1972 to Sept. 30, 1982, May 28, 1998 to current year. GAGE.--Water-stage recorder. Datum of gage is 1149.65 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records poor except discharges above $5 \text{ ft}^3/\text{s}$, which are fair. U.S.G.S satellite telemeter at station. REVISIONS.—The maximum instantaneous stages for the water years 1999 and 2000 have been revised to 7.62 ft, May 4, 1999, and 9.49 ft, July 12, 2000. The maximum instantaneous discharge for 2000 water year reivsed to 5,480 $\rm ft^3/s$, and maximum daily discharge revised to 1,200 $\rm ft^3/s$ on July 12, 2000, superseding figures published in WDR MO-99-1 and WDR MO-00-1. | | | DISCHA | RGE, CUBI | C FEET PE | R SECOND, DAILY | | | ER 2001 TO | SEPTEMBE | ER 2002 | | | |--|--------------------------------------|---|--|---|--------------------------------------|--------------------------------------|--|--|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
114 | 0.00
92
6.3
1.8
0.45 | 1.1
0.00
0.00
0.00
0.00 | e1.9
e1.7
e1.4
e0.96
e0.65 | 86
39
25
17
13 | 3.0
92
16
13
7.9 | 7.6
6.6
5.6
5.1
4.5 | 7.9
5.9
5.0
4.2
3.5 | 4.0
2.6
1.4
0.80
5.8 | 14 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | | 6
7
8
9
10 | 2.4
0.00
0.00
3.3
183 | 0.02
0.00
0.42
0.89
0.00 | 0.00
0.00
0.00
0.00 | e0.28
e0.16
e0.04
e0.01
e0.00 | 12
11
9.3
8.5
6.9 | 7.5
6.4
5.7
7.1
5.1 | 4.0
9.8
94
32
7.9 | 4.4
182
1810
539
168 | 1.7
0.75
0.66
0.60
0.54 | e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | | 11
12
13
14
15 | 40
7.9
7.3
3.8 | 0.00
0.00
0.00
0.00 | 0.00
84
11
12 | e0.00
e0.00
e0.00
0.00 | 6.1
5.7
5.1
4.6
4.1 | 4.6
4.5
3.9
3.5
3.2 | 6.2
5.4
4.3
5.4
3.6 | 90
95
293
87
47 | 0.47
56
5.5
0.47
e0.30 | 9.6
87
65
8.9
e0.06 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | | 16
17
18
19
20 | 5.7
1.4
0.21
0.00
0.00 | 0.00
0.00
0.00
6.3
0.00 | 321
199
53
28
17 | 0.00
0.00
0.00
0.00
0.00 | 3.7
3.2
2.9
48
15 | 2.6
2.2
3.0
123
28 | 2.9
5.5
4.3
14
362 | 26
613
160
98
65 | e0.10
e0.04
e0.00
e0.00
e0.00 | e0.01
e0.00
10
13
3.0 | e0.00
143
7.9
e0.10
e0.00 | e0.00
e0.00
e0.00
9.7
e0.10 | | 21
22
23
24
25 | 0.00
0.00
142
9.9
3.2 | 0.00
0.00
0.00
3.2
0.00 | 13
10
8.7
7.2
5.9 | | 5.6
4.2
3.5
2.9
2.5 | | | | e0.00
e0.00
44 | e0.04
e0.00
e0.00
e0.00
e0.00 | | e0.00 | | 26
27
28
29
30
31 | 1.3
0.42
0.01
0.00
0.00 | 0.00
0.00
2.8
6.4
19 | 5.3
4.7
4.0
3.0
e2.5
e2.1 | 2.4
1.4
0.89
18
128
324 | 2.3
2.2
2.2
 | 33
21
16
13
10
8.8 | 51
31
13
8.8
11 | 14
9.5
15
68
8.2
5.6 | e0.80
e0.06
2.7
e0.04
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | e0.02
e0.01
e0.00
e0.00
e0.00 | e0.00
e0.00
e0.00
e0.00
e0.00 | | MEAN
MAX
MIN
IN. | 17.4
183
0.00
0.57 | 4.65
92
0.00
0.15 | 25.9
321
0.00
0.85 | 17.5
324
0.00
0.57 | | 24.4
274
2.2
0.80 | 27.7
362
2.9
0.88 | 150
1810
3.5
4.92 | 4.31
56
0.00
0.14 | 8.66
87
0.00
0.28 | 8.05
143
0.00
0.26 | 0.33
9.7
0.00
0.01 | | STATIS | TICS OF M | ONTHLY ME | AN DATA E | FOR PERIOD | OF RECORD | , BY WA | TER YEAR | (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 15.6
54.6
1973
2.04
2000 | 21.7
88.6
1973
0.28
2000 | 14.1
34.1
1974
0.56
2001 | 12.4
35.4
1982
0.36
1977 | 17.6
47.5
2001
2.55
1977 | 32.4
74.6
1975
1.08
2001 | 29.5
78.1
1979
0.050
2000 | 40.5
151
2002
3.55
2000 | 26.5
56.6
1981
4.31
2002 | 18.1
73.9
2000
3.17
1980 | 9.20
23.1
1978
1.23
1999 | 12.7
73.0
1977
0.33
2002 | | SUMMAR | Y STATIST | ICS | FOR | 2001 CALE | NDAR YEAR | | FOR 2002 1 | WATER YEAR | | FOR | PERIOD OF | F RECORD | | LOWEST
HIGHES
LOWEST
ANNUAL
MAXIMU
MAXIMU
INSTAN
ANNUAL
10 PER
50 PER | T ANNUAL I | EAN EAN AN Y MINIMUM OW AGE OW FLOW INCHES) EDS EDS | ı | 807
0.00
0.00

4.94
26
0.00
0.00 | Feb 24
Many Days
Many Days | | 25.4
1810
0.00
0.00
4380 ^a
8.98
0.00
9.79
53
2.4
0.00 | May 8
Many Days
Many Days
May 8
May 8
Many Days | | 8.0 | .2
13
10 May
00 Mar
00 Mar
80 ^a Jul
19 Jul
00 Mar
09 | 1973
2001
8 2002
ny Years
12 2000
12 2000
ny Years | e Estimated From rating extended above 2,800 ft³/s by indirect measurement. ### 07052120 SOUTH CREEK NEAR SPRINGFIELD, MO DRAINAGE AREA.--10.5 mi^2 . PERIOD OF RECORD. -- May 29, 1998 to present. REVISED RECORDS.--WDR MO-01-1: 2000 (M). ${\tt GAGE.--Water-stage}$ recorder. Elevation of gage is 1146.00 ft from topographic map. REMARKS.--Records poor. | | | DISCHA | RGE, CUBIO | C FEET PER | | WATER YE
Y MEAN
VA | | ER 2001 TO | SEPTEMBE | ER 2002 | | | |---|---|---|--|--|--------------------------------------|--|---|--|---|---|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.00
0.00
0.00
0.00
20 | 0.00
13
0.03
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 13
7.1
4.6
3.7
2.2 | 0.00
15
0.34
0.97
0.38 | 0.67
0.24
0.66
0.21
0.00 | 0.35
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
e1.8 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 6
7
8
9
10 | 0.00
0.00
0.00
0.00
30 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 2.7
1.6
0.37
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
1.0
17
7.2
1.3 | 0.00
28
e298
65
24 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
28 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00 | | 11
12
13
14
15 | 5.8
0.00
0.00
0.00
0.32 | 0.00
0.00
0.00
0.00
0.00 | 0.00
11
0.69
0.51
0.79 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.46
0.0
0.00
0.00
0.00 | 16
16
45
15
9.4 | e0.00
e26
e1.1
e0.00
e0.00 | 9.4
12
55
14
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 16
17
18
19
20 | 0.74
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
2.4
0.00 | 54
29
9.5
6.1
4.1 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
8.9
1.4 | 0.00
0.00
0.00
21
5.2 | 0.00
0.00
0.00
0.14
40 | 5.3
69
23
14
9.2 | e0.00
e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.87
0.00
0.00 | 0.00
e525
21
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 21
22
23
24
25 | 0.00
0.00
26
0.15
0.00 | 0.00
0.00
0.00
0.00
0.00 | 2.4
0.32
0.00
e0.00
e0.00 | 0.00
0.00
3.4
3.7
0.00 | 0.00
0.00
0.00
0.00
0.00 | 1.9
0.82
0.07
0.00 | 5.7
3.8
2.1
3.5
0.71 | 5.0
0.00
0.00
13
0.66 | e0.00
e0.00
e0.00
e0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | 26
27
28
29
30
31 | 0.00
0.00
0.00
0.00
0.00 | 0.16 | e0.00
e0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.85
21
52 | 0.00
0.00
0.00
 | 6.3
4.9
3.9
1.8
0.84
0.10 | 7.8
1.3
0.18
0.00
2.0 | 0.00
0.00
0.00
7.3
0.00
0.00 | 2.5
0.00
9.2
0.00
0.00 | 62
0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | 0.00
0.00
0.00
0.00
0.00 | | MEAN
MAX
MIN
IN. | 2.68
30
0.00
0.29 | 0.67
13
0.00
0.07 | 3.82
54
0.00
0.42 | 2.61
52
0.00
0.29 | 1.63
13
0.00
0.16 | 3.05
31
0.00
0.33 | 3.20
40
0.00
0.34 | 21.4
298
0.00
2.35 | 2.52
35
0.00
0.27 | 5.85
62
0.00
0.64 | 17.6
525
0.00
1.93 | 0.00
0.00
0.00
0.00 | | | TICS OF MO | | | | | | | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1.34
2.68
2002
0.00
2001 | 1.12
1.81
1999
0.67
2002 | 2.29
4.52
2000
0.00
2001 | 1.39
2.73
1999
0.00
2001 | 3.02
4.88
2001
1.63
2002 | 1.98
3.95
1999
0.09
2001 | 2.71
7.33
1999
0.14
2000 | 7.42
21.4
2002
0.44
2001 | 2.03
4.50
2000
0.56
1998 | 8.13
24.5
2000
0.70
1998 | 3.94
17.6
2002
0.00
1999 | 1.42
3.10
1998
0.00
1999 | | SUMMAR' | Y STATIST | ICS | FOI | R 2001 CAI | ENDAR YE | AR | FOR 2002 | 2 WATER YI | EAR | WATER Y | YEARS 1998 | - 2002 | | LOWEST HIGHES' LOWEST ANNUAL MAXIMUI MAXIMUI INSTAN' ANNUAL 10 PER(50 PER(| MEAN T ANNUAL M ANNUAL M T DAILY ME DAILY ME SEVEN-DA M PEAK ST TANEOUS L CRUNOFF (1 CENT EXCER CENT EXCER CENT EXCER | EAN EAN AN Y MINIMUM DW AGE DW FLOW INCHES) EDS | | 2.08
139
0.00
0.00

2.68
3.1
0.00
0.00 | Jul
Many Da
At Tim | 29
ys
es | 5.49
5.25
0.00
0.00
Unknowr
9.63
0.00
7.10
0.00 | 5 Aug
D Many Da
D At Tir
Aug
B Aug
D Many Da
D | 17
ays
mes
17
17
ays | 3.29
5.49
1.57
525
0.00
0.00
Unknowr
9.63
0.00
4.26
5.4
0.00 | 9 7 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 | 2002
2001
17 2002
Y Years
t Times
17 2002
17 2002
y Years | e Estimated ### 07052152 WILSON CREEK NEAR BROOKLINE, MO LOCATION.--Lat $37^{\circ}09^{\circ}07^{\circ}$, long $93^{\circ}22^{\circ}18^{\circ}$, in NW $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.7, T.28 N., R.22 W., Greene County, Hydrologic Unit 11010002, at bridge on Farm Road 168, 2.0 mi southeast of Brookline, approximately 0.25 mi downstream from the Southwest Treatment Plant, and 0.5 mi downstream from South Creek. DRAINAGE AREA. -- 44.6 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--July 10, 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Water-discharge records good. Natural flow partially regulated and affected by sewage effluent. EXTREMES FOR CURRENT YEAR.--For period July 10 to Sept. 30, maximum instantaneous discharge 2,440 ft 3 /s, July 29, gage height 7.26; minimum instantaneous discharge 18 ft 3 /s, Sept. 30. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------| | 1 | | | | | | | | | | | 55 | 32 | | 2 | | | | | | | | | | | 51 | 29 | | 3 | | | | | | | | | | | 50 | 31 | | 4 | | | | | | | | | | | 70 | 34 | | 5 | | | | | | | | | | | 46 | 36 | | _ | | | | | | | | | | | | | | 6 | | | | | | | | | | | 42 | 38 | | 7 | | | | | | | | | | | 39 | 35 | | 8 | | | | | | | | | | | 38 | 160 | | 9 | | | | | | | | | | | 76 | 170 | | 10 | | | | | | | | | | 40 | 52 | 53 | | 10 | | | | | | | | | | 10 | 32 | 33 | | 11 | | | | | | | | | | 39 | 49 | 45 | | 12 | | | | | | | | | | 72 | 38 | 41 | | 13 | | | | | | | | | | 46 | 35 | 40 | | 14 | | | | | | | | | | 36 | 36 | 38 | | 15 | | | | | | | | | | 35 | 37 | 35 | | 15 | | | | | | | | | | 33 | 37 | 33 | | 16 | | | | | | | | | | 63 | 43 | 33 | | 17 | | | | | | | | | | 44 | 57 | 38 | | | | | | | | | | | | | | | | 18 | | | | | | | | | | 42 | 50 | 41 | | 19 | | | | | | | | | | 41 | 64 | 39 | | 20 | | | | | | | | | | 88 | 40 | 39 | | 0.1 | | | | | | | | | | 40 | 2.0 | 4.0 | | 21 | | | | | | | | | | 40 | 39 | 40 | | 22 | | | | | | | | | | 36 | 39 | 36 | | 23 | | | | | | | | | | 38 | 38 | 31 | | 24 | | | | | | | | | | 38 | 38 | 32 | | 25 | | | | | | | | | | 38 | 34 | 34 | | | | | | | | | | | | | | | | 26 | | | | | | | | | | 42 | 33 | 35 | | 27 | | | | | | | | | | 70 | 36 | 35 | | 28 | | | | | | | | | | 179 | 36 | 35 | | 29 | | | | | | | | | | 507 | 36 | 36 | | 30 | | | | | | | | | | 85 | 37 | 30 | | 31 | | | | | | | | | | 57 | 38 | | | | | | | | | | | | | | | | | MEAN | | | | | | | | | | | 44.3 | 45.0 | | MAX | | | | | | | | | | | 76 | 170 | | MIN | | | | | | | | | | | 33 | 29 | | IN. | | | | | | | | | | | 0.46 | 0.45 | #### 07052152 WILSON CREEK NEAR BROOKLINE, MO--Continued LOCATION.--Lat $37^{\circ}09^{\circ}07^{\circ}$, long $93^{\circ}22^{\circ}18^{\circ}$, in NW $\frac{1}{4}$ NE $\frac{1}{4}$ Sec.7, T.28 N., R.22 W., Greene County, Hydrologic Unit 11010002, at bridge on Farm Road 168, 2.0 mi southeast of Brookline, approximately 0.25 mi downstream from the Southwest Treatment Plant, and 0.5 mi downstream from South Creek. DRAINAGE AREA. -- 44.6 mi². WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- July 10, 2001 to current year. GAGE. -- Water-stage recorder. Datum of gage is unknown. REMARKS.--Water-discharge records good. Natural flow partially regulated and affected by sewage effluent. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DATLY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 37 72 37 MEAN 50.1 39.3 68.2 54.6 59.9 71.5 73.6 45.4 44.1 39.2 34.4 MAX MIN 0.56 0.74 0.45 0.40 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 2001 - 2002, BY WATER YEAR (WY) MEAN 50.1 39.3 68.2 54.6 59.9 71.5 73.6 45.4 44.1 41.7 39.7 59.9 50.1 68.2 71.5 73.6 45.0 MAX 39.3 54.6 45.4 44.1 44.3 (WY) 54.6 2002 MTN 50 1 39 3 68.2 59 9 71 5 73.6 45.4 44.1 39 2 34 4 (WY) WATER YEARS 2001 - 2002 SUMMARY STATISTICS FOR 2002 WATER YEAR ANNUAL MEAN 67.8 67.8 HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 67.8 67.8 750 May 8 2002 27 Aug 11,Sep 18 2002 HIGHEST DAILY MEAN May LOWEST DAILY MEAN 27 Aug 11, Sep 18 ANNUAL SEVEN-DAY MINIMUM Sep 24 Sep 24 2002 MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE Unknown May Unknown May 8 2002 8 2002 10.27 May 10.27 May INSTANTANEOUS LOW FLOW
Sep 18 2002 6.1 Sep 18 6.1 ANNUAL RUNOFF (INCHES) 8.22 8.22 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS # 07052152 WILSON CREEK NEAR BROOKLINE, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1993 to current year. | DATE | TIME | SAMPI
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
07 | 0855 | ENVIRONM | IENTAL | 28 | 14.5 | 168 | 7.5 | 1030 | 20.6 | 230 | 74.6 | 10.0 | 13.7 | | JAN
23
23 | 1400
1401 | ENVIRONM
REPLICAT | | 46 | 17.7 | 193 | 7.7 | 1160 | 16.9 | | | | | | MAR
20 | 0750 | ENVIRONM | | 74 | 16.8 | 171 | 7.5 | 848 | 14.2 | | | | | | MAY
28
JUN | 1435 | ENVIRONM | IENTAL | 65 | 15.1 | 169 | 7.6 | 737 | 18.8 | 230 | 79.9 | 6.19 | 6.50 | | 19
JUL | 0810 | ENVIRONM | IENTAL | 34 | 12.1 | 146 | 7.6 | 1180 | 22.3 | | | | | | 22
SEP | 1300 | ENVIRONM | IENTAL | 44 | 11.0 | 141 | 7.5 | 1080 | 25.8 | | | | | | 10 | 1310 | ENVIRONM | IENTAL | 41 | 11.2 | 146 | 7.8 | 1170 | 26.3 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
07
JAN | 108 | 154 | 155 | 189 | 0 | 136 | .6 | 67.6 | 12 | 606 | <.04 | 1.1 | 13.1 | | 23
23 | | 171 | 170 | 207 | 0 | | | | <10 | | .08 | 1.1
1.2 | 17.6
13.4 | | MAR
20 | | 169 | 169 | 206 | 0 | | | | <10 | | E.04 | 1.0 | 4.72 | | MAY 28 | 57.0 | 175 | 177 | 216 | 0 | 57.0 | .3 | 44.9 | <10 | 411 | .56 | 1.5 | 9.36 | | JUN
19 | | 185 | 189 | 230 | 0 | | | | | | | | | | JUL
22 | | 151 | 155 | 189 | 0 | | | | <10 | | <.04 | .82 | 9.31 | | SEP
10 | | 148 | 148 | 180 | 0 | | | | <10 | | <.04 | .85 | 8.19 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(mg/L
as Al) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(mg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(mg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(mg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(mg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(mg/L
as Cu)
(01040) | | NOV
07 | E.007 | .11 | .09 | .46 | K20 | 100 | K57 | 28 | 700 | 2.9 | .15 | <.1 | E5 | | JAN
23
23 | <.008
<.008 | .18 | .16
.21 | .40 | K34 | 82 | 58
 | | | | | | | | 23
MAR
20 | <.008 | .10 | .07 | .25 | K81 | 235 | 304 | | | | | | | | MAY
28 | .023 | .22 | .20 | .39 | 130 | 175 | 67 | 8 | 218 | 1.1 | .04 | <.1 | <6 | | JUN
19 | | | | | <2 | К2 | К4 | | | | | | | | JUL
22 | .009 | .15 | .12 | .25 | 220 | 600 | 990 | | | | | | | | SEP
10 | E.004 | .35 | .34 | .43 | K360 | 480 | 108 | | | | | | | # 07052152 WILSON CREEK NEAR BROOKLINE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | 26DIMET
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | 3-BETA-
COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | |------------------|---|---|--|---|--|--|---|--|---|---|---|---|--| | NOV
07 | 38 | .64 | 2 | 9.0 | E.01 | 4.7 | | 51 | | | | | | | JAN
23 | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | MAR
20 | | | | | | | | | | | | | | | MAY
28 | 14 | .42 | М | 14.4 | <.01 | 3.1 | | 25 | E.1 | <.5 | <.5 | <.5 | <2 | | JUN
19 | | | | | | | | | E.1 | <.5 | <.5 | <.5 | <2 | | JUL
22 | | | | | | | | | E.1 | <.5 | <.5 | <.5 | M | | SEP
10 | DATE | 3METHYL
1(H)-
INDOLE,
WATER,
FLTERD
REC | 3-TERT-
BHA,
WATER,
FLTERD
REC | 4-CUMYL
PHENOL,
WATER,
FLTERD
REC | 4-OCTYL
PHENOL,
WATER,
FLTERD
REC | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLTERD
REC | 5METHYL
1HBENZO
TRIAZLE
WATER,
FLTERD
REC | ACETO-
PHENONE
WATER,
FLTERD
REC | AHT
NAPH-
THALENE
WATER,
FLTERD
REC | ANTHRA-
CENE
DISSOLV | ANTHRA-
QUINONE
WATER,
FLTERD
REC | BENZO-
A-
PYRENE
DISSOLV | BENZO-
PHENONE
WATER,
FLTERD
REC | BETA-
SITOS-
TEROL,
WATER,
FLTERD
REC | | | (µg/L)
(62058) | (µg/L)
(62059) | (µg/L)
(62060) | (µg/L)
(62061) | (µg/L)
(62062) | (µg/L)
(62063) | (µg/L)
(62064) | (µg/L)
(62065) | (µg/L)
(34221) | (µg/L)
(62066) | (µg/L)
(34248) | (µg/L)
(62067) | (µg/L)
(62068) | | NOV
07
JAN | | | | | | | | | | | | | | | 23
23 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 20
MAY | | | | | | | | | | | | | | | 28
JUN | <1 | <5
_ | <1 | <1 | <1 | <2 | <.5 | .6 | <.5 | <.5 | <.5 | E.1 | <2 | | 19
JUL | <1 | <5 | <1 | <1 | <1 | <2 | E.1 | E.2 | <.5 | <.5 | <.5 | E.2 | <2 | | 22
SEP | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | E.3 | <.5 | E.1 | <.5 | E.1 | <2 | | 10 | | | | | | | | | | | | | | | DATE | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | BRO-
MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | BROMO-
FORM
DISSOLV
(µg/L)
(34288) | CAF-
FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | CAMPHOR
WATER,
FLTERD
REC
(µg/L)
(62070) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | COT-
ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) |
FLUOR-
ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV
07
JAN | | | | | | | | | | | | | | | 23
23 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 20
MAY | | | | | | | | | | | | | | | 28
JUN | М | E.1 | E.1 | E.1 | <.5 | <1 | <.5 | <.5 | 3 | М | E.1 | <.5 | <.5 | | 19
JUL | <1 | <.5 | E46.0 | <.5 | М | <1 | <.5 | <.5 | 3 | <1 | <.5 | <.5 | <.5 | | 22
SEP | <1 | <.5 | E3.1 | E.1 | <.5 | <1 | <.5 | <.5 | М | <1 | E.1 | <.5 | <.5 | | 10 | | | | | | | | | | | | | | # 07052152 WILSON CREEK NEAR BROOKLINE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | HHHMCP-
BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62076) | ISOBOR-
NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | ISO-
PHORONE
DISSOLV
(µg/L)
(34409) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | MENTHOL
WATER,
FLTERD
REC
(µg/L)
(62080) | METAL-
AXYL
WATER
FLTRD
REC
(µg/L)
(50359) | METHYL
SALICY-
LATE,
WATER,
FLTERD
REC
(µg/L)
(62081) | METO-
LACHLOR
WATER
DISSOLV
(μg/L)
(39415) | DEET,
WATER,
FLTERD
REC
(µg/L)
(62082) | NAPHTH-
ALENE
DISSOLV
(µg/L)
(34443) | NONYL-
PHENOL,
DIETHOX
WATER,
FLTERD
REC
(µg/L)
(62083) | |-----------|---|---|--|--|---|---|---|---|--|--|--|---|--| | NOV | | | | | | | | | | | | | | | 07
JAN | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | 23
MAR | | | | | | | | | | | | | | | 20
MAY | | | | | | | | | | | | | | | 28 | E.2 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | .8 | <.5 | <5 | | 19 | E.1 | <.5 | <.5 | .5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | E.2 | <.5 | <5 | | 22 | E.1 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | M | <.5 | E.1 | <.5 | <5 | | SEP
10 | | | | | | | | | | | | | | | DATE | DI-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | MONO-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | PARA-
CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | PARA-
NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | PENTA-
CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | PHENAN
-THRENE
DISSOLV
(µg/L)
(34462) | PHENOL
WATER
FILTRD
(µg/L)
(34466) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PYRENE
DISSOLV
(µg/L)
(34470) | STIGMA-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | TETRA-
CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | FYROL
CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | FYROL
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV
07 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 23
23 | | | | | | | | | | | | | | | MAR
20 | | | | | | | | | | | | | | | MAY
28 | <1 | <1 | <1 | <5 | <2 | <.5 | 1.7 | E.1 | <.5 | <2 | М | E.1 | E.2 | | JUN
19 | <1 | М | <1 | <5 | <2 | <.5 | E.3 | <.5 | <.5 | <2 | <.5 | E.1 | E.2 | | JUL | | | | | | | | | | | | | | | 22
SEP | <1 | <1 | <1 | <5 | <2 | <.5 | E.4 | <.5 | <.5 | <2 | <.5 | E.2 | E.3 | | DATE | WATER,
FLTERD
REC
(µg/L) | FLTERD
REC
(µg/L) | CITRATE
WATER,
FLTERD
REC
(µg/L) | TRIPHNL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | PHATE,
WATER,
FLTERD
(µg/L) | |-----------|-----------------------------------|-------------------------|--|--|--------------------------------------| | NOV
07 | | | | | | | JAN | | | | | | | 23 | | | | | | | 23 | | | | | | | MAR | | | | | | | 20 | | | | | | | MAY | | _ | | | | | 28 | E.1 | <1 | E.1 | M | E.1 | | JUN
19 | E.1 | М | E.1 | <.5 | <.5 | | JUL | E.I | 141 | E.I | <.5 | <.5 | | 22 | E.1 | М | E.1 | <.5 | <.5 | | SEP | | 1-1 | | 1.5 | 1.5 | | 10 | | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 07052160 WILSON CREEK NEAR BATTLEFIELD, MO LOCATION.--Lat $37^{\circ}07^{\circ}04^{\circ}$, long $93^{\circ}24^{\circ}14^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.24, T.28 N., R.23 W., Greene County, Hydrologic Unit 11010002, on left bank 50 ft downstream from bridge on Greene County Road 182, 0.3 mi upstream from McElhaney Branch, and 1.8 mi west of Battlefield DRAINAGE AREA. -- 55.0 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--March 1968 to September 1970, October 1972 to September 1982, Aug. 3, 1999 to current year. GAGE.--Water-stage recorder. Datum of gage is 1,100 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 20, 1972, at site 50 ft upstream. For period 1972 to 1982, at site 250 ft downstream. REMARKS.--Water-discharge records good except for estimated daily discharges, which are poor. Natural flow partially regulated and affected by sewage effluent. U.S.G.S. satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PEF | R SECOND, W | | | BER 2001 TO | SEPTEMBE | ER 2002 | | | |---|--|-------------------------------------|-------------------------------------|--|---|--|---|---|-------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 48
48
48
48
178 | 50
147
80
63
61 | 75
65
63
61
59 | 63
64
64
64
60 | 422
279
215
182
160 | 74
210
122
110
108 | 121
114
121
109
104 | 136
129
125
121
111 | 113
104
101
98
104 | 61
63
69
95
e80 | 49
49
50
46
47 | 40
43
46
51
47 | | 6
7
8
9 | 88
62
58
56
228 | 58
56
55
55
51 | 58
52
53
49
51 | 56
59
60
58
57 | 143
132
131
119
99 | 106
104
107
98
99 | 105
102
246
180
139 | 119
218
2730
1160
594 | 103
94
90
80
81 | e75
e70
e63
54
95 | 48
48
46
44
50 | 46
49
46
46
47 | | 11
12
13
14
15 | 202
114
94
85
82 | 46
49
49
49 | 44
147
115
100
86 | 56
52
50
52
52 | 95
91
87
84
80 | 91
87
87
96
83 | 128
121
116
111
109 | 416
336
638
367
298 | 80
129
109
95
78 | 112
126
149
128
75 | 39
45
46
48
51 | 48
47
47
46
46 | | 16
17
18
19
20 | 93
76
74
68
61 | 48
46
43
61 | 491
554
323
228
181 | 52
51
52
51
51 | 76
71
72
131
111 | 86
81
79
255
212 | 108
116
113
122
495 | 261
850
496
358
285 | 72
75
75
73
70 | 66
62
70
76
78 | 47
143
94
58
57 | 46
46
37
62
68 | | 21
22
23
24
25 | 58
60
184
103
78 | 54
47
43
51
49 | 153
144
e135
e120
e110 | 53
54
62
120
71 | 90
82
77
74
74 | 170
153
144
127
492 | 318
233
199
185
167 | 236
209
196
258
195 | 72
68
64
67
136 | 64
61
58
56
55 | 52
49
83
91
80 | 46
44
45
47
43 | | 26
27
28
29
30
31 | 69
57
52
53
52
52 | 48
49
58
71
108 | e100
88
80
73
68
67 | 62
58
59
62
233
604 | 69
66
66
 | 252
212
189
171
155
132 | 213
187
156
133
136 | 152
138
137
187
135
123 | 118
77
91
74
66 | 54
50
48
51
52
52 | 55
52
53
51
48
46 | 45
44
45
39
43 | | MEAN
MAX
MIN
IN. | 84.8
228
48
1.68 | 58.5
147
43
1.12 | 129
554
44
2.55 | 82.6
604
50
1.63 | 121
422
66
2.16 | 145
492
74
2.87 | 160
495
102
3.07 | 378
2730
111
7.47 | 88.6
136
64
1.70 | 73.2
149
48
1.45 | 56.9
143
39
1.13 | 46.5
68
37
0.89 | | MEAN
MAX
(WY)
MIN
(WY) | 61.2
103
1973
36.1
1977 | 103
354
1973
23.9
1977 |
82.9
208
1974
23.4
1977 | 75.2
169
1973
24.9
1977 | OF RECORD,
97.0
189
2001
32.1
1970 | 142
289
1973
53.4
1976 | 118
281
1973
57.0
2000 | 120
378
2002
45.7
1977 | 97.6
201
1974
48.5
1969 | 76.9
236
2000
34.9
1969 | 53.5
82.4
1982
27.7
1970 | 58.3
155
1977
25.3
1980 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALEN | IDAR YEAR | | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | RECORD | | LOWEST ANIUAL ANNUAL MAXIMUM MAXIMUM INSTANT. ANNUAL 10 PERC. | MEAN ANNUAL MANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS | | 89.2
1420
39
45

20.77
139
63
49 | Feb 24
Sep 30
Sep 24 | | 2730
37
44
4620
12.06
27.70
211
75
47 | May 8
Sep 18
Sep 24
May 8
May 8
Sep 18 | | 91.3
150
56.9
2830
17
20
6160
13.75
11
21.28
168
59 | Aug
Aug
Jul
Jul | 1973
1977
20 1979
21 1970
24 1970
12 2000
12 2000
24 1999 | e Estimated # 07052160 WILSON CREEK NEAR BATTLEFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 2001 to current year. | DATE | TIME | SAMPLE
E TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|--|--|---|---|--|--|--|--|---|--|---|---| | OCT
04 | 1040 | ENVIRONMENTAL | | 39 | 7.6 | 86 | 7.8 | 972 | 19.7 | | | | | | NOV
07 | 1040 | ENVIRONMENTAL | | 49 | 9.7 | 105 | 7.4 | 817 | 17.2 | 250 | 85.5 | 7.73 | 8.48 | | DEC
12 | 1230 | ENVIRONMENTAL | | 280 | 10.6 | 103 | 7.6 | 911 | 12.2 | 240 | 78.9 | 10.3 | 10.4 | | 19
JAN | 0830 | ENVIRONMENTAL | | 226 | 8.2 | 83 | 7.3 | 580 | 13.5 | | | | | | 24
FEB | 0945 | ENVIRONMENTAL | | 94 | 9.1 | 86 | 7.7 | 712 | 11.2 | 200 | 70.0 | 5.26 | 5.03 | | 20
MAR | 1230 | ENVIRONMENTAL | | 116 | 13.7 | 141 | 8.0 | 738 | 14.2 | | | | | | 19
19 | 1930
1931 | ENVIRONMENTAL
REPLICATE | | 431 | 7.5
 | 73
 | 6.5 | 510
 | 12.4 | | 55.4
55.2 | 3.17
3.17 | 3.36
3.32 | | 20
APR | 0935 | ENVIRONM | | 197 | 10.1 | 98 | 7.6 | 594 | 12.7 | | | | | | 22
MAY | 1355 | ENVIRONM | MENTAL | 229 | 12.3 | 131 | 7.3 | 546 | 16.5 | | | | | | 28
JUN | 1315 | ENVIRONM | MENTAL | 139 | 11.5 | 125 | 7.3 | 586 | 17.0 | 180 | 65.5 | 3.36 | 1.86 | | 19
JUL | 0940 | ENVIRONM | MENTAL | 62 | 6.6 | 75 | 7.5 | 872 | 19.6 | | | | | | 22
AUG | 1430 | ENVIRONM | MENTAL | 64 | 8.9 | 113 | 7.5 | 904 | 25.0 | 230 | 79.8 | 6.93 | 8.41 | | 20 | 1030 | ENVIRONM | MENTAL | 59 | 7.2 | 88 | 7.5 | 766 | 22.8 | | | | | | SEP
10 | 1110 | ENVIRONM | MENTAL | 45 | 7.1 | 87 | 7.7 | 1010 | 23.1 | 210 | 67.4 | 9.28 | 10.2 | | | | | | | | | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | FET
FIELD | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | DIS-
SOLVED
(mg/L
as Na) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
04
NOV
07
DEC | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
172 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 | | OCT
04
NOV
07
DEC
12 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
04
NOV
07
DEC
12
19
JAN
24 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
172
190 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193 | BICAR-BONATE
IT FIELD (mg/L as HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945) 51.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 | GEN,
NO ₂ +NO ₃
D1S-
SOLVED
(mg/L
as N)
(00631)
.09
8.32 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20 | DIS-
SOLVED
(mg/L
as Na)
(00930) |
WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
172
190
191
193 | WATER
UNFLITRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193
194 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
218
234
235
236 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) 51.3 55.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 12 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 .09 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 1.4 .69 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 8.32 11.1 4.54 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19 | DIS-
SOLVED
(mg/L
as Na)
(00930)

67.2
87.2

65.7 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 172 190 191 193 148 209 123 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193
194
147
211 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 218 234 235 236 179 257 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

83.1
101

89.4

56.1 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

51.3
55.3

25.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 12 20 <10 86 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

490
532

376

292 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 .09 E.04 <.04 E.03 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 1.4 .69 .50 .54 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 8.32 11.1 4.54 4.05 5.19 2.29 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
19 | DIS-
SOLVED
(mg/L
as Na)
(00930)

67.2
87.2

65.7 | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
172
190
191
193
148
209 | WATER
UNFLITRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193
194
147
211 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
218
234
235
236
179
257 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

83.1
101

89.4 | RIDE,
DIS-
SOIVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

51.3
55.3

25.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 12 20 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 .09 E.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 1.4 .69 .50 | GEN, NO2+NO3 DIS- SOLVED (mg/L as N) (00631) .09 8.32 11.1 4.54 4.05 5.19 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
20 | DIS-
SOLVED
(Mg/L
as Na)
(00930)

67.2
87.2

65.7

42.5
42.5 | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
172
190
191
193
148
209
123 | WATER
UNFLITRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193
194
147
211
124 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
218
234
235
236
179
257
151 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0
0
0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

83.1
101

89.4

56.1
57.9 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

51.3
55.3

25.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 12 20 <10 86 88 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

490
532

376

292
299 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 .09 E.04 <.04 E.03 E.03 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 1.4 .69 .50 .54 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 8.32 11.1 4.54 4.05 5.19 2.29 2.29 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
20
APR
22
MAY
28 | DIS-
SOLVED
(mg/L
as Na)
(00930)

67.2
87.2

65.7

42.5
42.5 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 172 190 191 193 148 209 123 169 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193
194
147
211
124

168 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 218 234 235 236 179 257 151 205 | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447)
0
0
0
0
0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

83.1
101

89.4

56.1
57.9 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

51.3
55.3

25.5

25.8
25.9 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 12 20 <10 86 88 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

490
532

376

292
299
 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 .09 E.04 <.04 E.03 E.03 E.03 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 1.4 .69 .50 .54 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 8.32 11.1 4.54 4.05 5.19 2.29 2.29 3.07 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
20
APR
22
MAY
28
JUN
19 | DIS-
SOLVED
(mg/L
as Na)
(00930)

67.2
87.2

65.7

42.5
42.5 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 172 190 191 193 148 209 123 169 171 | WATER
UNFLITR
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193
194
147
211
124

168
174 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
218
234
235
236
179
257
151

205
212 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 | RIDE, DIS- SOLVED (mg/L as C1) (00940) 83.1 101 89.4 56.1 57.9 | RIDE,
DIS-
SOIVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

51.3
55.3

25.5

25.8
25.9
 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 12 20 <10 86 88 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

490
532

376

292
299
 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 .09 E.04 <.04 E.03 E.03 E.03 C.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 1.4 .69 .50 .54 1.2 1.0 .45 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 8.32 11.1 4.54 4.05 5.19 2.29 2.29 3.07 3.08 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
20
APR
22
MAY
28
JUN
19
21
21 | DIS-
SOLVED (mg/L as Na) (00930) 67.2 87.2 65.7 42.5 42.5 20.3 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 172 190 191 193 148 209 123 169 171 | WATER
UNFLITRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193
194
147
211
124

168
174
190 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
218
234
235
236
179
257
151

205
212 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE, DIS- SOLVED (mg/L as C1) (00940) 83.1 101 89.4 56.1 57.9 36.3 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

51.3
55.3

25.5

25.8
25.9

29.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 12 20 <10 86 88 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

490
532

376

292
299
 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 .09 E.04 <.04 E.03 E.03 E.03 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 1.4 .69 .50 .54 1.2 1.0 .45 .34 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 8.32 11.1 4.54 4.05 5.19 2.29 3.07 3.08 5.75 | | OCT
04
NOV
07
DEC
12
19
24
FEB
20
MAR
19
20
APR
22
MAY
28
JUN
19 | DIS-
SOLVED (mg/L as Na) (00930) 67.2 87.2 65.7 42.5 42.5 20.3 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 172 190 191 193 148 209 123 169 171 191 194 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
191
193
194
147
211
124

168
174
190 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 218 234 235 236 179 257 151 205 212 232 236 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

83.1
101
89.4

56.1
57.9

36.3 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS- SOLVED (mg/L as SO ₄) (00945) 51.3 55.3 25.5 25.8 25.9 29.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 50 12 20 <10 <10 <68 88 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 490 532 376 292 299 358 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 .15 E.03 .09 E.04 <.04 E.03 E.03 E.03 C.04 <.04 .26 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .69 .83 1.4 .69 .50 .54 1.2 1.0 .45 .34 .42 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 8.32 11.1 4.54 4.05 5.19 2.29 2.29 3.07 3.08 5.75 5.62 | # 07052160 WILSON CREEK NEAR BATTLEFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE |
NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |---|--|--|--|--|--|--|--|--|---|---|--|---|---| | OCT
04 | .024 | .20 | .13 | .20 | 160 | 310 | 76 | | | | | | | | NOV
07 | .067 | .21 | .16 | .23 | 94 | 162 | 76 | 22 | 77 | 2.6 | .10 | <.1 | E3 | | DEC
12 | .025 | .19 | .15 | .69 | 500 | 2860 | 1000 | 31 | 730 | 1.1 | .08 | E.1 | E5 | | 19
JAN | .033 | .10 | .07 | .17 | K21000 | K13200 | K5400 | | | | | | | | 24
FEB | .011 | .09 | .07 | .18 | K180 | 360 | 992 | 63 | 338 | .7 | .06 | E.1 | E3 | | 20
MAR | .009 | .10 | .08 | .12 | K36 | <2 | K41 | | | | | | | | 19
19 | .012
.012 | .07
.07 | .06
.06 | .43
.41 | 1100 | K1930 | 2300 | 8
8 | 1140
1170 | 1.7
1.8 | .09 | .2 | <6
<6 | | 20
APR | .012 | .07 | .05 | .13 | 570 | 2600 | 1220 | | | | | | | | 22
MAY | .017 | .06 | .05 | .11 | K4 | 1400 | 400 | | | | | | | | 28
JUN | .018 | .12 | .10 | .15 | 300 | K300 | 280 | 6 | 118 | .3 | .04 | <.1 | <6 | | 19
JUL | .096 | .11 | .10 | .14 | K26 | 350 | 215 | | | | | | | | 22
AUG | .017 | .13 | .11 | .16 | 120 | 460 | 128 | 24 | 175 | 2.2 | .05 | <.1 | <6 | | 20
SEP | .034 | .20 | .19 | .21 | 330 | K550 | 425 | | | | | | | | 10 | .011 | .29 | .29 | .32 | 290 | 300 | 150 | 21 | 221 | 3.3 | .20 | <.1 | <6 | | | | | | | | | | | | | | | | | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | 26DIMET
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | | OCT
04 | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(μg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | | OCT
04
NOV
07 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(μg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | | OCT
04
NOV
07
DEC
12 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED (µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

5.1
3.1 | DIS-
SOLVED (µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 36 36 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLITERD REC (µg/L) (62054) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) < <.002 | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | | OCT
04
NOV
07
DEC
12
19
JAN | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M 3 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

11.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 .02 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

5.1
3.1 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 36 36 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLITERD
REC
(µg/L)
(62054) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M 3 4 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

11.0
13.5

17.8 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 .0202 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

5.1
3.1

1.0 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

26
 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 24 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLITERD REC (µg/L) (62054) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | | OCT 04 NOV 07 DEC 12 19 JAN 24 FEB 20 MAR | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M 3 4 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

11.0
13.5

17.8 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 .0202 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

5.1
3.1

1.0 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 36 24 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLITERD REC (µg/L) (62054) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) < <.002 | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M 3 4 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

11.0
13.5

17.8 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 .0202 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

5.1
3.1

1.0 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

26
 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 24 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
19 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) Μ 3 4 10 | NESE,
DIS-
SOLVED (μg/L
as
Mn)
(01056)

11.0
13.5

17.8

22.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 .020202 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

5.1
3.1

1.0 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

26

12 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 36 24 40 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
20 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47

.20
.20 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) M 3 4 10 12 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

11.0
13.5

17.8

22.0
21.7 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 .020202 .03 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

5.1
3.1

1.0

4.9
5.4 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

26

12
12 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 24 40 40 | CHLORO-
BENZENE DISSOLV (μg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | ETHYL ANILINE UNT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | | OCT 04 NOV 07 DEC 12 19 JAN 24 FEB 20 MAR 19 19 24 APR 22 MAY 28 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43

14 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47

.20
.20 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) M 3 4 10 12 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

11.0
13.5

17.8

22.0
21.7 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 .020202 .03 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

5.1
3.1

1.0

4.9
5.4 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

26

12
12 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 24 40 40 | CHLORO-
BENZENE DISSOLV (μg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
20
APR
22
MAY
28
JUN
19 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43

14
14
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47

.20
.20 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) M 3 4 10 12 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

11.0
13.5

17.8

22.0
21.7
 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 .020202 .03 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

5.1
3.1

1.0

4.9
5.4
 | DIS-
SOLVED
(µg/L
as Zn)
(01090) 26 12 12 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 36 24 40 40 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | ETHYL ANILINE UNT FIT 0.7 μ GF, REC (μg/L) (82660) <-0002 <-006 <.006 <.006 <.006 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | | OCT 04 NOV 07 DEC 12 19 JAN 24 FEB 20 MAR 19 20 APR 22 MAY 28 JUN 19 JUN 19 19 19 19 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43

14
14

E6 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47

.20
.20

 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) M 3 4 10 12 1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 11.0 13.5 17.8 22.0 21.7 17.9 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 .020202 .03 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

5.1
3.1

1.0

4.9
5.4

 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

26

12
12
12
 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 24 40 40 13 | CHLORO-BENZENE DISSOLV (μg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(μg/L)
(62054) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 <.006 <.006 | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | | OCT 04 04 NOV 07 DEC 12 19 24 FEB 20 MAR 19 29 APR 22 MAY 28 JUN 19 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

15
34

43

14
14

E6 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

.45
.52

.47

.20
.20

.19 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) M 3 4 10 12 1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056) 11.0 13.5 17.8 22.0 21.7 17.9 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 .020202 .03 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Se) (01145) 5.1 3.1 1.0 4.9 5.4 66 | DIS-
SOLVED (µg/L as Zn) (01090) 26 12 12 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 36 36 24 40 40 13 | CHLORO-BENZENE DISSOLV (μg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (μg/L) (62054) | ETHYL ANILINE ANILINE UNAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | # 07052160 WILSON CREEK NEAR BATTLEFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | 3-BETA-
COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | 3METHYL
1(H)-
INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62058) | 3-TERT-
BHA,
WATER,
FLTERD
REC
(µg/L)
(62059) | 4-CUMYL
PHENOL,
WATER,
FLTERD
REC
(μg/L)
(62060) | 4-OCTYL
PHENOL,
WATER,
FLTERD
REC
(μg/L)
(62061) | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLTERD
REC
(μg/L)
(62062) | 5METHYL
1HBENZO
TRIAZLE
WATER,
FLTERD
REC
(µg/L)
(62063) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ACETO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62064) | AHT NAPH- THALENE WATER, FLTERD REC (µg/L) (62065) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ANTHRA-
CENE
DISSOLV
(µg/L)
(34221) | |---|--|--|--|--|--|--|---|--|---|---|--|---|---| | OCT
04 | | | | | | | | | | | | | | | NOV
07
DEC | | | | | | | | | | | | | | | 12 | | | | | | | | <.004 | | | <.070 | <.005 | | | 19
JAN | | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | | FEB 20 | | | | | | | | | | | | | | | MAR
19 | | | | | | | | <.006 | | | <.004 | <.005 | | | 19 | | | | | | | | <.006 | | | <.004 | <.005 | | | 20
APR | | | | | | | | <.006 | | | <.004 | <.005 | | | 22
MAY | | | | | | | | <.006 | | | <.004 | <.005 | | | 28
JUN | <2 | <1 | <5 | <1 | <1 | <1 | <2 | <.006 | <.5 | E.2 | <.004 | <.005 | <.5 | | 19
JUL | <2 | <1 | <5 | <1 | <1 | <1 | <2 | <.006 | <.5 | E.1 | <.004 | <.005 | <.5 | | 22 | М | <1 | <5 | <1 | <1 | <1 | <2 | <.006 | <.5 | E.2 | <.004 | <.005 | <.5 | | AUG
20 | | | | | | | | | | | | | | | SEP
10 | DATE | ANTHRA-
QUINONE
WATER,
FLTERD
REC
(µg/L)
(62066) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BENZO-
A-
PYRENE
DISSOLV
(µg/L)
(34248) | BENZO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | BETA-
SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | BRO-
MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | BROMO-
FORM
DISSOLV
(µg/L)
(34288) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAF-
FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | CAMPHOR
WATER,
FLTERD
REC
(µg/L)
(62070) | CAR-
BARYL
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82680) | | OCT
04 | QUINONE
WATER,
FLTERD
REC
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L) | A-
PYRENE
DISSOLV
(µg/L) | PHENONE
WATER,
FLTERD
REC
(µg/L) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L) | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) |
ATE,
WATER,
DISS,
REC
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | | OCT | QUINONE
WATER,
FLTERD
REC
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L) | A-
PYRENE
DISSOLV
(µg/L) | PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L) | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | ATE,
WATER,
DISS,
REC
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | | OCT
04
NOV
07
DEC | QUINONE WATER, FLTERD REC (µg/L) (62066) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | A-
PYRENE
DISSOLV
(µg/L)
(34248) | PHENONE
WATER,
FLITERD
REC
(µg/L)
(62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | FEINE,
WATER
FLIRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | | OCT
04
NOV
07 | QUINONE
WATER,
FLTERD
REC
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | A-
PYRENE
DISSOLV
(µg/L)
(34248) | PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A,
WATER,
FLITERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM
DISSOLV
(µg/L)
(34288) | ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | | OCT
04
NOV
07
DEC
12
19
JAN | QUINONE WATER, FLTERD REC (µg/L) (62066) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | A- PYRENE DISSOLV (µg/L) (34248) | PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB | QUINONE WATER, FLTERD REC (µg/L) (62066) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | A- PYRENE DISSOLV (µg/L) (34248) | PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20 | QUINONE WATER, FLTERD REC (µg/L) (62066) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | A- PYRENE DISSOLV (µg/L) (34248) | PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19 | QUINONE WATER, FITERD REC (µg/L) (62066) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

E.004

 | FLUR-
ALIN
WAT FLD
0.7 μ
GF, REC
(μg/L)
(82673)

<.010 | A- PYRENE DISSOLV (μg/L) (34248) | PHENONE WATER, FLTERD REC (µg/L) (62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | ATE, WATER, DISS, REC (µg/L) (04028) <-0002 <-0002 | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL WATER FLTRD 0.7 μ GF, REC (μg/L) (82680) <.041 E.012 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19 | QUINONE WATER, FITERD REC (µg/L) (62066) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

E.004

.007 | FLUR- ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < < | A- PYRENE DISSOLV (µg/L) (34248) | PHENONE WATER, FLTERD REC (µg/L) (62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029)

<.40

4.27
4.00 | FORM DISSOLV (µg/L) (34288) | ATE, WATER, DISS, REC (µg/L) (04028) <-002 <-002 <-002 <-002 <-002 | FEINE, WATER FITRD REC (µg/L) (50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) <.041 E.012 E.012 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
19 | QUINONE WATER, FITERD REC (µg/L) (62066) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

E.004

.007
.007
E.005 | FLUR- ALIN WAT FLD 0.7 μ GF, REC (μg/L) (82673) <-010 <-010 <.010 <.010 <.010 | A- PYRENE DISSOLV (μg/L) (34248) | PHENONE WATER, FLTERD REC (µg/L) (62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029)

<.40

4.27
4.00 | FORM DISSOLV (µg/L) (34288) | ATE, WATER, DISS, REC (µg/L) (04028) <-0002 <-0002 <-002 <-002 <-002 <-002 | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) <-041 E.012 E.012 E.012 | | OCT 04 NOV 07 DEC 12 19 JAN 24 FEB 20 MAR 19 19 20 APR 22 MAY | QUINONE WATER, FITERD REC (µg/L) (62066) | ZINE,
WATER,
DISS,
REC (µg/L) (39632)
 | FLUR- ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) < <.010 <.010 <.010 <.010 <.010 <.010 | A- PYRENE DISSOLV (µg/L) (34248) | PHENONE WATER, FLTERD REC (µg/L) (62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029)

<.40

4.27
4.00
 | FORM DISSOLV (µg/L) (34288) | ATE, WATER, DISS, REC (µg/L) (04028) <-0002 <-0002 <.0002 <.0002 | FEINE, WATER FITRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) < < < < E.012 E.012 E.016 <041 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
20
APR
22
MAY
28
JUN | QUINONE WATER, FITERD REC (µg/L) (62066) | ZINE, WATER, DISS, REC (µg/L)(39632) E.004007 .007 E.005 <.007 | FLUR- ALIN WAT FILD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 | A-
PYRENE
DISSOLV
(μg/L)
(34248) | PHENONE WATER, FLTERD REC (µg/L) (62067) | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029)

<.40

4.27
4.00

E.3 | FORM DISSOLV (µg/L) (34288) | ATE, WATER, DISS, REC (µg/L) (04028) <-0002 <-0002 <-002 <-002 <-002 <-002 | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) <-041 E.012 E.012 E.016 <.041 E.005 | | OCT
04
NOV
07
DEC
12
19
24
FEB
20
MAR
19
20
APR
22
MAY
28
JUN
19 | QUINONE WATER, FITERD REC (µg/L) (62066) | ZINE, WATER, DISS, REC (µg/L)(39632) E.004 007 .007 .007 E.005 <.007 | FLUR- ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | A- PYRENE DISSOLV (μg/L) (34248) | PHENONE WATER, FLTERD REC (µg/L) (62067) M E.2 | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL, WATER, DISS, REC (µg/L) (04029) <.40 4.27 4.00 E.3 | FORM DISSOLV (µg/L) (34288) M E.4 | ATE, WATER, DISS, REC (µg/L) (04028) | FEINE, WATER FLITRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) < <.041 E.012 E.012 E.012 E.016 <.041 E.005 <.041 | | OCT 04 NOV 07 DEC 12 19 JAN 24 FEB 20 MAR 19 20 APR 22 MAY 28 JUN 19 19 21 AUG | QUINONE WATER, FITERD REC (µg/L) (62066) | ZINE, WATER, DISS, REC (µg/L)(39632) E.004007 .007 E.005 <.007 | FLUR- ALIN WAT FILD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 | A-
PYRENE
DISSOLV
(μg/L)
(34248) | PHENONE WATER, FLTERD REC (µg/L) (62067) |
SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029)

<.40

4.27
4.00

E.3 | FORM DISSOLV (µg/L) (34288) | ATE, WATER, DISS, REC (µg/L) (04028) <-0002 <-0002 <-002 <-002 <-002 <-002 | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) <-041 E.012 E.012 E.016 <.041 E.005 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
22
APR
22
MAY
28
JUN
19
19 | QUINONE WATER, FITERD REC (µg/L) (62066) | ZINE, WATER, DISS, REC (µg/L)(39632) E.004 007 .007 .007 E.005 <.007 | FLUR- ALIN WAT FLD 0.7 µ GF, REC (µg/L) (82673) <.010 <.010 <.010 <.010 <.010 <.010 <.010 | A- PYRENE DISSOLV (μg/L) (34248) | PHENONE WATER, FLTERD REC (µg/L) (62067) M E.2 | SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL, WATER, DISS, REC (µg/L) (04029) <.40 4.27 4.00 E.3 | FORM DISSOLV (µg/L) (34288) M E.4 | ATE, WATER, DISS, REC (µg/L) (04028) | FEINE, WATER FLITRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) < <.041 E.012 E.012 E.012 E.016 <.041 E.005 <.041 | # 07052160 WILSON CREEK NEAR BATTLEFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | COT-
ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | |--|--|---|--|--|---|--|--|---|---|---|---|--|--| | OCT
04 | | | | | | | | | | | | | | | NOV
07 | | | | | | | | | | | | | | | DEC | | 000 | 225 | | | 010 | 000 | - 000 | 0.50 | 205 | 0.0 | | 000 | | 12
19 | | <.020 | <.005 | | | <.018 | <.003 | E.003 | .058 | <.005 | <.02 | | <.002 | | JAN
24 | | | | | | | | | | | | | | | FEB 20 | | | | | | | | | | | | | | | MAR | | | | | | | | | | | | | | | 19
19 | | <.020
<.020 | <.005
<.005 | | | <.018
<.018 | <.003
<.003 | <.006
E.003 | .046
.050 | <.005
<.005 | <.02
<.02 | | <.002
<.002 | | 20 | | <.020 | <.005 | | | <.018 | <.003 | <.006 | .057 | <.005 | <.02 | | <.002 | | APR
22 | | <.020 | .008 | | | <.130 | <.003 | <.006 | .011 | <.005 | <.02 | | <.002 | | MAY
28 | <.5 | <.020 | <.005 | E2 | М | <.018 | <.003 | E.005 | .012 | <.005 | <.02 | <.5 | <.002 | | JUN
19 | <.5 | <.020 | <.005 | <2 | <1 | <.018 | <.003 | <.006 | .053 | <.005 | <.02 | <.5 | <.002 | | JUL
22 | <.5 | <.020 | <.005 | M | <1 | .146 | <.003 | E.004 | .021 | <.005 | <.02 | <.5 | <.002 | | AUG | | | | 141 | ζ1 | | <.003 | | | | | | | | 20
SEP | | | | | | | | | | | | | | | 10 | DATE | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FLUOR-
ANTHENE
DISSOLV
(µg/L)
(34377) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | HHHMCP-
BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62076) | ISOBOR-
NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | ISO-
PHORONE
DISSOLV
(µg/L)
(34409) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | | DATE OCT 04 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L) | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | WATER
DISS
REC
(µg/L) | BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | NEOL,
WATER,
FLTERD
REC
(µg/L) | PHORONE
DISSOLV
(µg/L) | PROPYL BENZENE WATER, FLTERD REC (µg/L) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
04
NOV | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | WATER
DISS
REC
(µg/L)
(04095) | BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | NEOL,
WATER,
FLTERD
REC
(µg/L) | PHORONE
DISSOLV
(µg/L) | PROPYL BENZENE WATER, FLTERD REC (µg/L) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | | OCT
04
NOV
07
DEC | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672) | ANTHENE
DISSOLV
(µg/L)
(34377) | WATER DISS REC (µg/L) (04095) | BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | WATER,
FLITERD
REC
(µg/L)
(62076) | NEOL,
WATER,
FLTERD
REC
(µg/L) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL BENZENE WATER, FLTERD REC (µg/L) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | | OCT
04
NOV
07
DEC
12
19 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ANTHENE
DISSOLV
(µg/L)
(34377) | WATER
DISS
REC
(µg/L)
(04095) | BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | WATER,
FLTERD
REC
(µg/L)
(62076) | NEOL,
WATER,
FLTERD
REC
(µg/L) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL BENZENE WATER, FLTERD REC (µg/L) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | | OCT
04
NOV
07
DEC
12 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | ANTHENE
DISSOLV
(µg/L)
(34377) | WATER DISS REC (µg/L) (04095) | BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | WATER, FLTERD REC (µg/L) (62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | | OCT 04 NOV 07 DEC 12 19 JAN | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | ANTHENE
DISSOLV
(µg/L)
(34377) | WATER DISS REC (µg/L) (04095) | BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | WATER,
FLTERD
REC
(µg/L)
(62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532)

<.027 | | OCT 04 NOV 07 DEC 12 19 JAN 24 FEB 20 MAR | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <-005 | ANTHENE
DISSOLV
(μg/L)
(34377)

 | WATER DISS REC (µg/L) (04095) <.003 | BENZO- PYRAN, WATER, FLTERD REC (µg/L) (62075) | WATER,
FLITERD
REC
(µg/L)
(62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409) |
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED (µg/L) (39341) <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20 | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005
 | ANTHENE
DISSOLV
(μg/L)
(34377) | WATER DISS REC (µg/L) (04095) <.003 | BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | WATER,
FLTERD REC
(µg/L)
(62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL BENZENE WATER, FLTERD REC (µg/L) (62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED
(µg/L)
(39341)

<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
19 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 | PROP
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005

<.005 | ANTHENE
DISSOLV
(µg/L)
(34377) | WATER DISS REC (µg/L) (04095) <.003 <.003 | BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | WATER,
FLTERD REC
(µg/L)
(62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL BENZENE WATER, FLTERD REC (µg/L) (62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED
(µg/L)
(39341)

<.004

<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 | | OCT
04
NOV
07
DEC
12
19
JAN
24
FEB
20
MAR
19
19
20 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <-005 <-005 <-005 <-005 | ANTHENE DISSOLV (μg/L) (34377) | WATER DISS REC (µg/L) (04095) < | BENZO- PYRAN, WATER, FLTERD REC (µg/L) (62075) | WATER, FLITERD REC (µg/L) (62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 | | OCT 04 NOV 07 DEC 12 19 24 FEB 20 MAR 19 20 APR 22 MAY 28 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <-005 <-005 <.005 <.005 <.005 | ANTHENE DISSOLV (µg/L) (34377) | WATER DISS REC (µg/L) (04095) < < < < < < < < <- | BENZO- PYRAN, WATER, FLTERD REC (µg/L) (62075) | WATER, FLTERD REC (µg/L) (62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL BENZENE WATER, FLTERD REC (µg/L) (62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) < < < < < < | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 | | OCT 04 NOV 07 DEC 12 19 JAN 24 FEB 20 MAR 19 20 APR 22 MAY | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <-005 <.005 <.005 <.005 <.005 <.005 | ANTHENE DISSOLV (μg/L) (34377) | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 | BENZO-PYRAN, WATER, FLTERD REC (µg/L) (62075) | WATER, FLITERD REC (µg/L) (62076) | NEOL, WATER, FLTERD REC (µg/L) (62077) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL BENZENE WATER, FLTERD REC (µg/L) (62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED (µg/L) (39341) <-004 <-004 <-004 <-004 <-004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <-0.035 <-0.035 <-0.035 <-0.035 <-0.035 <-0.035 <-0.035 | THION, DIS- SOLVED (µg/L) (39532) < < < < < < < < < < < < < < | | OCT 04 NOV 07 DEC 12 19 JAN 24 FEB 20 MAR 19 21 APR 22 APR 22 MAY 28 JUN 19 JUL 22 | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <-005 <-005 <-005 <-005 <-005 <-005 | ANTHENE DISSOLV (μg/L) (34377) | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 | BENZO- PYRAN, WATER, FLTERD REC (µg/L) (62075) E.1 | WATER, FLITERD REC (µg/L) (62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409) | PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | DIS-
SOLVED (µg/L)
(39341)

<.004

<.004
<.004
<.004
<.004 | URON WATER FLITRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <-027 <-027 <-027 <-027 <-027 <-027 <-027 <-027 <-027 | | OCT 04 NOV 07 DEC 12 19 24 FEB 20 MAR 19 20 APR 22 MAY 28 JUN 19 JUL | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82663) <.009 <.009 <.009 <.009 <.009 <.009 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ANTHENE DISSOLV (μg/L) (34377) | WATER DISS REC (µg/L) (04095) <-003 <-003 <-003 <-003 <-003 <-003 <-003 | BENZO- PYRAN, WATER, FLTERD REC (µg/L) (62075) E.1 E.1 | WATER, FLITERD REC (µg/L) (62076) | NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | PHORONE
DISSOLV
(µg/L)
(34409)

 | PROPYL BENZENE WATER, FLTERD REC (µg/L) (62078) | QUIN- OLINE, WATER, FLTERD REC (µg/L) (62079) | DIS-
SOLVED (µg/L) (39341) <-0.004 <-0.004 <-0.004 <-0.004 <-0.004 <-0.004 <-0.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <-0.035 <-0.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 | # 07052160 WILSON CREEK NEAR BATTLEFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | (µg/L) (62080) (50359) (82686) (82667) (62081) (39415) (82630) (82671) (62082) (34443) (82684) | NONYL-
PHENOL,
DIETHOX
WATER,
FLTERD
REC
(µg/L)
(62083) | DI-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | |---|---|---| | OCT 04 | | | | NOV 07 | | | | DEC 12 <.050 <.006 E.006 <.006 <.002 <.007 | | | | 19 JAN | | | | 24 FEB | | | | 20 | | | | 19 <.050 <.006 E.008 <.006 <.002 <.007 | | | | 19 <.050 <.006 E.008 <.006 <.002 <.007 | | | | APR | | | | 22 <.050 <.006 <.013 <.006 <.002 <.007 MAY | | | | 28 <.5 <.5 <.050 <.006 <.5 <.013 <.006 <.002 E.4 <.5 <.007 JUN | <5 | <1 | | 19 <.5 <.5 <.050 <.006 <.5 <.013 <.006 <.002 E.1 <.5 <.007 JUL | <5 | <1 | | 22 <.5 <.5 <.050 <.006 M .022 <.006 <.002 E.1 <.5 <.007 AUG | <5 | <1 | | 20 SEP | | | | 10 | | | | MONO- PARA- PEB- PENDI- PER- | | | | OCTYL- CRESOL, PHENOL, PARA- WATER ALIN PENTA- CIS PHENOL WATER, WATER, P,P' THION, FILTRD WAT FLT CHLORO- WAT FLT PHENAN PHENOL WAT FLT FLTERD FLTERD DDE DIS- 0.7 μ 0.7 μ PHENOL 0.7 μ -THRENE WATER DATE REC REC REC DISSOLV SOLVED GF, REC GF, REC DISSOLV GF, REC DISSOLV FILTRD (μg/L) | PHORATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | | OCTYL- CRESOL, PHENOL, PARA- WATER ALIN PENTA- CIS PHENOL WATER, WATER, P,P' THION, FILTRD WAT FLT CHLORO- WAT FLT PHENAN PHENOL WAT FLT FLTERD FLTERD DDE DIS- 0.7 μ 0.7 μ PHENOL 0.7 μ -THRENE WATER
DATE REC REC REC DISSOLV SOLVED GF, REC GF, REC DISSOLV GF, REC DISSOLV FILTRD (μg/L) | WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L) | | OCTYL- | WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | | OCTYL- CRESOL, PHENOL, PARA- WATER ALIN PENTA- CIS PHENOL WATER, WATER, P,P' THION, FILITRD WAT FLT CHLORO- WAT FLT PHENAN PHENOL WAT FLT FLTERD FLTERD DDE DIS- 0.7 μ 0.7 μ PHENOL 0.7 μ -THRENE WATER REC REC REC DISSOLV SOLVED GF, REC GF, REC DISSOLV GF, REC DISSOLV FILITRD (μg/L) | WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | | OCTYL- CRESOL, PHENOL, PARA- PARA- WATER ALIN PENTA- CIS | WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | | OCTYL- CRESOL, PHENOL, PARA- PARA- WATER ALIN PENTA- CIS | WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82664) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | | OCTYL- CRESOL, PHENOL, PARA- WATER ALIN PENTA- CIS | WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82664)

<.011 | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | | OCTYL- CRESOL, PHENOL, PARA- PARA- WATER ALIN PENTA- CIS | WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82664)

<.011
 | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | | OCTYL- CRESOL, PHENOL, PARA- PARA- WATER ALIN PENTA- CIS | WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82664)

<.011

<.011 | METON, WATER, DISS, REC (µg/L) (04037) 040403 | | OCTYL- CRESOL, PHENOL, PARA- PARA- WATER ALIN PENTA- CIS | WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82664)

<.011
 | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | | OCTYL- CRESOL, PHENOL, PARA- PARA- WATER ALIN PENTA- CIS | WATER FLITRD 0.7 μ GF, REC (μg/L) (82664) <.011 <.011 <.011 | METON, WATER, DISS, REC (µg/L) (04037) 0403 .02 | | OCTY | WATER FLITRD 0.7 μ GF, REC (μg/L) (82664) <-011 <-011 <-011 <.011 <.011 | METON, WATER, DISS, REC (µg/L) (04037) 0403 .02 E.04 | | OCTYL | WATER FLITRD 0.7 μ GF, REC (μg/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (µg/L) (04037) 0403 .02 E.04 .04 | | OCTYL | WATER FLIRD 0.7 μ GF, REC (μg/L) (82664) <-011 <-011 <-011 <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (µg/L) (04037) 0403 .02 E.04 .04 .03 | | OCTYL | WATER FLITRD 0.7 μ GF, REC (μg/L) (82664) <.011 <.011 <.011 <.011 <.011 <.011 | METON, WATER, DISS, REC (µg/L) (04037) 0403 .02 E.04 .04 | ### 07052160 WILSON CREEK NEAR BATTLEFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | PYRENE
DISSOLV
(µg/L)
(34470) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | STIGMA-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | TETRA-
CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | THIO-BENCARB WATER FLTRD 0.7 µ GF, REC (µg/L) (82681) | FYROL
CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | |-----------------|--|---|--|--|--|---|--|--|--|--|--|---|---| | OCT
04 | | | | | | | | | | | | | | | NOV | | | | | | | | | | | | | | | 07
DEC | | | | | | | | | | | | | | | 12
19
JAN | <.004 | <.010 | <.011 | <.02 | | E.009 | | <.02 | <.034 | <.02 | | <.005 | | | 24 | | | | | | | | | | | | | | | FEB 20 | | | | | | | | | | | | | | | MAR
19 | <.004 | <.010 | <.011 | <.02 | | <.005 | | <.02 | <.034 | <.02 | | <.005 | | | 19
20 | <.004
<.004 | <.010
<.010 | <.011
<.011 | <.02
<.02 | | <.005
<.005 | | <.02
<.02 | <.034
<.034 | <.02
<.02 | | <.005
<.005 | | | APR | | | | | | | | | | | | | | | 22
MAY | <.004 | <.010 | <.011 | <.02 | | .018 | | <.02 | <.034 | <.02 | | <.005 | | | 28
JUN | <.004 | <.010 | <.011 | <.02 | <.5 | .007 | <2 | .02 | <.034 | <.02 | M | <.005 | E.1 | | 19
JUL | <.004 | <.010 | <.011 | <.02 | <.5 | .024 | <2 | <.02 | <.034 | <.02 | <.5 | <.005 | E.1 | | 22
AUG | <.004 | <.010 | <.011 | <.02 | <.5 | <.005 | <2 | .02 | <.034 | <.02 | <.5 | <.005 | E.1 | | 20 | SEP
10 | | | | | | | | | | | | | | | |
DA |
Te | FYROL
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | TRIAL-
LATE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82678) | TRIBUTL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62089) | TRICLO-
SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | TRI-
ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L)
(62091) | TRI-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | TRIPHNL PHOS-PHATE, WATER, FLTERD REC (µg/L) (62092) | TRIS(2-BUTOXE—PHOS-PHATER, WATER, FLTERD (µg/L)(62093) | | | | | | OCT
0 | 4 | PCF,
WATER,
FLTERD
REC
(µg/L) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) | TRIBUTL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L) | SAN,
WATER,
FLTERD
REC
(µg/L) | ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L) | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L) | BUTOXE—
PHOS-
PHATE,
WATER,
FLTERD
(µg/L) | | | | | | OCT
0
NOV
0 | 4
7 | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) | TRIBUTL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62089) | SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L)
(62091) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE-
PHOS-
PHATE,
WATER,
FLTERD
(µg/L)
(62093) | | | | | | OCT
0
NOV
0
DEC | 4
7 | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | LATE WATER FLIRD 0.7 µ GF, REC (µg/L) (82678) | TRIBUTL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62089) | SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L)
(62091) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE—
PHOS-
PHATE,
WATER,
FLTERD
(µg/L)
(62093) | | | | | | OCT
0
NOV
0
DEC
1 | 4
7
2
9 | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | LATE WATER FLTRD 0.7 μ GF, REC (μg/L) (82678) | TRIBUTL PHOS- PHATE, WATER, FLTERD REC (µg/L) (62089) | SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L)
(62091) | FLUR-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82661) | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE—
PHOS-
PHATE,
WATER,
FLTERD
(µg/L)
(62093) | | | | | | OCT
0
NOV
0
DEC
1
1
JAN
2 | 4
7
2
9 | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | LATE WATER FLTRD 0.7 μ GF, REC (μg/L) (82678) <.002 | TRIBUTL PHOS- PHATE, WATER, FLTERD REC (µg/L) (62089) | SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | ETHYL CITRATE WATER, FLTERD REC (µg/L) (62091) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE—
PHOS-
PHATE,
WATER,
FLTERD
(µg/L)
(62093) | | | | | | OCT
0
NOV
0
DEC
1
1
JAN
2
FEB
2 | 4
7
2
9
4 | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | LATE WATER FLIRD 0.7 µ GF, REC (µg/L) (82678) | TRIBUTL PHOS- PHATE, WATER, FLTERD REC (µg/L) (62089) | SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L)
(62091) | FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE—PHOS-PHATE, WATER, FLITERD (µg/L) (62093) | | | | | | OCT
0
NOV
0
DEC
1
1
1
JAN
2
FEB
2 | 4
7
2
9
4 | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) < <.002 | TRIBUTL PHOS- PHATE, WATER, FLITERD REC (µg/L) (62089) |
SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L)
(62091) | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE— PHOS- PHATE, WATER, FLTERD (µg/L) (62093) | | | | | | OCT
0
NOV
0
DEC
1
1
JAN
2
FEB
2
MAR
1 | 4 7 2 9 4 0 | PCF, WATER, FLTERD REC (µg/L) (62088) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <.002 <.002 <.002 <.002 | TRIBUTL PHOS- PHATE, WATER, FLITERD REC (µg/L) (62089) | SAN,
WATER,
FLTERD
REC
(μg/L)
(62090) | ETHYL CITRATE WATER, FLTERD REC (µg/L) (62091) | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 E.003 E.004 | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE—PHOS-PHATE, WATER, FLITERD (µg/L) (62093) | | | | | | OCT
0 NOV
0 DEC
1 1
JAN
2 FEB
2 2
MAR
1 1
2 2 | 4 7 2 9 4 0 9 9 | PCF,
WATER,
FLTERD
REC
(μg/L)
(62088) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <-002 <-002 <.002 <.002 <.010 | TRIBUTL PHOS- PHATE, WATER, FLITERD REC (µg/L) (62089) | SAN, WATER, FLTERD REC (µg/L) (62090) | ETHYL CITRATE WATER, FLTERD REC (µg/L) (62091) | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 E.003 E.004 <.009 | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE— PHOS— PHATE, WATER, FLTERD (µg/L) (62093) | | | | | | OCT
0 NOV
0 DEC
1 1
JAN
2 FEB
2 2
MAR
1 1
2 2 | 4 7 2 9 4 0 9 9 9 | PCF, WATER, FLTERD REC (µg/L) (62088) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <.002 <.002 <.002 <.002 | TRIBUTL PHOS- PHATE, WATER, FLITERD REC (µg/L) (62089) | SAN,
WATER,
FLTERD
REC
(μg/L)
(62090) | ETHYL CITRATE WATER, FLTERD REC (µg/L) (62091) | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 E.003 E.004 | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE—PHOS-PHATE, WATER, FLITERD (µg/L) (62093) | | | | | | OCT
0 NOV
0 DEC
1 1
JAN 2
FEB 2
MAR 1
1 2
2 APR 2
MAY 2 | 4 7 2 9 4 0 9 9 9 9 | PCF, WATER, FLTERD REC (µg/L) (62088) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <-002 <-002 <.002 <.002 <.010 | TRIBUTL PHOS- PHATE, WATER, FLITERD REC (µg/L) (62089) | SAN, WATER, FLTERD REC (µg/L) (62090) | ETHYL CITRATE WATER, FLTERD REC (µg/L) (62091) | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <.009 E.003 E.004 <.009 | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE— PHOS— PHATE, WATER, FLTERD (µg/L) (62093) | | | | | | OCT
0
NOV
0
DEC
1
1
JAN
2
FEB
2
MAR
1
1
2
2
MAR
2
2
MAR
2
2
MAR
2
2
MAR
2
2
MAR
2
2
MAR
2
2
MAR
2
1
1
1
2
MAR
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 | 4 7 2 9 4 0 9 9 9 9 | PCF, WATER, FLTERD REC (μg/L) (62088) | LATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82678) <-002 <-002 <-010 <-002 | TRIBUTL PHOS- PHATE, WATER, FLTERD REC (µg/L) (62089) | SAN, WATER, FLTERD REC (µg/L) (62090) | ETHYL CITRATE WATER, FLTERD REC (µg/L) (62091) | FLUR- ALIN WAT FLT 0.7 µ GF, REC (µg/L) (82661) <-009 E.003 E.004 <.009 <.009 | PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | BUTOXE—PHOS—PHOS—PHATE, WATER, FLITERD (µg/L) (62093) | | | | AUG 20... SEP K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07052250 JAMES RIVER NEAR BOAZ, MO LOCATION.--Lat $37^{\circ}00^{\circ}25^{\circ}$, long $93^{\circ}21^{\circ}50^{\circ}$, in NE $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.32, T.27 N., R.22 W., Christian County, Hydrologic Unit 11010002, on left bank 150 ft downstream from Frazier Bridge, 0.2 mi upstream from Turkey Hollow, and 2.0 mi southeast of Boaz. DRAINAGE AREA. -- 462 mi². #### WATER-DISCHARGE RECORDS PREIOD OF RECORD.--October 1972 to September 1980, October 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is 1035.35 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Water-discharge records good except for estimated daily discharges, which are fair. Partially regulated at low flow by Lake Springfield and sewage effluent from Southwest Treatment Plant. | | | DISCHAR | RGE, CUBIC | C FEET PEF | SECOND, | WATER YE
MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|---|-------------------------------------|--|---|-----------------------|---|--|--|---------------------------------|--|--------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 48 | 89 | 203 | 248 | 5060 | 245 | 589 | 671 | 537 | 156 | 103 | 72 | | 2 | 49 | 179 | 224 | 233 | 2180 | 503 | 533 | 561 | 496 | 156 | 96 | 67 | | 3 | 49 | 197 | 217 | 221 | 1490 | 1100 | 474 | 490 | 458 | 168 | 92 | 67 | | 4 | 47 | 143 | 191 | 205 | 1160 | 952 | 433 | 438 | 426 | 167 | 82 | 71 | | 5 | 162 | 131 | 169 | 196 | 937 | 779 | 393 | 397 | 401 | 145 | 76 | 75 | | 6 | 207 | 125 | 152 | 191 | 798 | 714 | 370 | 375 | e392 | 138 | 76 | 69 | | 7 | 120 | 117 | 135 | 188 | 695 | 695 | 353 | 408 | e401 | 125 | 73 | 67 | | 8 | 91 | 108 | 121 | 177 | 620 | 648 | 610 | 13400 | e374 | 122 | 72 | 65 | | 9 | 81 | 103 | 108 | 174 | 552 | 585 | 1120 | 12200 | e340 | 120 | 68 | 62 | | 10 | 213 | 98 | 101 | 169 | 492 | 600 | 1020 | 4580 | e323 | 118 | 78 | 64 | | 11 | 582 | 87 | 97 | 160 | 446 | 550 | 811 | 2590 | e306 | 331 | 67 | 64 | | 12 | 325 | 85 | 153 | 150 | 407 | 503 | 694 | 1920 | e290 | 233 | 66 | 62 | | 13 | 231 | 87 | 257 | 147 | 372 | 461 | 609 | 2590 | e387 | 247 | 69 | 60 | | 14 | 215 | 85 | 234 | 147 | 346 | 437 | 568 | 2260 | e374 | 467 | 109 | 61 | | 15 | 187 | 82 | 269 | 136 | 323 | 401 | 565 | 1670 | e309 | 251 | 171 | 61 | | 16 | 192 | 77 | 1130 | 131 | 301 | 367 | 506 | 1310 | e252 | 198 | 133 | 61 | | 17 | 157 | 77 | 4310 | 127 | 282 | 353 | 477 | 4310 | e245 | 174 | 120 | 64 | | 18 | 145 | 72 | 2930 | 126 | 268 | 343 | 440 | 7820 | e230 | 172 | 278 | 62 | | 19 | 126 | 88 | 1700 | 125 | 306 | 548 | 418 | 2870 | e242 | 204 | 180 | 59 | | 20 | 113 | 128 | 1200 | 121 | 373 | 2030 | 736 | 1960 | e227 | 468 | 150 | 100 | | 21 | 110 | 104 | 950 | 123 | 327 | 1510 | 1310 | 1510 | e210 | 303 | 124 | 77 | | 22 | 106 | 91 | 794 | 127 | 306 | 1090 | 1100 | 1220 | e197 | 211 | 103 | 62 | | 23 | 215 | 80 | 676 | 138 | 292 | 897 | 848 | 1070 | e190 | 199 | 103 | 60 | | 24 | 244 | 79 | 574 | 235 | 281 | 775 | 725 | 1090 | e193 | 188 | 176 | 62 | | 25 | 174 | 79 | 488 | 202 | 275 | 1480 | 661 | 977 | e238 | 162 | 199 | 61 | | 26
27
28
29
30
31 | 137
113
111
104
99
97 | 73
76
84
126
201 | 436
390
352
318
288
267 | 244
243
228
218
355
2020 | 258
243
233
 | 1720
1230
1020
884
767
665 | 667
650
626
551
669 | 822
729
670
775
672
596 | 290
213
224
224
178 | 147
136
119
113
115 | 147
138
126
108
95
82 | 60
58
56
56
53 | | MEAN | 156 | 105 | 627 | 242 | 701 | 802 | 651 | 2353 | 306 | 192 | 115 | 64.6 | | MAX | 582 | 201 | 4310 | 2020 | 5060 | 2030 | 1310 | 13400 | 537 | 468 | 278 | 100 | | MIN | 47 | 72 | 97 | 121 | 233 | 245 | 353 | 375 | 178 | 111 | 66 | 53 | | IN. | 0.39 | 0.25 | 1.56 | 0.60 | 1.58 | 2.00 | 1.57 | 5.87 | 0.74 | 0.48 | 0.29 | 0.16 | | | rics of Mo | | | | | | • | | | | | | | MEAN | 226 | 705 | 465 | 380 | 565 | 1203 | 899 | 912 | 448 | 310 | 144 | 280 | | MAX | 444 | 2292 | 1122 | 1105 | 1465 | 2106 | 1755 | 2353 | 1294 | 990 | 359 | 1222 | | (WY) | 1978 | 1973 | 1974 | 1973 | 1975 | 1978 | 1973 | 2002 | 1974 | 1979 | 1979 | 1977 | | MIN | 63.4 | 55.1 | 55.0 | 53.3 | 101 | 183 | 268 | 116 | 170 | 67.3 | 54.7 | 40.7 | | (WY) | 1977 | 1977 | 1977 | 1977 | 1977 | 1976 | 1977 | 1977 | 1980 | 1980 | 1980 | 1980 | | SUMMARY | STATISTI | CS | | | FOR 20 | 02 WATER | YEAR | | | FOR P | ERIOD OF | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANTI
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY 1 PEAK FLO 1 PEAK STA PANEOUS LO RUNOFF (I ZENT EXCEE ZENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS | | | 15.5
108
22 | 0 M
7 O
8 S
0 M
6 M
5 S | ay 8
ct 4
ep 24
ay 8
ay 8
ep 19 | | | 544
879
242
15400
36
31400
20.56
35
16.00
1170
245 | Sep :
Sep :
Jul
Jul | 1973
1977
2 1972
22 1980
21 1980
1 1973
1 1973
19 2002 | e Estimated # 07052250 JAMES RIVER NEAR BOAZ, MO--Continued (Ambient Water-Quality Monitoring Network) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1967 to September 1982, November 1983 to June 1987, November 1992 to current year. | DATE | TIME | SAMPLI
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃
)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|---|---|--|---|--|---|--|---|--|--|---| | NOV
06 | 1405 | ENVIRONM | ENTAL | 74 | 16.7 | 177 | 8.5 | 580 | 17.0 | 220 | 76.4 | 6.30 | 4.68 | | MAR
19 | 1350 | ENVIRONM | | 594 | 8.8 | 89 | 7.8 | 538 | 14.2 | | | | | | APR
24 | 0915 | ENVIRONM | | 735 | 9.4 | 106 | 7.8 | 401 | 18.9 | | | | | | MAY
30 | 1040 | ENVIRONM | | 668 | 9.2 | 106 | 7.9 | 425 | 19.6 | 190 | 67.8 | 5.23 | 2.01 | | JUN
18 | 1415 | ENVIRONM | | 217 | 10.4 | 129 | 8.0 | 531 | 23.7 | 150 | | 3.23 | 2.01 | | JUL | | | | 181 | 8.5 | | 7.9 | 525 | 28.9 | | | | | | 22 | 1715 | ENVIRONM | ENIAL | 181 | 8.5 | 115 | 7.9 | 525 | 28.9 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
06
MAR | 34.8 | 179 | 178 | 203 | 7 | 42.2 | .3 | 35.5 | <10 | 342 | <.04 | .28 | 3.03 | | 19
APR | | 187 | 190 | 232 | 0 | | | | 24 | | <.04 | .47 | 4.15 | | 24
MAY | | 146 | 148 | 181 | 0 | | | | 14 | | <.04 | .35 | 2.01 | | 30
JUN | 12.3 | 162 | 163 | 199 | 0 | 14.1 | .1 | 10.4 | 18 | 180 | <.04 | .20 | 2.35 | | 18
JUL | | 174 | 174 | 213 | 0 | | | | <10 | | <.04 | .28 | 2.40 | | 22 | | 164 | 165 | 202 | 0 | | | | E15 | | <.04 | .32 | 2.18 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | ORTHO-PHOS-PHATE, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µM-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
06 | .010 | .06 | .06 | .09 | К3 | K13 | K7 | 23 | 58 | 3.6 | .11 | <.1 | E4 | | MAR
19 | | | | .12 | 56 | | 132 | 23 | 58 | 3.6 | .11 | <.1 | £4
 | | APR | .022 | .06 | .06 | | | 220 | | | | | | | | | 24
MAY | .022 | E.05 | .03 | .09 | K20 | K140 | K40 | | | | | | | | 30
JUN | .011 | E.05 | .03 | <.06 | 230 | 480 | 309 | 23 | 123 | .7 | E.02 | <.1 | <6 | | 18
JUL | E.006 | .07 | .05 | .07 | 60 | 39 | 31 | | | | | | | | 22 | .016 | .09 | .07 | .11 | K10 | 76 | 176 | | | | | | | # 07052250 JAMES RIVER NEAR BOAZ, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82660) | 26DIMET
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | |------------------|---|--|---|---|---|---|--|--|--|---|---|---|---| | NOV
06 | 20 | .14 | М | 5.5 | <.01 | 4.9 | 15 | 12 | | | <.002 | | | | MAR
19 | | | | | | | | | | | <.006 | | | | APR 24 | | | | | | | | | | | <.006 | | | | MAY
30 | 15 | .15 | М | 9.5 | <.01 | 1.1 | | 5 | <.5 | <.5 | <.006 | <.5 | <.5 | | JUN
18 | | | | | | | | | <.5 | <.5 | <.006 | <.5 | <.5 | | JUL
22 | | | | | | | | | <.5 | <.5 | <.006 | <.5 | <.5 | | DATE | 3-BETA-
COPRO-
STANOL,
WATER,
FLITERD
REC
(µg/L)
(62057) | 3METHYL
1(H)-
INDOLE,
WATER,
FLITERD
REC
(µg/L)
(62058) | 3-TERT-
BHA,
WATER,
FLTERD
REC
(µg/L)
(62059) | 4-CUMYL
PHENOL,
WATER,
FLITERD
REC
(µg/L)
(62060) | 4-OCTYL
PHENOL,
WATER,
FLITERD
REC
(µg/L)
(62061) | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLITERD
REC
(µg/L)
(62062) | 5METHYL
1HBENZO
TRIAZLE
WATER,
FLITERD
REC
(µg/L)
(62063) | ACETO-
CHLOR,
WATER
FLIRD
REC
(µg/L)
(49260) | ACETO-
PHENONE
WATER,
FLITERD
REC
(µg/L)
(62064) | AHT
NAPH-
THALENE
WATER,
FLITERD
REC
(µg/L)
(62065) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ANTHRA-
CENE
DISSOLV
(µg/L)
(34221) | | NOV
06
MAR | | | | | | | | <.004 | | | <.002 | <.005 | | | 19
APR | | | | | | | | <.006 | | | <.004 | <.005 | | | 24
MAY | | | | | | | | <.006 | | | <.004 | <.005 | | | 30
JUN | <2 | <1 | <5 | <1 | <1 | <1 | <2 | <.006 | <.5 | E.1 | <.004 | <.005 | <.5 | | 18
JUL | <2 | <1 | М | <1 | M | <1 | <2 | <.006 | <.5 | E.1 | <.004 | <.005 | М | | 22 | <2 | <1 | <5 | <1 | <1 | <1 | <2 | <.006 | <.5 | <.5 | <.004 | <.005 | <.5 | | DATE | ANTHRA-
QUINONE
WATER,
FLITERD
REC
(µg/L)
(62066) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BENZO-
A-
PYRENE
DISSOLV
(µg/L)
(34248) | BENZO-
PHENONE
WATER,
FLITERD
REC
(µg/L)
(62067) | BETA-
SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | BRO-
MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | BROMO-
FORM
DISSOLV
(µg/L)
(34288) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAF-
FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | CAMPHOR
WATER,
FLTERD
REC
(µg/L)
(62070) | CAR-
BARYL
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82680) | | NOV
06 | | <.007 | <.010 | | | | | | | <.002 | | | <.050 | | MAR
19 | | <.007 | <.010 | | | | | | | <.002 | | | <.041 | | APR
24 | | .009 | <.010 | | | | | | | <.002 | | | <.041 | | MAY
30
JUN | <.5 | .009 | <.010 | <.5 | М | <2 | М | E.1 | <.5 | <.002 | E.1 | <.5 | <.041 | | 18
JUL | E.1 | .014 | <.010 | E.1 | E.1 | <2 | <1 | E.2 | <.5 | <.002 | E.1 | М | <.041 | | 22 | <.5 | .009 | <.010 | <.5 | M | <2 | <1 | <.5 | E.2 | <.002 | E.1 | <.5 | E.008 | # 07052250 JAMES RIVER NEAR BOAZ, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | CARBO-
FURAN
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) |
COT-
ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | |------------------|---|--|---|--|---|--|--|--|---|---|---|--|---| | NOV
06 | | <.020 | <.005 | | | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | | <.002 | | MAR
19 | | <.020 | <.005 | | | <.018 | <.003 | E.003 | .011 | <.005 | <.02 | | <.002 | | APR 24 | | <.020 | <.005 | | | <.018 | <.003 | <.006 | .012 | <.005 | <.02 | | <.002 | | MAY
30
JUN | M | <.020 | <.005 | <2 | <1 | <.018 | <.003 | E.005 | .007 | <.005 | <.02 | <.5 | <.002 | | 18
JUL | <.5 | <.020 | <.005 | <2 | <1 | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | <.5 | <.002 | | 22 | <.5 | <.020 | <.005 | М | <1 | <.018 | <.003 | E.005 | .014 | <.005 | <.02 | <.5 | <.002 | | DATE | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FLUOR-
ANTHENE
DISSOLV
(µg/L)
(34377) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | HHHMCP-
BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62076) | ISOBOR-
NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | ISO-
PHORONE
DISSOLV
(µg/L)
(34409) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | | NOV
06
MAR | <.009 | <.005 | | <.003 | | | | | | | <.004 | <.035 | <.027 | | 19
APR | <.009 | <.005 | | <.003 | | | | | | | <.004 | <.035 | <.027 | | 24
MAY | <.009 | <.005 | | <.003 | | | | | | | <.004 | <.035 | <.027 | | 30
JUN | <.009 | <.005 | <.5 | <.003 | M | <.5 | <.5 | <.5 | <.5 | <.5 | <.004 | <.035 | <.027 | | 18
JUL | <.009 | <.005 | E.1 | <.003 | E.1 | <.5 | <.5 | <.5 | <.5 | <.5 | <.004 | <.035 | <.027 | | 22 | <.009 | <.005 | <.5 | <.003 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.004 | <.035 | <.027 | | DATE | MENTHOL
WATER,
FLITERD
REC
(µg/L)
(62080) | METAL-
AXYL
WATER
FLTRD
REC
(µg/L)
(50359) | METHYL
AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METHYL
SALICY-
LATE,
WATER,
FLTERD
REC
(µg/L)
(62081) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82671) | DEET,
WATER,
FLTERD
REC
(µg/L)
(62082) | NAPHTH-
ALENE
DISSOLV
(µg/L)
(34443) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | NONYL-
PHENOL,
DIETHOX
WATER,
FLTERD
REC
(µg/L)
(62083) | DI-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | | NOV
06 | | | <.050 | <.006 | | <.013 | <.006 | <.002 | | | <.007 | | | | MAR
19 | | | <.050 | <.006 | | <.013 | <.006 | <.002 | | | <.007 | | | | APR 24 | | | <.050 | <.006 | | <.013 | <.006 | <.002 | | | .035 | | | | MAY
30 | <.5 | <.5 | <.050 | <.200 | <.5 | <.013 | <.006 | <.002 | E.1 | <.5 | <.007 | <5 | <1 | | JUN
18 | <.5 | E.1 | <.050 | <.006 | <.5 | <.013 | <.006 | <.002 | E.1 | <.5 | <.007 | М | <1 | | JUL
22 | <.5 | <.5 | <.050 | <.006 | <.5 | .017 | <.006 | <.002 | М | <.5 | <.007 | <5 | <1 | # 07052250 JAMES RIVER NEAR BOAZ, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | MONO-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | PARA-
CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | PARA-
NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PENTA-
CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHENAN
-THRENE
DISSOLV
(µg/L)
(34462) | PHENOL
WATER
FILTRD
(µg/L)
(34466) | PHORATE
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | |------------------|---|--|--|--|--|---|---|---|--|--|--|---|---| | NOV
06 | | | | <.003 | <.007 | <.002 | <.010 | | <.006 | | | <.011 | .03 | | MAR
19 | | | | <.003 | <.010 | <.004 | <.022 | | <.006 | | | <.011 | <.02 | | APR 24 | | | | <.003 | <.010 | <.004 | <.022 | | <.006 | | | <.011 | E.01 | | MAY
30 | <1 | <1 | <5 | <.003 | <.010 | <.004 | <.022 | <2 | <.006 | <.5 | E.4 | <.011 | .02 | | JUN
18 | М | <1 | E1 | <.003 | <.010 | <.004 | <.022 | <2 | <.006 | E.1 | <.5 | <.011 | .03 | | JUL
22 | <1 | <1 | <5 | <.003 | <.010 | <.004 | <.022 | <2 | <.006 | <.5 | E.2 | <.011 | .06 | | DATE | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | PYRENE
DISSOLV
(µg/L)
(34470) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | STIGMA-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | TETRA-
CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | THIO-BENCARB WATER FLTRD 0.7 µ GF, REC (µg/L) (82681) | FYROL
CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | | NOV
06
MAR | <.004 | <.010 | <.011 | <.02 | | <.011 | | <.02 | <.034 | <.02 | | <.005 | | | 19
APR | <.004 | <.010 | <.011 | <.02 | | <.005 | | E.01 | <.034 | <.02 | | <.005 | | | 24
MAY | <.004 | <.010 | <.011 | <.02 | | <.005 | | <.02 | <.034 | <.02 | | <.005 | | | 30
JUN | <.004 | <.010 | <.011 | <.02 | <.5 | .022 | <2 | <.02 | <.034 | <.02 | <.5 | <.005 | <.5 | | 18
JUL | <.004 | <.010 | <.011 | <.02 | E.1 | <.005 | <2 | <.02 | <.034 | <.02 | <.5 | <.005 | E.1 | | 22 | <.004 | <.010 | <.011 | <.02 | <.5 | <.005 | <2 | E.01 | <.034 | <.02 | <.5 | <.005 | E.1 | | | | חמיד | FYR
PCF
WAT
FLTE | COL LAT
, WAT
ER, FLT
ERD 0.7 | ER PHA
RD WAT | S- TRIC
TE, SAN
ER, WAT | I, CITE
ER, WAT
ERD FLTE | YL FLU
RATE ALI
CER, WAT
CRD 0.7 | N PHA
FLT WAT
μ FLTE | S- BUTC
TE, PHC
ER, PHA | XE—
S-
TE,
ER, | | | | DATE | FYROL
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | | TRICLO-
SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | TRI-
ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L)
(62091) | TRI-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | TRIPHNL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | TRIS(2-
BUTOXE—
PHOS-
PHATE,
WATER,
FLTERD
(µg/L) | |-----------|---|---|---------|---
--|---|--|---| | | (62088) | (82678) | (62089) | (62090) | (62091) | (82001) | (62092) | (62093) | | NOV | | | | | | | | | | 06 | | <.002 | | | | <.009 | | | | MAR | | | | | | | | | | 19 | | <.002 | | | | <.009 | | | | APR | | . 000 | | | | . 000 | | | | 24
MAY | | <.002 | | | | <.009 | | | | 30 | М | <.002 | М | <1 | <.5 | <.009 | <.5 | E.1 | | JUN | 1.1 | 1.002 | 11 | ** | 1.5 | 1.005 | 1.5 | | | 18 | E.1 | <.002 | E.1 | M | E.1 | <.009 | E.1 | E.1 | | JUL | | | | | | | | | | 22 | E.1 | <.002 | <.5 | <1 | <.5 | <.009 | <.5 | <.5 | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. # 07052345 FINLEY CREEK BELOW RIVERDALE, MO--Continued (Ambient Water-Quality Monitoring Network) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 2001 to current year. | DATE
JUN | TIME | SAMPLI
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|---|--|---|--|---|--|---|--|--|---|---|--|--| | 27
JUL | 1025 | ENVIRONM | ENTAL | 59 | 7.7 | 94 | 7.8 | 381 | 23.4 | | | | | | 25
AUG | 0845 | ENVIRONM | ENTAL | 38 | 7.3 | 95 | 8.0 | 384 | 26.3 | 180 | 55.1 | 10.7 | 2.75 | | 21 | 1045 | ENVIRONM | ENTAL | 22 | 9.1 | 115 | 7.8 | 419 | 24.4 | | | | | | SEP
10 | 1415 | ENVIRONM | ENTAL | 48 | 9.5 | 112 | 7.7 | 402 | 21.8 | 190 | 61.9 | 8.47 | 2.89 | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | JUN | (| (001117) | (, | (0000) | (, | (, | (, | (, | (00000) | (, | (| (, | (| | 27
JUL | | 158 | 158 | 192 | 0 | | | | | | .05 | .23 | 1.02 | | 25 | 8.87 | 167 | 166 | 203 | 0 | 13.7 | <.2 | 6.7 | <10 | 204 | E.02 | .26 | 1.14 | | AUG
21 | | 176 | 175 | 213 | 0 | | | | | | <.04 | .23 | 1.91 | | SEP
10 | 9.58 | 172 | 174 | 213 | 0 | 15.3 | <.2 | 7.4 | <10 | 224 | <.04 | .24 | 1.61 | | | | | | | | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | DATE JUN 27 | GEN, NITRITE DIS- SOLVED (mg/L as N) | PHORUS DIS- SOLVED (mg/L as P) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P) | PHORUS
TOTAL
(mg/L
as P) | MTEC MF
WATER
(col./
100 mL) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL) | STREP,
KF STRP
MF,
WATER
(col./
100 mL) | INUM,
DIS-
SOLVED
(µg/L
as Al) | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al) | DIS-
SOLVED
(µg/L
as As) | DIS-
SOLVED
(µg/L
as Cd) | WATER
UNFLTRD
TOTAL
(µg/L
as Cd) | DIS-
SOLVED
(µg/L
as Cu) | | JUN | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | MTEC MF
WATER
(col./
100 mL)
(31633) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM,
DIS-
SOLVED
(µg/L
as Al) | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al) | DIS-
SOLVED
(µg/L
as As) | DIS-
SOLVED
(µg/L
as Cd) | WATER
UNFLTRD
TOTAL
(µg/L
as Cd) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | | JUN
27
JUL | GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | MTEC MF
WATER
(col./
100 mL)
(31633) | FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | DIS-
SOLVED
(µg/L
as As)
(01000) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | WATER UNFLTRD TOTAL (µg/L as Cd) (01027) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | | JUN 27 JUL 25 AUG 21 SEP | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .019 .012 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666)
.16
.24 | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671)
.17
.23 | PHORUS
TOTAL
(mg/L
as P)
(00665) | MTEC MF
WATER
(col./
100 mL)
(31633)
36
K100 | FORM, FECAL, 0.7 µm-MF (col./ 100 mL) (31625) 140 210 | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
28
92
52 | INUM, DIS- SOLVED (µg/L as Al) (01106) 11 | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 95 | DIS-
SOLVED
(µg/L
as As)
(01000) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | WATER UNFLIRD TOTAL (µg/L as Cd) (01027) <.1 | DIS-
SOLVED
(µg/L
as Cu)
(01040) | | JUN 27 JUL 25 AUG 21 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .019 | PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHORUS
TOTAL
(mg/L
as P)
(00665) | MTEC MF
WATER
(col./
100 mL)
(31633)
36
K100 | FORM, FECAL, 0.7 µm-MF (col./100 mL) (31625) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | INUM, DIS- SOLVED (µg/L as Al) (01106) | INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | DIS-
SOLVED (µg/L
as As)
(01000) | DIS-
SOLVED
(µg/L
as Cd)
(01025) | WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | DIS-
SOLVED
(µg/L
as Cu)
(01040) | | JUN 27 JUL 25 AUG 21 SEP 10 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .019 .012 .014 .009 IRON, DIS- SOLVED (µg/L as Fe) (01046) | PHORUS DIS- SOLVED (mg/L as P) (00666) .16 .24 .28 .20 LEAD, DIS- SOLVED (µg/L as Pb) (01049) | PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as
P)
(00671)
.17
.23
.27
.18
LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | PHORUS TOTAL (mg/L as P) (00665) .19 .26 .29 .22 MANGA- NESE, DIS- SOLVED (µg/L as Mn) (01056) | MTEC MF WATER (col./ 100 mL) (31633) 36 K100 160 100 MERCURY TOTAL RECOV- ERABLE (µg/L as Hg) (71900) | FORM, FECAL, 0.7 pm-MF (col./ 100 mL) (31625) 140 210 130 170 ZINC, DIS-SOLVED (µg/L as Zn) | STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673)
28
92
52
49
ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | INUM, DIS- SOLVED (µg/L as Al) (01106) 11 18 2,6-DI- ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 95 72 ACETO- CHLOR, WATER FLIRD REC (µg/L) (49260) | DIS-
SOLVED
(µg/L
as As)
(01000)

.4

.5
ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<8

<8
ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | WATER UNFLIRD TOTAL (µg/L as Cd) (01027) <.1 <.1 ATRA- ZINE, WATER, DISS, REC (µg/L) (39632) | DIS-
SOLVED
(µg/L
as Cu)
(01040)

<5

<5
BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | | JUN 27 JUL 25 AUG 21 SEP 10 DATE JUN 27 JUL 27 JUL | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .019 .012 .014 .009 IRON, DIS- SOLVED (µg/L as Fe) (01046) | PHORUS DIS- SOLVED (mg/L as P) (00666) .16 .24 .28 .20 LEAD, DIS- SOLVED (µg/L as Pb) (01049) | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) .17 .23 .27 .18 LEAD, TOTAL RECOV- ERABLE (μg/L as Pb) (01051) | PHORUS TOTAL (mg/L as P) (00665) .19 .26 .29 .22 MANGA- NESE, DIS- SOLVED (µg/L as Mn) (01056) | MTEC MF WATER (col./ 100 mL) (31633) 36 K100 160 100 MERCURY TOTAL RECOV- ERABLE (mg/L as Hg) (71900) | FORM, FECAL, 0.7 pm-MF (col./100 mL) (31625) 140 210 130 170 ZINC, DIS-SOLVED (µg/L as Zn) (01090) | STREP, KF STRP MF, WATER (col./ 100 mL) (31673) 28 92 52 49 ZINC, TOTAL RECOV— ERABLE (µg/L as Zn) (01092) | INUM, DIS- SOLVED (µg/L as Al) (01106) 11 18 2,6-DI- ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 95 72 ACETO- CHLOR, WATER FLITE REC (µg/L) (49260) <.004 | DIS-
SOLVED
(µg/L
as As)
(01000)

.4

.5
ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | DIS-
SOLVED (µg/L as Cd) (01025) <8 <8 ALPHA BHC DIS-
SOLVED (µg/L) (34253) <.005 | WATER UNFLIRD TOTAL (µg/L as Cd) (01027) <.1 <.1 ATRA- ZINE, WATER, DISS, REC (µg/L) (39632) <.007 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

<5

<5
BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | | JUN 27 JUL 25 AUG 21 SEP 10 DATE JUN 27 JUL 25 AUG 21 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .019 .012 .014 .009 IRON, DIS- SOLVED (µg/L as Fe) (01046) | PHORUS DIS- SOLVED (mg/L as P) (00666) .16 .24 .28 .20 LEAD, DIS- SOLVED (µg/L as Pb) (01049) 08 | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) .17 .23 .27 .18 LEAD, TOTAL RECOV-ERABLE (µg/L as Pb) (01051) | PHORUS TOTAL (mg/L as P) (00665) .19 .26 .29 .22 MANGA- NESE, DIS- SOLVED (µg/L as Mn) (01056) 10.3 | MTEC MF WATER (col./ 100 mL) (31633) 36 K100 160 100 MERCURY TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 | FORM, FECAL, 0.7 pm-MF (col./100 mL) (31625) 140 210 130 170 ZINC, DIS-SOLVED (µg/L as Zn) (01090) | STREP, KF STRP MF, WATER (col./ 100 mL) (31673) 28 92 52 49 ZINC, TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 14 | INUM, DIS- SOLVED (µg/L as Al) (01106) 11 18 2,6-DI- ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 | INUM, TOTAL RECOV- ERABLE (µg/L as A1) (01105) 95 72 ACETO- CHLOR, WATER FLTRD REC (µg/L) (49260) <.004 <.004 | DIS-
SOLVED
(µg/L
as As)
(01000)

.4

.5
ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342)
<.002 | DIS-
SOLVED
(µg/L
as Cd)
(01025)

<8

<8

<8

(8
BHC
DIS-
SOLVED
(µg/L)
(34253)
<.005 | WATER UNFLIRD TOTAL (μg/L as Cd) (01027) <.1 <.1 ATRA- ZINE, WATER, DISS, REC (μg/L) (39632) <.007 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

<5

<5

<5
BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673)
<.010 | | JUN 27 JUL 25 AUG 21 SEP 10 DATE JUN 27 JUL 25 | GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) .019 .012 .014 .009 IRON, DIS- SOLVED (µg/L as Fe) (01046) | PHORUS DIS- SOLVED (mg/L as P) (00666) .16 .24 .28 .20 LEAD, DIS- SOLVED (µg/L as Pb) (01049) | PHORUS ORTHO, DIS- SOLVED (mg/L as P) (00671) .17 .23 .27 .18 LEAD, TOTAL RECOV- ERABLE (μg/L as Pb) (01051) | PHORUS TOTAL (mg/L as P) (00665) .19 .26 .29 .22 MANGA- NESE, DIS- SOLVED (µg/L as Mn) (01056) | MTEC MF WATER (col./ 100 mL) (31633) 36 K100 160 100 MERCURY TOTAL RECOV- ERABLE (mg/L as Hg) (71900) | FORM, FECAL, 0.7 pm-MF (col./100 mL) (31625) 140 210 130 170 ZINC, DIS-SOLVED (µg/L as Zn) (01090) | STREP, KF STRP MF, WATER (col./ 100 mL) (31673) 28 92 52 49 ZINC, TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | INUM, DIS- SOLVED (µg/L as Al) (01106) 11 18 2,6-DI- ETHYL ANILINE WAT FLT 0.7 µ GF, REC (µg/L) (82660) <.002 | INUM, TOTAL RECOV- ERABLE (µg/L as Al) (01105) 95 72 ACETO- CHLOR, WATER FLITE REC (µg/L) (49260) <.004 | DIS-
SOLVED
(µg/L
as As)
(01000)

.4

.5
ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | DIS-
SOLVED (µg/L as Cd) (01025) <8 <8 ALPHA BHC DIS-
SOLVED (µg/L) (34253) <.005 | WATER UNFLIRD TOTAL (µg/L as Cd) (01027) <.1 <.1 ATRA- ZINE, WATER, DISS, REC (µg/L) (39632) <.007 | DIS-
SOLVED
(µg/L
as Cu)
(01040)

<5

<5
BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | # 07052345 FINLEY CREEK BELOW RIVERDALE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA WATER FLTRD 0.7 µ GF, REC (µg/L) (82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | ETHO-
PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | |------------------|---|--|--|---|---|--|--|--|--|---|--|---|---| | JUN
27
JUL | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | <.006 | E.004 | <.005 | <.02 | <.002 | <.009 | <.005 | | 25
AUG | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | <.006 | .007 | <.005 | <.02 | <.002 | <.009 | <.005 | | 21
SEP | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | DATE | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | | JUN
27
JUL | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | <.007 | <.002 | | 25
AUG | <.003 | <.004 | <.035 | <.027 | <.050 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | <.007 | <.002 | | 21
SEP | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | DATE | PENDI-
METH-
ALIN
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) |
TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | THIO-BENCARB WATER FLTRD 0.7 µ GF, REC (µg/L) (82681) | | JUN
27
JUL | <.010 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | <.005 | | 25
AUG | <.010 | <.006 | <.011 | E.01 | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | <.005 | | 21 | | | | | | | | | | | | | | | SEP
10 | | | | | | | | | | | | | | | | TRIAL- | TRI- | |-----------|-------------|---------| | | LATE | FLUR- | | | WATER | ALIN | | | FLTRD | WAT FLT | | | 0.7 μ | 0.7 μ | | DATE | GF, REC | GF, REC | | | $(\mu g/L)$ | | | | (82678) | (82661) | | JUN | | | | 27 | <.002 | <.009 | | JUL
25 | < .002 | <.009 | | AUG | <.002 | <.009 | | 21 | | | | SEP | | | | 10 | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. #### 07052345 FINLEY CREEK BELOW RIVERDALE, MO LOCATION.--Lat 36°58'30", long 93°19'39", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.10, T.26 N., R.10 W., Christian County, Hydrologic Unit 11010002, on downstream side of center pier of Aspen Road bridge, 12.4 mi southeast of junction of Highway 160 and 60. DRAINAGE AREA.--261 mi². WATER-DISCHARGE RECORDS PREIOD OF RECORD. -- October 2001 to current year. GAGE. -- Water-stage recorder. Datum of gage is unknown. REMARKS.--Water-discharge records good. U.S.G.S. satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY JUL AUG SEP 778 20 41 29 245 4190 130 20 37 151 534 157 e100 ___ MEAN 37.7 41 0 76 7 60 6 23 3 MAX MIN 0.30 0.32 3.24 0.83 1.17 0.62 0.49 0.18 IN. 3.00 4.28 4.43 11.3 | STIMMARY | STATISTICS | |----------|------------| | DOMEST | DIVITOTICE | ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 90 PERCENT EXCEEDS FOR 2002 WATER YEAR 10500 May 8 19 Oct 3,4,Sep 14 20 Sep 12 21400 May 8 16.31 May 8 18 Oct 4,5,Sep 28 30.16 e Estimated # 07052345 FINLEY CREEK BELOW RIVERDALE, MO--Continued (Ambient Water-Quality Monitoring Network) #### WATER-QUALITY RECORDS PERIOD OF RECORD.--June 2001 to current year. | DATE | TIME | SAMP:
TYP: | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|---|---|--|---|--|--|--|--|--|--|---|---| | OCT
04 | 1235 | ENVIRON | MENTAL | 19 | 10.3 | 113 | 7.9 | 434 | 18.4 | | | | | | NOV
06 | 1130 | ENVIRON | MENTAL | 41 | 9.8 | 99 | 7.9 | 422 | 14.3 | 200 | 63.0 | 10.1 | 2.22 | | DEC
16 | 1245 | ENVIRON | | 580 | 9.5 | 88 | 7.6 | 331 | 10.4 | 160 | 52.1 | 7.94 | 2.38 | | 16
18 | 1246
1410 | REPLICA'
ENVIRON | | 1670 | 10.3 | 96 | 7.5 | 289 | 10.3 | 150
 | 49.2 | 7.55
 | 2.35 | | JAN
23
FEB | 1145 | ENVIRON | MENTAL | 59 | 14.4 | 128 | 8.5 | 370 | 8.3 | 180 | 57.5 | 8.86 | 1.59 | | 20
MAR | 1030 | ENVIRON | MENTAL | 151 | 12.8 | 119 | 7.9 | 357 | 9.7 | | | | | | 19
19 | 1145
2100 | ENVIRON
ENVIRON | | 301
688 | 10.3
9.5 | 97
89 | 7.7
6.9 | 318
316 | 10.8
10.8 |
160 |
49.0 |
7.95 |
1.89 | | APR
22 | 1625 | ENVIRON | MENTAL | 790 | 13.2 | 140 | 7.7 | 252 | 16.5 | | | | | | MAY
30 | 0845 | ENVIRON | MENTAL | 359 | 11.4 | 123 | 7.7 | 311 | 16.8 | 150 | 52.0 | 5.73 | .88 | | JUN
18 | 1215 | ENVIRON | MENTAL | 130 | 9.1 | 107 | 8.0 | 357 | 21.6 | | | | | | JUL
24
AUG | 0915 | ENVIRON | MENTAL | 89 | 7.4 | 89 | 7.8 | 358 | 22.8 | 180 | 61.4 | 6.61 | 2.90 | | 20
SEP | 0845 | ENVIRON | MENTAL | 67 | 5.9 | 73 | 7.8 | 355 | 24.1 | | | | | | 10 | 0910 | ENVIRON | MENTAL | 22 | 6.2 | 75 | 7.8 | 406 | 23.0 | 180 | 58.4 | 7.97 | 2.97 | | | | | | | | | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC
WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | DATE OCT 04 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as C1) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
04
NOV
06 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) |
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
04
NOV
06
DEC
16
18 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
04
NOV
06
DEC
16
18
JAN
23 | DIS-
SOLVED
(mg/L
as Na)
(00930)

10.1
4.93
4.89 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 175 164 139 139 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
175
161
141
139 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
214
200
172
169 | CAR-BONATE IT FIELD (mg/L as CO ₃)(00447) 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

16.1
10.4
10.7 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 28 30 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .20 .18 .32 .32 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.84
1.31
1.45
1.45 | | OCT 04 NOV 06 DEC 16 18 JAN 23 FEB 20 | DIS-
SOLVED (mg/L as Na) (00930)
10.1 4.93
4.89 | WATER UNFLIRED FET FIELD (mg/L as CaCO ₃) (00410) 175 164 139 139 119 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
175
161
141
139
120 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
214
200
172
169
147 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

16.1
10.4 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 28 30 32 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .20 .18 .32 .32 .40 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.84
1.31
1.45
1.45 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19 | DIS-
SOLVED (mg/L
as Na) (00930)

10.1
4.93
4.89

8.33 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 175 164 139 139 119 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
175
161
141
139
120 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
214
200
172
169
147 | CAR-
BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 6 | RIDE,
DIS-
SOLVED (mg/L
as C1)
(00940)

16.1
10.4
10.7

14.6 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

8.6
6.5
6.6

7.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 28 30 32 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .20 .18 .32 .32 .40 .13 .15 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.84 1.31 1.45 1.45 1.89 1.56 1.82 1.25 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
19 | DIS-
SOLVED (mg/L
as Na) (00930)

10.1
4.93
4.89

8.33 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 175 164 139 139 119 160 162 148 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
175
161
141
139
120
159
162
149 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
214
200
172
169
147
182
197 | CAR-
BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

16.1
10.4
10.7

14.6 | RIDE,
DIS-
SOLVED (mg/L
as F) (00950)

<.1
<.1
<.1
 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

8.6
6.5
6.6

7.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 28 30 32 <10 10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .20 .18 .32 .32 .40 .13 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.84
1.31
1.45
1.45
1.89
1.56 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
APR
22
MAY | DIS-
SOLVED (mg/L as Na) (00930)
10.1 4.93
4.89
8.33 | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 175 164 139 139 119 160 162 148 133 | WATER
UNFLITED
IT
FIELD (mg/L as
CaCO ₃) (00419)
175
161
141
139
120
159
162
149
132 | BICAR-
BONATE IT FIELD (mg/L as HCO ₃) (00450) 214 200 172 169 147 182 197 181 162 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE, DIS- DIS- SOLVED (mg/L as C1) (00940) 16.1 10.4 10.7 14.6 10.7 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

<.1
<.1
<.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

8.6
6.5
6.6

7.2

6.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 28 30 32 <10 10 <10 10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

236
178
182

214

176 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .20 .18 .32 .32 .40 .13 .15 | GEN, NO ₂ +NO ₃ DIS-
SOLVED (mg/L as N) (00631) 1.84 1.31 1.45 1.45 1.89 1.56 1.82 1.25 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
19
APR
22
MAY
30
JUN
18 | DIS-
SOLVED (mg/L
as Na) (00930)

10.1
4.93
4.89

8.33 | WATER UNFLIRED (1971 A) (1972 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 175 161 141 139 120 159 162 149 132 102 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 214 200 172 169 147 182 197 181 162 124 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

16.1
10.4
10.7

14.6 | RIDE,
DIS-
SOIVED (mg/L
as F)
(00950)

<.1
<.1
<.1
<.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

8.6
6.5
6.6

7.2

6.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 28 30 32 <10 10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

236
178
182

214

176 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .20 .18 .32 .32 .40 .13 .15 .12 .19 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.84 1.31 1.45 1.45 1.89 1.56 1.82 1.25 1.21 | | OCT 04 NOV 06 DEC 16 18 JAN 23 FEB 20 MAR 19 19 APR 22 MAY 30 JUN 18 JUL 24 | DIS-
SOLVED (mg/L as Na) (00930) 10.1 4.93 4.89 8.33 5.08 4.60 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 175 164 139 139 119 160 162 148 133 101 155 | WATER
UNFLITD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
175
161
141
139
120
159
162
149
132
102 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
214
200
172
169
147
182
197
181
162
124 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L as C1) (00940)

16.1
10.4
10.7

14.6

10.7

8.51 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

<.1
<.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

8.6
6.5
6.6

7.2

6.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 28 30 32 <10 10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

236
178
182

214

176

176 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .20 .18 .32 .32 .40 .13 .15 .12 .19 .19 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.84 1.31 1.45 1.45 1.89 1.56 1.82 1.25 1.21 .99 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
APR
22
MAY
30
JUN
18 | DIS-
SOLVED (mg/L as Na) (00930) 10.1 4.93 4.89 8.33 5.08 4.60 | WATER UNFLIRED FET FIELD (mg/L as CaCO ₃) (00410) 175 164 139 139 119 160 162 148 133 101 155 | WATER UNFLITED TT FIELD (mg/L as CaCO ₃) (00419) 175 161 141 139 120 159 162 149 132 102 157 160 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 214 200 172
169 147 182 197 181 162 124 191 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE, DIS- DIS- SOLVED (mg/L as C1) (00940) 16.1 10.4 10.7 14.6 10.7 8.51 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

<.1
<.1
<.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

8.6
6.5
6.6

7.2

6.1

4.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 28 30 32 <10 10 <10 <10 <10 <10 11 <10 12 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)

236
178
182

214

176

178 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .20 .18 .32 .32 .40 .13 .15 .12 .19 .19 .16 .14 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.84 1.31 1.45 1.45 1.89 1.56 1.82 1.25 1.21 .99 .96 1.35 | # 07052345 FINLEY CREEK BELOW RIVERDALE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |--|--|--|--|---|--|--|--|--|---|---|--|---|---| | OCT
04 | .029 | .30 | .23 | . 29 | 25 | 31 | K10 | | | | | | | | NOV
06 | .012 | .16 | .14 | .17 | 24 | 46 | 29 | 12 | 23 | .2 | E.03 | <.1 | <6 | | DEC
16 | <.008 | .06 | .06 | .09 | 1600 | 7700 | 2300 | <1 | 272 | .2 | <.04 | <.1 | <6 | | 16
18 | <.008
.013 | .06
E.04 | .06 | .10
.08 | 1000 |
560 | 2450 | <1 | 268 | .2 | <.04 | <.1 | <6
 | | JAN
23
FEB | <.008 | .07 | .08 | .09 | K2 | 38 | K5 | 11 | 22 | .3 | E.02 | <.1 | E3 | | 20
MAR | .006 | .06 | .06 | .07 | 34 | <1 | K19 | | | | | | | | 19
19 | E.006
<.008 | <.06
E.04 | .03 | E.04
E.05 | K69
K280 | 687
1460 | 136
1040 | 3 |
115 | .2 | <.04 | <.1 |
<6 | | APR 22 | .012 | E.06 | .03 | .07 | K4 | 390 | 88 | | | | | | | | MAY
30 | .013 | E.04 | <.02 | E.05 | 950 | K530 | K5140 | 73 | 129 | .2 | <.04 | <.1 | <6 | | JUN
18 | .008 | .10 | .08 | .09 | K25 | 50 | 33 | | | | | | | | JUL
24 | .009 | .15 | .14 | .17 | 44 | 98 | 680 | 1 | 157 | . 4 | <.04 | <.1 | <6 | | AUG
20 | E.006 | .16 | .15 | .16 | 73 | 245 | 245 | | | | | | | | SEP
10 | .013 | .24 | .25 | .25 | 36 | K58 | 76 | 1 | 51 | .5 | E.02 | <.1 | <6 | | | | | | | | | | | | | | | | | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04 | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L) | | OCT
04
NOV
06 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L) | CHLOR,
WATER
FLTRD
REC
(µg/L) | CHLOR,
WATER,
DISS,
REC,
(µg/L) | BHC
DIS-
SOLVED
(µg/L) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV
06
DEC
16 | DIS- SOLVED (µg/L as Fe) (01046) | DIS-
SOLVED (µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED (µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 7 | ETHYL
ANILINE
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82660) | CHLOR,
WATER
FLTRE
FLTRE
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS-
SOLVED (µg/L) (34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV
06
DEC
16
18 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC
DIS-
SOLVED
(µg/L)
(34253) | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV
06
DEC
16
18
JAN
23 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E8
E6
E5 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 1 1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

4.7
6.5
7.1 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.3
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.002 | CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E8
E6
E5 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07 | TOTAL RECOV-ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

4.7
6.5
7.1 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.3
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 7 6 8 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) <.002 <.002 | CHLOR,
WATER
FLITED
REC
(µg/L)
(49260) | CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | BHC DTS- SOLVED (µg/L) (34253) <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007
<.007 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E8
E6
E5

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07

E.07 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 1 1 <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

4.7
6.5
7.1

5.3 | TOTAL RECOV- ERABLE (µg/L as Hg)
(71900) <.01 <.01 <.01 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.3
<.3

.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 7 6 8 6 | ETHYL ANILINE UNT FIT 0.7 μ GF, REC (μg/L) (82660) <.002 <.002 <.006 | CHLOR, WATER FITRD REC (µg/L) (49260) <.004 <.004 < <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) <-002 <-002 <-004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007
<.007

<.007 | | OCT 04 NOV 06 DEC 16 18 JAN 23 FEB 20 MAR 19 19 APR | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E8
E6
E5

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07

E.07 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) <1 1 1 <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

4.7
6.5
7.1

5.3 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.01 E.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3
E.3
<.3

.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090)

2
2
2

3 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 7 6 8 6 6 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) < <.002 <.002 < <.006 <.006 | CHLOR, WATER FLITED REC (µg/L) (49260) <.004 <.004 <.006 <.006 | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)
 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
APR
22
MAY | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E8
E6
E5

<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07

E.07 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 1 1 <1 <1 <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

4.7
6.5
7.1

5.3 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.3
<.3

.5 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 7 6 8 6 6 | ETHYL ANILINE WAT FLT 0.7 μ GF, REC (μg/L) (82660) < <.002 <.002 < <.006 <.006 <.006 | CHLOR, WATER FLITED REC (µg/L) (49260) | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE,
WATER,
DISS,
REC
(µg/L)
(39632)

<.007
<.007

<.007
<.007
E.007 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
19
APR
22
MAY
30
JUN | DIS-
SOLVED
(µg/L
as Fe)
(01046)

E8
E6
E5

<10

10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07

E.07 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 1 1 <1 <1 <1 M | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 4.7 6.5 7.1 5.3 6.2 7.1 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 <.01 E.01 <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.3
<.3

.5

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 7 6 8 6 6 3 | ETHYL ANILINE UNT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER FITTED REC (µg/L) (49260) < | CHLOR, WATER, DISS, REC, (µg/L) (46342) <-002 <-002 <-004 <-004 <-004 <-004 | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) <.007 <.007 <.007 <.007 E.006 | | OCT 04 04 NOV 06 DEC 16 18 JAN 23 FEB 20 MAR 19 19 APR 22 MAY 30 JUN 18 JUL | DIS- SOLVED (µg/L as Fe) (01046) E8 E6 E5 <10 54 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07

E.07

<.08 | TOTAL RECOV-ERABLE (µg/L as Pb) (01051) <1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 4.7 6.5 7.1 5.3 6.2 7.1 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.01 E.01 <.01 <.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Se) (01145)

<.3
E.3
<.3

.5

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 7 6 8 6 6 3 | ETHYL ANILINE UNT FLT 0.7 μ GF, REC (μg/L) (82660) <-002 <.002 <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER WATER FLITED REC (µg/L) (49260) | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) <-0007 <-0007 <-0007 E.0007 E.0006 <-0007 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
19
22
MAY
30
JUN
18
JUN
24 | DIS-
SOLVED (µg/L as Fe) (01046) E8 E6 E5 <10 54 <10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07

<.08 | TOTAL RECOV-ERABLE (µg/L as Pb) (01051) <1 1 1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 4.7 6.5 7.1 5.3 6.2 7.1 7.7 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 <.01 <.01 <.01 <.01 <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3
E.3
<.3

.5

E.3

E.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 7 6 8 6 6 5 | ETHYL ANILINE UNT FIT 0.7 µ GF, REC (µg/L) (82660) <.002 <.002 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | CHLOR, WATER FLITRD REC (µg/L) (49260) | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) <.007 <.007 <.007 <.007 E.007 E.006 <.007 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
19
APR
22
MAY
30
JUN
18
JUN
18 | DIS- SOLVED (µg/L as Fe) (01046) E8 E6 E5 <10 54 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.05
E.05
E.07

E.07

<.08 | TOTAL RECOV-ERABLE (µg/L as Pb) (01051) <1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056) 4.7 6.5 7.1 5.3 6.2 7.1 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 <.01 E.01 <.01 <.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Se) (01145)

<.3
E.3
<.3

.5

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 7 6 8 6 6 3 | ETHYL ANILINE UNT FLT 0.7 μ GF, REC (μg/L) (82660) <-002 <.002 <.002 <.006 <.006 <.006 <.006 | CHLOR, WATER WATER FLITED REC (µg/L) (49260) | CHLOR, WATER, DISS, REC, (µg/L) (46342) | BHC DIS- SOLVED (µg/L) (34253) <.005 <.005 <.005 <.005 <.005 <.005 <.005 | ZINE, WATER, DISS, REC (µg/L) (39632) <-0007 <-0007 <-0007 E.0007 E.0006 <-0007 | # 07052345 FINLEY CREEK BELOW RIVERDALE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | |--|--|--|--|--|--|--|--|---|---|---|---|---|---| | OCT
04 | | | | | | | | | | | | | | | NOV
06 | | | | | | | | | | | | | | | DEC
16
16
18
JAN | <.010
<.010
 | <.002
<.002 | <.041
<.041
 | <.020
<.020
 | <.005
<.005
 | <.018
<.018 | <.003
<.003 | <.006
<.006 | E.002
<.005 | <.005
<.005
 | <.02
<.02
 | <.002
<.002
 | <.009
<.009
 | | 23
FEB | | | | | | | | | | | | | | | 20
MAR | | | | | | | | | | | | | | | 19
19
APR | <.010
<.010 | <.002
<.002 | <.041
<.041 | <.020
<.020 | <.005
<.005 | <.018
<.018 | <.003
<.003 | <.006
<.006 | <.005
E.001 | <.005
<.005 | <.02
<.02 | <.002
<.002 | <.009
<.009 | | 22
MAY | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | <.006 | .007 | <.005 | <.02 | <.002 | <.009 | | 30
JUN | <.010 | <.002 | E.003 | <.020 | <.005 | <.018 | <.003 | <.006 | .011 | <.005 |
<.02 | <.002 | <.009 | | 18
JUL | <.010 | <.002 | <.041 | <.020 | <.005 | <.018 | <.003 | <.006 | .007 | <.005 | <.02 | <.002 | <.009 | | 24
AUG | <.010 | <.002 | E.020 | <.020 | <.005 | <.018 | <.003 | E.005 | .020 | <.005 | <.02 | <.002 | <.009 | | 20
SEP | | | | | | | | | | | | | | | 10 | DATE | ETHO-
PROP
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(μg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
04 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L) | | OCT
04
NOV
06 | PROP
WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82672) | WATER
DISS
REC
(µg/L) | DIS-
SOLVED
(µg/L) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) | THION,
DIS-
SOLVED
(µg/L) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L) | LACHLOR
WATER
DISSOLV
(µg/L) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) | AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | DDE
DISSOLV
(µg/L) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
04
NOV
06
DEC
16
18 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER
DISS
REC
(µg/L)
(04095) | DIS-
SOLVED
(µg/L)
(39341) | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) | THION,
DIS-
SOLVED
(µg/L)
(39532) | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) | AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | DDE
DISSOLV
(µg/L)
(34653) | THION,
DIS-
SOLVED
(µg/L)
(39542) | | OCT
04
NOV
06
DEC
16
18
JAN
23 | PROP
WATER
FLITRD
0.7 μ
GF, REC
(μg/L)
(82672)

<.005
<.005 | WATER DISS REC (µg/L) (04095) | DIS-
SOLVED
(µg/L)
(39341)

<.004
<.004 | URON WATER FLTRD 0.7 μ GF, REC (μg/L) (82666) <.035 <.035 | THION, DIS-
SOLVED (µg/L) (39532) <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050
<.050 | PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667)

<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 | THION, DIS-
SOLVED (µg/L) (39542) <.007 <.007 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLIT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) < <.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003
<.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19 | PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | WATER DISS REC (µg/L) (04095) <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686) | PARA-
THION
WAT FLIT
0.7 µ
GF, REC
(µg/L)
(82667) | LACHLOR WATER DISSOLV (µg/L) (39415) | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) < <.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 | DDE
DISSOLV
(µg/L)
(34653)

<.003
<.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
19 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) < < < < < < < < < < < < < < < | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686)

<.050
<.050

<.050 | PARA-
THION
WAT FLIT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006
<.006

<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <-013 <-013 <-013 <-013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006

<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 | | OCT 04 NOV 06 DEC 16 18 JAN 23 FEB 20 MAR 19 19 APR 22 MAY 30 | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <-0.035 <.035 <-0.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050
<.050

<.050
<.050
<.050 | PARA- THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 <.013 <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006

<.006
<.006
<.006 | INATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <-0007 <.007 <-007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 <.010 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
19
APR
22
MAY
30
JUN
18 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) < <-003 <-003 < <-003 <-003 <-003 <-003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) < <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) < < < < < < < < < < < < < | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050
<.050

<.050
<.050
<.050
<.050 | PARA-
THION
WAT FLIT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006
<.006

<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006

<.006
<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 <.010 | | OCT
04
NOV
06
DEC
16
18
JAN
23
FEB
20
MAR
19
19
APR
22
MAY
30
JUN
18
JUN
18 | PROP WATER FLITRD 0.7 µ GF, REC (µg/L) (82672) <.005 <.005 <.005 <.005 <.005 <.005 | WATER DISS REC (µg/L) (04095) <.003 <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <-035 <-035 <-035 <-035 <-035 <-035 <-035 <-035 <-035 <-035 | THION, DIS- SOLVED (µg/L) (39532) < < < < < < < < < < < < < | AZIN-PHOS WAT FLT 0.7 µ GF, REC (µg/L) (82686) | PARA-
THION
WAT FLIT
0.7 µ
GF, REC
(µg/L)
(82667)

<.006
<.006

<.006
<.006
<.006
<.006
<.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006

<.006
<.006
<.006
<.006 | INATE WATER WATER FLITRD 0.7 µ GF, REC (µg/L) (82671) <-002 <.002 <.002 <.002 <.002 <.002
<.002 <.002 | AMIDE WATER FLITRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <.007 <.007 <.010 <.010 <.010 <.010 | | OCT 04 NOV 06 DEC 16 18 JAN 23 FEB 20 MAR 19 19 APR 22 MAY 30 JUN 18 JUL | PROP WATER FLTRD 0.7 µ GF, REC (µg/L) (82672) | WATER DISS REC (µg/L) (04095) < <.003 <.003 < <.003 <.003 <.003 <.003 <.003 | DIS-
SOLVED (µg/L) (39341) <.004 <.004 <.004 <.004 <.004 <.004 <.004 | URON WATER FLTRD 0.7 µ GF, REC (µg/L) (82666) <-0.035 <.035 <.035 <.035 <.035 <.035 <.035 <.035 | THION, DIS- SOLVED (µg/L) (39532) <.027 <.027 <.027 <.027 <.027 <.027 <.027 | AZIN-
PHOS
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82686)

<.050
<.050
<.050
<.050
<.050
<.050
<.050 | PARA- THION WAT FLT 0.7 µ GF, REC (µg/L) (82667) <.006 <.006 <.006 <.006 <.006 <.006 <.006 <.006 | LACHLOR WATER DISSOLV (µg/L) (39415) <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 <.013 | BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630)

<.006
<.006

<.006
<.006
<.006
<.006
<.006 | INATE WATER WATER FLTRD 0.7 µ GF, REC (µg/L) (82671) <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 <.002 | AMIDE WATER FLTRD 0.7 μ GF, REC (μg/L) (82684) <.007 <.007 <.007 <.007 <.007 <.007 <.007 | DDE DISSOLV (µg/L) (34653) < <.003 <.003 < <.003 <.003 <.003 <.003 <.003 <.003 | THION, DIS- SOLVED (µg/L) (39542) <-0007 <-007 <-010 <-010 <-010 <-010 <-010 | ### 07052345 FINLEY CREEK BELOW RIVERDALE, MO--Continued (Ambient Water-Quality Monitoring Network) | | PEB-
ULATE | PENDI-
METH- | PER-
METHRIN | PHORATE | PRO- | PRON-
AMIDE | PROPA- | PRO-
PANIL | PRO-
PARGITE | SI- | TEBU-
THIURON | TER-
BACIL | TER-
BUFOS | |-----------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------| | | WATER | ALIN | CIS | WATER | METON, | WATER | CHLOR, | WATER | WATER | MAZINE, | WATER | WATER | WATER | | | FILTRD | WAT_FLT | WAT FLT | FLTRD | WATER, | FLTRD | WATER, | FLTRD | FLTRD | WATER, | FLTRD | FLTRD | FLTRD | | D.1.000 | 0.7 μ | 0.7 μ | 0.7 μ | 0.7 μ | DISS, | 0.7 μ | DISS, | 0.7 μ | 0.7 μ | DISS, | 0.7 μ | 0.7 μ | 0.7 μ | | DATE | GF, REC | GF, REC
(µg/L) | GF, REC | GF, REC | REC | GF, REC | REC | GF, REC | GF, REC | REC
(µg/L) | GF, REC
(µg/L) | GF, REC | GF, REC | | | (µg/L)
(82669) | (μg/L)
(82683) | (µg/L)
(82687) | (µg/L)
(82664) | (µg/L)
(04037) | (µg/L)
(82676) | (µg/L)
(04024) | (µg/L)
(82679) | (µg/L)
(82685) | (μg/L)
(04035) | (μg/L)
(82670) | (µg/L)
(82665) | (µg/L)
(82675) | | | (0200)) | (02003) | (02007) | (02001) | (01037) | (02070) | (01021) | (02075) | (02003) | (01033) | (02070) | (02003) | (02073) | | OCT | | | | | | | | | | | | | | | 04 | | | | | | | | | | | | | | | NOV | | | | | | | | | | | | | | | 06 | | | | | | | | | | | | | | | DEC
16 | <.002 | <.010 | <.006 | <.011 | М | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | | 16 | <.002 | <.010 | <.006 | <.011 | M
M | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | | 18 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 20 | | | | | | | | | | | | | | | MAR | . 004 | . 000 | . 006 | . 011 | . 01 | . 004 | . 010 | . 011 | . 00 | . 005 | . 00 | . 024 | . 00 | | 19
19 | <.004
<.004 | <.022
<.022 | <.006
<.006 | <.011
<.011 | <.01
<.01 | <.004
<.004 | <.010
<.010 | <.011
<.011 | <.02
<.02 | <.005
<.005 | <.02
<.02 | <.034
<.034 | <.02
<.02 | | APR | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.∪∠ | | 22 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | MAY | | | | | | | | | | | | | | | 30 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | JUN | | | | | | | | | | | | | | | 18 | <.004 | <.022 | <.006 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | .013 | <.02 | <.034 | <.02 | | JUL | . 004 | <.022 | <.006 | . 011 | E.01 | <.004 | - 010 | <.011 | <.02 | <.005 | <.02 | <.034 | . 00 | | 24
AUG | <.004 | <.022 | <.006 | <.011 | E.UI | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | | 20 | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | DATE | THIO-
BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82681) | 0.7 μ
GF, REC
(μg/L) | TRI-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | |-----------|---|----------------------------|---| | OCT | | | | | 04
NOV | | | | | 06 | | | | | DEC | | | | | 16 | <.005 | <.002 | <.009 | | 16 | <.005 | <.002 | <.009 | | 18 | | | | | JAN
23 | | | | | FEB | | | | | 20 | | | | | MAR | | | | | 19 | <.005 | <.002 | <.009 | | 19 | <.005 | <.002 | <.009 | | APR | | | | | 22 | <.005 | <.002 | <.009 | | MAY | | | | | 30 | <.005 | <.002 | <.009 | | JUN | | | | | 18 | <.005 | <.002 | <.009 | | JUL | | | | | 24 | <.005 | <.002 | <.009 | | AUG | | | | | 20 | | | | | SEP | | | | | 10 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07052500 JAMES RIVER AT GALENA, MO LOCATION.--Lat 36°48'19", long 93°27'41", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.6, T.24 N., R.23 W., Stone County, Hydrologic Unit 11010002, on downstream side of right pier of first arch span from left end of bridge on old State Highways 13 and 248 in Galena, 0.7 mi upstream from Railey Creek, and 42.3 mi above mouth. DRAINAGE AREA.--987 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1921 to current year. Monthly discharge only, October 1921, published in WSP 1311. REVISED RECORDS. -- WSP 977: 1935(M), 1941(M). GAGE.--Water-stage recorder. Datum of gage is 921.37 ft above National Geodetic Vertical Datum of 1929. Prior to Dec. 11, 1927, nonrecording gage at site 500 ft downstream at datum 1.48 ft higher; Dec. 11, 1927, to July 22, 1939, nonrecording gage, and July 23, 1939, to Sept. 30, 1953, water-stage recorder at present site and at datum 2.00 ft higher. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 REMARKS.--Water-discharge records good except for estimated daily discharges, which are poor. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. | Table Tabl | | | DISCHA | KGE, CUBI | C LEEI PE | | MATER TE
MEAN VA | | R 2001 10 | PERIFMEE | R 2002 | | | |--|---------|------------|----------|-----------|-----------|------------|---------------------|-----------|-----------|----------|----------------|----------|--------| | 2 120 196 625 548 6320 818 1300 1300 1370 364 221 150 3 119 310 608 531 3810 2440 1170 1140 1240 369 210 137 4 117 299 530 501 2830 2440 1050 1010 1130 348 200 139 5 134 250 458 446 2220 2010 954 895 1120 336 188 142 6 e310 236 401 431 1960 1790 872 974 1140 307 178 144 7 e290 224 357 411 1720 1720 844 892 1060 290 191 133 8 e190 216 320 393 1530 e1570 1450 13700 959 272 183 126 10 e170 204 287 376 1370 e1430 3160 25500 875 222 168 125 10 e177 194 260 365 1220 e1450 2380 11900 809 254 165 113 11 664 187 243 349 1100 e1380 2880 6420 751 388 181 117 12 774 176 269 333 1000 e1220 1800 4760 718 465 163 116 13 479 171 424 316 914 e1100 1750 5200 835 416 153 116 13 479 171 424 316 914 e1100 1750 5200 835
416 153 116 14 386 172 531 308 837 977 926 1790 4190 735 563 402 116 16 313 165 2300 283 718 842 1560 3420 667 409 362 117 17 303 160 11000 278 664 810 1390 6720 603 362 291 119 18 266 161 9990 272 618 738 1120 1710 550 530 325 395 395 133 20 277 222 3300 263 736 8180 1190 5070 5070 538 335 389 124 19 249 199 5080 272 618 738 1270 17100 558 335 389 133 20 277 222 3300 263 736 8180 1190 7070 5070 538 335 389 133 21 214 261 2510 256 709 4260 2910 3910 469 696 275 168 22 208 235 2070 253 675 2830 2550 3200 443 465 238 119 24 248 235 2070 253 675 2830 2550 3200 478 312 350 319 313 25 21 214 261 2510 256 709 4260 2910 3910 469 696 275 168 24 250 191 1130 514 589 3300 1500 1500 277 244 180 190 779 441 100 270 550 500 500 500 500 500 500 500 500 5 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 3 119 310 608 531 3810 2240 1170 1140 1240 369 210 137 4 117 299 530 501 2830 2240 1050 1050 1010 1130 368 200 139 5 134 250 458 446 2280 2010 954 895 1120 336 280 188 142 7 e290 224 357 411 1720 1720 844 892 1060 290 191 133 8 e190 216 320 393 1530 e1570 1450 13700 959 272 183 126 9 e170 204 287 376 1370 e1430 3160 29500 875 262 168 125 10 e175 194 260 365 1230 e1450 2580 1190 809 254 165 119 11 664 187 243 349 1100 e1280 e1450 2580 1190 809 254 165 119 11 671 194 260 365 1230 e1450 2580 1190 809 254 165 119 11 671 194 260 365 1230 e1450 2580 1190 809 254 165 119 11 671 194 260 365 1230 e1450 2580 1190 809 254 165 119 11 671 194 260 365 1230 e1450 2580 1190 809 254 165 119 11 671 194 260 365 1230 e1450 2580 1190 809 254 165 119 11 671 194 260 365 1230 e1450 2580 1190 809 254 165 119 11 671 194 260 365 1230 878 974 8180 2580 828 8181 111 11 12 714 176 269 333 1000 e1220 1800 4760 731 338 181 111 13 479 171 424 316 914 e1100 1750 5200 835 416 159 113 14 386 172 531 308 837 974 1880 5280 828 818 271 112 15 347 169 554 299 777 926 1790 4190 735 563 402 116 16 313 165 2300 228 718 842 1550 3420 657 409 362 117 17 303 160 11000 278 664 810 1390 6720 603 363 291 119 18 266 161 9990 272 618 788 1270 1710 555 335 388 124 19 249 189 5060 271 618 1140 1150 7510 538 325 396 133 20 227 222 3300 263 736 4180 1090 5700 501 538 325 396 133 21 214 224 261 2510 256 679 4260 2910 3910 499 496 275 188 22 208 235 2070 253 675 2230 2550 3200 443 430 394 353 383 122 23 204 215 1760 256 688 2260 1890 2710 416 387 211 128 24 333 205 1510 356 631 1950 1600 2440 405 394 353 383 122 25 309 193 1310 503 615 2200 1560 2340 394 353 383 122 26 250 191 130 515 556 631 1950 1750 470 470 266 277 116 18 18 18 18 19 117 160 247 256 1770 1150 2150 409 243 198 108 18 18 19 17 160 247 180 140 140 150 150 150 409 243 198 108 18 18 19 19 100 2470 1400 4260 3160 2950 1540 696 402 168 18 18 18 19 19 100 2470 1400 4260 3160 2950 140 405 390 390 389 417 18 18 18 18 19 1100 2470 1400 4260 3160 2950 140 405 390 390 389 417 18 18 18 18 19 1100 2470 1400 | | 126 | 179 | | | 11400 | 508 | 1420 | 1470 | 1540 | | | 164 | | 4 | | | | | | | | | | | | | | | S | | | | | | | | | | | | | | | 6 e310 236 401 431 1960 1790 872 974 1140 307 178 144 7 e230 224 357 411 1720 1720 844 1882 1060 299 191 131 133 160 1100 1750 1720 844 1882 1060 299 191 131 133 125 10 e1750 1720 844 1882 1060 299 272 188 125 10 e175 194 260 365 1230 e1450 2580 11900 809 272 188 125 10 e175 194 260 365 1230 e1450 2580 11900 809 274 165 119 11 664 187 243 349 1100 e1320 1880 4760 738 465 163 116 119 112 714 176 269 333 1000 e1220 1880 4760 738 465 163 116 113 479 171 424 316 914 e1100 1755 5260 835 416 152 113 143 479 171 424 316 914 e1100 1755 5260 835 416 152 113 153 479 171 424 316 914 e1100 1755 5260 835 416 152 113 15 347 189 654 299 777 926 1790 4190 679 362 112 112 15 347 189 654 299 777 926 1790 4190 679 362 117 177 303 160 11000 278 664 810 1390 6720 603 363 291 119 18 266 161 9990 272 618 788 1140 1150 5580 828 328 329 119 19 249 189 5060 271 618 718 1140 1150 7510 538 325 388 124 120 220 222 222 3300 263 736 4180 1190 5700 558 325 388 124 122 220 227 222 3300 253 675 283 2500 2910 3910 469 696 275 168 222 208 235 2070 253 675 2830 2550 3200 443 465 238 151 132 22 204 225 1760 256 648 2250 1890 2710 416 387 221 128 22 204 235 100 551 553 615 2200 1850 150 538 335 383 122 22 204 235 2070 253 675 2830 2550 3200 443 465 238 151 22 200 221 180 247 1130 551 545 2640 1890 1790 479 286 277 163 818 117 170 170 555 305 388 124 22 200 235 2070 253 675 2830 2550 3200 443 465 238 151 22 200 241 808 499 1980 1450 2000 478 312 350 199 277 123 250 199 193 1510 553 651 2200 1560 2340 394 353 383 122 200 221 180 2470 1130 551 545 2640 1390 1790 497 286 277 116 81 117 160 243 253 521 2240 1350 1790 497 286 277 116 81 117 117 160 256 648 2250 1890 1790 445 251 250 119 1130 511 4599 3300 1450 2000 478 312 350 119 27 248 818 140 110 551 545 2640 1390 1790 497 286 277 116 81 117 117 110 555 320 1510 356 651 2200 1360 2360 434 455 236 119 119 110 110 551 545 2640 1390 1790 497 286 277 116 81 117 117 117 117 117 117 117 117 117 | | | | | | | | | | | | | | | Record 190 | 5 | 134 | 250 | 458 | 446 | 2280 | 2010 | 954 | 895 | 1120 | 336 | 188 | 142 | | 8 e190 216 320 393 1530 e1370 e1430 3160 29500 875 262 168 125 10 e1770 204 287 376 1370 e1430 3160 29500 875 262 168 125 10 e178 194 260 365 1230 e1450 2580 11900 809 224 165 119 11 666 1875 194 260 365 1230 e1450 2580 11900 809 224 165 119 11 666 1877 11 664 1877 243 349 1100 e1280 2080 6420 751 388 181 117 11 644 3479 171 424 315 914 e1100 1750 5200 835 445 159 113 14 386 172 531 308 837 974 1880 5280 828 518 272 1112 14 346 136 914 e1100 1750 5200 835 445 159 113 14 386 172 531 308 837 974 1880 5280 828 518 272 1112 15 347 169 654 299 777 926 1790 4190 735 563 402 116 16 313 165 2300 273 664 810 1390 6720 603 363 291 117 17 303 160 11000 278 664 810 1390 6720 603 363 291 119 18 266 161 9990 272 618 788 1270 17100 563 315 388 124 119 249 189 5060 271 618 1740 1150 7510 538 325 396 133 20 227 222 3300 263 736 4480 1090 5070 501 539 319 133 133 20 227 222 23 300 253 6736 4480 1090 5070 501 539 319 133 22 220 8 235 2070 253 6675 2830 2550 3200 440 405 390 2977 123 25 309 193 1310 503 615 2200 1560 2340 394 353 383 122 25 200 253 675 2830 2550 3200 440 345 529 390 2977 123 25 309 193 1310 503 615 2200 1560 2340 394 353 383 122 25 360 133 130 503 615 2200 1560 2340 394 353 383 122 26 270 218 182 1910 551 595 330 513 383 122 27 218 182 1910 551 595 330 513 503 615 2200 1560 2340 394 353 383 122 27 28 1977 241 808 499 1980 1250 499 243 199 108 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 2250 MAY 9 5700 503 899 417 MAX 714 349 11000 2470 11400 4260 3160 2250 MAY 9 5700 503 899 193 193 1937 1966 1945 1954 1954 1954 1954 1954 1954 1955 1954 1954 | | | | | | | | | | | | | | | 9 e170 204 287 376 1370 e1430 3160 29500 875 262 168 125 1010 1075 194 260 365 1230 e1450 2580 11900 809 254 165 119 11 664 187 243 349 1100 e1220 1700 4760 718 338 181 117 12 14 176 649 313 1000 e1220 1700 4760 718 338 181 117 12 14 176 649 313 1000 e1220 1700 4760 718 338 181 117 12 14 176 479 171 424 313 1000 e1220 1700 4760 718 388 185 125 113 14 386 172 531 308 837 180 180 1800 4760 718 380 465 163 113 116 180 180 180 180 180 180 180 180 180 180 | | | | | | | | | | | | | | | 10 | | | | | | | | | | | | | | | 12 | 10 | | | | | | | | | | | | | | 13 479 171 424 316 914 61100 1750 5200 835 416 159 113 14 386 172 531 308 837 974 1880 5280 828 518 272 112 15 347 169 654 299 777 926 1790 4190 735 563 402 116 16 313 165 2300 283 718 842 1560 3420 657 409 362 117 17 303 160 11000 278 664 810 1390 6720 603 363 291 119 18 266 161 9990 272 618 788 1270 17100 565 325 388 124 19 249 189 5660 271 618 1140 1150 7510 538 325 386 133 20 227 222 3300 263 736 4180 1090 5070 501 539 319 133 21 214 261 2510 255 709 4260 2910 3910 469 696 275 168 22 208 235 2070 253 675 2830 2550 3200 443 465 238 151 23 204 215 1760 256 648 2260 1890 2710 416 387 211 128 24 333 205 1510 356 631 1950 1600 2440 405 390 297 123 25 309 193 1310 503 615 2200 1560 2340 405 390 297 123 26 250 191 1130 514 589 3300 1450 2000 478 312 350 119 27 218 182 1010 551 545 2640 1390 1790 497 286 277 116 28 200 214 902 532 521 2240 1350 1670 427 263 253 132 29 197 241 808 499 1980 1230 2950 1540 696 402 168 MIN 117 160 243 253 521 2508 844 892 394 343 198 108 31 183 645 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 531 508 837 837 837 837 837 837 837 837 838 124 STATISTICS OF MONTHLY MEAN BATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) HEAN 456 61 958 804 1136 1525 1766 1642 1160 590 399 417 HEANN 244 407 5435 3443 3485 5372 8376 9549 6383 4010 5199 548 KINNALA, SEVEN-DAY KINIMUM 119 Sep 1 1187 1187 1187 1198 11954 11954 11954 11954 11954 | 11 | 664 | 187 | 243 | 349 | 1100 | e1380 | 2080 | 6420 | 751 | 338 | 181 | 117 | | 14 386 172 531 308 837 974 1880 5280 828 518 272 112 15 347 169 654 299 777 926 1790 4190 375 563 402 116 16 313 165 2300 283 718 842 1560 3420 657 409 362 117 17 303 160 11000 278 664 810 1390 6720 603 363 291 119 18 266 161 9990 272 618 788 1270 17100 565 335 388 124 19 249 189 5060 271 618 1140 1150 7510 538 325 396 133 320 227 222 3300 263 736 4180 1090 5070 501 539 319 313 3160 12510 256 709 4260 2910 3910 469 696 275 168 22 208 225 2070 283 675 2830 2550 3200 341 469 696 275 168 22 208 225 2070 283 675 2830 2550 3200 443 465 228 151 233 204 215 1760 256 648 2260 1890 2710 416 387 211 128 243 2333 205 1510 356 631 1950 1600 2440 405 399 297 123 255 3399 193 1310 503 615 2200 1560 2340 394 353 383 122 266 250 191 1130 514 589 3300 1450 2000 478 312 350 119 272 218 182 1010 551 545 2640 1390 1790 475 266 275 168 280 2919 2919 241 808 499 1980 1230 2970 445 251 226 110 30 188 349 717 526 1770 1150 2150 409 243 198 108 111 313 117 160 243 253 521 2240 1350 1670 427 263 253 112 29 197 241 808 499 1800 2470 1160 243 198 108 110 117 160 243 253 521 508 844 892 894 313 159 108 111 117 117 1180 245 2450 1350 1670 427 263 253 112 480
480 | 12 | 714 | 176 | 269 | 333 | 1000 | e1220 | 1800 | 4760 | 718 | 465 | 163 | 116 | | 15 347 169 654 299 777 926 1790 4190 735 563 402 116 16 313 165 2300 283 718 842 1560 3420 657 409 362 117 17 303 160 11000 278 664 810 1390 6720 603 363 291 119 18 266 161 9990 272 618 788 1270 17100 565 335 388 124 19 249 189 5060 271 618 1140 1150 7510 563 325 388 124 20 227 222 3300 263 736 4180 1090 5070 501 539 319 133 21 214 261 2510 256 709 4260 2910 3910 469 696 275 168 22 208 235 2070 253 675 2830 2550 3200 443 4655 238 151 23 204 215 1760 256 648 2260 1890 2710 416 387 211 128 24 3133 205 1510 356 631 1950 1600 2440 405 390 297 123 25 309 193 1310 503 615 2200 1560 2340 394 363 383 122 26 250 191 1130 503 615 2200 1560 2340 394 363 383 122 26 22 18 8 182 1010 551 545 2640 1390 1790 497 286 277 166 28 200 214 902 532 521 2240 1350 1670 427 263 253 251 122 29 197 241 808 499 1980 1230 2970 445 251 226 110 30 188 349 717 526 1770 1150 2150 409 2470 497 286 277 166 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 220 128 MIN. 0.31 0.24 1.99 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 5372 8376 548 638 4010 519 568 400 110 519 568 195 197 1943 1935 1951 1927 1993 MIN. 58.0 65.3 79.2 68.8 87.4 129 145 1956 1956 1956 1956 1956 1956 1956 195 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17 303 160 11000 278 664 810 1390 6720 603 363 291 119 18 266 161 9990 272 618 788 1270 17100 565 335 388 124 19 249 189 5060 271 618 1140 1150 7510 538 325 396 133 20 227 222 3300 263 736 4180 1090 5070 501 539 319 133 21 214 261 2510 256 709 4260 2910 3910 469 696 275 168 22 208 235 2070 253 675 2830 2550 3200 443 465 238 151 23 204 215 1760 256 648 2260 1890 2710 416 887 211 128 24 333 205 1510 356 631 1950 1600 2440 405 390 297 123 25 309 193 1310 503 615 22200 1560 2340 394 353 383 122 26 250 191 1130 514 589 3300 1450 2000 478 312 350 119 27 218 182 1010 551 545 2640 1390 1700 497 286 277 116 29 197 241 808 52 251 2240 1350 1670 427 283 273 116 29 197 241 808 499 1900 1230 1500 409 243 198 108 31 183 349 717 526 1700 1150 1250 409 243 198 108 31 183 499 717 526 1580 1700 1150 2150 409 243 198 108 31 183 645 2470 1580 1760 244 181 MEAN 455 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 343 3435 521 508 844 892 394 243 159 108 MIN 117 160 243 253 343 3435 521 508 844 892 394 243 159 108 MIN 117 160 243 253 343 3435 521 508 844 892 394 243 159 108 MIN 117 180 245 394 1956 1956 1954 1954 1954 1936 1936 1936 1954 1954 1954 1955 1954 MIN 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1954 1954 1954 1954 1954 1954 | 15 | 347 | 169 | 654 | 299 | | | 1790 | 4190 | 735 | 563 | 402 | 116 | | 18 266 161 9990 272 618 788 1270 17100 565 335 388 124 19 249 189 5060 271 618 1140 1150 7510 538 325 396 133 20 227 222 33300 263 736 4180 1090 5070 501 539 319 133 21 214 261 2510 256 709 4260 2910 3910 469 696 275 168 22 208 235 2070 253 675 2830 2550 3200 443 465 238 151 23 204 215 1760 256 648 2260 1890 2710 416 387 211 128 24 333 205 1510 356 631 1950 1600 2440 405 390 297 123 25 309 193 1310 503 615 2200 1560 2340 394 353 383 122 26 250 191 1130 503 615 2200 1560 2340 394 353 383 122 26 250 191 1100 551 545 2640 1390 1790 497 286 277 116 28 200 214 902 532 521 2240 1350 1670 427 263 253 112 29 197 241 808 499 1980 1230 2970 445 251 226 110 30 188 349 717 526 1770 1150 2150 409 243 198 108 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 220 188 448 92 394 243 159 108 IN. 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 5572 8376 549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1957 1943 1935 1951 1927 1933 1000 22.6 45.8 (WY) 1942 1973 1983 1937 1966 1945 1957 1943 1935 1951 1927 1933 1000 22.6 45.8 (WY) 1954 1954 1956 1956 1954 1954 1954 1954 1955 1957 1000 290 1000 290 1000 290 10000 290 1000000 290 10000000000 | | | | | | 718 | 842 | | | | | | | | 19 | | | | | | | 810 | | | | | | | | 20 | | | | | | | | | | | | | | | 22 208 235 2070 253 675 2830 2550 3200 443 465 238 151 238 24 215 1760 256 648 2260 1890 2710 416 387 211 128 24 333 205 1510 356 631 1950 1600 2440 405 390 297 123 25 309 193 1310 503 615 2200 1560 2340 394 353 383 122 26 250 191 1130 514 589 3300 1450 2000 478 312 350 119 27 218 182 1010 551 545 2640 1390 1790 497 286 277 116 28 200 214 902 532 521 2240 1350 1670 427 263 253 112 29 197 241 808 499 1980 1230 2970 445 251 226 110 30 188 349 717 526 1770 1150 2150 409 243 198 108 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 0.21 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 0.21 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.2 | | | | | | | | | | | | | | | 22 208 235 2070 253 675 2830 2550 3200 443 465 238 151 238 24 215 1760 256 648 2260 1890 2710 416 387 211 128 24 333 205 1510 356 631 1950 1600 2440 405 390 297 123 25 309 193 1310 503 615 2200 1560 2340 394 353 383 122 26 250 191 1130 514 589 3300 1450 2000 478 312 350 119 27 218 182 1010 551 545 2640 1390 1790 497 286 277 116 28 200 214 902 532 521 2240 1350 1670 427 263 253 112 29 197 241 808 499 1980 1230 2970 445 251 226 110 30 188 349 717 526 1770 1150 2150 409 243 198 108 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 0.21 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 1.98 0.54 1.79 0.21 1.80 5.86 0.84 0.43 0.29 0.14 0.31 0.24 0.24 0.24 0.24 0.24 0.24 0.24 0.2 | 21 | 214 | 261 | 2510 | 256 | 700 | 4260 | 2010 | 2010 | 160 | 606 | 275 | 160 | | 23 | | | | | | | | | | | | | | | 24 333 205 1510 356 631 1950 1600 2440 405 390 297 123 225 309 193 1310 503 615 2200 1560 2340 394 353 383 122 226 250 191 1130 514 589 3300 1450 2000 478 312 350 119 27 218 182 1010 551 545 2640 1390 1790 497 286 277 116 28 200 214 902 532 521 2240 1350 1670 427 263 253 252 2240 1350 1670 427 263 253 252 110 200 2970 445 251 226 110 30 188 349 717 526 1770 1150 2150 409 243 198 108 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 5372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1957 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1955 1956 1956 1954 1954 1954 1956 1954 1954 1954 1954 1954 1954 1954 1955 128 | | | | | | | | | | | | | | | 25 309 193 1310 503 615 2200 1560 2340 394 353 383 122 | | | | | | | | | | | | | | | 27 | | | | | | | | | | | | | | | 30 188 349 717 526 1770 1150 2150 409 243 198 108 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN. 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 55372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1956 1956 1954 1954 1954 1936 1936 1954 1954 1953 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 -
2002 ANNUAL MEAN 701 1187 983 HIGHEST ANNUAL MEAN 112 Sep 5 108 Sep 30 11 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 HIGHEST DAILLY MEAN 21600 Feb 25 29500 May 9 73200 Sep 25 1993 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 20 1954 ANNUAL RUNOFF (INCHES) 9.65 16.33 1936 1936 19.54 10 PERCENT EXCEEDS 1210 2450 2450 ANNUAL RUNOFF (INCHES) 9.65 DEPERCENT EXCEEDS 1210 2450 469 4429 | 26 | 250 | 191 | 1130 | 514 | 589 | 3300 | 1450 | 2000 | 478 | 312 | 350 | 119 | | 30 188 349 717 526 1770 1150 2150 409 243 198 108 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN. 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 55372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1956 1956 1954 1954 1954 1936 1936 1954 1954 1953 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 701 1187 983 HIGHEST ANNUAL MEAN 112 Sep 5 108 Sep 30 11 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 HIGHEST DAILLY MEAN 21600 Feb 25 29500 May 9 73200 Sep 25 1993 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 20 1954 ANNUAL RUNOFF (INCHES) 9.65 16.33 1936 1936 19.54 10 PERCENT EXCEEDS 1210 2450 2450 ANNUAL RUNOFF (INCHES) 9.65 DEPERCENT EXCEEDS 1210 2450 469 4429 | | | 182 | 1010 | | | | | | | | | | | 30 188 349 717 526 1770 1150 2150 409 243 198 108 31 183 645 2470 1580 1760 244 181 MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN. 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 55372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1956 1956 1954 1954 1954 1936 1936 1954 1954 1953 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 701 1187 983 HIGHEST ANNUAL MEAN 112 Sep 5 108 Sep 30 11 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 HIGHEST DAILLY MEAN 21600 Feb 25 29500 May 9 73200 Sep 25 1993 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 20 1954 ANNUAL RUNOFF (INCHES) 9.65 16.33 1936 1936 19.54 10 PERCENT EXCEEDS 1210 2450 2450 ANNUAL RUNOFF (INCHES) 9.65 DEPERCENT EXCEEDS 1210 2450 469 4429 | | | 214 | 902 | | | | | | | | | | | 183 | | | 241 | 808 | | | | | | | | | | | MEAN 265 212 1694 461 1692 1818 1588 5013 745 365 250 128 MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN. 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 5372 8376 9549 6383 4010 5159 5684 (WY) 1954 1956 1956 < | | | | | | | | | | | | | | | MAX 714 349 11000 2470 11400 4260 3160 29500 1540 696 402 168 MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN. 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 5372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1956 1956 1954 1954 1954 1936 1936 1954 1954 1955 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 701 1187 983 1957 1954 1955 1954 1955 1955 1955 1955 1955 | 31 | 183 | | 645 | 2470 | | 1580 | | 1/60 | | 244 | 181 | | | MIN 117 160 243 253 521 508 844 892 394 243 159 108 IN. 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 5372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1956 1954 1954 1954 1954 1936 1936 1954 1954 1953 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 701 1187 983 HIGHEST ANNUAL MEAN 1956 1954 1954 1954 1954 1954 1954 1954 1954 | | | | | | | | | | | | | | | IN. 0.31 0.24 1.98 0.54 1.79 2.12 1.80 5.86 0.84 0.43 0.29 0.14 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 5372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1956 1954 1954 1954 1936 1936 1954 1954 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 701 1187 983 HIGHEST ANNUAL MEAN 112 Sep 5 108 Sep 30 11 Aug 22 1954 HIGHEST DAILLY MEAN 112 Sep 5 108 Sep 30 11 Aug 22 1954 MANIMUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK FLOW 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 103 Sep 30 10 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE 24.80 May 9 33.46 Sep 25 1993 MAXIMUM PEAK STAGE - | | | | | | | | | | | | | | | STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN | | | | | | | | | | | | | | | MEAN 485 861 958 894 1136 1525 1766 1642 1160 590 389 417 MAX 2494 4407 5435 3443 3485 5372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1956 1956 1954 1954 1954 1936 1936 1954 1954 1953 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 701 1187 983 HIGHEST ANNUAL MEAN 2499 1927 LOWEST ANNUAL MEAN 1119 Sep 5 108 Sep 30 111 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 MAXIMUM PEAR FILOW 37300 May 9 73200 Sep 25 1993 INSTANTANEOUS LOW FLOW 21.86 May 9 33.46 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 2450 2450 2140 50 PERCENT EXCEEDS 319 469 429 | IN. | 0.31 | 0.24 | 1.98 | 0.54 | 1.79 | 2.12 | 1.80 | 5.86 | 0.84 | 0.43 | 0.29 | 0.14 | | MAX 2494 4407 5435 3443 3485 5372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1954 1954 1954 1936 1936 1954 1954 1953 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 1187 983 HIGHEST ANNUAL MEAN 1187 983 HIGHEST DAILY MEAN 21600 Feb 25 29500 May 9 57000 Sep 25 1993 ALOWEST DAILY MEAN 112 Sep 5 10 | STATIST | rics of MC | NTHLY ME | AN DATA F | OR WATER | YEARS 1922 | 2 - 2002, | BY WATER | YEAR (WY) | | | | | | MAX 2494 4407 5435 3443 3485 5372 8376 9549 6383 4010 5159 5684 (WY) 1942 1973 1983 1937 1966 1945 1927 1943 1935 1951 1927 1993 MIN 58.0 65.3 79.2 68.8 87.4 129 145 179 87.6 46.0 22.6 45.8 (WY) 1954 1954 1956 1954 1954 1954 1936 1936 1954 1954 1953 SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 1187 983 HIGHEST ANNUAL MEAN 1187 983 HIGHEST DAILY MEAN 21600 Feb 25 29500 May 9 57000 Sep 25 1993 ALOWEST DAILY MEAN 112 Sep 5 10 | MEAN | 485 | 861 | 958 |
894 | 1136 | 1525 | 1766 | 1642 | 1160 | 590 | 389 | 417 | | MY | | | | | | | | | | | | | | | MY | | | | | | | | | | | | | | | SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN 701 1187 983 HIGHEST ANNUAL MEAN 119 2499 1927 LOWEST ANNUAL MEAN 119 555 29500 May 9 57000 Sep 25 1993 LOWEST DAILY MEAN 1112 Sep 5 108 Sep 30 11 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 20 1954 ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | MIN | 58.0 | 65.3 | 79.2 | 68.8 | 87.4 | 129 | 145 | 179 | 87.6 | 46.0 | 22.6 | 45.8 | | ANNUAL MEAN 701 1187 2499 1927 LOWEST ANNUAL MEAN 21600 Feb 25 29500 May 9 57000 Sep 25 1993 LOWEST DAILY MEAN 1112 Sep 5 108 Sep 30 111 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1995 ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 11210 2450 2450 2469 | (WY) | 1954 | 1954 | 1956 | 1956 | 1954 | 1954 | 1954 | 1936 | 1936 | 1954 | 1954 | 1953 | | HIGHEST ANNUAL MEAN 1972 1927 1954 1954 1954 1954 19554 19554 19554 19555 1955 | SUMMARY | Y STATISTI | CS | FOR | 2001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1922 | - 2002 | | LOWEST ANNUAL MEAN HIGHEST DAILY MEAN 21600 Feb 25 29500 May 9 57000 Sep 25 1993 LOWEST DAILY MEAN 112 Sep 5 108 Sep 30 11 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 25 1993 ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | ANNUAL | MEAN | | | 701 | | | 1187 | | | 983 | | | | HIGHEST DAILY MEAN 21600 Feb 25 29500 May 9 57000 Sep 25 1993 LOWEST DAILY MEAN 112 Sep 5 108 Sep 30 11 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 20 1954 ANNUAL RUNOFF (INCHES) 9.65 1210 Sep 20 1954 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 429 | | | | | | | | | | | | | | | LOWEST DAILY MEAN 112 Sep 5 108 Sep 30 11 Aug 22 1954 ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 20 1954 ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | | | | | | | | | | | | | | | ANNUAL SEVEN-DAY MINIMUM 119 Sep 1 116 Sep 10 12 Aug 18 1954 MAXIMUM PEAR FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAR STAGE 21.86 May 9 33.46 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 20 1954 ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | | | | | | | | | | | | | | | MAXIMUM PEAK FLOW 37300 May 9 73200 Sep 25 1993 MAXIMUM PEAK STAGE 21.86 May 9 33.46 Sep 25 1993 INSTANTANEOUS LOW FLOW 103 Sep 30 10 Sep 20 1954 ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | | | | | | | | | | | | | | | ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | | | | | | seb I | | | o∈b T∩ | | 72200 | | | | ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | | | | | | | | | May 9 | | 73200
33 46 | | | | ANNUAL RUNOFF (INCHES) 9.65 16.33 13.54 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | | | | | | | | | Sep 30 | | 10 | | | | 10 PERCENT EXCEEDS 1210 2450 2140 50 PERCENT EXCEEDS 319 469 429 | | | | | | | | | | | | | | | | 10 PERC | CENT EXCEE | DS | | | | | | | | 2140 | | | | 90 PERCENT EXCEEDS 168 162 120 | | | | | | | | | | | | | | | | 90 PERC | CENT EXCEE | DS | | 168 | | | 162 | | | 120 | | | e Estimated # 07052500 JAMES RIVER AT GALENA, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1999 to current year. | DATE | TIME | SAMPLH
TYPE | Ξ | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|---|--|--|--|---|---|---|--|---|--|---|---| | OCT
03 | 1405 | ENVIRONME | ENTAL | 120 | 17.9 | 205 | 8.8 | 556 | 20.0 | | | | | | NOV
05 | 1600 | ENVIRONME | ENTAL | 240 | 16.6 | 179 | 8.6 | 500 | 17.0 | 190 | 66.4 | 6.72 | 3.64 | | DEC
18 | 1145 | ENVIRONME | ENTAL | 9740 | 10.4 | 97 | 7.1 | 267 | 10.6 | | | | | | JAN
23
FEB | 0930 | ENVIRONME | ENTAL | 251 | 12.0 | 102 | 8.5 | 473 | 6.8 | 200 | 66.5 | 7.22 | 3.26 | | 19
19 | 1210
1211 | ENVIRONME
REPLICATE | | 600 | 9.9 | 93 | 7.3 | 410 | 10.4 | | | | | | MAR
19 | 0950 | ENVIRONME | ENTAL | 906 | 9.2 | 88 | 7.9 | 376 | 11.8 | | | | | | APR
23
MAY | 1140 | ENVIRONME | ENTAL | 1940 | 13.6 | 148 | 7.6 | 306 | 17.8 | | | | | | 29
29 | 1530
1531 | ENVIRONME
BLANK | ENTAL | 2670
 | 12.5 | 139 | 7.8 | 330 | 18.5 | 150
 | 53.0
.05 | 4.43
E.007 | .30
<.10 | | JUN
17
24 | 1430
1125 | ENVIRONME
ENVIRONME | | 598
398 | 11.1 | 138
105 | 8.2
8.0 | 401
431 | 24.3
25.4 | | | | | | JUL
24 | 1145 | ENVIRONME | | 387 | 8.6 | 111 | 7.7 | 424 | 27.0 | 180 | 63.1 | 6.00 | 3.39 | | AUG
19 | 1135 | ENVIRONME | | 393 | 8.1 | 105 | 8.1 | 248 | 25.8 | | | | | | SEP
09 | 1545 | ENVIRONME | | 126 | 10.6 | 142 | 8.3 | 528 | 28.1 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLITD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) |
NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N) | | OCT
03
NOV | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
03
NOV
05
DEC
18
JAN
23 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 153 165 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.79 | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19 | DIS-
SOLVED (mg/L as Na) (00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 153 165 109 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
153
164
108 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 167 175 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 9 12 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 70 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 | GEN,AM- MONIA + ORGANIC TOTTAL (mg/L as N) (00625) .21 .21 .72 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.79
1.83
2.04 | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 153 165 109 165 169 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
153
164
108
165
170 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
167
175
132
197
207 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 9 12 0 2 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

38.3

31.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

22.5

16.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .04 <.04 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .21 .21 .72 .15 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.79 1.83 2.04 2.64 2.36 | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19
19
MAR
19 | DIS-
SOLVED (mg/L
as Na) (00930) | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 153 165 109 165 169 | WATER
UNFLITD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
153
164
108
165
170 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
167
175
132
197
207 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 9 12 0 2 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

38.3

31.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

22.5

16.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 .04 <.04 <.04 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .21 .21 .72 .15 .12 .14 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) 1.79 1.83 2.04 2.64 2.36 2.36 | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 | DIS-
SOLVED
(mg/L
as Na)
(00930)

29.8

21.2 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 153 165 109 165 169 158 | WATER
UNFLITRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
153
164
108
165
170
 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
167
175
132
197
207
 | CAR-
BONATE IT FIELD (mg/L as CO ₃) (00447) 9 12 0 2 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

38.3

31.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

22.5

16.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 290 270 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .21 .21 .72 .15 .12 .14 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.79
1.83
2.04
2.64
2.36
2.36
1.90 | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 29 23 MAY 29 29 JUN 17 24 | DIS-
SOLVED (mg/L as Na) (00930) 29.8 21.2 4.06 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 153 165 109 165 169 158 129 130 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
153
164
108
165
170

158
128 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
167
175
132
197
207

192
156
159 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 9 12 0 2 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

38.3

31.5 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.1

.1

E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

22.5

16.4

 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <16 <10 <10 <16 <10 <16 <16 <16 <16 <16 <16 <16 <16 <16 <16 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 290 270 190 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .21 .21 .72 .15 .12 .14 .19 .28 .20 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) 1.79 1.83 2.04 2.64 2.36 2.36 1.90 1.35 | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 APR 23 MAY 29 JUIN 17 24 JUL 24 | DIS-
SOLVED (mg/L as Na) (00930) 29.8 21.2 4.06 .35 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 153 165 109 165 169 158 129 130 157 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
153
164
108
165
170

158
128 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 167 175 132 197 207 192 156 159 193 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 9 12 0 2 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

38.3

31.5

14.3
<.30 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

.1

.1

E.1
<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

22.5

16.4

6.1
.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 290 270 190 <10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .21 .21 .72 .15 .12 .14 .19 .28 .20 <.10 .17 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) 1.79 1.83 2.04 2.64 2.36 2.36 1.90 1.35 1.77 1.72 | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 29 APR 29 JUN 17 24 JUL | DIS-
SOLVED (mg/L as Na) (00930) 29.8 21.2 4.06 .35 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 153 165 109 165 169 158
129 130 157 154 | WATER
UNFLITED
IT
FIELD (mg/L as
CaCO ₃) (00419)
153
164
108
165
170

158
128
131

158
154 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 167 175 132 197 207 192 156 159 193 188 | CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) 9 12 0 2 0 0 0 0 0 0 | RIDE, DIS- SOLVED (mg/L as C1) (00940) 38.3 31.5 14.3 <.30 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

22.5

16.4

6.1
.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 290 270 190 <10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .21 .21 .72 .15 .12 .14 .19 .28 .20 <.10 .17 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.79 1.83 2.04 2.64 2.36 2.36 1.90 1.35 1.07 <.05 1.72 | # 07052500 JAMES RIVER AT GALENA, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |--|--|--|--|--|---|---|--|--|---|---|---|---|--| | OCT
03 | .009 | .07 | .05 | .06 | <1 | K2 | K1 | | | | | | | | NOV
05 | .014 | E.04 | .02 | .09 | K1 | К2 | К29 | 12 | 16 | 2.1 | .06 | <.1 | <6 | | DEC
18 | .035 | .09 | .05 | .17 | к9300 | K2500 | K5300 | | | | | | | | JAN
23 | <.008 | <.06 | <.02 | E.03 | K8 | K13 | K7 | 9 | 22 | .8 | .04 | <.1 | <6 | | FEB
19 | .006 | E.04 | .03 | E.04 | 25 | <1 | K18 | | | | | | | | 19
MAR | E.005 | E.04 | .03 | E.04 | | | | | | | | | | | 19
APR | E.005 | E.03 | .02 | E.06 | K10 | 46 | K27 | | | | | | | | 23
MAY | E.005 | E.05 | .04 | .07 | K88 | K280 | K29 | | | | | | | | 29
29 | <.008
<.008 | E.04
<.06 | .02
<.02 | <.06
<.06 | K1000 | K3440 | K2470
 | 88
<1 | 179
<2 | .3
<.2 | <.04
<.04 | <.1
<.1 | <6
<6 | | JUN
17 | E.005 | E.05 | .04 | E.06 | К8 | к8 | 23 | | | | | | | | 24
JUL | | | | | | | | | | | | | | | 24
AUG | E.007 | .09 | .08 | .09 | 160 | K25 | 127 | 1 | 42 | <.2 | E.02 | <.1 | <6 | | 19
SEP | .011 | .10 | .06 | .10 | K2 | 28 | 21 | | | | | | | | 09 | .010 | .10 | .09 | .10 | <1 | K10 | 24 | Date | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | 26DIMET
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | 3-BETA-
COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L) | | | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT
03
NOV | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLITERD
REC
(µg/L)
(62057) | | OCT
03
NOV
05
DEC
18
JAN
23 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | NAPH-
THALENE
WATER,
FLITERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLITERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLITERD
REC
(µg/L)
(62057) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 8 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07
 | TOTAL RECOV- ERRBLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

<2.0 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

3.9
 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

.15 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

<2.0

<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 E.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

3.9

1.2 |
DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 8 9 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

.15 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

<2.0

<2.0 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) <.01 E.01 | NIUM,
DIS-
SOLVED (μg/L
as Se)
(01145)

3.9

1.2

 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 8 9 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

.15 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

<2.0

<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

3.9

1.2 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 JUN 17 | DIS-
SOLVED
(μg/L
as Fe)
(01046)

<10

<10

60
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

.15

.17
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 M M | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)

<2.0

<2.0

4.7
<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 E.01 <.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

3.9

1.2

3.3
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 8 9 3 <1 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL, WATER, FLTERD REC (µg/L) (62057) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 JUN 17 24 JUL | DIS-
SOLVED
(μg/L
as Fe)
(01046)

<10

<10

60
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

.15

.17
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 M M | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

<2.0

<2.0

4.7
<2.0 | TOTAL RECOV- BRABLE (μg/L as Hg) (71900) <.01 E.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Se) (01145) 3.9 1.2 3 <.3 | DIS-
SOLVED (µg/L as Zn) (01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 8 9 3 <1 | CHLORO-BENZENE DISSOLV (µg/L) (34572) <.5 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL, WATER, FLTERD REC (µg/L) (62057) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 29 JUN 17 24 JUL 24 AUG | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

<10

60
<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

.15

.17
<.08

E.05 | TOTAL RECOV- ERRABLE (µg/L as Pb) (01051) <1 <1 M M <1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056)

<2.0

<2.0

4.7
<2.0 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01 E.01 <.01 <.01 <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Se) (01145) 3.9 1.2 3 <.3 1.9 | DIS-
SOLVED (µg/L as Zn) (01090) 9 2 | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) 8 9 3 <1 2 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) <.5 <.5 <.5 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL, WATER, FLTERD REC (µg/L) (62057) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 APR 23 MAY 29 JUN 17 24 JUL 24 | DIS-
SOLVED
(μg/L
as Fe)
(01046)

<10

<10

60
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

E.07

.15

.17
<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 M M | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

<2.0

<2.0

4.7
<2.0 | TOTAL RECOV- BRABLE (μg/L as Hg) (71900) <.01 E.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Se) (01145) 3.9 1.2 3 <.3 | DIS-
SOLVED (µg/L as Zn) (01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 8 9 3 <1 | CHLORO-BENZENE DISSOLV (µg/L) (34572) <.5 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL, WATER, FLTERD REC (µg/L) (62057) | # 07052500 JAMES RIVER AT GALENA, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | 3METHYL
1(H)-
INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62058) | 3-TERT-
BHA,
WATER,
FLTERD
REC
(µg/L)
(62059) | 4-CUMYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62060) | 4-OCTYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62061) | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62062) | 5METHYL
1HBENZO
TRIAZLE
WATER,
FLTERD
REC
(µg/L)
(62063) | ACETO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62064) | AHT NAPH- THALENE WATER, FLTERD REC (µg/L) (62065) | ANTHRA-
CENE
DISSOLV
(µg/L)
(34221) | ANTHRA-
QUINONE
WATER,
FLTERD
REC
(µg/L)
(62066) | BENZO-
A-
PYRENE
DISSOLV
(µg/L)
(34248) | BENZO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | BETA-
SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | |---|---|---|--|--|--|---|---|--|---|--|--|---|---| | OCT
03 | | | | | | | | | | | | | | | NOV
05 | | | | | | | | | | | | | | | DEC
18 | | | | | | | | | | | | | | | JAN
23 | | | | | | | | | | | | | | | FEB
19 | | | | | | | | | | | | | | | 19
MAR | | | | | | | | | | | | | | | 19
APR | | | | | | | | | | | | | | | 23
MAY | | | | | | | | | | | | | | | 29 | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | <.5 | <.5 | <.5 | <.5 | M
 | <2 | | JUN | | | | | | | | | | | | | | | 17
24 | <1 |
<5 | <1 | <1 | <1 | <2 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <2 | | JUL
24 | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | <.5 | <.5 | <.5 | <.5 | E.1 | <2 | | AUG
19 | | | | | | | | | | | | | | | SEP
09 | DATE | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | BRO-
MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | BROMO-
FORM
DISSOLV
(µg/L)
(34288) | CAF-
FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | CAMPHOR
WATER,
FLTERD
REC
(µg/L)
(62070) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | COT-
ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | FLUOR-
ANTHENE
DISSOLV
(µg/L)
(34377) | | DATE OCT 03 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | | OCT | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ZOLE,
WATER,
FLTERD
REC
(µg/L) |
PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | | OCT
03
NOV | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | | OCT
03
NOV
05
DEC
18
JAN | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLITERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE,
WATER
FLITED
REC
(µg/L)
(50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL WATER FLIRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19
19 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE,
WATER
FLITED
REC
(µg/L)
(50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL WATER FLIRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE,
WATER
FLITED
REC
(µg/L)
(50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL WATER FLIRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (μg/L) (04029) M | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLITRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, FITERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE DISSOLV (µg/L) (34377) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 JUN | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL,
WATER,
DISS,
REC (μg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FILTRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, FLTERD REC (µg/L) (62072) E1 | ININE, WATER, FLTERD REC (µg/L) (62005) | AZIMON, DIS- SOLVED (µg/L) (39572) | NENE, WATER, WATER, FLTERD REC (µg/L) (62073) | ANTHENE
DISSOLV
(µg/L)
(34377)

 | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 29 JUN 17 24 | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (μg/L) (04029) M | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLITRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, FITERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE DISSOLV (µg/L) (34377) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 APR 23 MAY 29 29 JUN 17 24 JUL 24 | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (μg/L) (04029) M | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLIRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE DISSOLV (µg/L) (34377) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 29 JUN 17 24 JUL | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (µg/L) (04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FITRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS DIS- SOLVED (µg/L) (38933) | TEROL, WATER, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) <1 <1 <1 | AZIMON, DIS- SOLVED (µg/L) (39572) | NENE, WATER, WATER, FLTERD REC (µg/L) (62073) | ANTHENE DISSOLV (µg/L) (34377) | # 07052500 JAMES RIVER AT GALENA, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | HHHMCP-
BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62076) | ISOBOR-
NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | ISO-
PHORONE
DISSOLV
(µg/L)
(34409) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | MENTHOL
WATER,
FLTERD
REC
(μg/L)
(62080) | METAL-
AXYL
WATER
FLTRD
REC
(µg/L)
(50359) | METHYL
SALICY-
LATE,
WATER,
FLTERD
REC
(µg/L)
(62081) | METO-
LACHLOR
WATER
DISSOLV
(μg/L)
(39415) | DEET,
WATER,
FLTERD
REC
(µg/L)
(62082) | NAPHTH-
ALENE
DISSOLV
(μg/L)
(34443) | NONYL-
PHENOL,
DIETHOX
WATER,
FLTERD
REC
(µg/L)
(62083) | |--|---|---|--|--|---|---|---|---|--|--|--|---|--| | OCT
03 | | | | | | | | | | | | | | | NOV
05 | | | | | | | | | | | | | | | DEC 18 | | | | | | | | | | | | | | | JAN
23 | | | | | | | | | | | | | | | FEB
19 | | | | | | | | | | | | | | | 19
MAR | | | | | | | | | | | | | | | 19
APR | | | | | | | | | | | | | | | 23
MAY | | | | | | | | | | | | | | | 29
29 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | M | <.5 | <5
 | | JUN
17 | | | | | | | | | | | | | | | 24 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | M | <.5 | <5 | | JUL
24 |
<.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | М | М | E.1 | <.5 | <5 | | AUG
19 | | | | | | | | | | | | | | | SEP
09 | DATE | DI-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | MONO-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | PARA-
CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | PARA-
NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | PENTA-
CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | PHENAN
-THRENE
DISSOLV
(µg/L)
(34462) | PHENOL
WATER
FILTRD
(µg/L)
(34466) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PYRENE
DISSOLV
(µg/L)
(34470) | STIGMA-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | TETRA-
CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | FYROL
CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | FYROL
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | DATE OCT 03 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
PHENOL
DISSOLV
(µg/L) | -THRENE
DISSOLV
(µg/L) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L) | DISSOLV
(µg/L) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L) | CEF,
WATER,
FLTERD
REC
(µg/L) | PCF,
WATER,
FLTERD
REC
(µg/L) | | OCT
03
NOV
05 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L) | DISSOLV
(µg/L) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L) | CEF,
WATER,
FLTERD
REC
(µg/L) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
03
NOV
05
DEC
18 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLITERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
03
NOV
05
DEC | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLITERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
03
NOV
05
DEC
18
JAN | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE
DISSOLV
(µg/L)
(34462)

 | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-PHENOL DISSOLV (µg/L) (34459) | -THRENE
DISSOLV
(µg/L)
(34462)

 | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19
MAR
19
MAR
23 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE
DISSOLV
(µg/L)
(34462)

 | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19
19
MAR
19
APR
23
MAY | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY— OCTYL— PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD (µg/L) (34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-ETHY- LENE DISSOLV (µg/L) (34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 MAR 19 APR 23 MAY 29 JUN | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL- PHENOL, WATER, FLTERD REC (µg/L) (62085) | CHLORO-PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL, WATER, FLTERD REC (µg/L) (62086) | CHLORO-ETHY- LENE DISSOLV (µg/L) (34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
03
NOV
05
DEC
18
JAN
23
FEB
19
19
MAR
23
MAY
29
29
29
JUN
17 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY— OCTYL— PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD (µg/L) (34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-ETHY- LENE DISSOLV (µg/L) (34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 APR 23 APR 23 MAY 29 29 JUN 17 24 JUL 24 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY— OCTYL— PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER FILTRD (µg/L) (34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC (µg/L) (62086) | CHLORO-
ETHY-
LENE
DISSOLV (µg/L) (34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF, WATER, FLTERD REC (µg/L) (62088) | | OCT 03 NOV 05 DEC 18 JAN 23 FEB 19 19 APR 23 MAY 29 JUN 17 24 JUL | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) <1 <1 <1 | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL- PHENOL, WATER, FLTERD REC (µg/L) (62085) | CHLORO-PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV (µg/L)
(34476) | CEF, WATER, FLTERD REC (µg/L) (62087) <.5 | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | # 07052500 JAMES RIVER AT GALENA, MO--Continued (Ambient
Water-Quality Monitoring Network) | DATE | TRIBUTL PHOS- PHATE, WATER, FLTERD REC (µg/L) (62089) | TRICLO-
SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | CITRATE
WATER,
FLTERD
REC
(µg/L) | TRIPHNL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | TRIS(2-BUTOXE-PHOS-PHATE, WATER, [µg/L)(62093) | |------------------|---|---|--|--|--| | OCT | | | | | | | 03
NOV | | | | | | | 05
DEC | | | | | | | 18 | | | | | | | JAN
23
FEB | | | | | | | 19 | | | | | | | 19 | | | | | | | MAR | | | | | | | 19 | | | | | | | APR | | | | | | | 23
MAY | | | | | | | 29 | <.5 | <1 | <.5 | <.5 | <.5 | | 29 | | | | | | | JUN | | | | | | | 17 | | | | | | | 24 | <.5 | <1 | <.5 | <.5 | <.5 | | JUL | | | | | | | 24 | <.5 | <1 | <.5 | <.5 | <.5 | | AUG | | | | | | | 19
SEP | | | | | | | 09 | | | | | | | 09 | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. # 07052800 FLAT CREEK AT JENKINS, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $36^{\circ}46^{\circ}33^{\circ}$, long $93^{\circ}41^{\circ}09^{\circ}$, in SW $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.24, T.24 N., R.26 W., Barry County, Hydrologic Unit 11010003, 1.0 mi north of U.S. Highway 248 on County Road 1215 in Jenkins. DRAINAGE AREA.--190 mi². PERIOD OF RECORD. -- October 1999 to current year. | DATE | TIME | SAMPL:
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|---|--|--|---|---|---|--|---|---|---|---|--|--| | OCT
03 | 1220 | ENVIRONM | ENTAL | 17 | 10.4 | 114 | 7.9 | 317 | 18.1 | | | | | | NOV
05 | 1410 | ENVIRONM | ENTAL | 43 | 10.7 | 114 | 7.8 | 326 | 17.1 | 170 | 59.2 | 4.91 | 1.36 | | DEC
17 | 1433 | ENVIRONM | ENTAL | 1170 | 8.7 | 85 | 7.7 | 232 | 12.6 | | | | | | JAN
22 | 1530 | ENVIRONM | ENTAL | 46 | 15.0 | 134 | 8.6 | 296 | 8.7 | 160 | 55.1 | 4.42 | .74 | | FEB
19 | 1340 | ENVIRONM | ENTAL | 126 | 11.2 | 108 | 7.1 | 296 | 11.3 | | | | | | MAR
18 | 1450 | ENVIRONM | ENTAL | 120 | 11.9 | 113 | 8.2 | 296 | 11.3 | | | | | | APR 23 | 1410 | ENVIRONM | ENTAL | 162 | 16.2 | 181 | 8.2 | 289 | 18.2 | | | | | | MAY
29 | 1245 | ENVIRONM | ENTAL | 484 | 11.1 | 118 | 7.8 | 268 | 16.2 | 91 | 32.9 | 2.17 | .14 | | JUN
17 | 1225 | ENVIRONM | ENTAL | 218 | 10.5 | 119 | 8.0 | 282 | 19.6 | | | | | | JUL
23
23
AUG | 1500
1550 | BLANK
ENVIRONM | ENTAL |
81 |
8.8 |
109 | 7.9 |
305 |
24.6 |
160 | .06
59.5 | E.005
2.83 | <.10
1.81 | | 19 | 1355 | ENVIRONM | ENTAL | 54 | 9.1 | 115 | 7.9 | 306 | 25.4 | | | | | | SEP
09 | 1400 | ENVIRONM | ENTAL | 34 | 8.5 | 107 | 7.8 | 309 | 25.0 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
03 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | OCT
03
NOV
05 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
03
NOV
05
DEC
17 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLITED
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT
03
NOV
05
DEC
17
JAN
22 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
E.07 | GEN, NO_2+NO_3 DIS-SOLVED (mg/L as N) (00631) | | OCT
03
NOV
05
DEC
17
JAN
22
FEB
19 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
139
158
91 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
137
158
90 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 167 193 110 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 80 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608)
<.04
<.04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.07 E.08 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as
N)
(00631)
.97
1.42 | | OCT
03
NOV
05
DEC
17
JAN
22
FEB
19
MAR
18 | DIS-
SOLVED
(mg/L
as Na)
(00930)

4.78
 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
139
158
91
138 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
137
158
90 | BICAR-BONATE IT FIELD (mg/L as HCO ₃) (00450) 167 193 110 158 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 5 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.91 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950) | DIS-
SOLVED (mg/L as SO ₄) (00945)
5.2
4.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 80 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.02 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.07 E.08 .64 E.07 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.97
1.42
1.97 | | OCT
03
NOV
05
DEC
17
JAN
22
FEB
19
MAR
18
APR
23 | DIS-
SOLVED
(mg/L
as Na)
(00930)

4.78

4.21 | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
139
158
91
138
146 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
137
158
90
138
148 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
167
193
110
158
181 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)

8.91

8.66 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

<.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945)
5.2
4.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 80 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.02 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.07 E.08 .64 E.07 E.08 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.97
1.42
1.97
1.67
2.10 | | OCT 03 NOV 05 DEC 17 JAN 22 FEB 19 MAR 18 APR 23 MAY 29 | DIS-
SOLVED
(mg/L
as Na)
(00930)

4.78

4.21 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
139
158
91
138
146 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
137
158
90
138
148 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
167
193
110
158
181 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 5 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.91

8.66 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

<.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 5.2 4.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.02 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.07 E.08 .64 E.07 E.08 E.08 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.97
1.42
1.97
1.67
2.10 | | OCT 03 NOV 05 DEC 17 JAN 22 FEB 19 MAR 23 MAY 29 JUN 17 | DIS-
SOLVED
(mg/L
as Na)
(00930)

4.78

4.21
 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 139 158 91 138 146 153 127 | WATER
UNFLITED
IT
FIELD (mg/L as
CaCO ₃)
(00419)
137
158
90
138
148
152 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
167
193
110
158
181
185
155 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.91

8.66 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

<.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945)

5.2
4.1
 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 188 178 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.02 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.07 E.08 .64 E.07 E.08 E.08 .10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .97 1.42 1.97 1.67 2.10 1.92 1.67 | | OCT 03 NOV 05 DEC 17 JAN 22 FEB 19 MAR 18 APR 23 MAY 29 JUN 17 JUL 23 23 | DIS-
SOLVED (mg/L as Na) (00930)

4.78

4.21

3.05 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 139 158 91 138 146 153 127 128 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 137 158 90 138 148 152 127 128 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
167
193
110
158
181
185
155 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

8.91

8.66

6.35 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

<.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 5.2 4.1 3.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 188 178 155 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.02 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.07 E.08 .64 E.07 E.08 E.08 .10 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .97 1.42 1.97 1.67 2.10 1.92 1.67 1.81 | | OCT
03
NOV
05
DEC
17
JAN
22
FEB
19
MAR
18
APR
23
MAY
29
JUN
17
JUL
23 | DIS-
SOLVED (mg/L as Na) (00930) 4.78 4.21 3.05 <.09 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 139 158 91 138 146 153 127 128 123 | WATER UNFLITED TT FIELD (mg/L as CaCO ₃) (00419) 137 158 90 138 148 152 127 128 124 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
167
193
110
158
181
185
155
156
152 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940) 8.91 8.66 6.35 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

<.1

<.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 5.2 4.1 3.3 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L)(70300) 188 178 155 <10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.07 E.08 .64 E.07 E.08 E.08 .10 .11 E.08 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .97 1.42 1.97 1.67 2.10 1.92 1.67 1.81 1.80 <.05 | # 07052800 FLAT CREEK AT JENKINS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |------------------|--|--|--|---|--|--|--|--|---|--|--|--|--| | OCT
03 | <.008 | <.06 | E.01 | <.06 | 46 | 57 | 64 | | | | | | | | NOV
05 | E.006 | <.06 | E.01 | E.03 | К8 | 24 | 54 | 12 | 24 | E.1 | <.04 | <.1 | <6 | | DEC
17 | .103 | E.05 | <.02 | .18 | 910 | 2450 | 3400 | | | | | | | | JAN
22 | <.008 | <.06 | <.02 | <.06 | К6 | К6 | К4 | 11 | 19 | .2 | <.04 | <.1 | <6 | | FEB
19 | E.003 | <.06 | <.02 | <.06 | K16 | <1 | 25 | | | | | | | | MAR
18 | E.006 | <.06 | <.02 | <.06 | K1 | K10 | K17 | | | | | | | | APR 23 | E.006 | <.06 | E.02 | <.06 | <2 | K18 | К6 | | | | | | | | MAY
29 | <.008 | E.04 | .02 | E.03 | K660 | К915 | K1050 | 43 | 124 | E.2 | <.04 | <.1 | <6 | | JUN
17
JUL | <.008 | <.06 | .02 | E.04 | K16 | 35 | 58 | | | | | | | | 23
23 | <.008
E.006 | <.06 | <.02
E.01 | <.06 |
K7 |
39 |
135 | <1
1 | 3
38 | <.2 | <.04
<.04 | <.1 | <6 | | AUG
19 | E.004 | <.06
E.04 | .02 | E.04
E.03 | | K71 | 135 | | | . 2 | | <.1 | <6
 | | SEP
09 | E.005 | E.03 | .02 | E.03 | K4
K16 | K65 | 61 | | | | | | | | | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(μg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) |
ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | | 3 | | | | | | | | | | | | | | | 5 | E6 | <.08 | <1 | E2.8 | <.01 | <.3 | | 3 | | | | | | | 7 | | | | | | | | | | | | | | | 2 | <10 | <.08 | <1 | E1.1 | .03 | .3 | | 2 | | | | | | | 9 | | | | | | | | | | | | | | MAR
1
APR | 8 | | | | | | | | | | | | | | | 3 | | | | | | | | | | | | | | | 9 | 13 | .16 | <1 | 5.8 | <.01 | <.3 | | 5 | | | | | | | 7 | | | | | | | | | | | | | | 2 | 3
3 | <10
<10 | E.08 | <1
<1 | <2.0
4.2 | <.01
<.01 | <.3
<.3 | 1
1 | 1
2 | | | | | | AUG | | | | | | | | | | | | | | | SEP | | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. #### 07053400 TABLE ROCK LAKE NEAR BRANSON, MO LOCATION.--Lat $36^\circ35^\circ46^\circ$, long $93^\circ18^\circ35^\circ$, in NW $\frac{1}{4}$ sec.22, T.22 N., R.22 W., Taney County, Hydrologic Unit 11010001, at dam on White River, 3.0 mi upstream from Fall Creek, and 6.1 mi southwest of Branson. DRAINAGE AREA.--4,020 mi². PERIOD OF RECORD. -- September 1956 to current year. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). Prior to July 18, 1958, nonrecording gage at same site and datum. REMARKS.--Lake is formed by combination concrete-gravity and embankment type dam. Storage began on Sept. 9, 1956. Storage for purpose of filling to power pool level at elevation 881.0 ft and capacity 1,520,500 ac-ft began Nov. 24, 1958, and was reached Dec. 19, 1959. Capacity is 3,567,500 ac-ft at top of spillway gates, elevation 933.0 ft. Capacity is 3,462,000 ac-ft at top of flood control pool, elevation 931.0 ft. Capacity between elevations 915.0 ft and 931.0 ft is reserved for flood control, 760,000 ac-ft. The capacity at the lowest outlet, elevation 721.96 ft, is 3,530 ac-ft. Lake is used for flood control, power, and recreational purposes. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 3,542,000 ac-ft, May 10, 1961, elevation, 932.52 ft; minimum, since initial filling to bottom of power pool level, 1,536,000 ac-ft, Feb. 8, 1965, elevation, 881.54 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 3,092,000 ac-ft, June 17 and 18, elevation, 923.59 ft; minimum, 2,439,000 ac-ft, Dec. 11, elevation, 908.65 ft. ELEVATION, IN FEET, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 OBSERVATION AT 2400 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | |----------------------------------|--|--|--|--|--------------------------------|--|--|--|--|--|--|--| | 1 | 909.61 | 909.41 | 908.88 | 914.66 | 915.86 | 914.99 | 915.46 | 915.48 | 922.27 | 921.43 | 916.34 | 915.42 | | 2 | 909.63 | 909.47 | 908.97 | 914.48 | 915.99 | 915.12 | 915.45 | 915.71 | 922.30 | 921.25 | 916.31 | 915.37 | | 3 | 909.66 | 909.45 | 908.93 | 914.31 | 915.95 | 915.15 | 915.38 | 915.82 | 922.24 | 921.05 | 916.30 | 915.25 | | 4 | 909.69 | 909.41 | 908.91 | 914.19 | 915.86 | 915.07 | 915.38 | 915.83 | 922.21 | 920.85 | 916.26 | 915.24 | | 5 | 909.86 | 909.41 | 908.92 | 914.25 | 915.85 | 915.02 | 915.32 | 915.81 | 922.39 | 920.64 | 916.26 | 915.21 | | 6 | 909.84 | 909.42 | 908.89 | 914.30 | 915.75 | 914.99 | 915.25 | 916.03 | 922.57 | 920.41 | 916.24 | 915.15 | | 7 | 909.83 | 909.44 | 908.92 | 914.34 | 915.61 | 915.15 | 915.48 | 916.01 | 922.54 | 920.29 | 916.13 | 915.14 | | 8 | 909.93 | 909.47 | 908.92 | 914.32 | 915.49 | 915.06 | 918.08 | 917.52 | 922.50 | 920.08 | 916.15 | 915.15 | | 9 | 910.04 | 909.54 | 908.90 | 914.30 | 915.47 | 915.09 | 919.74 | 919.01 | 922.41 | 919.86 | 916.15 | 915.07 | | 10 | 910.27 | 909.53 | 908.81 | 914.33 | 915.28 | 915.07 | 920.14 | 919.22 | 922.48 | 919.63 | 916.18 | 914.85 | | 11 | 910.39 | 909.53 | 908.65 | 914.22 | 915.26 | 915.06 | 920.09 | 919.14 | 922.53 | 919.44 | 916.19 | 914.74 | | 12 | 910.45 | 909.67 | 908.76 | 914.24 | 915.32 | 914.92 | 919.95 | 919.11 | 922.57 | 919.29 | 916.09 | 914.63 | | 13 | 910.43 | 909.76 | 908.81 | 914.26 | 915.31 | 914.82 | 919.79 | 919.47 | 923.01 | 919.02 | 916.10 | 914.36 | | 14 | 910.44 | 909.74 | 908.76 | 914.22 | 915.27 | 914.80 | 919.57 | 919.57 | 923.25 | 918.75 | 916.17 | 914.41 | | 15 | 910.39 | 909.67 | 908.88 | 914.18 | 915.26 | 914.95 | 919.29 | 919.45 | 923.32 | 918.50 | 916.13 | 914.44 | | 16 | 910.29 | 909.58 | 910.50 | 914.12 | 915.28 | 914.91 | 918.95 | 919.17 | 923.48 | 918.25 | 916.04 | 914.24 | | 17 | 910.22 | 909.51 | 912.51 | 914.03 | 915.38 | 915.00 | 918.62 | 919.90 | 923.59 | 918.06 | 916.00 | 913.98 | | 18 | 910.16 | 909.46 | 913.38 | 913.93 | 915.33 | 915.10 | 918.25 | 920.89 | 923.59 | 917.89 | 915.99 | 913.75 | | 19 | 910.09 | 909.42 | 913.82 | 913.94 | 915.13 | 915.88 | 917.82 | 921.11 | 923.53 | 917.64 | 915.97 | 913.62 | | 20 | 910.02 | 909.29 | 914.08 | 913.96 | 914.99 | 917.03 | 917.38 | 920.96 | 923.40 | 917.41 | 915.89 | 913.45 | | 21 | 909.95 | 909.10 | 914.31 | 913.91 | 914.97 | 917.15 | 916.99 | 920.84 | 923.30 | 917.18 | 915.81 | 913.50 | | 22 | 909.83 | 909.06 | 914.53 | 913.86 | 914.82 | 916.95 | 916.57 | 920.87 | 923.13 | 917.00 | 915.73 | 913.48 | | 23 | 909.89 | 909.09 | 914.68 | 913.92 | 914.90 | 916.56 | 916.27 | 920.91 | 922.94 | 916.86 | 915.68 | 913.40 | | 24 | 909.93 | 909.10 | 914.77 | 913.99 | 914.99 | 916.15 | 916.08 | 920.97 | 922.71 | 916.73 | 915.66 | 913.53 | | 25 | 909.95 | 909.01 | 914.90 | 914.04 | 915.03 | 916.01 | 916.02 | 920.99 | 922.55 | 916.65 | 915.66 | 913.60 | | 26
27
28
29
30
31 | 909.94
909.91
909.87
909.74
909.62
909.44 | 909.06
908.97
908.88
908.88
908.84 | 914.87
914.89
914.84
914.85
914.84
914.73 | 914.11
914.19
914.14
914.02
914.13
914.90 | 914.96
914.95
914.94
 | 916.06
915.99
915.95
915.98
915.80
915.54 | 915.94
915.79
915.68
915.56
915.44 | 921.02
921.01
921.28
921.82
922.13
922.15 | 922.35
922.20
922.00
921.81
921.60 | 916.51
916.49
916.47
916.46
916.42
916.38 | 915.61
915.57
915.52
915.46
915.43
915.42 | 914.20
914.49
914.65
914.89
915.03 | | MEAN | 909.98 | 909.34 | 911.59 | 914.19 | 915.33 | 915.53 | 917.19 | 919.33 | 922.69 | 918.48 | 915.95 | 914.47 | | MAX | 910.45 | 909.76 | 914.90 | 914.90 | 915.99 | 917.15 | 920.14 | 922.15 | 923.59 | 921.43 | 916.34 | 915.42 | | MIN | 909.44 | 908.84 | 908.65 | 913.86 | 914.82 | 914.80 | 915.25 | 915.48 | 921.60 | 916.38 | 915.42 | 913.40 | | (-) | 2471000 | 2447000 | 2690000 | 2700000 | 2700000 | 2725000 | 2721000 | 3023000 | 2998000 | 2762000 | 2720000 | 2704000 | | (=) | -7000 | -24000 | +243000 | +10000 | 0 | +25000 | -4000 | +302000 | -25000 | -236000 | -42000 | -16000 | CAL YR 2001....+353000 WTR YR 2002....+226000 ⁽⁻⁾ Contents, in acre-feet, at the end of the month. ⁽⁼⁾ Change in contents, in acre-feet. #### 07053450 WHITE RIVER BELOW TABLE ROCK DAM NEAR BRANSON, MO #### WATER-QUALITY RECORDS LOCATION.--Lat 36°35'42", long 93°18'32", sec.22, T.22 N., R.22 W., Taney County, Hydrologic Unit 11010003, on left bank in southwest corner of U.S. Army Corps of Engineers' carpentry building, 600 ft below Table Rock Dam. PERIOD OF DAILY RECORD.-- WATER TEMPERATURE: June 1987 to current year. (See remarks). DISSOLVED OXYGEN: June 1987 to current year. (See remarks). INSTRUMENTATION. -- Water-quality monitor since June 1987. REMARKS.--The number of missing days exceeds 20 percent of the year. The monitor was not operated from Jan. 7 to June 24. | | | WATER | TEMPERATURE | , (DEG | REES C), | WATER YEAR | OCTOBER | 2001 TO | SEPTEMBER | 2002 | | | |---|--|--------------|--|--|--|---|--|--
--|--|--|--| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | NOVEMBER | | DE | ECEMBER | | | JANUARY | | | 1 | 9.5 | 7.6 | 8.1 | 8.5 | 8.0 | 8.2 | 9.1 | 8.3 | 8.7 | 9.5 | 8.5 | 9.0 | | 2 | 9.0
9.2 | 7.6
7.5 | 8.1
8.1 | 8.6
8.7 | 8.0
8.0 | 8.3
8.3 | 9.0
9.2 | 8.1
8.1 | 8.4
8.8 | 9.3
9.4 | 8.7
8.8 | 9.0
8.9 | | 4 | 9.2 | 7.6 | 8.1 | 8.7 | 8.0 | 8.4 | 9.6 | 8.3 | 8.9 | 9.4 | 8.7 | 8.9 | | 5 | 8.4 | 7.5 | 8.0 | 8.9 | 8.0 | 8.4 | 9.3 | 8.4 | 8.7 | 8.8 | 8.7 | 8.7 | | 6
7 | 9.5
8.7 | 7.5
7.5 | 8.0
7.8 | 9.5
9.1 | 7.9
7.9 | 8.4
8.3 | 9.3
9.2 | 8.4 | 8.9
8.9 | 9.0 | 8.6 | 8.8 | | 8 | 9.1 | 7.5 | 7.9 | 9.3 | 7.8 | 8.5 | 9.2 | 8.0 | 8.5 | | | | | 9 | 8.5 | 7.6 | 7.9 | 8.9 | 8.0 | 8.5 | 9.2 | 7.9 | 8.6 | | | | | 10 | 8.6 | 7.8 | 8.1 | 9.1 | 8.1 | 8.5 | 9.3 | 8.2 | 9.1 | | | | | 11 | 8.6 | 7.8 | 8.0 | 9.0 | 7.9 | 8.3 | 9.4 | 8.1 | 9.1 | | | | | 12
13 | 9.1
8.5 | 7.8
7.8 | 8.0
8.1 | 9.0
9.0 | 7.9
7.9 | 8.4
8.4 | 9.3
9.4 | 8.6
8.4 | 9.0
9.0 | | | | | 14 | 8.8 | 7.8 | 8.2 | 8.7 | 8.0 | 8.4 | 9.4 | 8.5 | 9.1 | | | | | 15 | 8.6 | 7.5 | 8.2 | 8.8 | 7.9 | 8.6 | 9.2 | 8.4 | 8.7 | | | | | 16 | 8.5 | 8.0 | 8.3 | 9.0 | 8.3 | 8.7 | 8.5 | 8.4 | 8.4 | | | | | 17
18 | 8.7 | 7.8
7.8 | 8.3
8.3 | 9.0 | 8.1 | 8.6 | 9.6 | 8.4 | 9.3 | | | | | 19 | 8.6
8.6 | 7.8 | 8.3 | 8.9
8.9 | 8.2
8.5 | 8.6
8.7 | 9.7
10.0 | 8.6
8.5 | 9.3
9.3 | | | | | 20 | 8.4 | 7.8 | 8.2 | 9.0 | 8.0 | 8.6 | 9.6 | 8.2 | 9.1 | | | | | 21 | 8.4 | 7.9 | 8.2 | 9.0 | 8.0 | 8.7 | 9.4 | 8.4 | 8.9 | | | | | 22 | 8.7 | 8.0 | 8.4 | 9.2 | 7.8 | 8.6 | 9.3 | 8.3 | 8.7 | | | | | 23
24 | 8.8
9.2 | 7.8
7.7 | 8.1
8.4 | 8.8
9.1 | 8.0
8.2 | 8.6
8.6 | 9.2
9.3 | 8.3
8.1 | 8.6
8.6 | | | | | 25 | 9.2 | 7.6 | 8.3 | 9.1 | 8.3 | 8.7 | 9.1 | 8.2 | 8.5 | | | | | 26 | 9.2 | 7.6 | 8.2 | 9.1 | 8.2 | 8.7 | 9.5 | 8.2 | 9.1 | | | | | 27 | 8.9 | 7.5 | 8.1 | 9.2 | 7.9 | 8.8 | 9.6 | 8.3 | 9.1 | | | | | 28
29 | 8.8
8.4 | 7.6
7.6 | 8.1
8.2 | 9.1
9.2 | 8.2
8.1 | 8.8
8.8 | 9.6
9.7 | 8.6
8.5 | 9.1
9.1 | | | | | 30 | 8.5 | 8.0 | 8.4 | 9.5 | 8.4 | 9.2 | 9.7 | 8.4 | 8.8 | | | | | 31 | 8.7 | 8.2 | 8.4 | | | | 9.6 | 8.4 | 9.0 | | | | | | | | | | | | | | | | | | | MONTH | 9.5 | 7.5 | 8.2 | 9.5 | 7.8 | 8.6 | 10.0 | 7.9 | 8.9 | | | | | MONTH | 9.5 | | 8.2 | 9.5 | | 8.6 | | | 8.9 | | | | | | 9.5 | 7.5
JUNE | 8.2 | | JULY | | P | AUGUST | | | SEPTEMBER | ર | | 1 | | JUNE | | 9.8 | JULY
9.7 | 9.8 | 12.9 | AUGUST | 11.5 | 11.7 | SEPTEMBER | 11.0 | | | 9.5 | JUNE | === | | JULY
9.7
9.7 | 9.8
9.8 | 12.9
12.3 | AUGUST
10.7
10.7 | 11.5
11.2 | 11.7
11.5 | SEPTEMBEF
10.6
10.6 | 11.0
11.1 | | 1
2
3
4 |

 | JUNE

 |
 | 9.8
10.0
9.9
9.9 | JULY 9.7 9.7 9.8 9.8 | 9.8
9.8
9.8
9.9 | 12.9
12.3
12.7
12.9 | 10.7
10.7
10.7
10.7 | 11.5
11.2
11.3
11.4 | 11.7
11.5
12.0
11.7 | SEPTEMBER
10.6
10.6
10.6
10.6 | 11.0
11.1
11.2
11.0 | | 1
2
3 | | JUNE

 | | 9.8
10.0
9.9 | JULY
9.7
9.7
9.8 | 9.8
9.8
9.8 | 12.9
12.3
12.7 | 10.7
10.7
10.7 | 11.5
11.2
11.3 | 11.7
11.5
12.0 | SEPTEMBEF
10.6
10.6
10.6 | 11.0
11.1
11.2 | | 1
2
3
4
5 | | JUNE

 | | 9.8
10.0
9.9
9.9 | JULY 9.7 9.7 9.8 9.8 9.8 | 9.8
9.8
9.8
9.9
9.9 | 12.9
12.3
12.7
12.9
10.9 | 10.7
10.7
10.7
10.7
10.8
10.8 | 11.5
11.2
11.3
11.4
10.8 | 11.7
11.5
12.0
11.7
11.7 | SEPTEMBER
10.6
10.6
10.6
10.6
10.6 | 11.0
11.1
11.2
11.0
11.1 | | 1
2
3
4
5 | | JUNE |

 | 9.8
10.0
9.9
9.9
9.9 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 | 9.8
9.8
9.9
9.9
10.0 | 12.9
12.3
12.7
12.9
10.9 | 10.7
10.7
10.7
10.8
10.8 | 11.5
11.2
11.3
11.4
10.8 | 11.7
11.5
12.0
11.7
11.7 | SEPTEMBER
10.6
10.6
10.6
10.6
10.6 | 11.0
11.1
11.2
11.0
11.1
11.1 | | 1
2
3
4
5 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0 | 12.9
12.3
12.7
12.9
10.9
10.9
11.9 | 10.7
10.7
10.7
10.8
10.8 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9 | SEPTEMBER
10.6
10.6
10.6
10.6
10.6
10.6
10.6 | 11.0
11.1
11.2
11.0
11.1
11.1
11.1
11.0 | | 1
2
3
4
5 | | JUNE | | 9.8
10.0
9.9
9.9
9.9 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 | 9.8
9.8
9.9
9.9
10.0 | 12.9
12.3
12.7
12.9
10.9 | 10.7
10.7
10.7
10.8
10.8 | 11.5
11.2
11.3
11.4
10.8 | 11.7
11.5
12.0
11.7
11.7 | SEPTEMBER
10.6
10.6
10.6
10.6
10.6 | 11.0
11.1
11.2
11.0
11.1
11.1 | | 1
2
3
4
5
6
7
7
8
9
10 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1 | 12.9
12.3
12.7
12.9
10.9
11.9
11.3
11.3 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.7
10.1
10.2
10.5 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.7 | SEPTEMBER
10.6
10.6
10.6
10.6
10.6
10.6
10.6
10.5
10.5 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1
10.1
10.3 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1 | 12.9
12.7
12.9
10.9
11.9
11.3
11.7 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.7
10.1
10.2
10.5 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9
10.9 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 | 11.0
11.1
11.2
11.0
11.1
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1
10.1
10.3 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 10.1 10.2 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1 | 12.9
12.3
12.7
12.9
10.9
10.9
11.3
11.3
11.7 | 10.7
10.7
10.7
10.8
10.8
10.8
10.7
10.1
10.2
10.5 |
11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.9
11.0
11.0
11.4 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.9
11.6
11.7 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.8 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1
10.1
10.3 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1 | 12.9
12.7
12.9
10.9
11.9
11.3
11.7 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.7
10.1
10.2
10.5 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9
10.9 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 | 11.0
11.1
11.2
11.0
11.1
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1
10.1
10.3 | JULY 9.7 9.7 9.8 9.8 9.8 9.9 10.0 10.0 10.1 10.1 10.2 10.2 | 9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.1
1 | 12.9
12.3
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.8
12.4
11.9 | 10.7
10.7
10.7
10.8
10.8
10.8
10.7
10.1
10.2
10.5
10.6
10.6
10.6
10.7
10.8 | 11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.9
11.0
11.0
11.4
11.4 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.6
11.6 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.2
11.3
11.2
11.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1
10.3
12.1
10.4
10.4
10.4
10.4 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.2
10.3
10.3
10.4 | 12.9
10.9
11.3
11.7
12.9
10.9
11.3
11.3
11.7
11.9
11.8
12.4
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9
11.0
11.0
11.4
11.2 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.6
11.8
11.5
11.6 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.9 10.9 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.3
12.1
10.4
10.4
10.4 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 10.4 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.2
10.3
10.3
10.4
10.4
10.4
10.5
10.5 | 12.9
12.3
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.8
12.4
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.8
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8
10.8 | 11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.9
11.0
11.0
11.4
11.4
11.2 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.6
11.6
11.6
12.2
11.8
12.2 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 10.9 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1
10.3
12.1
10.4
10.4
10.4
10.4 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.2
10.3
10.3
10.4 | 12.9
10.9
11.3
11.7
12.9
10.9
11.3
11.3
11.7
11.9
11.8
12.4
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9
11.0
11.0
11.4
11.2 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.6
11.8
11.5
11.6 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.9 10.9 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.3
12.1
10.4
10.4
10.4
10.4 | JULY 9.7 9.7 9.8 9.8 9.8 9.9 9.8 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 10.4 10.5 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.1
1 | 12.9
12.3
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.7
10.1
10.1
10.2
10.5
10.6
10.6
10.6
10.7
10.8
10.7
10.8 | 11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.9
11.0
11.0
11.0
11.4
11.4
11.2 | 11.7
11.5
12.0
11.7
11.7
11.9
11.6
11.6
11.6
11.6
11.8
11.5
11.6 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.9 10.9 10.9 11.3 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.2
11.3
11.2
11.3
11.2
11.3
11.1
11.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.1
10 | JULY 9.7 9.7 9.8 9.8 9.8 9.9 9.8 10.0 10.0 10.1 10.1 10.2 10.3 10.4 10.4 10.5 10.4 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.1
10.1
10.1
10.1
1 | 12.9
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8
10.7
10.8
10.7
10.8 | 11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.8
10.9
11.0
11.0
11.4
11.1
11.4
11.1
11.1
11.1 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.8
11.5
11.6
12.2
11.8
12.2
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.9 10.9 10.9 11.3 11.2 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.3
12.1
10.4
10.4
10.4
10.5
10.6
10.7
10.7 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 10.4 10.5 10.4 10.6 10.6 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.4
10.2
10.3
10.3
10.3
10.4
10.6
10.6
10.6
10.6 | 12.9
12.3
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.8
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8
10.8
10.7
10.5
10.6
10.7
10.8 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9
11.0
11.4
11.4
11.4
11.1
11.1
11.1 | 11.7
11.5
12.0
11.7
11.7
11.9
11.6
11.6
11.6
11.8
11.5
11.6
12.2
12.2
12.0
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.9 10.9 10.9 11.3 11.2 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.2
11.3
11.2
11.3
11.1
11.2
11.3
11.1
11.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22 | | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.1
10 | JULY 9.7 9.7 9.8 9.8 9.8 9.9 9.8 10.0 10.0 10.1 10.1 10.2 10.3 10.4 10.4 10.5 10.4 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.1
10.1
10.1
10.2
10.3
10.3
10.4
10.5
10.5
10.6
10.6 | 12.9
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8
10.7
10.8
10.7
10.8 | 11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.8
10.9
11.0
11.0
11.4
11.1
11.4
11.1
11.1
11.1 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.8
11.5
11.6
12.2
11.8
12.2
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.9 10.9 10.9 11.3 11.2 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.0 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 |

 | JUNE | | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1
10.3
12.1
10.4
10.4
10.4
10.5
10.6
10.7
10.7 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 10.4 10.5 10.4 10.6 10.6 10.6 10.6 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.2
10.3
10.3
10.3
10.5
10.6
10.6
10.6
10.6
10.7
10.8
10.6 | 12.9
12.3
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9
11.9 |
10.7
10.7
10.7
10.8
10.8
10.8
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8
10.8
10.7
10.8
10.9
11.1
10.5 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9
11.0
11.4
11.4
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.0
11.2 | 11.7
11.5
12.0
11.7
11.7
11.9
11.6
11.6
11.6
11.8
11.5
11.6
12.2
12.0
12.0
12.0
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.9 10.9 10.9 11.3 11.2 11.0 10.9 10.9 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.2
11.3
11.2
11.3
11.1
11.2
11.3
11.1
11.2
11.3
11.1
11.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 |

 | JUNE |

 | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.1
10 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 10.4 10.5 10.4 10.6 10.6 10.6 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.4
10.2
10.3
10.3
10.4
10.5
10.6
10.6
10.6
10.6
10.6
10.6 | 12.9
12.3
12.7
12.9
10.9
11.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.1
10.2
10.5
10.6
10.6
10.6
10.7
10.8
10.7
10.8
10.7
10.9
11.0
10.5 | 11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.9
11.0
11.0
11.1
11.4
11.2
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.8
11.5
11.6
12.2
11.8
12.2
12.0
12.0
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.9 10.9 11.3 11.2 11.0 10.9 10.9 10.9 10.9 10.9 10.9 10.9 | 11.0
11.1
11.2
11.0
11.1
11.1
11.1
11.0
11.2
11.3
11.2
11.3
11.2
11.3
11.1
11.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 |

9.6 | JUNE |

 | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.3
12.1
10.4
10.4
10.5
10.6
10.7
10.7
10.6
10.7
11.4
12.2
10.7 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 10.4 10.5 10.4 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.4
10.2
10.3
10.3
10.4
10.4
10.5
10.6
10.6
10.6
10.6
10.6
10.7
10.8
10.8
11.8 | 12.9
12.3
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.8
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8
10.8
10.7
10.8
10.8
10.7
10.8
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5 | 11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9
11.0
11.4
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.0
11.2
11.1
11.1
11.0
11.2
11.1
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0 | 11.7
11.5
12.0
11.7
11.7
11.9
11.6
11.6
11.8
11.5
11.6
12.2
12.0
12.0
12.0
12.0
12.0
12.0
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.3 11.2 11.0 10.9 10.9 11.3 11.2 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.2
11.3
11.2
11.3
11.1
11.2
11.3
11.1
11.2
11.3
11.1
11.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
29
20
20
21
22
23
24
25
26
26
27
27
27
27
27
27
27
27
27
27
27
27
27 |

9.6
9.6
9.7
9.7 | JUNE |

9.5 | 9.8
10.0
9.9
9.9
9.9
11.1
11.8
10.1
10.1
10.4
10.4
10.4
10.5
10.6
10.7
10.7
10.6
10.7
11.4
12.2
10.7 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 10.6 10.6 10.6 10.6 10.6 10.6 10.8 10.8 10.7 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.3
10.3
10.4
10.5
10.6
10.6
10.6
10.6
10.6
10.6
10.8
11.3
10.8
10.9 | 12.9
12.7
12.9
10.9
11.3
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.7
10.7
10.1
10.2
10.5
10.6
10.6
10.6
10.7
10.8
10.7
10.8
10.7
10.8
10.7
10.6
10.7
10.8
10.7
10.8
10.7
10.6
10.7
10.8
10.7
10.9
10.7
10.9
10.9
10.9
10.9
10.9
10.9
10.9
10.9 | 11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.9
11.0
11.0
11.4
11.4
11.2
11.1
11.1
11.1
11.1
11.1 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.6
11.8
11.5
11.6
12.2
11.8
12.0
12.0
12.0
12.0
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.9 10.9 11.3 11.2 11.0 10.9 10.9 11.3 11.2 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.2
11.3
11.2
11.3
11.1
11.2
11.3
11.1
11.2
11.3
11.1
11.2
11.3
11.1
11.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 |

9.6 | JUNE |

9.5
9.6
9.6
9.6
9.6
9.7 | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.3
12.1
10.4
10.4
10.5
10.6
10.7
10.7
10.6
10.7
11.4
12.2
10.7 | JULY 9.7 9.7 9.8 9.8 9.8 9.8 10.0 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.3 10.4 10.4 10.5 10.4 10.6 10.6 10.6 10.6 10.6 10.6 10.6 10.6 | 9.8
9.8
9.8
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10.4
10.2
10.3
10.3
10.4
10.4
10.5
10.6
10.6
10.6
10.6
10.6
10.7
10.8
10.8
11.8 | 12.9
12.3
12.7
12.9
10.9
10.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9
11.9 | 10.7
10.7
10.7
10.8
10.8
10.8
10.7
10.1
10.2
10.5
10.6
10.6
10.7
10.8
10.8
10.7
10.8
10.8
10.7
10.8
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5
11.0
10.5 |
11.5
11.2
11.3
11.4
10.8
10.8
10.9
10.9
11.0
11.4
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.0
11.2
11.1
11.1
11.0
11.2
11.1
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0 | 11.7
11.5
12.0
11.7
11.7
11.9
11.6
11.6
11.8
11.5
11.6
12.2
12.0
12.0
12.0
12.0
12.0
12.0
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.8 10.8 10.9 10.9 11.3 11.2 11.0 10.9 10.9 11.3 11.2 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.2
11.3
11.2
11.3
11.1
11.2
11.3
11.1
11.2
11.3
11.1
11.2 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
27
28
29
30 |

 | JUNE |

9.5
9.6
9.6
9.6
9.7 | 9.8
10.0
9.9
9.9
9.9
11.1
10.1
10.1
10.1
10 | JULY 9.7 9.8 9.8 9.8 9.9 9.8 10.0 10.0 10.1 10.1 10.2 10.2 10.3 10.4 10.4 10.5 10.4 10.6 10.6 10.6 10.6 10.6 10.6 10.8 10.8 10.7 10.7 | 9.8
9.8
9.9
9.9
9.9
10.0
10.1
10.0
10.1
10.1
10 | 12.9
12.3
12.7
12.9
10.9
11.9
11.3
11.3
11.7
11.9
11.9
11.9
11.9
11.9
11.9
11.7
11.6
11.6
11.7
11.3
11.3 | 10.7
10.7
10.7
10.8
10.8
10.7
10.1
10.2
10.5
10.6
10.6
10.6
10.8
10.7
10.8
10.7
10.8
10.7
10.8
10.7
10.8
10.5
10.5
10.5
10.5
10.5
10.5
10.5
10.5 | 11.5
11.2
11.3
11.4
10.8
10.9
10.9
10.9
11.0
11.0
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.1
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0
11.0 | 11.7
11.5
12.0
11.7
11.7
11.9
11.9
11.6
11.7
11.6
11.8
12.2
11.8
12.2
12.0
12.0
12.0
12.0
12.0
12.0
12.0 | SEPTEMBER 10.6 10.6 10.6 10.6 10.6 10.7 10.7 10.7 10.7 10.7 10.8 10.9 10.9 10.9 11.3 11.2 11.0 10.9 10.9 11.3 11.2 11.0 10.9 10.9 11.1 11.0 | 11.0
11.1
11.2
11.0
11.1
11.1
11.0
11.2
11.3
11.2
11.3
11.1
11.2
11.3
11.1
11.2
11.4
11.6
11.7
11.8 | ### 07053450 WHITE RIVER BELOW TABLE ROCK DAM NEAR BRANSON, MO--Continued 441 OXYGEN DISSOLVED, (mg/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | סטעדט, (וווּיַ | _ | | | | | 2002 | | | |---|---|--------------|---|--|--|---|--|---|--|---|---|---| | DAY | MAX | MIN | MEAN | | | | OCTOBER | | N | OVEMBER | | DE | ECEMBER | | | JANUARY | | | 1 | | | | 6.6 | 2.3 | 3.9 | 6.6 | 2.6 | 4.1 | 8.2 | | 5.9 | | 2
3 | | | | 6.7
6.7 | 2.3
2.6 | 4.3 | 4.4
6.7 | 2.2 | 2.9
5.0 | 8.9
10.4 | 4.6
6.0 | 7.2
7.2 | | 4
5 | 7.7
9.0 | 2.5
2.4 | 5.3
4.8 | 6.8
6.2 | 2.5
2.4 | 4.7
4.0 | 8.0
7.4 | 2.2 | 5.2
4.0 | 9.6
5.8 | 4.2
4.2 | 7.2
5.1 | | 6 | 8.0 | 3.0 | 5.1 | 6.9 | 2.4 | 4.2 | 8.2 | 1.7 | 5.2 | 9.5 | 5.8 | 8.1 | | 7 | 11.0 | 1.9 | 5.3 | 5.9 | 2.4 | 4.0 | 7.0 | 1.8 | 4.8 | 11.6 | 7.5 | 10.4 | | 8
9 | 8.1
8.0 | 1.9
1.9 | 4.7
4.6 | 6.0
6.3 | 2.4
2.7 | $\frac{4.1}{4.1}$ | 5.3
7.3 | 1.6
1.8 | 3.3
4.0 | | | | | 10 | 6.2 | 1.5 | 4.1 | 5.3 | 2.3 | 3.5 | 8.8 | 2.8 | 5.3 | | | | | 11
12 | 6.5
7.6 | 1.7 | 4.3
4.9 | 5.6
6.8 | 2.3 | 3.6
4.0 | 7.6
6.7 | 2.0 | 5.6
4.5 | | | | | 13 | 8.3 | 2.6 | 5.4 | 6.2
 2.2 | 3.7 | 7.1 | 1.4 | 4.4 | | | | | 14
15 | 8.0
8.4 | 2.2
2.6 | 5.2
5.6 | 6.4
6.3 | 2.1
2.3 | 4.6
5.0 | 7.2
8.4 | 1.8
1.5 | 4.4
3.4 | | | | | 16 | 8.1 | 2.0 | 5.1 | 6.7 | 3.3 | 5.0 | 2.7 | 0.3 | 1.3 | | | | | 17 | 8.0 | 3.4 | 5.7 | 6.8 | 2.1 | 4.8 | 6.9 | 0.3 | 5.2 | | | | | 18
19 | 6.8
6.7 | 3.3
3.7 | 5.0
5.0 | 5.8
7.0 | 2.0
3.8 | 3.9
5.1 | 6.0
6.9 | 1.9
1.8 | 4.4
4.5 | | | | | 20 | 6.1 | 3.3 | 4.5 | 6.3 | 2.8 | 4.9 | 7.1 | 1.6 | 4.0 | | | | | 21 | 7.0 | 3.4 | 5.4 | 7.2 | 2.6 | 4.6 | 7.2 | 1.6 | 3.5 | | | | | 22
23 | 8.1
6.7 | 3.5
2.8 | 5.5
4.0 | 7.4
6.1 | 2.2
1.8 | 4.5
4.6 | 4.0
5.7 | 1.2
1.6 | 2.3
2.9 | | | | | 24 | 6.7 | 3.0 | 4.9 | 6.4 | 1.7 | 3.7 | 4.3 | 1.6 | 2.5 | | | | | 25 | 6.8 | 2.8 | 4.8 | 6.7 | 2.4 | 4.1 | 3.6 | 1.5 | 2.1 | | | | | 26
27 | 6.6
6.9 | 3.2
3.2 | 4.7
4.5 | 7.6
7.1 | 2.0
2.8 | 5.3
5.5 | 7.6
8.1 | 1.5
2.0 | 4.9
4.9 | | | | | 28 | 7.8 | 3.0 | 5.1 | 6.4 | 3.3 | 5.6 | 8.5 | 2.1 | 4.8 | | | | | 29
30 | 6.9
6.9 | 2.9
4.1 | 5.2
5.5 | 7.6
7.3 | 3.4
3.8 | 5.5
5.8 | 8.5
8.6 | 2.2
1.8 | 5.4
4.9 | | | | | 31 | 6.6 | 4.0 | 5.4 | | | | 9.1 | 2.4 | 6.4 | | | | | MONTH | | | | 7.6 | 1.7 | 4.5 | 9.1 | 0.3 | 4.2 | DAY | MAX | MIN | MEAN | | DAY | MAX | | MEAN | MAX | | MEAN | | | MEAN | | | | | | | JUNE | | | JULY | | I | AUGUST | | | SEPTEMBE | R | | 1
2 | | JUNE | | 6.1
6.1 | JULY
5.8
5.8 | 6.0
5.9 | 6.8
6.7 | AUGUST
3.9
3.6 | 5.5
5 | 8.2
8.4 | 3.7
4.2 | R
6.1
6.2 | | 1
2
3 | | JUNE |
 | 6.1
6.1
6.0 | JULY 5.8 5.8 5.8 | 6.0
5.9
5.9 | 6.8
6.7
6.7 | 3.9
3.6
4.5 | 5.5
5
5.0 | 8.2
8.4
7.9 | 3.7
4.2
3.4 | R
6.1
6.2
6.1 | | 1
2 | | JUNE

 | | 6.1
6.1 | JULY
5.8
5.8 | 6.0
5.9 | 6.8
6.7 | AUGUST
3.9
3.6 | 5.5
5 | 8.2
8.4 | 3.7
4.2 | R
6.1
6.2 | | 1
2
3
4
5 | | JUNE |

 | 6.1
6.1
6.0
6.2
6.4 | JULY 5.8 5.8 5.8 5.5 5.5 | 6.0
5.9
5.9
5.9
6.0 | 6.8
6.7
6.7
6.6
7.4 | 3.9
3.6
4.5
4.3
5.0 | 5.5
5.0
4.9
7.0 | 8.2
8.4
7.9
8.6
8.2
7.8 | 3.7
4.2
3.4
4.3
2.6 | 6.1
6.2
6.1
6.1
5.0 | | 1
2
3
4
5 |

 | JUNE |

 | 6.1
6.1
6.0
6.2
6.4 | JULY 5.8 5.8 5.8 5.5 5.5 5.4 5.5 | 6.0
5.9
5.9
5.9
6.0
5.9 | 6.8
6.7
6.7
6.6
7.4
7.9
7.7 | 3.9
3.6
4.5
4.3
5.0
4.3
4.1 | 5.5
5.0
4.9
7.0
7.0 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0 | 6.1
6.2
6.1
6.1
5.0
5.1
4.8 | | 1
2
3
4
5
6
7
8
9 | | JUNE |

 | 6.1
6.1
6.0
6.2
6.4
6.5
7.8
6.0
7.0 | JULY 5.8 5.8 5.5 5.5 5.5 5.4 5.5 5.5 5.4 | 6.0
5.9
5.9
5.9
6.0
5.9
5.8
6.3 | 6.8
6.7
6.7
6.6
7.4
7.9
7.7
7.7 | 3.9
3.6
4.5
4.3
5.0
4.3
4.1
4.1
2.8 | 5.5
5.0
4.9
7.0
7.0
5.9
6.1 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4 | 6.1
6.2
6.1
6.1
5.0
5.1
4.8
5.3
4.6 | | 1
2
3
4
5
6
7
8
9 | | JUNE | | 6.1
6.1
6.0
6.2
6.4
6.5
7.8
6.0
7.0 | JULY 5.8 5.8 5.5 5.5 5.5 5.4 5.5 5.4 5.8 | 6.0
5.9
5.9
6.0
5.9
5.9
5.8
6.3 | 6.8
6.7
6.7
6.6
7.4
7.9
7.7
7.7
7.2 | 3.9
3.6
4.5
4.3
5.0
4.3
4.1
4.1
2.8
3.9 | 5.5
5.0
4.9
7.0
7.0
5.9
5.6
6.1
5.7 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8 | 6.1
6.2
6.1
6.1
5.0
5.1
4.8
5.3
4.6 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE |

 | 6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9 | JULY 5.8 5.8 5.5 5.5 5.4 5.5 5.4 5.5 5.7 | 6.0
5.9
5.9
5.9
6.0
5.9
5.9
6.3
6.2 | 6.8
6.7
6.6
7.4
7.9
7.7
7.7
7.2
7.6 | 3.9
3.6
4.5
4.3
5.0
4.3
4.1
4.1
2.8
3.9 | 5.5
5.0
4.9
7.0
7.0
5.9
5.6
6.1
5.7 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8 | 6.1
6.2
6.1
6.1
5.0
5.1
4.8
5.3
4.6
4.1 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE |

 | 6.1
6.1
6.0
6.2
6.4
6.5
7.8
6.0
7.0
6.9 | JULY 5.8 5.8 5.5 5.5 5.5 5.4 5.5 5.4 5.5 5.5 5.6 | 6.0
5.9
5.9
6.0
5.9
5.8
6.3
6.2
5.8
5.7 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.0
6.8 | 3.9
3.6
4.5
4.3
5.0
4.1
4.1
2.8
3.9
3.6
3.6
3.5 | 5.5
5.0
4.9
7.0
7.0
5.9
5.6
6.1
5.7
5.3
4.4 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8
2.9
1.4
2.5 | 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1 | | 1
2
3
4
5
6
7
8
9
10 | | JUNE |

 | 6.1
6.1
6.0
6.2
6.4
6.5
7.8
6.0
7.0
6.9 | JULY 5.8 5.8 5.8 5.5 5.5 5.4 5.5 5.4 5.8 5.7 5.8 | 6.0
5.9
5.9
5.9
6.0
5.9
5.8
6.2
5.9 | 6.8
6.7
6.6
7.4
7.9
7.7
7.7
7.2
7.6 | 3.9
3.6
4.5
4.3
5.0
4.1
2.8
3.9
3.6
3.6 | 5.5
5.0
4.9
7.0
7.0
5.9
5.6
6.1
5.7 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8 | 6.1
6.2
6.1
6.1
5.0
5.1
4.8
5.3
4.6
4.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | 6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.9
5.8 | JULY 5.8 5.8 5.5 5.5 5.5 5.4 5.5 5.4 5.5 5.4 5.6 5.4 5.3 | 6.0
5.9
5.9
6.0
5.9
5.8
6.2
5.8
5.7
5.6
5.5 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.0
6.8
6.8 | 3.9
3.6
4.3
5.0
4.3
4.1
4.1
2.8
3.9
3.6
3.5
3.6
3.5
3.6 | 5.5
5.0
4.9
7.0
7.0
5.9
5.6
6.1
5.7
5.3
4.8
5.0
5.5 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0
7.5
7.9
7.6
6.6
6.2 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8
2.9
1.4
2.5
1.3
0.6 | 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.9
4.5
3.8
3.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | 6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.9
5.7 | JULY 5.8 5.8 5.8 5.5 5.5 5.5 5.4 5.5 5.5 5.4 5.8 5.7 5.5 6.4 5.3 5.2 5.2 | 6.0
5.9
5.9
5.9
6.0
5.9
5.9
5.8
6.2
5.8
5.7
5.5
5.5 | 6.8
6.7
6.6
7.4
7.9
7.7
7.7
7.2
7.6
8.6
6.0
6.8
7.9
7.1 | 3.9
3.6
4.3
5.0
4.3
4.1
4.1
4.1
2.8
3.9
3.6
3.6
3.5
3.6
3.7
3.4 | 5.5
5.0
4.9
7.0
7.0
5.9
6.1
5.7
5.3
4.4
4.8
5.5
5.6
5.4 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0
7.5
7.9
7.6
6.6
6.2 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8
2.9
1.4
2.5
1.3
0.6 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.5
3.1
3.6
3.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15 | | JUNE | | 6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.9
5.8
5.7 | JULY 5.8 5.8 5.5 5.5 5.4 5.5 5.4 5.8 5.7 5.6 5.4 5.3 5.2 | 6.0
5.9
5.9
6.0
5.9
5.9
6.3
5.8
6.2
5.8
5.5
5.5 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.0
6.8
7.9
7.1 | 3.9
3.6
4.5
4.3
5.0
4.3
4.1
2.8
3.9
3.6
3.6
3.5
3.6
3.3 | 5.5
5.0
4.9
7.0
7.0
5.6
6.1
5.7
5.3
4.4
4.8
5.0
5.5 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0
7.5
7.9
6.6
6.2 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8
2.9
1.4
2.5
1.3
0.6 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.9
4.9
4.5
3.8
3.1 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | JUNE | | 6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.9
5.7 | JULY 5.8 5.8 5.8 5.5 5.5 5.5 5.4 5.5 5.4 5.5 5.6 5.4 5.8 5.7 5.6 5.4 5.3 5.2 5.0 | 6.0
5.9
5.9
6.0
5.9
5.8
6.2
5.8
5.7
5.5
5.5
5.5
5.4 | 6.8
6.7
6.6
7.4
7.9
7.7
7.7
7.2
7.6
8.6
6.0
6.8
6.8
7.9 | 3.9
3.6
4.3
5.0
4.3
4.1
4.1
2.8
3.9
3.6
3.6
3.5
3.6
3.5
3.6
3.5 | 5.5
5.0
4.9
7.0
7.0
5.6
6.1
5.7
5.3
4.8
5.5
5.6
4.5
5.5 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0
7.5
7.9
7.6
6.6
6.2
5.9
8.4 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8
2.9
1.4
2.5
1.3
0.6 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.5
3.8
3.1
3.6
6.3
3.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21 | | JUNE | |
6.1
6.0
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.9
5.8
5.7
6.0
5.6
6.7
5.4
5.5 | JULY 5.88 5.88 5.55 5.5 5.4 5.55 5.44 5.5 5.66 5.44 5.3 5.2 5.20 4.9 4.9 5.1 | 6.0
5.9
5.9
6.0
5.9
5.8
6.2
5.8
5.5
5.4
5.2
5.3
5.3
5.3 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.8
6.8
7.9
7.1
7.3
6.6
6.6
7.3 | 3.9
3.6
4.3
5.0
4.3
4.1
2.8
3.9
3.6
3.6
3.5
3.6
3.6
3.3
4.7
3.4
4.0
3.2 | 5.5
5.0
4.9
7.0
7.0
5.6
6.1
5.7
5.4
4.4
8.0
5.5
5.4
5.1
5.3
6.1
5.3 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0
7.5
7.9
6.6
6.2
5.9
8.4
5.9
8.2
7.4 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8
2.9
1.4
2.5
1.3
0.6
1.5
3.3
3.2 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.9
4.9
4.9
4.9
5.3
3.1
3.6
3.3
4.7
5.8 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23 | | JUNE | | 6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.9
5.7
6.0
5.6
6.7
5.5
5.5
5.7 | JULY 5.8 5.8 5.8 5.5 5.5 5.4 5.5 5.4 5.5 5.4 5.5 5.6 5.4 5.3 5.2 5.0 4.9 5.1 5.0 | 6.0
5.9
5.9
6.0
5.9
6.0
5.9
5.9
6.2
5.8
6.2
5.5
5.5
5.5
5.3
5.3
5.3
5.3
5.3 | 6.8
6.7
6.6
7.4
7.9
7.7
7.7
7.2
7.6
8.6
6.0
6.8
7.9
7.1
7.3
6.6
6.6
7.3 | 3.9
3.6
4.3
5.0
4.3
4.1
4.1
4.1
4.1
2.8
3.9
3.6
3.6
3.5
3.6
3.5
3.6
3.7
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0 | 5.5
5.0
4.9
7.0
7.0
5.9
6.1
5.7
5.3
4.4
8.5
5.5
5.4
5.13
6.2
9.6
6.0 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0
7.5
7.9
7.6
6.6
6.2
5.9
8.4
5.9
8.4
5.9
8.2 | 3.7
4.2
3.4
4.3
2.6
2.7
2.0
1.9
1.4
2.8
2.9
1.4
2.5
1.3
0.6
1.5
1.5
3.3
3.2 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.5
3.8
3.1
3.6
3.3
4.1
4.7
5.8
5.5
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | JUNE |

 | 6.1
6.0
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.8
5.7
6.0
5.6
6.7
5.4
5.5 | JULY 5.8 5.8 5.5 5.5 5.4 5.5 5.4 5.5 5.4 5.8 5.7 5.6 5.4 5.3 5.2 5.2 5.0 4.9 4.9 5.1 5.1 5.1 5.1 6.5 | 6.0
5.9
5.9
6.0
5.9
5.9
6.2
5.8
6.2
5.8
5.5
5.4
5.2
5.4
5.2 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.8
6.8
7.9
7.1
7.3
6.6
6.6
7.3 | 3.9
3.6
4.5
4.3
5.0
4.3
4.1
2.8
3.9
3.6
3.6
3.5
3.6
3.3
4.7
3.4
4.0
3.2
4.8
4.1
3.3 | 5.5
5.0
4.9
7.0
7.0
5.6
6.1
7.3
4.4
8.0
5.5
5.4
6.1
5.5
5.4
6.1
5.5
6.2
6.1
5.6
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0
7.5
7.9
6.6
6.2
5.8
8.4
5.9
8.2
7.4
8.1 | 3.7 4.2 3.4 4.3 2.6 2.7 2.0 1.9 1.4 2.8 2.9 1.4 2.5 1.3 0.6 1.0 1.5 3.3 3.2 4.1 4.9 4.7 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.5
3.8
3.1
3.6
3.3
4.7
5.8
5.5
6.5
6.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25 |

 | JUNE |

 | 6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.9
5.7
6.0
5.6
6.7
5.5
5.7
7.8
8.6
7.8 | JULY 5.8 5.8 5.8 5.5 5.5 5.4 5.5 5.4 5.5 5.4 5.6 5.4 5.3 5.2 5.0 4.9 6.1 5.1 5.0 6.4 6.4 6.4 | 6.0
5.9
5.9
5.9
6.0
5.9
5.8
6.2
5.8
5.7
5.5
5.3
5.3
5.5
5.3
5.3
5.3
5.3 | 6.8
6.7
6.6
7.4
7.9
7.7
7.7
7.2
7.6
8.6
6.0
6.8
7.9
7.1
7.3
6.6
6.6
7.3
8.3
7.9
7.6 | 3.9
3.6
4.3
5.0
4.3
4.1
4.1
4.1
4.1
2.8
3.9
3.6
3.6
3.5
3.6
3.5
3.6
3.7
4.0
4.0
4.0
4.0
4.0
4.0
4.0
3.0
4.1
4.0
4.0
3.0
4.0
3.0
4.0
4.0
3.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4.0
4 | 5.5
5.0
4.9
7.0
7.0
5.9
6.1
5.7
5.4
4.8
5.5
5.6
5.1
5.6
5.1
6.2
6.0
6.1
5.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6 | 8.2
8.4
7.9
8.6
8.2
7.8
7.3
8.1
7.0
7.0
7.5
7.9
7.6
6.2
5.8
8.4
5.9
8.4
5.9
8.4
5.9
8.4
5.9
8.6
8.2 | 3.7 4.2 3.4 4.3 2.6 2.7 2.0 1.9 1.4 2.8 2.9 1.4 2.5 1.3 0.6 1.0 1.5 3.3 3.2 4.1 4.9 4.7 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.5
3.1
3.6
3.3
4.1
4.7
5.8
6.5
6.3
6.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27 |

5.4
6.4
6.3 | JUNE |

 | 6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.8
5.7
6.0
5.8
5.7
7.8
8.6
7.2
7.1
6.6 | JULY 5.88 5.88 5.55 5.5 5.4 5.55 5.44 5.5 5.64 5.3 5.2 5.04 4.9 5.11 5.05 4.4 4.6 3.6 | 6.9
5.9
5.9
6.0
5.9
5.9
6.2
5.8
5.5
5.5
5.4
5.2
5.3
5.4
5.2
5.3
5.4
5.5
5.5
5.5
5.6
5.6
5.6
5.6
5.6
5.6
5.6 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.8
6.8
7.9
7.1
7.3
6.6
6.6
7.3
8.3
7.9
7.6
9.7
7.7 | 3.9
3.6
4.3
5.0
4.3
4.1
4.1
2.8
3.9
3.6
3.6
3.3
4.7
3.4
4.0
3.2
4.8
4.1
3.3
3.0 | 5.5
5.0
4.9
7.0
7.9
5.1
5.7
5.4
4.8
5.5
5.4
6.1
5.3
6.9
6.1
5.3
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1 | 8.2
8.4
7.9
8.6
8.2
7.8
7.0
7.0
7.5
7.9
6.6
6.2
5.9
8.4
5.9
8.2
7.4
8.1
8.0
8.2 | 3.7 4.2 3.4 4.3 2.6 2.7 2.0 1.9 1.4 2.8 2.9 1.4 2.5 1.3 0.6 1.0 1.5 3.3 3.2 3.2 4.1 4.9 4.7 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.9
4.9
4.5
3.8
3.1
3.6
3.3
4.1
4.7
5.8
5.5
6.3
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 |

5.4
6.4
6.3
6.3 | JUNE |

5.3
6.0
6.3
6.2
6.2 | 6.1
6.0
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.8
5.7
6.0
5.6
6.7
5.4
5.5
5.7
7.8
8.6
7.2 | JULY 5.88 5.88 5.55 5.5 5.4 5.55 5.4 5.5 5.6 5.4 5.3 5.2 5.2 5.2 5.0 4.9 4.9 5.1 5.1 5.1 6.5 6.4 4.4 4.6 | 6.0
5.9
5.9
6.0
5.9
5.9
6.2
5.9
5.5
5.4
5.2
5.3
5.4
5.2
5.3
5.4
5.2
5.3
5.4
5.2
5.3
5.4
5.3
5.4
5.5
5.6
5.7
5.7
5.8
5.9
5.9
5.9
5.9
5.9
5.9
5.9
5.9 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.8
6.8
7.9
7.1
7.3
6.6
6.6
7.3
8.3
7.9
7.4
7.5 | 3.9 3.6 4.3 5.0 4.3 4.1 4.1 4.1 2.8 3.9 3.6 3.5 3.6 3.7 3.4 4.0 4.0 4.0 4.0 3.2 4.8 4.1 3.3 3.0 3.0 3.2 3.9 | 5.5
5.0
4.9
7.0
7.0
5.6
6.1
5.7
5.4
4.8
5.5
5.4
6.1
5.3
6.2
6.1
5.3
6.2
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6.3
6 | 8.2
8.4
7.9
8.6
8.2
7.8
7.0
7.0
7.5
7.9
6.6
6.2
5.9
8.4
8.9
8.2
7.4
8.1
8.5
 | 3.7 4.2 3.4 4.3 2.6 2.7 2.0 1.9 1.4 2.8 2.9 1.4 2.5 1.3 0.6 1.0 1.5 3.3 3.2 4.1 4.9 4.7 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.5
3.8
3.1
3.6
3.3
4.7
5.8
5.5
6.5
6.6
6.6 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30 |

5.4
6.4
6.3
6.3
6.3
6.2
6.1 | JUNE |

5.3
6.0
6.3
6.2
6.2
6.1
6.0 |
6.1
6.1
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.8
5.7
6.0
5.8
5.7
7.8
8.6
7.2
7.8
8.6
7.2
7.4
6.3
6.3
6.3 | JULY 5.88 5.88 5.55 5.5 5.4 5.55 5.44 5.5 5.44 5.3 5.2 5.04 4.9 5.1 5.05 4.4 4.6 4.6 4.4 4.1 3.4 | 6.99
5.99
5.90
5.98
5.55
5.55
5.43
5.23
5.45
5.55
5.55
5.55
5.55
5.55
5.55
5.5 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.8
6.8
7.9
7.1
7.3
6.6
6.7
7.3
8.3
7.9
7.6
9.7
7.7 | 3.9
3.6
4.3
5.0
4.3
4.1
2.8
3.9
3.6
3.6
3.3
4.7
3.4
4.0
3.2
4.8
4.1
3.3
3.0
3.6
3.3 | 5.5
5.0
7.0
7.9
6.1
7.3
4.4
8.0
5.5
5.4
6.1
7.5
6.1
7.5
6.1
7.5
6.1
7.5
6.1
7.5
6.1
7.5
6.1
7.5
6.1
7.5
6.1
7.5
6.1
7.5
6.1
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5
7.5 | 8.2
8.4
7.9
8.6
8.2
7.8
7.0
7.0
7.5
7.9
6.6
6.2
5.9
8.4
8.1
8.0
8.2
7.4
8.1
8.0
8.2 | 3.7 4.2 3.4 4.3 2.6 2.7 2.0 1.9 1.4 2.8 2.9 1.4 2.5 1.3 0.6 1.0 1.5 3.3 3.2 3.2 4.1 4.9 4.7 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.9
4.9
4.9
4.5
5.5
6.3
6.3
6.3
6.3 | | 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 | | JUNE | | 6.1
6.0
6.2
6.4
6.5
7.8
6.0
7.0
6.9
6.5
6.0
5.8
5.7
6.0
5.6
7.8
8.6
7.2
7.8
8.6
7.2 | JULY 5.88 5.88 5.55 5.5 5.4 5.55 5.4 5.8 5.7 5.56 5.4 5.3 5.2 5.2 5.0 4.9 4.9 5.1 5.1 5.1 6.4 4.4 4.6 6.4 4.4 4.1 | 6.09.55.99.66.2 5.98.76.5 5.43.23 3.45.23 5.14.9 | 6.8
6.7
6.6
7.4
7.9
7.7
7.2
7.6
8.6
6.8
7.9
7.1
7.3
6.6
6.6
7.3
8.3
7.9
7.4
7.5
7.8
7.8 | 3.9
3.6
4.3
5.0
4.3
4.1
2.8
3.9
3.6
3.6
3.5
3.6
3.3
4.7
3.4
4.0
3.2
4.8
4.1
3.3
3.0
3.2
4.3 | 5.5
5.0
4.9
7.0
7.9
65.1
7.3
4.4
8.0
5.5
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
5.3
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1
6.1 | 8.2
8.4
7.9
8.6
8.2
7.8
7.0
7.0
7.5
7.9
6.6
6.2
5.9
8.2
7.4
8.1
8.5
 | 3.7 4.2 3.4 4.3 2.6 2.7 2.0 1.9 1.4 2.8 2.9 1.4 2.5 1.3 0.6 1.0 1.5 3.3 3.2 3.2 4.1 4.9 4.7 | 8 6.1
6.2
6.1
5.0
5.1
4.8
5.3
4.6
4.1
4.9
4.5
3.8
3.1
3.6
3.3
4.7
5.8
5.5
6.5
6.6
6.6 | #### 07053500 WHITE RIVER NEAR BRANSON, MO LOCATION.--Lat 36°35'51", long 93°17'42", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.22, T.22 N., R.22 W., Taney County, Hydrologic Unit 11010003, on left bank 0.9 mi downstream from Table Rock Dam, 2.1 mi upstream from Fall Creek, 5.0 mi southwest of Branson, 7.4 mi upstream from Missouri Pacific bridge, and at mile 527.8. DRAINAGE AREA. -- 4,022 mi². PERIOD OF RECORD.--October 1951 to current year. July 1909 to December 1910 gage heights and discharge measurements only. GAGE.--Water-stage recorder. Datum of gage is 696.00 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). July 19, 1909, to Dec. 31, 1910, nonrecording gage at site 7.4 mi downstream at different datum; Oct. 1, 1951, to Mar. 6, 1952, nonrecording gage at same site and datum. REMARKS.--Flow regulated by Table Rock Lake (07053400) since Sept. 9, 1956. COOPERATION. -- Records furnished by the U.S. Army Corps of Engineers. EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 89,100 ft³/s, May 16, 1956; gage height, 36.9 ft. | | | DISCHAF | RGE, CUBIC | FEET PER | | WATER YE
MEAN VA | CAR OCTOBER
LUES | 2001 TO | SEPTEMBER | 2002 | | | |------------------------------------|---|--------------------------------------|--|---|---------------------------------------|---|---|--|--------------------------------------|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 157
472
995
1120
214 | 685
1530
577
1610
770 | 321
40
2970
1220
1060 | 2470
4150
4580
2700
40 | 8090
11200
9740
8310
6820 | 2480
4490
5690
8840
7890 | 5990
4650
4890
3150
4000 | 3560
850
1940
4060
3870 | 2580
3770
6000
4530
5070 | 6030
6450
6460
6620
6630 | 1920
2190
1230
2620
687 | 1100
1580
2910
1420
1630 | | 6
7
8
9 | 152
144
169
140
153 | 595
296
719
1760
134 | 2120
767
181
746
3400 | 40
2420
2860
1650
1100 | 7100
7560
6950
6900
8540 | 4300
40
6080
2550
4680 | 3870
3500
8110
14800
14600 | 2380
4790
8670
12900
14600 | 6240
6130
6190
6170
6260 | 6420
4200
6420
6410
6380 | 1510
2320
899
719
288 | 1900
1050
932
2680
4820 | | 11
12
13
14
15 | 146
1110
2060
650
1940 | 166
692
909
2250
2680 | 2550
3080
2880
2290
636 | 2230
229
525
2350
2590 | 6850
5210
5670
7700
5900 | 6530
6880
6970
3290
412 | 14300
14300
14400
14100
14000 | 14300
14200
12600
13500
13600 | 6170
6340
5860
6340
3100 | 5850
6820
6760
6770
6780 | 210
3220
1410
628
2300 | 2780
2900
6020
195
141 | | 16
17
18
19
20 | 3500
3190
2440
2840
1740 | 1660
1500
1000
3600
2710 | 40
5550
5520
1730
996 | 3570
2090
3950
40
40 | 5410
4270
2070
8490
7990 | 3080
872
4800
2970
4580 | 14200
14200
14200
14500
14300 | 14000
14900
15100
15200
15100 | 288
1040
2540
4050
6310 | 6680
6910
6870
6820
6680 | 3580
1960
1030
2600
2260 | 4610
6320
5230
5520
4390 | | 21
22
23
24
25 | 1380
2810
148
386
214 | 3600
1070
1230
198
441 | 531
40
40
40
40 | 1490
2670
650
693
1650 | 7450
6990
40
40
3500 | 14800
14800
14700
14400
13500 | 14400
14200
14200
14200
8420 | 10600
5890
5120
4640
4820 | 6340
6330
6390
6430
6200 | 6450
6190
4820
3440
4170 | 3300
2910
1520
1260
918 | 403
619
5120
3830
487 | | 26
27
28
29
30
31 | 279
503
641
2730
2950
3270 | 1210
2310
3510
3040
2840 | 2360
1540
2200
1730
1320
3440 | 684
40
3040
5700
2280
1820 | 6070
4790
5420
 | 9060
9480
8960
4920
9600
10900 | 7170
8530
6780
7320
8040 | 4170
4780
4190
4500
6890
6770 | 6230
6170
6310
5990
6340 | 3700
945
1120
2350
979
2110 | 1670
1720
2150
2090
1560
800 | 488
1410
306
548
2410 | | MEAN
MAX
MIN
IN. | 1247
3500
140
0.36 | 1510
3600
134
0.42 | 1657
5550
40
0.48 | 1946
5700
40
0.56 | 6252
11200
40
1.62 | 6856
14800
40
1.97 | 10440
14800
3150
2.90 | 8467
15200
850
2.43 | 5257
6430
288
1.46 | 5330
6910
945
1.53 | 1725
3580
210
0.49 | 2458
6320
141
0.68 | | STATIST | CICS OF MC | NTHLY MEA | AN DATA FO | R WATER Y | EARS 1960 | - 2002 ^a | , BY WATER | YEAR (WY | () | | | | | MEAN
MAX
(WY)
MIN
(WY) | 1894
6660
1994
429
1982 | 2884
13110
1975
497
1999 | 4219
15210
1986
239
1996 | 3981
16070
1985
201
1990 | 4246
11970
1969
420
1964 | 5508
14800
1985
44.7
2000 | 6210
14800
1985
71.6
2000 | 5576
22650
1961
224
2000 | 3867
11610
1995
782
1981 | 3623
11470
1976
1158
1981 | 2961
6526
1979
1015
1977 | 2131
4421
1979
708
1967 | | SUMMARY | STATISTI | CS | FOR 2 | 001 CALEN | IDAR YEAR | F | OR 2002 WAT | TER YEAR | | WATER YE | ARS 1960 - | 2002 ^a | | LOWEST | 'ANNUAL N
ANNUAL ME | EAN | | 1973
11800
40
157
6.66
5440
1220
138 | Feb 27
Jan 12
Sep 23 | | 15200
40
160
14.88
10100
3220
302 | May 19
Dec 2
Oct 5 | | 3924
7161
852
33000
35
40
13.26
9520
2600
140 | May 12
Oct 31
1984,1996 | 1993
1981
1961
1959
7,2000 | ^a Post-regulation period. 443 #### 07053600 LAKE TANEYCOMO AT COLLEGE OF THE OZARKS #### WATER-QUALITY RECORDS LOCATION.--Lat 36°36'33", long 93°14'04", in sec.4, T.22 N., R.21 W., Taney County, Hydrologic Unit 11010003, on the right bank in the College of the Ozarks water intake pump house and 4.75 mi below Table Rock Dam. PERIOD OF DAILY RECORD. -- WATER TEMPERATURE: May 1984 to current year. (See remarks). DISSOLVED OXYGEN: May 1984 to current year. (See remarks). INSTRUMENTATION. -- Water-quality monitor since May 1984. REMARKS.--The number of missing days exceeds 20 percent of the year. The monitor was not operated from Jan. 7 to June 23. | | | 5 | | | | - | | | | | | | |----------------------|------------------------------|-------------------|----------------------|----------------------|----------------------
----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------| | | | WATER | TEMPERAT | TURE , (DEGI | REES C), | WATER YE | AR OCTOBER | R 2001 T | O SEPTEM | BER 2002 | | | | DAY | MAX | MIN | MEAN | | | | OCTOBER | | NO | OVEMBER | | DE | ECEMBER | | | JANUARY | • | | 1 | 13.0 | 11.2 | 11.7 | 9.6 | 8.6 | 9.0 | 9.9 | 8.8 | 9.2 | 8.9 | 7.6 | 8.5 | | 2
3 | 13.8
11.3 | 10.8
8.4 | 11.7
10.2 | 9.9
9.3 | 8.6
8.6 | 9.3
8.9 | 10.6
9.3 | 8.7
8.5 | 9.3
9.1 | 8.9
9.1 | 8.0
7.9 | 8.6
8.6 | | 4 | 10.5 | 8.3 | 8.9 | 11.1 | 8.6 | 9.4 | 10.2 | 9.2 | 9.5 | 8.8 | 8.0 | 8.5 | | 5 | 9.1 | 8.4 | 8.8 | 10.3 | 8.5 | 9.1 | 10.1 | 9.1 | 9.4 | 8.5 | 8.1 | 8.3 | | 6
7 | 10.3
10.7 | 8.7
9.0 | 9.3
9.7 | 10.7
10.4 | 9.0
8.9 | 9.5
9.4 | 9.5
9.5 | 9.0
8.8 | 9.3
9.0 | 8.1 | 7.3 | 7.8 | | 8 | 11.1 | 9.6 | 10.2 | 9.9 | 8.8 | 9.4 | 9.5 | 8.9 | 9.2 | | | | | 9
10 | 11.3
11.6 | 10.3
10.6 | 10.7
11.0 | 10.1
9.9 | 8.5
8.6 | 8.9
9.0 | 9.4
9.7 | 7.9
7.8 | 8.7
8.9 | | | | | 11 | 12.2 | 11.2 | 11.6 | 10.6 | 8.9 | 9.6 | 9.6 | 8.1 | 9.0 | | | | | 12 | 12.5 | 8.4 | 11.2 | 10.9 | 8.5 | 9.7
8.9 | 9.3 | 9.0 | 9.2
9.3 | | | | | 13
14 | 9.0
9.7 | 8.2
8.1 | 8.6
8.8 | 11.0
9.2 | 8.3
8.5 | 8.8 | 9.4
9.6 | 9.2
9.1 | 9.3 | | | | | 15 | 9.3 | 8.0 | 8.7 | 9.5 | 8.3 | 8.8 | 9.3 | 8.8 | 9.2 | | | | | 16 | 9.4 | 7.8 | 8.5 | 9.5 | 8.3 | 8.8 | 9.7 | 9.0 | 9.2 | | | | | 17
18 | 9.4
9.6 | 8.1
7.8 | 8.6
8.6 | 9.6
10.0 | 8.4
8.7 | 8.8
9.1 | 10.2
10.2 | 9.3
9.2 | 9.6
9.6 | | | | | 19
20 | 9.4
9.6 | 8.2
8.5 | 8.7
8.9 | 9.2
9.3 | 8.6
7.8 | 8.9
8.3 | 10.0
9.6 | 8.8
8.1 | 9.5
9.0 | | | | | 21 | 9.7 | 8.4 | 8.9 | 9.3 | 7.8 | 8.6 | 9.8 | 8.7 | 9.2 | | | | | 22 | 9.4 | 8.3 | 8.9 | 9.2 | 7.9 | 8.6 | 9.4 | 8.8 | 9.1 | | | | | 23
24 | 10.6
10.3 | 9.2
9.2 | 9.7
9.6 | 9.3
9.3 | 8.5
9.2 | 8.9
9.2 | 9.1
8.2 | 8.1
7.1 | 8.6
7.7 | | | | | 25 | 9.8 | 8.8 | 9.3 | 10.4 | 8.9 | 9.3 | 7.1 | 5.7 | 6.5 | | | | | 26 | 9.8 | 8.5 | 9.2 | 9.6 | 8.8 | 9.1 | 9.2 | 5.1 | 7.4 | | | | | 27
28 | 9.6
8.9 | 8.0
7.7 | 8.6
8.4 | 9.0
8.9 | 8.0
8.2 | 8.7
8.6 | 9.5
9.6 | 8.0
8.2 | 9.0
9.1 | | | | | 29
30 | 9.3
9.4 | 8.2
8.0 | 8.7
8.6 | 8.9
9.8 | 8.4
8.8 | 8.7
9.3 | 9.2
8.8 | 8.1
7.8 | 8.8
8.4 | | | | | 31 | 9.1 | 8.1 | 8.5 | | | | 9.3 | 8.0 | 8.6 | | | | | MONTH | 13.8 | 7.7 | 9.4 | 11.1 | 7.8 | 9.0 | 10.6 | 5.1 | 8.9 | | | | | | | JUNE | | | JULY | | 7 | AUGUST | | | SEPTEMBE | סי | | 1 | | | | 10.7 | 9.8 | 10.1 | 13.7 | 11.0 | 11.7 | 13.3 | 11.6 | 12.2 | | 2 | | | | 10.5 | 9.9 | 10.1 | 13.3 | 10.9 | 11.6 | 14.1 | 11.6 | 12.2 | | 3
4 | | | | 10.7
10.9 | 9.9
9.9 | 10.2
10.2 | 14.1
14.6 | 10.9
11.0 | 11.9
11.9 | 12.6
13.5 | $11.4 \\ 11.4$ | 11.8
11.9 | | 5 | | | | 11.1 | 10.0 | 10.4 | 14.8 | 11.0 | 12.3 | 12.9 | 11.5 | 12.0 | | 6 | | | | 11.1 | 10.0 | 10.4 | 12.0 | | | 13.4 | 11.4 | 12.0 | | 7
8 | | | | 11.3
11.3 | 10.1
10.0 | 10.5
10.5 | 13.9
14.2 | $\frac{11.2}{11.1}$ | $12.1 \\ 11.9$ | 13.6
14.0 | $\frac{11.4}{11.9}$ | 12.0
12.6 | | 9
10 | | | | 11.4
11.5 | 10.1
10.2 | 10.6
10.6 | 14.2
13.4 | $11.7 \\ 12.4$ | 12.4
12.7 | 13.9
12.9 | $11.4 \\ 11.4$ | 12.1
11.7 | | 11 | | | | 11.2 | 10.2 | 10.6 | 14.7 | 12.8 | 13.4 | 13.5 | 11.5 | 11.9 | | 12 | | | | 10.9 | 10.2 | 10.5 | 14.7 | 11.3 | 12.6 | 13.3 | 11.4 | 11.9 | | 13
14 | | | | $\frac{11.1}{11.4}$ | 10.2
10.2 | 10.6
10.6 | 12.7
13.0 | 11.3
11.4 | 11.5
11.8 | 12.1
12.8 | 11.4
11.5 | 11.6
12.0 | | 15 | | | | 11.2 | 10.3 | 10.7 | 13.9 | 11.1 | 12.1 | 14.2 | 12.3 | 13.1 | | 16 | | | | 11.3 | 10.4 | 10.7 | 12.0 | 11.1 | 11.4 | 14.5 | 11.6 | 12.8 | | 17
18 | | | | 11.2
11.6 | 10.5
10.5 | 10.7
10.8 | 12.7
14.1 | 11.1
11.3 | 11.6
12.2 | 12.1
12.8 | 11.7
11.7 | 11.9
12.0 | | 19 | | | | 11.4 | 10.6 | 10.8 | 13.0 | 11.4 | 11.9 | 12.3 | 11.8 | 12.1 | | 20 | | | | 11.9 | 10.6 | 11.1 | 13.1 | 11.2 | 11.8 | 12.9 | 11.8 | 12.3 | | 21
22 | | | | 11.9
12.0 | 10.6
10.6 | 11.1
11.2 | 13.4
13.1 | $\frac{11.1}{11.2}$ | 11.7
11.7 | $14.6 \\ 14.2$ | 12.3
12.1 | 13.1
13.1 | | 23 | | | | 11.8 | 10.7 | 11.0 | 14.2 | 11.3 | 12.0 | 13.7 | 11.5 | 12.6 | | 24
25 | 10.7 | 9.6
9.6 | 10.2
10.1 | 12.8
12.2 | 10.7
10.7 | 11.3
11.2 | 12.8
14.0 | 11.5
11.6 | 11.9
12.3 | 12.6
14.1 | $\frac{11.4}{11.7}$ | 12.1
12.5 | | | 10.5 | | | | | | | | | | | | | 26 | 10.8 | 9.6 | 10.0 | 12.3 | 10.8 | 11.3 | 13.8 | 11.3 | 12.1 | 15.5 | 13.1 | 14.2 | | 26
27 | 10.8
10.9 | 9.6 | 10.1 | 15.3 | 11.0 | 12.2 | 13.7 | 11.3 | 11.8 | 14.8 | 12.1 | 13.5 | | 26
27
28
29 | 10.8
10.9
10.7
10.9 | 9.6
9.7
9.7 | 10.1
10.1
10.2 | 15.3
15.3
13.5 | 11.0
11.6
11.0 | 12.2
12.7
12.1 | 13.7
13.0
13.1 | 11.3
11.3
11.3 | 11.8
11.7
11.8 | 14.8
14.0
15.6 | 12.1
12.0
13.6 | 13.5
12.8
14.1 | | 26
27
28 | 10.8
10.9
10.7 | 9.6
9.7 | 10.1
10.1 | 15.3
15.3 | 11.0
11.6 | 12.2
12.7 | 13.7
13.0 | 11.3
11.3 | 11.8
11.7 | 14.8
14.0 | 12.1
12.0 | 13.5
12.8 | --- --- 15.6 11.4 12.4 MONTH --- --- 15.3 9.8 10.9 ### 07053600 LAKE TANEYCOMO AT COLLEGE OF THE OZARKS--Continued OXYGEN DISSOLVED, (mg/L), WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DAY | MAX | MIN | MEAN | |--|--|--|--|--|--|--|--|--|--|--|--|--| | | | OCTOBER | | 1 | OVEMBER | | D | ECEMBER | | | JANUARY | • | | 1
2
3
4
5 |

6.37 |

4.98 |

5.80 | 7.88
8.52
6.71
8.61
7.31 | 5.43
6.13
5.39
5.04
5.16 | 6.73
7.09
6.15
6.61
6.01 | 7.34
7.43
6.96
7.35
6.90 | 5.79
6.13
5.66
5.44
5.53 | 6.39
6.87
6.22
5.91
6.08 | 9.45
8.95
9.41
8.95
8.43 | 6.98
6.91
7.04
7.19
7.49 | 7.87
7.37
7.72
7.83
8.03 | | 6
7
8
9
10 | 8.22
9.30
9.71
9.78
8.74 | 5.58
7.17
8.31
8.28
7.04 | 6.77
8.32
8.89
9.11
7.83 | 7.21
7.45
7.40
6.09
5.76 | 4.33
5.34
4.81
4.17
3.72 | 5.78
6.10
6.26
4.84
4.60 | 7.82
7.95
7.48
8.13
7.34 | 5.52
5.47
6.23
6.33
5.25 | 6.11
6.28
6.65
7.12
6.32 | 9.03
9.10
 | 7.7
7.71

 | 8.29
8.48
 | | 11
12
13
14
15 | 8.04
7.78
7.90
8.47
7.48 | 6.41
5.52
5.75
5.83
4.54 | 7.13
6.74
6.68
6.90
6.34 | 6.36
7.62
6.68
6.40
6.61 | 4.46
5.13
4.33
4.05
4.48 | 5.39
6.35
5.24
4.86
5.28 | 7.78
7.13
7.32
7.66
7.96 | 5.21
5.46
5.35
5.71
5.91 | 6.12
6.12
5.88
6.31
6.50 | |

 |

 | | 16
17
18
19
20 | 8.24
7.94
7.77
7.49
8.01 | 4.54
5.29
5.09
5.40
5.18 | 6.08
6.60
6.45
6.19
6.32 | 6.64
7.34
6.53
6.41
6.89 | 4.49
4.05
4.57
3.97 | 5.76
5.40
5.27
5.18
5.14 | 10.6
11.0
7.18
7.19
6.70 | 7.61
5.51
4.59
4.92
5.72 | 8.45
7.96
5.48
5.85
6.06 | |

 |

 | | 21
22
23
24
25 | 8.77
8.11
8.87
7.83
9.41 | 5.04
5.72
6.78
6.07
5.76 | 6.85
6.59
7.91
6.84
7.67 | 6.01
7.02
6.80
6.44
7.39 | 4.47
4.38
4.97
5.57
5.93 | 5.45
5.44
6.00
6.14
6.66 | 7.56
7.48
8.04
9.44
10.2 | 6.58
6.47
7.06
7.62
8.43 | 6.95
6.92
7.47
8.51
8.80 |

 |

 |

 | | 26
27
28
29
30
31 | 9.94
10.0
8.70
9.30
9.89
8.59 | 7.19
6.90
7.04
6.22
6.04
5.57 | 8.81
8.25
7.95
7.91
7.42
6.89 | 7.37
7.06
6.32
6.41
7.39 | 5.61
5.26
5.62
5.60
5.69 | 6.19
5.97
6.02
5.96
6.32 | 9.00
8.22
8.33
8.82
7.99 | 6.33
6.29
6.24
5.99
6.76 | 7.67
6.88
6.81
7.21
7.16 |

 |

 | | | MONTH | | | | 8.61 | 3.72 | 5.81 | JUNE | | | JULY | | | AUGUST | | | SEPTEMBE | IR. | | 1
2
3
4
5 | | JUNE |

 | 7.69
6.84
6.60
6.47
6.29 | | 6.08
5.80
5.64
5.42
5.21 |

 | AUGUST |

 | 9.98
10.5
8.10
10.6
11.4
| | 7.50
7.18
6.14
6.39
7.04 | | 2
3
4 | |

 | | 6.84
6.60
6.47 | 4.81
5.35
4.94
4.73 | 5.80
5.64
5.42 |
 |

 | | 9.98
10.5
8.10
10.6 | 5.79
5.81
4.57
3.12 | 7.50
7.18
6.14
6.39 | | 2
3
4
5
6
7
8
9 |

 | |

 | 6.84
6.60
6.47
6.29 | 4.81
5.35
4.94
4.73
4.48

3.47
5.47
5.70
5.60 | 5.80
5.64
5.42
5.21

6.70
6.75
6.54
6.52 |

10.4
10.8 |

2.97
4.54
3.65
2.79
2.54
3.59 |

5.54
6.89
6.94
7.24
6.11
5.11 | 9.98
10.5
8.10
10.6
11.4
11.6
10.9
10.8
10.8
10.1
8.39
9.55
6.90 | 5.79
5.81
4.57
3.12
5.12
3.72
2.95
3.05
4.82
3.78
2.87
3.10
4.43 | 7.50
7.18
6.14
6.39
7.04
6.13
6.13
7.22
7.29 | | 2
3
4
5
6
7
8
9
10
11
12
13
14 | | | | 6.84
6.60
6.47
6.29

9.45
8.52
7.68
7.92
8.46 | 4.81
5.35
4.94
4.73
4.48

3.47
5.47
5.70
5.60
5.63 | 5.80
5.64
5.42
5.21

6.70
6.75
6.54
6.52
6.68 |

10.4
10.8
8.91
9.69
9.44
6.58
8.64 |

2.97
4.54
3.65
2.79
2.54
3.59
1.12 |

5.54
6.89
6.94
7.24
6.11
5.11 | 9.98
10.5
8.10
10.6
11.4
11.6
10.8
10.8
10.1
8.39
9.55
6.90
7.56 | 5.79
5.81
4.57
3.12
5.12
3.72
2.95
3.05
4.82
3.78
2.87
3.10
4.43
4.85 | 7.50
7.18
6.14
6.39
7.04
6.13
6.13
7.22
7.29
5.40
5.34
5.86
5.83
6.25 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18 | | | | 6.84
6.60
6.47
6.29

9.45
8.52
7.68
7.92
8.46
8.12
8.16
7.60
8.01
7.41 | 4.81
5.35
4.94
4.73
4.48

3.47
5.47
5.60
5.63
5.65
5.58
5.46
5.43
5.31 | 5.80
5.64
5.42
5.21

6.70
6.75
6.54
6.52
6.68
6.53
6.51
6.24
6.14
6.02 |

10.4
10.8
8.91
9.69
9.44
6.58
8.64
9.24 | 2.97
4.54
3.65
2.79
2.54
3.59
1.12
1.86 | 5.54
6.89
6.94
7.24
6.11
5.11
5.40
5.85 | 9.98
10.5
8.10
10.6
11.4
11.6
10.8
10.8
10.1
8.39
9.55
6.90
7.56
8.90
8.72
5.96
5.32
6.14 | 5.79
5.81
4.57
3.12
5.12
3.72
2.95
3.05
4.82
3.78
2.87
3.10
4.43
4.85
4.46
4.30
2.85
3.61
4.56 | 7.50
7.18
6.14
6.39
7.04
6.13
7.22
7.29
5.40
5.34
5.86
6.25
7.13
6.39
4.80
4.54
5.13 | | 2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 | | | | 6.84
6.60
6.47
6.29

9.45
8.52
7.68
7.92
8.46
8.12
8.16
7.60
8.01
7.41
8.32
8.34
8.86
9.61
12.9 | 4.81
5.35
4.94
4.73
4.48

3.47
5.47
5.70
5.63
5.65
5.58
5.43
5.31
5.27
5.35
5.32
5.32
5.49
5.22 | 5.80
5.64
5.42
5.21

6.70
6.75
6.54
6.52
6.68
6.53
6.51
6.24
6.14
6.02
6.46
6.50
6.61
6.43
6.78 |

10.4
10.8
8.91
9.69
9.44
6.58
8.64
9.24
8.02

10.2
9.54
8.29 | 2.97
4.54
3.65
2.79
2.54
3.59
1.12
1.86
1.39 | 5.54
6.89
6.94
7.24
6.11
5.40
5.85
5.87 | 9.98
10.5
8.10
10.6
11.4
11.6
10.8
10.8
10.1
8.39
9.55
6.90
7.56
8.90
8.72
5.96
5.96
6.14
7.47
7.18
7.50
8.34
6.67 | 5.79 5.81 4.57 3.12 5.12 3.72 2.95 3.05 4.82 3.78 2.87 3.10 4.43 4.85 4.46 4.30 2.85 3.61 4.56 4.72 5.40 5.09 4.82 4.84 | 7.50
7.18
6.14
6.39
7.04
6.13
7.22
7.29
5.40
5.34
5.83
6.25
7.13
6.39
4.50
4.54
5.13
5.58 | # 07053700 LAKE TANEYCOMO AT BRANSON, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $36^\circ38^\circ09^\circ$, long $93^\circ12^\circ52^\circ$, in SE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.4, T.22 N., R.21 W., Taney County, Hydrologic Unit 11010003, 1,000 ft downstream of Turkey Creek, at bridge on Business Route 65 in Branson. PERIOD OF RECORD.--July 1977 to June 1991 and November 1996 to current year. | DATE | TIME | SAMPLE
TYPE | | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | |------------------|--|--|--|---|---|--|---|--|---|--|---|---|--| | NOV
27 | 0815 | ENVIRONM | ENTAL | 6.7 | 59 | 7.2 | 259 | 8.9 | 130 | 37.5 | 7.87 | 1.53 | 5.55 | | MAR
19 | 1700 | ENVIRONM | ENTAL | 11.1 | 99 | 8.0 | 256 | 8.6 | | | | | | | APR
23
23 | 0840
0845 | ENVIRONM
REPLICAT | | 12.5 | 111 | 7.8 | 236 | 8.8 | | | | | | | MAY
22 | 0750 | ENVIRONM | ENTAL | 8.6 | 78 | 7.7 | 243 | 9.8 | 70 | 21.4 | 4.15 | .13 | 4.57 | | JUN
18
18 | 0914
0915 | BLANK
ENVIRONM | ENTAL | 8.8 |
89 |
7.7 |
282 |
15.0 | | | | | | | JUL
23 | 1430 | ENVIRONM | ENTAL | 5.8 | 55 | 7.5 | 227 | 11.8 | | | | | | | DATE | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | | NOV 27 | 108 | 109 | 133 | 0 | 10.4 | <.1 | 8.6 | <10 | 158 | E.02 | .23 | .56 | <.008 | | MAR
19 | 120 | 121 | 147 | 0 | | | | 24 | | <.04 | .29 | .35 | E.006 | | APR
23
23 | 95
 | 96
 | 117 | 0 | | | | <10
<10 | | <.04
<.04 | .18
.24 | .44 | E.005
E.007 | | MAY
22
JUN | 102 | 104 | 127 | 0 | 8.92 | <.1 | 7.9 | <10 | 136 | <.04 | .18 | .63 | <.008 | | 18
18 |
111 | 110 | 135 | 0 | | | | <10 | | <.04 | .27 | .61 | E.005 | | JUL
23 | 96 | 97 | 119 | 0 | | | | <10 | | <.04 | .17 | .66 | .008 | | DATE | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | | NOV 27 | <.06 | <.02 | <.06 | K15 | K72 | K18 | 7 | 18 | .4 | <.04 | <.1 | <6 | 23 | | MAR
19 | <.06 | <.02 | E.04 | 270 | K1540 | 600 | | | | | | | | | APR
23
23 | <.06
<.06 | <.02
<.02 | <.06
<.06 | K5
K2 | <2
K4 | K2
K2 | | | | | | | | | MAY
22
JUN | <.06 | <.02 | <.06 | K8 | К6 | K8 | 4 | 15 | .3 | <.04 | <.1 | <6 | <10 | | 18 | <.06 | <.02 | <.06 |
K15 | 41 |
K18 | | | | | | | | | JUL
23 | <.06 | <.02 | <.06 | K1 | K10 | К3 | | | | | | | | # 07053700 LAKE TANEYCOMO AT BRANSON, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) |
ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82660) | 26DIMET
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | 3-BETA-
COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | 3METHYL
1(H)-
INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62058) | |------------------|---|--|--|--|--|--|---|---|---|---|---|--|---| | NOV
27 | <.08 | <1 | 20.8 | <.01 | <.3 | 9 | | | <.002 | | | | | | MAR
19 | | | | | | | | | <.006 | | | | | | APR
23
23 | | | | | | | | | <.006
<.006 | | | | | | 23
MAY
22 | E.07 | <1 | 5.3 | <.01 | E.3 | 1 | <.5 | <.5 | <.006 | <.5 | <.5 | <2 | <1 | | JUN
18 | | | | | | | | | <.006 | | | | | | 18
JUL | | | | | | | <.5 | М | <.006 | <.5 | E.1 | <2 | <1 | | 23 | | | | | | | <.5 | <.5 | <.006 | <.5 | <.5 | <2 | <1 | | DATE | 3-TERT-
BHA,
WATER,
FLTERD
REC
(µg/L)
(62059) | 4-CUMYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62060) | 4-OCTYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62061) | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62062) | 5METHYL
1HBENZO
TRIAZLE
WATER,
FLITERD
REC
(µg/L)
(62063) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ACETO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62064) | AHT NAPH- THALENE WATER, FLTERD REC (µg/L) (62065) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ANTHRA-
CENE
DISSOLV
(µg/L)
(34221) | ANTHRA-
QUINONE
WATER,
FLITERD
REC
(µg/L)
(62066) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | | NOV 27 | | | | | | <.004 | | | <.002 | <.005 | | | E.007 | | MAR
19 | | | | | | <.006 | | | <.004 | <.005 | | | E.004 | | APR 23 | | | | | | <.006 | | | <.004 | <.005 | | | E.006 | | 23
MAY
22 | | | | | | <.006 | | | <.004 | <.005 | | | E.006 | | JUN
18 | <5
 | <1 | <1 | <1 | <2 | <.006
<.006 | <.5 | <.5 | <.004 | <.005
<.005 | <.5 | <.5 | <.007
<.007 | | 18
JUL | <5 | <1 | <1 | <1 | <2 | <.006 | <.5 | <.5 | <.004 | <.005 | <.5 | <.5 | <.007 | | 23 | <5 | <1 | <1 | <1 | <2 | <.006 | <.5 | <.5 | <.004 | <.005 | <.5 | <.5 | <.007 | | DATE | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BENZO-
A-
PYRENE
DISSOLV
(µg/L)
(34248) | BENZO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | BETA-
SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | BRO-
MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | BROMO-
FORM
DISSOLV
(µg/L)
(34288) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAF-
FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | CAMPHOR
WATER,
FLTERD
REC
(µg/L)
(62070) | CAR-
BARYL
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | FURAN WATER FLTRD 0 .7 µ GF, REC (µg/L) (82674) | | NOV 27 | <.010 | | | | | | | <.002 | | | <.041 | | <.020 | | MAR
19 | <.010 | | | | | | | <.002 | | | <.041 | | <.020 | | APR 23 23 | <.010
<.010 | | | | | | | <.002
<.002 | | | <.041
<.041 | | <.020
<.020 | | MAY
22
JUN | <.010 | <.5 | M | <2 | <1 | <.5 | <.5 | <.002 | <.5 | <.5 | <.041 | <.5 | <.020 | | 18
18 | <.010
<.010 |
<.5 |
<.5 |
<2 |
<1 |
<.5 |
<.5 | <.002
<.002 |
<.5 |
<.5 | <.041
<.041 |
<.5 | <.020
<.020 | | JUL
23 | <.010 | <.5 | <.5 | <2 | <1 | <.5 | <.5 | <.002 | <.5 | <.5 | <.041 | <.5 | <.020 | # 07053700 LAKE TANEYCOMO AT BRANSON, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | COT-
ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA WATER FLTRD 0.7 µ GF, REC (µg/L) (82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | EPTC
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 μ
GF, REC
(μ g/L)
(82672) | |------------------|---|--|---|--|--|--|---|---|---|--|---|---|--| | NOV
27
MAR | <.005 | | | <.018 | <.003 | E.003 | <.005 | <.005 | <.02 | | <.002 | <.009 | <.005 | | 19
APR | <.005 | | | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | | <.002 | <.009 | <.005 | | 23
23 | <.005
<.005 | | | <.018
<.018 | <.003
<.003 | E.003
E.004 | <.005
<.005 | <.005
<.005 | <.02
<.02 | | <.002
<.002 | <.009
<.009 | <.005
<.005 | | MAY
22 | <.005 | <2 | <1 | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | <.5 | <.002 | <.009 | <.005 | | JUN
18
18 | <.005
<.005 |
<2 |
<1 | <.018
<.018 | <.003
<.003 | <.006
<.006 | <.005
<.005 | <.005
<.005 | <.02
<.02 |
<.5 | <.002
<.002 | <.009
<.009 | <.005
<.005 | | JUL
23 | <.005 | <2 | <1 | <.018 | <.003 | <.006 | E.002 | <.005 | <.02 | <.5 | <.002 | <.009 | <.005 | | DATE | FLUOR-
ANTHENE
DISSOLV
(µg/L)
(34377) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | HHHMCP-
BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62076) | ISOBOR-
NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | ISO-
PHORONE
DISSOLV
(µg/L)
(34409) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | LIN-
URON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | MENTHOL
WATER,
FLTERD
REC
(µg/L)
(62080) | METAL-
AXYL
WATER
FLTRD
REC
(µg/L)
(50359) | | NOV 27 | | <.003 | | | | | | | <.004 | <.035 | <.027 | | | | MAR
19 | | <.003 | | | | | | | <.004 | <.035 | <.027 | | | | APR
23 | | <.003 | | | | | | | <.004 | <.035 | <.027 | | | | 23
MAY | | <.003 | | | | | | | <.004 | <.035 | <.027 | | | | 22
JUN | <.5 | <.003 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.004 | <.035 | <.027 | <.5 | <.5 | | 18
18
JUL | <.5 | <.003
<.003 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.004
<.004 | <.035
<.035 | <.027
<.027 | <.5 | <.5 | | 23 | <.5 | <.003 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.004 | <.035 | <.027 | <.5 | <.5 | | DATE | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 μ
GF, REC
(μg/L)
(82667) | METHYL
SALICY-
LATE,
WATER,
FLTERD
REC
(µg/L)
(62081) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82671) | DEET,
WATER,
FLTERD
REC
(µg/L)
(62082) | NAPHTH-
ALENE
DISSOLV
(µg/L)
(34443) | NAPROP-
AMIDE
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82684) | NONYL-
PHENOL,
DIETHOX
WATER,
FLTERD
REC
(µg/L)
(62083) | DI-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | MONO-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) |
PARA-
CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | | NOV 27 | <.050 | <.006 | | <.013 | <.006 | <.002 | | | <.007 | | | | | | MAR
19 | <.050 | <.006 | | <.013 | <.006 | <.002 | | | <.007 | | | | | | APR
23
23 | <.050
<.050 | <.006
<.006 | | <.013
<.013 | <.006
<.006 | <.002
<.002 | | | <.007
<.007 | | | | | | MAY
22
JUN | <.050 | <.100 | <.5 | <.013 | <.006 | <.002 | М | <.5 | <.007 | <5 | <1 | <1 | <1 | | 18
18 | <.050
<.050 | <.006
<.006 |
<.5 | <.013
<.013 | <.006
<.006 | <.002
<.002 |
M |
E.1 | <.007
<.007 |
<5 |
<1 |
<1 |
<1 | | JUL
23 | <.050 | <.006 | <.5 | <.013 | <.006 | <.002 | E.2 | <.5 | <.007 | <5 | <1 | <1 | М | ### 07053700 LAKE TANEYCOMO AT BRANSON, MO--Continued (Ambient Water-Quality Monitoring Network) WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | PARA-
NONYL-
PHENOL,
WATER,
FLITERD
REC
(µg/L)
(62085) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PENTA-
CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | PHENAN
-THRENE
DISSOLV
(µg/L)
(34462) | PHENOL
WATER
FILTRD
(µg/L)
(34466) | PHORATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | |-----------------|---|--|--|---|---|---|--|--|--|--|---|---|---| | NOV 27 | | <.003 | <.007 | <.002 | <.010 | | <.006 | | | <.011 | <.01 | <.004 | <.010 | | MAR
19 | | <.003 | <.010 | <.004 | <.022 | | <.006 | | | <.011 | M | <.004 | <.010 | | APR
23
23 | | <.003
<.003 | <.010
<.010 | <.004
<.004 | <.022
<.022 | | <.006
<.006 | | | <.011
<.011 | <.01
<.01 | <.004
<.004 | <.010
<.010 | | MAY
22 | <5 | <.003 | <.010 | <.004 | <.022 | <2 | <.006 | <.5 | E.3 | <.011 | <.01 | <.004 | <.010 | | JUN
18
18 |
<5 | <.003
<.003 | <.010
<.010 | <.004
<.004 | <.022
<.022 |
<2 | <.006
<.006 |
<.5 |
<.5 | <.011
<.011 | <.01
<.01 | <.004
<.004 | <.010
<.010 | | JUL
23 | <5 | <.003 | <.010 | <.004 | <.022 | <2 | <.006 | <.5 | .7 | <.011 | <.01 | <.004 | <.010 | | DATE | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | PYRENE
DISSOLV
(µg/L)
(34470) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | STIGMA-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | TETRA-
CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | THIO-
BENCARB
WATER
FLITRD
0.7 µ
GF, REC
(µg/L)
(82681) | FYROL
CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | FYROL
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | | NOV 27 | <.011 | <.02 | | <.011 | | <.02 | <.034 | <.02 | | <.005 | | | <.002 | | MAR
19 | <.011 | <.02 | | <.005 | | <.02 | <.034 | <.02 | | <.005 | | | <.002 | | APR
23
23 | <.011
<.011 | <.02
<.02 | | <.005
<.005 | | <.02
<.02 | <.034
<.034 | <.02
<.02 | | <.005
<.005 | | | <.002
<.002 | | MAY
22 | <.011 | <.02 | <.5 | <.005 | <2 | <.02 | <.034 | <.02 | <.5 | <.005 | <.5 | <.5 | <.002 | | JUN
18
18 | <.011
<.011 | <.02
<.02 |
<.5 | <.005
<.005 |
<2 | <.02
<.02 | <.034
<.034 | <.02
<.02 |
<.5 | <.005
<.005 |
<.5 |
<.5 | <.002
<.002 | | JUL
23 | <.011 | <.02 | <.5 | <.005 | <2 | <.02 | <.034 | <.02 | <.5 | <.005 | <.5 | <.5 | <.002 | | | | DATE | | TRIBUTL PHOS- PHATE, WATER, FLTERD REC (µg/L) (62089) | TRICLO-
SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | TRI-
ETHYL
CITRATE
WATER,
FLTERD
REC
(µg/L)
(62091) | TRI-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | TRIPHNL PHOS- PHATE, WATER, FLTERD REC (µg/L) (62092) | TRIS(2-BUTOXE-PHOS-PHATE, WATER, FLTERD (µg/L) (62093) | | | | | | | | NOV 27 | | | | | <.009 | | | | | | | | | | MAR
1
APR | 9 | | | | <.009 | | | | | | | | | | 2 2 | 3
3 | | | | <.009
<.009 | | | | | | | | | | MAY
2
JUN | 2 | <.5 | <1 | <.5 | <.009 | <.5 | <.5 | | | | | | | | | 8 | <.5 | <1 | <.5 | <.009
<.009 | <.5 | <.5 | | | | | | | | | 3 | <.5 | <1 | <.5 | <.009 | М | <.5 | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### 07053810 BULL CREEK NEAR WALNUT SHADE, MO LOCATION.--Lat 36°43'05", long 93°12'24", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.4, T.23 N., R.21 W., Taney County, Hydrologic Unit 11010003, on downstream side of State Highway F bridge pier, 1.3 miles southwest of Walnut Shade and 3.9 miles upstream from Lake Taneycomo. DRAINAGE AREA. -- 191 mi². PERIOD OF RECORD.--October 1994 to September 1996, October 1997 to current year. Stage only station July 1991 to September 1994, and October 1996 to September 1997. GAGE.--Water-stage recorder. Datum of gage is 712.45 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records fair. U.S. Army Corps of Engineers satellite telemeter at station. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAY AUG 3.3 8.3 6.5 3.2 7.3 5.7 7 1 6.2 6.4 3.0 5.5 6.0 5.2 6.0 7.6 5.5 4.7 6.3 5.0 3 7 4.7 3.6 6.1 8.9 5.3 6.3 3.3 351 6.4 3.0 6.6 2.9 2.9 3.4 9.9 3.7 1370 35 2040 50 8.0 7.5 4.0 4.5 7.5 6.0 7.2 6.2 8.7 136 463 285 284 33 22 5.2 4.5 7.9 6.2 8.3 5.0 4.4 9.1 7.7 4.0 3.8 8.5 ___ 8 0 3 0 9.7 MEAN 12 9 25 7 74 2 20.8 7 62 4 83 MAX MIN 2.8 9.7 4.5 2.9 STATISTICS OF MONTHLY MEAN DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) 72.9 28.2 MEAN 25.6 15.1 MAX 72.3 45.8 (WY) 44.0 4.75 6.24 74.7 72.4 68.0 63.9 31.4 34.7 2.31 3.02 4.77 MIN SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR FOR PERIOD OF RECORD ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN 95.1 HIGHEST DAILY MEAN Feb 24 May May 8 2002 LOWEST DAILY MEAN Oct Sep 14 1996 2.8 Oct 2.8 1.6 ANNUAL SEVEN-DAY MINIMUM 3.3 Sep 28 3.2 Sep 1.8 Aug 17 1992 May May MAXIMUM PEAK FLOW ---May 8 2002 MAXIMUM PEAK STAGE 14.41 8 2002 14.41 May INSTANTANEOUS LOW FLOW ___ 2 4 1.6 Sep 13 1996 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS 8.4 6.1 5.7 $^{^{\}rm a}$ From rating extended above 12,500 ft $^{\rm 3}/{\rm s}$. # 07053900 SWAN CREEK NEAR SWAN, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat $36^\circ47^\circ02^*$, long $93^\circ05^\circ04^*$, in SW $\frac{1}{4}$ SE $\frac{1}{4}$ Nec.3, T.24 N., R.20 W., Taney County, Hydrologic Unit 11010003, 0.8 mi south of Swan, 4.0 mi northwest of Highway 76 on County Highway AA. DRAINAGE AREA.--148 mi². PERIOD OF RECORD. -- November 1999 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|--|---|---|--|--|---|--|--|---
---|--|---|---| | NOV 27 27 | 1040
1045 | ENVIRONMENTAL
BLANK | | 48 | 9.6 | 88 | 7.8 | 423 | 10.1 | 230 | 50.7 | 25.9 | .61
 | | JAN
08
08
MAR | 0830
0835 | ENVIRONMENTAL
BLANK | | 38 | 13.7 | 105 | 7.3 | 388 | 3.1 | | | | | | 19
19
MAY | 1315
1320 | ENVIRONMENTAL
BLANK | | 1400 | 11.3 | 103 | 8.0 | 306
 | 9.6 | | | | | | 22
22
JUL | 1030
1031 | ENVIRONMENTAL
BLANK | | 232 | 9.0 | 92
 | 8.0 | 355
 | 15.1 | 180 | 41.2 | 18.6
.010 | .31
<.10 | | 23
23
SEP | 1220
1225 | ENVIRONMENTAL
BLANK | | 44 | 7.4 | 92
 | 8.1 | 415 | 24.8 | | | | | | 17
17 | 1200
1201 | ENVIRONMENTAL
BLANK | | 7.8 | 6.4 | 77
 | 8.0 | 455
 | 23.0 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
27
27 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N) | | NOV
27
27
JAN
08 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE
IT
FIELD (mg/L
as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV 27 27 JAN 08 08 MAR 19 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 217 195 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 218 197 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.02 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 E.05 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .15 <.05 | | NOV
27
27
JAN
08
08
MAR
19
19
MAY
22 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 217 195 148 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 218 197 148 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
265

240

180 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <17 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.02 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 E.05 <.10 .32 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .15 <.05 .48 <.05 | | NOV 27 27 JAN 08 08 MAR 19 19 MAY 22 | DIS-
SOLVED
(mg/L
as Na)
(00930)
2.22

2.00 | WATER UNFLIRD FET FIELD (mg/L as CaCO ₃) (00410) 217 195 148 183 | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) 218 197 148 184 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
265

240

180

225 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
6.37

3.96 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
<.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
6.4

4.4 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
232
<10

197 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 E.02 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 E.05 <.10 .32 <.10 E.07 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .15 <.05 .48 <.05 .17 <.05 | # 07053900 SWAN CREEK NEAR SWAN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |------------------------|--|--|--|---|--|--|--|--|---|--|---|--|--| | NOV
27
27 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | K3
 | 52
 | 160
 | 5
 | 13 | E.1
<.2 | <.04
<.04 | <.1
<.1 | <6
<6 | | JAN
08
08
MAR | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | K1
 | K9
 | K9
 | | | | | | | | 19
19
MAY | <.008
<.008 | <.06
<.06 | <.02
<.02 | E.04
<.06 | 570
 | K1480
 | 907
 | | | | | | | | 22
22
JUL | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | K10
 | 31
 | 98
 | 5
<1 | 16
<2 | E.1
<.2 | <.04
<.04 | <.1
.5 | <6
<6 | | 23
23
SEP | E.004
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | 160
 | 29
 | 315
 | | | | | | | | 17
17 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | K98
 | 21 | 73
 | | | | | | | | | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | NOV
2 | 7 | <10 | <.08 | <1 | E3.1 | <.01 | <.3 | | 5 | | | | | | JAN | 7
8 | <10 | E.05 | <1 | <2.0 | <.01 | <.3 | | 3 | | | | | | | 8 | | | | | | | | | | | | | | | 9
9 | | | | | | | | | | | | | | 2 | 2 | E5
<10 | E.04
<.08 | M
<1 | 3.2
<2.0 | <.01
<.01 | <.3
<.3 |
<1 | 2
<1 | | | | | | 2 | 3 | | | | | | | | | | | | | | 1 | 7
7 | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value.
M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. # 07054080 BEAVER CREEK AT BRADLEYVILLE, MO LOCATION.--Lat $36^\circ46^\circ47^\circ$, long $92^\circ54^\circ25^\circ$, in NE $\frac{1}{4}$ SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.11, T.24 N., R.18 W., Taney County, Hydrologic Unit 11010003, on downstream side of right bridge pier on State Highway 76 and 0.5 mi east of Bradleyville. DRAINAGE AREA.--298 mi². PERIOD OF RECORD.--October 1994 to current year. GAGE.--Water-stage recorder. Datum of gage is 803.00 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records good except for estimated daily discharges, and those above 3,000 ${\rm ft}^3/{\rm s}$, which are fair. U.S.G.S. satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | AR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|-------------------------------------|--|---|-----------------------------------|--|--|--|------------------------------------|---|-------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 23
23
23
23
23
31 | 23
29
32
30
29 | 189
152
115
93
78 | 140
129
123
118
113 | 3080
1100
750
582
480 | 148
254
472
391
357 | 313
282
253
229
213 | 594
603
504
467
432 | 265
241
219
203
224 | e75
72
80
73
69 | 46
44
43
42
40 | 39
38
36
35
34 | | 6
7
8
9 | 34
32
28
27
35 | 28
27
27
27
26 | 69
61
55
49
45 | 111
105
101
98
96 | 420
372
330
296
262 | 363
356
334
330
325 | 199
297
7420
1980
1160 | 617
605
11800
4810
2340 | 231
200
179
168
166 | 65
62
59
56
54 | 40
43
40
38
37 | 33
32
32
31
31 | | 11
12
13
14
15 | 50
45
40
36
33 | 25
25
25
25
25
24 | 42
261
641
400
279 | 92
88
86
84
82 | 234
217
199
184
174 | 312
305
281
264
298 | 839
695
734
1380
790 | 1450
1310
3560
1460
1040 | 163
186
257
231
184 | 53
84
75
63
57 | 38
37
546
271
159 | 31
31
30
31
33 | | 16
17
18
19
20 | 31
29
28
27
26 | 24
24
24
32
31 | 4910
8090
2070
1030
692 | 79
78
76
79
75 | 164
154
146
174
263 | 416
396
358
1470
2340 | 661
707
610
569
1130 | 839
5090
2640
1420
1000 | 158
142
130
120
112 | 57
55
426
254
131 | 112
91
82
71
64 | 33
35
36
39
47 | | 21
22
23
24
25 | 25
24
24
24
24 | 29
26
29
294
226 | 550
460
384
324
275 | 74
73
137
496
398 | 278
242
220
204
189 | 1150
775
629
548
649 | 2060
837
656
591
538 | 773
653
575
535
494 | e106
e102
e97
e94
e105 | 101
82
84
76
68 | 59
54
53
58
64 | 41
35
33
32
31 | | 26
27
28
29
30
31 | 23
22
22
22
23
23 | 133
92
81
85
166 | 243
219
199
181
163
151 | 332
279
245
219
203
2540 | 174
161
151
 | 648
547
488
444
393
350 | 472
462
459
418
538 | 434
391
362
343
317
290 | e95
e88
e84
e79
e77 | 61
58
53
50
50 | 55
51
48
45
43
41 | 31
31
31
31
30 | | MEAN
MAX
MIN | 28.4
50
22 | 56.6
294
23 | 725
8090
42 | 224
2540
73 | 400
3080
146 | 529
2340
148 | 916
7420
199 | 1540
11800
290 | 157
265
77 | 85.5
426
48 | 79.2
546
37 | 33.8
47
30 | | STATIST | CICS OF MO | NTHLY MEA | N DATA FO | R WATER Y | EARS 1994 | - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 55.9
134
1999
25.9
2001 | 264
1074
1997
28.4
2000 | 236
725
2002
62.7
2000 | 325
919
1995
56.8
2000 | 538
991
1999
105
2000 | 540
1349
1998
142
2000 | 537
935
1995
70.9
2000 | 543
1540
2002
37.8
2000 | 195
593
1995
41.1
2001 | 81.0
168
1995
49.7
1997 | 65.6
168
1995
22.5
2001 | 82.4
309
1996
22.5
2001 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 | WATER YEA | AR. | WATER YEA | ARS 1994 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT 10 PERC 50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY I PEAK STA ANEOUS LO SENT EXCEE SENT EXCEE | AN AN N MINIMUM W GE W FLOW DS | | 8090
15
17

326
58
23 | Dec 1
Sep
Sep | 7 | 399 11800 22 23 20800 17.92 22 Oct 718 120 29 | May
Oct 27-2
Oct 2
May
May
3,4,26-3 | 29
26
8
8 | 287
464
62.5
11800
15
17
20800
17.92
14
650
100
30 | Sep
Sep
May
May | 1995
2000
8 2002
7 2001
1 2001
8 2002
8 2002
7 2001 | e Estimated # 07057500 NORTH FORK RIVER NEAR TECUMSEH, MO LOCATION.--Lat $36^{\circ}37^{\circ}22^{\circ}$, long $92^{\circ}14^{\circ}53^{\circ}$, in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.35, T.23 N., R.12 W., Ozark County, Hydrologic Unit 11010006, on right bank 3.2 mi downstream from Spring Creek, 3.5 mi northeast of Tecumseh. DRAINAGE AREA.--561 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD. -- October 1944 to current year. GAGE.--Water-stage recorder. Datum of gage is 584.67 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). Prior to May 12, 1945, nonrecording gage at same site and datum 0.22 ft lower. REMARKS.--Water-discharge records good. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBER | 2002 | | | |---|--|---------------------------------------|--|--|---------------------------------|--|---|---|---------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 272 | 262 | 429 | 402 | 3530 | 466 | 1090 | 1170 | 1010 | 510 | 473 | 422 | | 2 | 271 | 265 | 424 | 389 | 1930 | 485 | 1040 | 1130 | 967 | 516 | 470 | 416 | | 3 | 271 | 265 | 382 | 380 | 1360 | 523 | 966 | 1060 | 928 | 504 | 460 | 413 | | 4 | 269 | 262 | 357 | 373 | 1080 | 581 | 900 | 1000 | 895 | 497 | 455 | 407 | | 5 | 277 | 260 | 341 | 372 | 908 | e555 | 856 | 948 | 915 | 499 | 445 | 400 | | 6
7
8
9
10 | 274
271
268
265
279 | 257
256
251
250
247 | 341
329
319
308
302 | 369
361
354
348
348 | 814
754
700
653
623 | e525
e505
e480
2480
2440 | 879
5790 | 940
996
22500
7880
4540 | 917
854
811
834
911 | 489
475
475
468
469 | 447
453
434
427
421 | 394
392
390
387
383 | | 11 | 305 | 247 | 298 | 343 | 588 | 1740 | 2070 | 3120 | 1100 | 478 | 418 | 378 | | 12 | 301 | 244 | 307 | 339 | 556 | 1490 | 1770 | 2550 | 998 | 494 | 419 | 374 | | 13 | 301 | 242 | 339 | 335 | 536 | 1330 | 1720 | 6720 | 902 | 484 | 1520 | 372 | | 14 | 291 | 242 | 376 | 330 | 515 | 1200 | 4820 | 3690 | 831 | 494 | 1510 | 369 | | 15 | 281 | 242 | 412 | 327 | 499 | 1090 | 3090 | 2750 | 781 | 482 | 903 | 368 | | 16 | 278 | 242 | 611 | 322 | 484 | 1080 | 2290 | 2280 | 746 | 469 | 732 | 364 | | 17 | 277 | 242 | 2990 | 322 | 470 | 1100 | 2020 | 4790 | 716 | 469 | 641 | 369 | | 18 | 270 | 241 | 2130 | 322 | 459 | 1030 | 1880 | 4790 | 695 | 632 | 586 | 369 | | 19 | 269 | 242 | 1310 | 323 | 471 | 1970 | 1670 | 3220 | 675 | 839 | 550 | 370 | | 20 | 269 | 239 | 975 | 318 | 557 | 6330 | 1520 | 2550 | 651 | 745 | 523 | 405 | | 21 | 269 | 238 | 804 | 312 | 670 | 3500 | 2400 | 2140 | 632 | 660 | 495 | 405 | | 22 | 268 | 238 | 708 | 307 | 636 | 2420 | 1810 | 1860 | 613 | 581 | 476 | 394 | | 23 | 269 | 238 | 638 | 309 | 593 | 1950 | 1500 | 1680 | 597 | 582 | 463 | 378 | | 24 | 277 | 282 | 582 | 414 | 564 | 1690 | 1360 | 1540 | 584 | 632 | 473 | 367 | | 25 | 272 | 353 | 539 | 596 | 545 | 1660 | 1270 | 1440 | 581 | 562 | 484 | 362 | | 26
27
28
29
30
31 | 269
269
267
266
264
260 | 376
336
334
350
376 | 506
480
462
443
427
413 | 573
526
489
461
436
749 | 524
495
476
 | 1850
1690
1550
1440
1300
1180 | 1170
1110
1090
1060
1080 | 1330
1250
1200
1150
1100
1060 | 565
549
542
536
528 | 528
510
492
483
486
474 | 533
496
468
452
438
431 | 358
361
355
350
348 | | MEAN |
274 | 271 | 622 | 392 | 785 | 1536 | 1858 | 3044 | 762 | 532 | 564 | 381 | | MAX | 305 | 376 | 2990 | 749 | 3530 | 6330 | 5790 | 22500 | 1100 | 839 | 1520 | 422 | | MIN | 260 | 238 | 298 | 307 | 459 | 466 | 816 | 940 | 528 | 468 | 418 | 348 | | IN. | 0.56 | 0.54 | 1.28 | 0.81 | 1.46 | 3.16 | 3.70 | 6.26 | 1.52 | 1.09 | 1.16 | 0.76 | | MEAN | 410 | 648 | 703 | 720 | 861 | 1073 | 1252 | 1150 | 758 | 537 | 414 | 422 | | MAX | 1040 | 2751 | 2842 | 2322 | 2872 | 2473 | 3623 | 3044 | 2515 | 1632 | 889 | 2093 | | (WY) | 1985 | 1986 | 1983 | 1950 | 1985 | 1945 | 1945 | 2002 | 1945 | 1951 | 1958 | 1993 | | MIN | 214 | 224 | 223 | 201 | 261 | 290 | 359 | 343 | 276 | 239 | 204 | 193 | | (WY) | 1957 | 1955 | 1956 | 1956 | 1964 | 1981 | 2000 | 2001 | 1954 | 1954 | 1954 | 1954 | | SUMMARY | STATISTIC | CS | FOR 2 | 001 CALENI | DAR YEAR | F | OR 2002 WAT | TER YEAR | | WATER YE | ARS 1945 | - 2002 | | LOWEST ANIGHEST LOWEST DANNUAL SMAXIMUM MAXIMUM INSTANTI ANNUAL DO PERCE SO PERCE | ANNUAL MI
ANNUAL MEA
DAILY MEA
DAILY MEAN | AN AN N MINIMUM W SE W FLOW NCHES) DS | | 416 4590 238 No 240 10.06 577 322 269 | Feb 25
ov 21-23
Nov 17 | | 921 22500 238 No. 240 55700 22.30 238 No. 22.28 1850 495 269 | May 8
DV 21-23
NOV 17
May 8
May 8
DV 18-23 | | 744
1555
299
45100
187
188
133000
28.10
187
18.03
1340
499
291 | Nov 19
Sep 19
Sep 19
Nov 19
Sep 19 | 5 1954
2 1954
9 1985
9 1985 | e Estimated # 07057500 NORTH FORK RIVER NEAR TECUMSEH, MO--Continued (Ambient Water-Quality Monitoring Network) # WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1969 to June 1972, October 1978 to September 1979, November 1983 to June 1987, November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|---|---|---|---|--|---|--|---|--|---|---| | NOV
26 | 1515 | ENVIRONM | ENTAL | 367 | 10.4 | 100 | 7.8 | 391 | 12.1 | 220 | 45.5 | 25.7 | .63 | | JAN
07 | 1455 | ENVIRONM | ENTAL | 358 | 14.1 | 121 | 7.5 | 353 | 8.2 | | | | | | MAR
20 | 1345 | ENVIRONM | ENTAL | 6740 | 9.8 | 91 | 7.8 | 168 | 11.4 | | | | | | MAY
21 | 1400 | ENVIRONM | ENTAL | 2090 | 9.6 | 98 | 7.8 | 245 | 15.7 | 130 | 26.8 | 14.7 | .65 | | JUL
23 | 0900 | ENVIRONM | ENTAL | 589 | 7.4 | 83 | 7.8 | 362 | 19.0 | | | | | | SEP
16 | 1430 | ENVIRONM | ENTAL | 364 | 11.4 | 125 | 7.8 | 388 | 19.0 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
26 | 1.64 | 207 | 208 | 254 | 0 | 6.59 | .1 | 4.5 | <10 | 212 | . 09 | E.08 | . 28 | | JAN
07 | | 161 | 163 | 198 | 0 | | | | <10 | | <.04 | E.08 | 1.48 | | MAR
20 | | 77 | 77 | 93 | 0 | | | | 104 | | <.04 | .81 | .51 | | MAY
21 | 2.04 | 109 | 111 | 136 | 0 | 8.29 | <.1 | 3.0 | <10 | 135 | <.04 | .10 | . 26 | | JUL
23 | | 186 | 188 | 229 | 0 | | | | <10 | | <.04 | E.10 | .79 | | SEP
16 | | 196 | 199 | 242 | 0 | | | | <10 | | <.04 | .10 | .62 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-PHORUS ORTHO, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER DIS- SOLVED (µg/L as Cu) (01040) | | NOV
26 | <.008 | <.06 | <.02 | <.06 | К3 | 33 | 50 | 8 | 17 | . 4 | <.04 | - 1 | <6 | | JAN
07 | <.008 | <.06 | <.02 | <.06 | K3
<1 | | K2 | 0 | ±/ | .4 | <.04 | <.1 | | | MAR
20 | .010 | .07 | .04 | .17 | K1200 | 4900 | 5000 | | | | | | | | MAY
21 | E.005 | <.06 | <.02 | <.06 | K40 | K233 | 123 | 38 | 76 | <.2 | <.04 | <.1 | <6 | | JUL
23 | E.006 | <.06 | <.02 | <.06 | 140 | 413 | 1380 | | | | | | | | SEP
16 | <.008 | <.06 | <.02 | <.06 | K3 | K14 | K7 | | | | | | | # 07057500 NORTH FORK RIVER NEAR TECUMSEH, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 26 | <10 | <.08 | <1 | E1.2 | <.01 | <.3 | 4 | 4 | | JAN | | | | | | | | | | 07 | | | | | | | | | | MAR | | | | | | | | | | 20 | | | | | | | | | | MAY | | | | | | | | | | 21 | 41 | .28 | 1 | 7.6 | <.01 | <.3 | | 3 | | JUL | | | | | | | | | | 23 | | | | | | | | | | SEP | | | | | | | | | | 16 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 07057750 BRYANT CREEK BELOW EVANS, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 36°52'16", long 92°28'18", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.10, T.25 N., R.14 W., Douglas County, Hydrologic Unit 11010006, 13 mi south of Ava, 12 mi west of Highway 95 and Highway 14 intersection, on Highway 14. DRAINAGE AREA.--214 mi². PERIOD OF RECORD. -- November 1993 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|---
--|---|--|---|---| | NOV 27 | 1350 | ENVIRONM | ENTAL | 50 | 11.2 | 103 | 7.8 | 401 | 10.6 | 230 | 47.8 | 26.4 | 1.37 | | JAN
08 | 1220 | ENVIRONM | ENTAL | 49 | 12.4 | 99 | 7.5 | 402 | 4.5 | | | | | | MAR
20 | 1020 | ENVIRONM | ENTAL | 1000 | 10.8 | 98 | 7.9 | 275 | 10.0 | | | | | | MAY
21 | 1627 | ENVIRONM | ENTAL | 4500 | 10.0 | 106 | 7.8 | 297 | 17.0 | 160 | 33.9 | 17.6 | .42 | | JUL
22 | 1525 | ENVIRONM | ENTAL | 50 | 10.6 | 136 | 8.2 | 394 | 26.1 | | | | | | SEP
17 | 0920 | ENVIRONM | ENTAL | 40 | 6.4 | 74 | 7.8 | 417 | 20.8 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
27
JAN | 2.27 | 211 | 214 | 261 | 0 | 6.45 | <.1 | 4.9 | <10 | 200 | <.04 | .10 | .64 | | 08
MAR | | 192 | 195 | 238 | 0 | | | | 10 | | <.04 | E.06 | .95 | | 20
MAY | | 135 | 135 | 165 | 0 | | | | 22 | | <.04 | .28 | .37 | | 21
JUL | 2.18 | 147 | 148 | 181 | 0 | 3.72 | <.1 | 3.8 | 10 | 161 | <.04 | E.09 | .33 | | 22
SEP | | 199 | 198 | 242 | 0 | | | | <10 | | <.04 | .10 | . 29 | | 17 | | 217 | 219 | 267 | 0 | | | | <10 | | <.04 | .10 | . 45 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV 27 | E.005 | <.06 | <.02 | <.06 | 63 | 59 | 120 | 8 | 36 | . 4 | <.04 | <.1 | <6 | | JAN
08 | E.005 | <.06 | <.02
E.01 | <.06 | <1 | K3 | 120
K7 | 8 | 36 | .4 | <.04 | <.1 | < b | | MAR
20 | E.007 | E.04 | <.02 | E.05 | K42 | 600 | 528 | | | | | | | | MAY
21 | E.004 | <.06 | <.02 | E.03 | K50 | 125 | 240 | 24 | 95 | .2 | <.04 | <.1 | <6 | | JUL
22 | E.005 | <.06 | <.02 | <.06 | K50 | 26 | 41 | | | . 2 | | | | | SEP
17 | <.008 | <.06 | <.02 | <.06 | 360 | 480 | 940 | | | | | | | # 07057750 BRYANT CREEK BELOW EVANS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 27 | <10 | <.08 | <1 | 4.7 | <.01 | <.3 | 1 | 4 | | JAN | | | | | | | | | | 08 | | | | | | | | | | MAR | | | | | | | | | | 20 | | | | | | | | | | MAY | | | | | | | | | | 21 | 19 | .17 | <1 | 13.5 | <.01 | <.3 | | 2 | | JUL | | | | | | | | | | 22 | | | | | | | | | | SEP | | | | | | | | | | 17 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 07058000 BRYANT CREEK NEAR TECUMSEH, MO LOCATION.--Lat 36°37'33", long 92°18'16", in E $\frac{1}{2}$ sec.32, T.23 N., R.12 W., Ozark County, Hydrologic Unit 11010006, on left bank 0.8 mi downstream from Pine Creek, 3 mi northwest of Tecumseh, and 5 mi upstream from mouth. DRAINAGE AREA. -- 570 mi². PERIOD OF RECORD.--October 1944 to September 1985, October 1994 to September 1996, October 1998 to current year. REVISED RECORDS.--WSP 1117: Drainage area. WSP 1441: 1945, 1946-47(M), 1950. WSP 1731: 1945-47, 1950. GAGE.--Water-stage recorder. Datum of gage 573.15 ft above National Geodetic Vertical Datum of 1929 (levels by Corps of Engineers). Prior to July 30, 1945, nonrecording gage at same site and datum. REMARKS.--Records fair. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | R SECOND, W | | | ER 2001 TO | SEPTEMBE | R 2002 | | | |--|--|--|--|---|---------------------------|---|---|--|---------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 111 | 125 | 239 | 228 | 3670 | 252 | 668 | 1110 | 1150 | 265 | 223 | 178 | | 2 | 118 | 131 | 218 | 213 | 1560 | 279 | 617 | 1030 | 1070 | 272 | 206 | 175 | | 3 | 117 | 133 | 199 | 206 | 1090 | 313 | 558 | 934 | 954 | 283 | 200 | 174 | | 4 | 117 | 130 | 193 | 197 | 870 | 328 | 506 | 865 | 887 | 272 | 196 | 171 | | 5 | 123 | 129 | 182 | 193 | 733 | 340 | 488 | 805 | 889 | 260 | 187 | 168 | | 6 | 129 | 127 | 188 | 197 | 623 | 347 | 459 | 800 | 826 | 252 | 274 | 165 | | 7 | 129 | 125 | 181 | 189 | 555 | 357 | 665 | 927 | 688 | 246 | 277 | 164 | | 8 | 123 | 124 | 175 | 190 | 490 | 366 | 7150 | 19300 | 615 | 245 | 207 | 165 | | 9 | 121 | 124 | 165 | 184 | 445 | 1770 | 3800 | 9180 | 602 | 233 | 192 | 161 | | 10 | 128 | 124 | 159 | 181 | 410 | 1190 | 2090 | 4310 | 632 | 233 | 187 | 160 | | 11 | 157 | 123 | 154 | 175 | 378 | 917 | 1580 | 2790 | 621 | 246 | 185 | 160 | | 12 | 154 | 122 | 161 | 177 | e345 | 827 | 1370 | 2210 | 568 | 260 | 184 | 161 | | 13 | 152 | 122 | 185 | 166 | e325 | 744 | 1290 | 7220 | 637 | 338 | 2770 | 159 | | 14 | 142 | 122 | 266 | 162 | e305 | 687 | 2830 | 3440 | 605 | 323 | 1450 | 157 | | 15 | 133 | 122 | 280 | 167 | 285 | 638 | 2020 | 2450 | 518 | 274 | 750 | 159 | | 16 | 131 | 124 | 736 | 164 | 271 | 655 | 1540 | 2020 | 477 | 254 | 520 | 161 | | 17 | 129 | 124 | 5500 | 162 | 259 | 640 | 1670 | 5940 | 444 | 243 | 388 | 172 | | 18 | 133 | 124 | 2460 | 156 | 249 | 612 | 1500 | 7070 | 414 | 294 | 338 | 176 | | 19 | 131 | 128 | 1340 | 166 | 273 | 1860 | 1280 | 3520 | 426 | 302 | 296 | 180 | | 20 | 129 | 127 | 923 | 169 | 359 | 4440 | 1220 | 2570 | 399 | 293 | 275 | 213 | | 21 | 129 | 124 | 716 | 166 | 363 | 2460 | 3650 | 2070 | 379 | 288 | 250 | 220 | | 22 | 131 | 125 | 599 | 163 | 343 | 1630 | 1840 | 1780 | 357 | 263 | 232 | 202 | | 23 | 131 | 126 | 516 | 166 | 325 | 1310 | 1360 | 1630 | 339 | 258 | 222 | 173 | | 24 | 131 | 209 | 443 | 280 | 314 | 1160 | 1170 | 1530 | 329 | 248 | 228 | 166 | | 25 | 129 | 401 | 400 | 433 | 303 | 1280 | 1050 | 1480 | 320 | 233 | 228 | 162 | | 26
27
28
29
30
31 | 126
124
122
121
125
124 | 247
204
e170
e180
221 | 374
339
307
292
256
245 | 360
323
296
277
258
1010 | 287
267
256
 | 1290
1140
1010
928
824
729 | 948
890
871
827
871 | 1380
1330
1310
1280
1310
1230 | 312
304
296
291
278 | 222
219
213
206
214
220 | 208
202
192
189
184
181 | 160
159
159
158
159 | | MEAN | 129 | 151 | 593 | 238 | 570 | 1010 | 1559 | 3059 | 554 | 257 | 375 | 170 | | MAX | 157 | 401 | 5500 | 1010 | 3670 | 4440 | 7150 | 19300 | 1150 | 338 | 2770 | 220 | | MIN | 111 | 122 | 154 | 156 | 249 | 252 | 459 | 800 | 278 | 206 | 181 | 157 | | IN. | 0.26 | 0.29 | 1.20 | 0.48 | 1.04 | 2.04 | 3.05 | 6.19 | 1.09 | 0.52 | 0.76 | 0.33 | | STATIST | ICS OF MO | NTHLY MEA | N DATA FO | OR PERIOD | OF RECORD, |
BY W | ATER YEAR | (WY) | | | | | | MEAN | 234 | 403 | 508 | 498 | 634 | 843 | 954 | 901 | 513 | 343 | 229 | 228 | | MAX | 893 | 1664 | 4280 | 2350 | 2129 | 2483 | 3497 | 3059 | 1990 | 1748 | 910 | 654 | | (WY) | 1971 | 1952 | 1983 | 1950 | 1985 | 1945 | 1945 | 2002 | 1945 | 1951 | 1950 | 1996 | | MIN | 112 | 127 | 119 | 112 | 141 | 138 | 178 | 175 | 118 | 110 | 105 | 103 | | (WY) | 1957 | 1955 | 1956 | 1956 | 1981 | 1981 | 1981 | 1954 | 1954 | 1954 | 1954 | 1954 | | SUMMARY | STATISTI | CS | FOR 2 | 2001 CALEN | IDAR YEAR | | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME DAILY MEA SEVEN-DAY I PEAK FLO I PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN
AN
AN
MINIMUM
W
GE
W FLOW
NCHES) | | 5500
111
118

6.30
401
165
125 | Dec 17
Oct 1
Sep 29 | | 725 19300 111 121 46500 22.94 111 17.26 1530 274 129 | May 8
Oct 1
Oct 1
May 8
May 8
Oct 1 | | 523
1229
149
52000
97
99
71100
26.74
96
12.47
1040
261 | Aug
Sep
Dec
Dec | 1985
1954
3 1982
18 1954
13 1954
3 1982
3 1982
17 1954 | e Estimated # 07061150 WEST FORK BLACK RIVER AT CENTERVILLE, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°26'44", long 90°57'45", in SE $\frac{1}{4}$ SW $\frac{1}{4}$ SEC $\frac{1}{4}$ sec.20, T.32 N., R.1 E., Reynolds County, Hydrologic Unit 11010007, approximately 1.0 mi north of Centerville on State Highway 72. DRAINAGE AREA.--137 mi². PERIOD OF RECORD.--November 1999 to current year. | DATE | TIME | SAMPLE
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|---|--|---|--|---|---| | NOV
14 | 1100 | ENVIRONM | ENTAL | 35 | 10.3 | 100 | 7.3 | 374 | 13.2 | 190 | 37.5 | 23.2 | .79 | | JAN
22 | 1340 | ENVIRONM | ENTAL | 48 | 12.9 | 107 | 7.5 | 331 | 6.3 | | | | | | MAR
07 | 0855 | ENVIRONM | ENTAL | 133 | 11.7 | 99 | 7.7 | 270 | 7.0 | | | | | | MAY
15 | 1405 | ENVIRONM | ENTAL | 806 | 8.9 | 95 | 7.9 | 164 | 17.4 | 82 | 17.1 | 9.44 | 1.01 | | JUL
16 | 1130 | ENVIRONM | ENTAL | 63 | 8.7 | 106 | 8.0 | 363 | 24.2 | | | | | | SEP
03 | 1450 | ENVIRONM | ENTAL | 36 | 8.6 | 111 | 7.8 | 380 | 26.8 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC CAR- BONATE IT FIELD (mg/L as CO ₃) (00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
14
JAN | 6.18 | 147 | 150 | 183 | 0 | 17.5 | E.1 | 32.3 | 138 | 210 | <.04 | <.10 | E.03 | | 22
MAR | | 134 | 135 | 165 | 0 | | | | <10 | | <.04 | E.08 | .19 | | 07
MAY | | 112 | 112 | 136 | 0 | | | | <10 | | <.04 | <.10 | .14 | | JUL | 1.57 | 77 | 77 | 94 | 0 | 1.57 | <.1 | 8.1 | <10 | 97 | <.04 | .10 | .05 | | 16
SEP | | 144 | 146 | 178 | 0 | | | | <10 | | <.04 | <.10 | .08 | | 03 | | 138 | 140 | 170 | 0 | | | | <10 | | <.04 | <.10 | . 05 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | | 6.5 | | | | - | | _ | | _ | | _ | | | 14
JAN | <.008 | <.06 | <.02 | <.06 | 67 | 20 | K3 | 9 | 10 | .2 | <.04 | <.1 | <6 | | 22
MAR | <.008 | <.06 | <.02 | <.06 | <1 | K1 | K1 | | | | | | | | 07
MAY | <.008 | <.06 | <.02 | <.06 | <1 | K1 | K2 | | | | | | | | JUL | E.006 | <.06 | <.02 | <.06 | K4 | K33 | K50 | 64 | 121 | .2 | E.02 | <.1 | <6 | | 16
SEP | <.008 | <.06 | <.02 | <.06 | K4 | K9 | K9 | | | | | | | | 03 | <.008 | <.06 | <.02 | <.06 | K2 | K8 | K13 | | | | | | | # 07061150 WEST FORK BLACK RIVER AT CENTERVILLE, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe) | LEAD,
DIS-
SOLVED
(µg/L
as Pb) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Zn) | ZINC,
DIS-
SOLVED
(µg/L
as Zn) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | |------|--|--|---|--|---|---|--|---| | | (01046) | (01049) | (01051) | (01056) | (71900) | (01090) | (01090) | (01092) | | NOV | | | | | | | | | | 14 | <10 | E.05 | <1 | <2.0 | <.01 | E.2 | 16 | 11 | | JAN | -10 | 2.05 | | -2.0 | | 2.2 | | | | 22 | | | | | | | | | | MAR | | | | | | | | | | 07 | | | | | | | | | | MAY | | | | | | | | | | 15 | 40 | 1.22 | <1 | 12.2 | <.01 | <.3 | 2 | 25 | | JUL | | | | | | | | | | 16 | | | | | | | | | | SEP | | | | | | | | | | 0.3 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 07061260 EAST FORK BLACK RIVER NEAR IRONTON, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°36'14", long 90°47'19", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.35, T.34 N., R.2 E., Iron County, Hydrologic Unit 11010007, approximately 6.0 mi southwest of State Highway 21 on State Highway N. DRAINAGE AREA.--16 mi². PERIOD OF RECORD.--November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------------|--|--|--|---|--|---|--|---|--|---
--|---|---| | NOV
14 | 0915 | ENVIRONM | ENTAL | 2.7 | 7.3 | 65 | 7.5 | 305 | 9.1 | 160 | 33.7 | 19.4 | .68 | | JAN
22 | 1515 | ENVIRONM | ENTAL | 2.7 | 12.7 | 102 | 7.8 | 243 | 4.9 | | | | | | MAR
06 | 1600 | ENVIRONM | ENTAL | 11 | 12.0 | 109 | 7.5 | 131 | 9.9 | | | | | | MAY
15 | 0900 | ENVIRONM | ENTAL | 135 | 9.1 | 91 | 7.5 | 92 | 14.2 | 41 | 8.69 | 4.75 | 1.13 | | JUL
16 | 1410 | ENVIRONM | ENTAL | 29 | 8.6 | 106 | 7.5 | 144 | 24.5 | | | | | | SEP
03 | 1715 | ENVIRONM | ENTAL | 3.9 | 6.7 | 87 | 7.3 | 180 | 26.7 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
14 | 2.69 | 147 | 150 | 183 | 0 | 10.2 | <.1 | 5.9 | <10 | 170 | <.04 | E.05 | <.05 | | JAN
22 | | 118 | 118 | 144 | 0 | | | | <10 | | <.04 | E.05 | E.03 | | MAR
06 | | 51 | 50 | 62 | 0 | | | | <10 | | <.04 | .14 | E.03 | | MAY
15 | 1.35 | 43 | 43 | 52 | 0 | 1.52 | <.1 | 6.5 | <10 | 57 | <.04 | E.10 | <.05 | | JUL
16 | | 71 | 71 | 87 | 0 | | | | <10 | | .05 | .13 | .05 | | SEP
03 | | 81 | 83 | 101 | 0 | | | | <10 | | <.04 | .10 | .08 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | . 000 | . 06 | . 00 | . 05 | .1 | ***0 | ***0 | - | 1.4 | 2 | . 04 | . 1 | | | 14
JAN | <.008 | <.06 | <.02 | <.06 | <1 | K2 | K9 | 7 | 14 | .3 | <.04 | <.1 | <6 | | 22
MAR | <.008 | <.06 | <.02 | <.06 | <1 | K1 | K3 | | | | | | | | 06
MAY | <.008 | <.06 | <.02 | <.06 | <1 | K1 | <1
160 |
59 | 104 |
E.2 | | | | | 15
JUL | <.008 | <.06 | <.02 | E.04 | K20 | K55 | 160 | צכ | 184 | Ľ.∠ | <.04 | <.1 | <6 | | 16
SEP
03 | <.008 | <.06
<.06 | .02 | <.06
<.06 | K3
K6 | 42
K1 | K8
76 | | | | | | | | 03 | | | 1.02 | | 100 | 141 | , 0 | | | | | | | # 07061260 EAST FORK BLACK RIVER NEAR IRONTON, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 14 | E9 | <.08 | <1 | 13.2 | <.01 | E.2 | 3 | 4 | | JAN | | | | | | | | | | 22 | | | | | | | | | | MAR | | | | | | | | | | 06 | | | | | | | | | | MAY | | | | | | | | | | 15 | 40 | .18 | M | 8.0 | <.01 | <.3 | 2 | 2 | | JUL | | | | | | | | | | 16 | | | | | | | | | | SEP | | | | | | | | | | 0.3 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. # 07061270 EAST FORK BLACK RIVER NEAR LESTERVILLE, MO LOCATION.--Lat $37^{\circ}33^{\circ}08^{\circ}$, long $90^{\circ}50^{\circ}32^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.9, T.33 N., R.2 E., Reynolds County, Hydrologic Unit 11010007, on bridge on Highway N, approximately 5 miles north of junction of Highways 21 and N, 0.5 mi north of Johnson's Shut In Park entrance. DRAINAGE AREA. -- 52.2 mi². PERIOD OF RECORD. -- October 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records fair except for discharges above 5,000 ft^3/s , which are poor. U.S.G.S. satellite telemeter at station. EXTREMES FOR CURRENT YEAR.--Maximum stage 13.32 ft, discharge unknown, May 12; minimum discharge, 1.8 ft³/s, Sept. 14. | | D | ISCHARGE | from DCP, | CUBIC FEET | | COND, WATE
Y MEAN VAL | | OCTOBER 200 | 1 TO SEP | TEMBER 200 |)2 | | |----------------------------------|--|-----------------------------------|-----------------------------------|-----------------------------------|-------------------------------|------------------------------------|---------------------------------|---|------------------------------|--|---------------------------------|---------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | e6.0
6.0
6.0
6.0
7.1 | 7.5
7.9
7.5
8.5
9.7 | 91
58
45
37
32 | 15
14
13
12
11 | 591
194
121
87
69 | 41
52
89
77
68 | 55
50
45
41
36 | 117
132
110
88
73 | 29
26
23
21
23 | 9.2
8.7
11
9.5
8.9 | 6.5
6.8
6.5
5.5 | 9.8
9.3
8.4
7.7
7.1 | | 6
7
8
9
10 | 7.0
6.6
6.6
6.6
7.0 | 9.6
8.3
6.5
6.0
5.5 | 39
40
35
30
27 | 11
10
9.2
9.0
9.0 | 59
52
47
42
37 | 63
58
53
1930
339 | 33
33
480
258
146 | 67
110
5450
1040
312 | 22
20
18
20
25 | 8.4
7.8
7.7
7.3 | 4.8
4.7
4.4
4.3
4.1 | 6.6
5.7
4.8
4.4
4.3 | | 11
12
13
14
15 | 8.8
11
8.6
8.1
7.7 | e5.4
e5.1
5.1
5.0
4.8 | 24
25
30
241
155 | 8.8
8.5
8.1
8.0
7.9 | 33
30
27
24
23 | 202
228
158
119
150 | 105
91
128
732
254 | 170
3630
3600
369
179 | 32
46
44
31
26 | 23
16
15
13 | 8.0
6.5
12
12
9.2 | 3.8
3.5
2.5
2.7
4.0 | | 16
17
18
19
20 | 8.8
8.0
7.5
7.3
7.1 | 4.7
4.6
4.6
4.5
4.3 | e900
e1100
291
150
97 | 6.6
6.7
7.4
6.7 | 21
20
19
227
402 | 299
169
121
662
693 | 154
111
89
241
256 | 160
6080 ^a
500
201
128 | 24
22
19
18
16 | 12
12
12
12
11 | 8.6
8.0
12
14
109 | 3.3
5.9
9.2
7.0
16 | | 21
22
23
24
25 | 7.4
7.6
8.8
10 | 4.3
4.3
4.6
13 | 73
61
51
43
38 | 6.8
7.2
9.8
45 | 171
107
81
67
59 | 269
160
118
96
142 | 233
150
111
292
350 | 100
88
73
58
48 | 14
13
12
12 | 11
10
11
9.9
9.9 | 46
30
25
24
21 | 19
15
13
11
9.8 | | 26
27
28
29
30
31 | 9.8
9.4
8.8
8.4
8.0
7.7 | 12
12
14
32
244 | 33
29
26
23
20
17 | 40
33
29
27
29
756 | 53
47
43
 | 141
108
91
80
71
62 | 170
211
684
210
138 | 42
37
42
46
38
33 | 10
10
12
9.9
9.5 | 9.3
9.1
7.8
7.4
7.0
6.8 | 17
15
14
13
12 | 9.2
8.3
7.0
6.4
6.1 | | MEAN
MAX
MIN | 7.86
11
6.0 | 15.9
244
4.3 | 124
1100
17 | 39.3
756
6.6 | 98.3
591
19 | 223
1930
41 | 196
732
33 | 746
6080
33 | 20.6
46
9.5 | 10.7
23
6.8 | 15.5
109
4.1 | 7.69
19
2.5 | e Estimated Rated poor. ### 07061280 TAUM SAUK CREEK NEAR LESTERVILLE, MO LOCATION.--Lat 37°32'11", long 90°48'07", in NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.14, T.33 N., R.2 E., Reynolds County, Hydrologic Unit 11010007, approximately 8.5 mi northeast of Lesterville. DRAINAGE AREA.--10.1 mi². PERIOD OF RECORD.--Aug. 8, 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. ___ --- --- MIN REMARKS. -- Records poor. EXTREMES FOR CURRENT YEAR.--For period Aug. 8 to Sept.
30, maximum discharge, 1.7 ft³/s, Aug. 8, gage height 1.54 ft; minimum, $0.02 \text{ ft}^3/\text{s}$, Sept. 30. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP 2 ___ ---___ ___ ___ ___ ___ ___ ___ ___ ___ .10 3 ------.09 --5 .08 6 7 ---------------------------------.08 .07 8 ---1.4 .07 ---------------------------------10 .50 .07 ------------------11 ---.07 ---------12 .40 .07 13 .33 .07 ---------------------------14 .06 ---15 .15 .06 16 17 .11 ___ ___ ___ ___ ___ ___ ___ ___ ___ .06 ------------------------------.05 18 .10 .06 19 ___ ---___ ___ ___ ___ ___ ___ ___ ___ .11 .06 20 .05 21 ___ ---___ ---___ ___ ___ ___ ___ ___ .11 .05 22 ---.11 .05 .11 .11 24 ___ ---___ ---___ ___ ___ ---___ ___ .04 25 .04 26 ___ ---___ ---___ ___ ___ ___ ___ ___ 11 04 27 .11 .03 28 ------.03 ___ ---___ ---___ ___ ___ 29 ___ ___ ___ .10 03 30 .10 .02 31 ------------------.10 MEAN .06 ---MAX ------------------------.10 --- --- --- --- --- .02 .01 --- --- # 07061280 TAUM SAUK CREEK NEAR LESTERVILLE, MO--Continued LOCATION.--Lat 37°32'11", long 90°48'07", in NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.14, T.33 N., R.2 E., Reynolds County, Hydrologic Unit 11010007, approximately 8.5 mi northeast of Lesterville. DRAINAGE AREA.--10.1 \min^2 . PERIOD OF RECORD.--Aug. 8, 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS. -- Records poor. | | | DISCHA | RGE, CUBIC | C FEET PER | | WATER Y
Y MEAN V | EAR OCTOBEI
ALUES | R 2001 TO | SEPTEMBI | ER 2002 | | | |---|---|--|--|---------------------------------------|---------------------------------|------------------------------------|--|---------------------------------|--------------------------------------|---|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.03
0.02
0.02
0.01
0.01 | 0.22
0.25
0.26
0.26
0.24 | 34
20
14
11
8.2 | 2.0
1.9
1.8
1.7 | 132
40
21
14
9.9 | 5.6
16
27
17
14 | 7.1
6.4
5.7
5.0
4.3 | 24
20
16
13
11 | 1.0
0.83
0.68
0.60
0.62 | 0.17
0.16
0.17
0.17
0.16 | 0.19
0.19
0.17
0.16
0.15 | 0.06
0.04
0.04
0.04
0.04 | | 6
7
8
9
10 | 0.01
0.01
0.01
0.02
0.03 | 0.24
0.23
0.22
0.22
0.21 | 15
19
15
12
9.7 | 1.6
1.6
1.6
1.6 | 7.9
6.9
5.9
5.2
4.6 | 12
10
9.8
589
63 | 3.8
3.8
163
52
25 | 11
55
915
198
57 | 0.65
0.69
0.72
0.79
0.83 | 0.16
0.16
0.16
0.17
0.20 | 0.14
0.12
0.11
0.09
0.08 | 0.04
0.04
0.04
0.04
0.03 | | 11
12
13
14
15 | 0.07
0.09
0.10
0.12
0.13 | 0.20
0.20
0.19
0.18
0.17 | 7.6
7.5
27
114
51 | 1.7
2.1
2.2
2.1
2.1 | 4.0
3.5
3.2
2.9
2.6 | 41
57
31
22
17 | 16
32
63
212
50 | 31
862
410
70
37 | 0.78
0.73
0.68
0.59
0.48 | 0.20
0.23
0.25
0.26
0.27 | 0.14
0.09
0.18
0.18
0.22 | 0.03
0.03
0.02
0.03
0.03 | | 16
17
18
19
20 | 0.15
0.13
0.13
0.13
0.13 | 0.16
0.16
0.15
0.15
0.14 | 331
270
58
27
15 | 2.0
1.9
1.9
1.9 | 2.5
2.3
2.2
102
96 | 24
18
15
150
132 | 27
19
15
43
54 | 191
871
85
31
16 | 0.40
0.32
0.27
0.26
0.25 | 0.28
0.31
0.32
0.33
0.35 | 0.22
0.24
0.28
0.30 | 0.03
0.03
0.03
0.04
0.07 | | 21
22
23
24
25 | 0.12
0.12
0.16
0.14
0.16 | 0.13
0.13
0.13
4.0 | 11
8.3
7.1
5.8
4.8 | 1.9
2.7
7.7
41
21 | 32
17
12
9.0
7.4 | 41
22
16
13
22 | 38
28
19
36
41 | 11
7.5
5.4
4.0
3.0 | 0.24
0.23
0.23
0.22
0.21 | 0.36
0.36
0.37
0.36
0.33 | 8.2
4.3
2.7
2.4
1.6 | 4.7
3.7
2.5
1.8
1.2 | | 26
27
28
29
30
31 | 0.17
0.18
0.20
0.18
0.19 | 8.3
5.8
6.7
67
113 | 4.0
3.5
3.0
2.6
2.4
2.2 | 13
9.8
7.7
6.5
6.5
270 | 7.3
6.4
5.9
 | 22
17
13
12
9.7
8.3 | 24
34
55
29
20 | 2.3
1.7
1.5
1.4
1.3 | 0.21
0.20
0.19
0.19
0.18 | 0.30
0.30
0.27
0.25
0.23 | 1.2
0.91
0.63
0.42
0.25
0.13 | 0.91
0.61
0.37
0.19
0.10 | | MEAN
MAX
MIN
IN. | 0.10
0.20
0.01
0.01 | 7.34
113
0.13
0.81 | 36.2
331
2.2
4.13 | 13.0
270
1.6
1.56 | 20.2
132
2.2
2.08 | 47.3
589
5.6
5.40 | 37.7
212
3.8
4.17 | 128
915
1.1
14.6 | 0.48
1.0
0.18
0.05 | 0.25
0.37
0.16
0.03 | 2.03
37
0.08
0.23 | 0.56
4.7
0.02
0.06 | | SUMMARY | STATIST | TICS | | | FOR 2 | 002 WATE | R YEAR | | | WATER Y | EARS 2001 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT ANNUAL 10 PERC | ' ANNUAL
ANNUAL N
' DAILY N
DAILY ME | MEAN MEAN EAN AY MINIMUM LOW FAGE LOW FLOW (INCHES) EEDS | ı | | 9.
0.
89.
0.
33. | 01 0
01 70 1
99 1 | May 8
ct 4-8
Oct 2
May 12
May 12
ct 4,5 | | | 24.6
24.7
24.7
915
0.01
0.01
8970
9.99
0.01 Man
33.16
41
1.9
0.10 | Oct 4-
Oct
May 1 | 2 2001
2 2002
2 2002 | # 07061500 BLACK RIVER NEAR ANNAPOLIS, MO LOCATION.--Lat $37^{\circ}20^{\circ}10^{\circ}$, long $90^{\circ}47^{\circ}19^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.25, T.31 N., R.2 E., Reynolds County, Hydrologic Unit 11010007, on right bank 0.4 mi downstream from Mayberry Branch, 7 mi southwest of Annapolis, 11 mi downstream from East Fork Black River, and at mile 278.5. DRAINAGE AREA. -- 484 mi². PERIOD OF RECORD.--April 1939 to current year. GAGE.--Water-stage recorder. Datum of gage is 569.72 ft above National Geodetic Vertical Datum of 1929 (levels by the U.S. Army Corps of Engineers). Prior to Aug. 21, 1942, at site 415 ft upstream at same datum. REMARKS.--Records good. Flow slightly regulated by upstream reservoir since February 1963. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE
MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |--|--|--|--|---|----------------------------|--|--|---|---------------------------------|---|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 99 | 171 | 953 | 220 | 5730 | 360 | 544 | 811 | 487 | 181 | 161 | 162 | | 2 | 110 | 160 | 518 | 208 | 2850 | 407 | 483 | 898 | 441 | 176 | 154 | 158 | | 3 | 122 | 154 | 507 | 202 | 1530 | 481 | 487 | 683 | 406 | 173 | 153 | 154 | | 4 | 110 | 150 | 451 | 203 | 1090 | 607 | 441 | 705 | 379 | 176 | 148 | 155 | | 5 | 108 | 147 | 356 | 199 | 737 | 591 | 406 | 615 | 387 | 187 | 144 | 162 | | 6 | 108 | 145 | 370 | 202 | 645 | 509 | 376 | 620 | 404 | 186 | 140 | 164 | | 7 | 111 | 143 | 381 | 199 | 628 | 542 | 369 | 693 | 374 | 182 | 136 | 156 | | 8 | 113 | 141 | 336 | 196 | 503 | 460 | 1890 | 24400 | 333 | 180 | 133 | 147 | | 9 | 125 | 139 | 300 | 192 | 437 | 7060 | 2640 | 12900 | 337 | 179 | 130 | 143 | | 10 | 137 | 136 | 286 | 185 | 386 | 5730 | 1620 | 5570 | 378 | 174 | 129 | 140 | | 11 | 154 | 133 | 347 | 184 | 399 | 2790 | 1180 | 3010 | 375 | 181 | 145 | 138 | | 12 | 178 | 132 | 281 | 184 | 387 | 1870 | 1010 | 2400 | 396 | 233 | 151 | 137 | | 13 | 188 | 131 | 307 | 179 | 316 | 1760 | 1620 | 34100 | 414 | 273 | 181 | 135 | | 14 | 172 | 131 | 580 | 175 | 300 | 1310 | 2940 | 6580 | 456 | 262 | 271 | 136 | | 15 | 157 | 129 | 1160 | 169 | 285 | 1130 | 2320 | 2930 | 333 | 244 | 295 | 140 | | 16 | 151 | 129 | 1720 | 161 | 269 | 1350 | 1550 | 1820 | 306 | 217 | 259 | 140 | | 17 | 144 | 129 | 9530 | 157 | 256 | 1270 | 1190 | 25000 | 286 | 200 | 236 | 150 | | 18 | 141 | 128 | 4780 | 157 | 247 | 1270 | 1010 | 9800 | 276 | 193 | 223 | 162 | | 19 | 137 | 127 | 2390 | 167 | 312 | 1680 | 987 | 3370 | 268 | 190 | 231 | 182 | | 20 | 132 | 125 | 1260 | 168 | 1490 | 6680 | 1920 | 2170 | 258 | 190 | 254 | 238 | | 21 | 130 | 125 | 905 | 164 | 1190 | 3380 | 1890 | 1740 | 240 | 187 | 343 | 236 | | 22 | 128 | 139 | 753 | 164 | 847 | 1880 | 1690 | 1590 | 225 | 178 | 354 | 228 | | 23 | 134 | 146 | 634 | 178 | 731 | 1360 | 1290 | 1080 | 217 | 211 | 289 | 210 | | 24 | 209 | 192 | 478 | 225 | 638 | 1120 | 1300 | 819 | 210 | 221 | 252 | 187 | | 25 | 207 | 206 | 412 | 348 | 480 | 1170 | 1820 | 733 | 210 | 198 | 236 | 261 | | 26
27
28
29
30
31 | 204
190
176
166
159
166 | 213
203
202
263
1070 | 448
429
318
275
253
235 | 360
334
438
402
329
1080 |
433
421
416
 | 1180
1070
888
834
789
754 | 1360
1130
1710
1380
876 | 654
614
669
676
626
565 | 204
200
203
195
188 | 184
182
190
170
166
163 | 225
205
182
172
174
169 | 423
271
202
177
168 | | MEAN
MAX
MIN
IN. | 147
209
99
0.35 | 185
1070
125
0.43 | 1031
9530
235
2.46 | 249
1080
157
0.59 | 856
5730
247
1.84 | 1687
7060
360
4.02 | 1314
2940
369
3.03 | 4801
34100
565
11.4
YEAR (WY) | 313
487
188
0.72 | 194
273
163
0.46 | 202
354
129
0.48 | 182
423
135
0.42 | | MEAN | 263 | 645 | 676 | 601 | 749 | 1004 | 1159 | 927 | 509 | 292 | 209 | 226 | | MAX | 1151 | 3619 | 3913 | 2509 | 2091 | 2903 | 3467 | 4801 | 4263 | 1800 | 1289 | 1061 | | (WY) | 1942 | 1986 | 1983 | 1950 | 1985 | 1945 | 1957 | 2002 | 1945 | 1951 | 1982 | 1993 | | MIN | 84.8 | 111 | 119 | 108 | 147 | 161 | 228 | 165 | 140 | 88.5 | 76.7 | 72.4 | | (WY) | 1957 | 1965 | 1956 | 1956 | 1963 | 1941 | 2000 | 2000 | 1972 | 1954 | 1965 | 1955 | | SUMMARY | STATISTI | ics | FOR 2 | 2001 CALEN | IDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1939 | - 2002 | | LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM INSTANTA ANNUAL F 10 PERCE 50 PERCE | ANNUAL M
ANNUAL ME
DAILY ME
DAILY MEA | EAN EAN AN MINIMUM AGE DW FLOW ENCHES) EDS | | 9530
99
103

10.20
651
195
114 | Dec 17
Oct 1
Sep 25 | | 936
34100
99
110
59800
21.40
97
26.24
1700
263
139 | May 13
Oct 1
Oct 1
May 13
May 13
Oct 1 | | 605
1420
235
47900
66
67
109000
27.38
65
16.98
1160
277
119 | Sep :
Aug :
Nov :
Nov : | 1985
2000
14 1993
15 1954
12 1965
14 1993
14 1993
16 1965 | # 07061600 BLACK RIVER BELOW ANNAPOLIS, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°19'30", long 90°45'50", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.3, T.31 N., R.31 E., Reynolds County, Hydrologic Unit 11010007, approximately 4.5 mi southwest of Annapolis at the bridge on County Highway K. DRAINAGE AREA.--493 mi². PERIOD OF RECORD.--May 1993 to September 1995, November 1999 to current year. | DATE | TIME | SAMPL:
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
13 | 1125 | ENVIRONM | ENTAL | 114 | 10.6 | 98 | 7.7 | 312 | 11.2 | 170 | 33.1 | 20.4 | .29 | | JAN
23 | 1300 | ENVIRONM | ENTAL | 161 | 12.0 | 105 | 7.8 | 275 | 8.4 | | | | | | MAR
06 | 1125 | ENVIRONM | ENTAL | 516 | 11.4 | 95 | 7.7 | 233 | 7.2 | | | | | | MAY
14 | 1505 | ENVIRONM | ENTAL | 6630 | 8.8 | 91 | 7.3 | 109 | 16.3 | 54 | 11.6 | 6.10 | .42 | | JUL
15 | 1250 | ENVIRONM | ENTAL | 433 | 8.0 | 98 | 7.7 | 265 | 24.5 | | | | | | SEP
05 | 1030 | ENVIRONM | ENTAL | 300 | 7.2 | 88 | 7.7 | 296 | 24.4 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃)(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
13 | 3.77 | 139 | 140 | 171 | 0 | 5.20 | .2 | 20.3 | 12 | 148 | <.04 | <.10 | .06 | | JAN
23 | | 112 | 112 | 137 | 0 | | | | <10 | | <.04 | <.10 | . 23 | | MAR
06 | | 88 | 89 | 109 | 0 | | | | <10 | | <.04 | <.10 | .17 | | MAY
14 | 2.11 | 47 | 47 | 57 | 0 | 1.67 | <.1 | 10.5 | 36 | 87 | <.04 | .31 | .08 | | JUL
15 | | 130 | 132 | 161 | 0 | | | | <40 | | <.04 | <.10 | .08 | | SEP | | | | | 0 | | | | | | | | | | 05 | | 127 | 128 | 156 | U | | | | <10 | | <.04 | E.06 | .06 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | | | 0.5 | | | | | _ | _ | | | _ | | | 13
JAN | <.008 | <.06 | <.02 | <.06 | K1 | K5 | K1 | 7 | 9 | E.1 | <.04 | <.1 | <6 | | 23
MAR | <.008 | <.06 | <.02 | <.06 | <1 | <1 | K3 | | | | | | | | 06
MAY | <.008 | <.06 | <.02 | <.06 | <1 | K2 | <1 | | | | | | | | 14
JUL | E.004 | <.06 | <.02 | E.06 | K70 | 197 | 447 | 146 | 791 | .3 | E.03 | <.1 | <6 | | 15
SEP | <.008 | <.06 | <.02 | <.06 | K1 | K13 | К6 | | | | | | | | 05 | <.008 | <.06 | <.02 | <.06 | K4 | K8 | K16 | | | | | | | # 07061600 BLACK RIVER BELOW ANNAPOLIS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 13 | <10 | <.08 | <1 | E2.1 | <.01 | E.2 | | 1 | | JAN | | | | | | | | | | 23 | | | | | | | | | | MAR | | | | | | | | | | 06 | | | | | | | | | | MAY | | | | | | | | | | 14 | 131 | 2.69 | 12 | 14.4 | E.01 | E.2 | | 13 | | JUL | | | | | | | | | | 15 | | | | | | | | | | SEP | | | | | | | | | | 05 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 07061900 LOGAN CREEK AT ELLINGTON, MO LOCATION.--Lat 37°14'47", long 90°57'55", in SE $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$, sec.32, T.30 N., R.1 E., Reynolds County, Hydrologic Unit 11010007, on downstream end of center pier of bridge on State Route 21, 0.1 mi downstream from Dry Valley Creek, and about 10 mi upstream from Clearwater Lake. DRAINAGE AREA. -- 139 mi². PERIOD OF RECORD. -- July 21, 1994 to current year. GAGE.--Water-stage recorder. Datum of gage is 639.51 ft above National Geodetic Vertical Datum of 1929. REMARKS.--Records poor. U.S.G.S. satellite telemeter at station. | | - | DISCHA | RGE, CUBIC | FEET PER | | WATER YE
Y MEAN VA | AR OCTOBER
LUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|--
---|---|--------------------------------------|-------------------------------------|--|-------------------------------------|--|--|--|---|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 0.62
0.60
0.47
0.42
0.50 | e1.7
e1.6
e1.5
e1.5 | 1.8
1.7
1.7
2.1
2.2 | 10
7.7
6.0
5.2
5.7 | 175
45
29
26
23 | 8.4
12
11
9.6
8.8 | 28
25
21
18
16 | 75
48
36
30
24 | e33
e30
28
24
29 | 8.9
9.3
8.7
8.3
8.1 | 4.2
3.6
3.3
3.2
3.2 | 4.5
4.4
4.3
4.2
4.1 | | 6
7
8
9
10 | 0.52
e0.53
0.52
0.51
e0.49 | e1.3
e1.2
e1.2
e1.2 | | 5.7
5.7
6.6
6.1
6.5 | 22
20
18
17
16 | 8.3
9.1
9.6
845
166 | 15
21
260
103
56 | 24
44
4550
1760
963 | 23
19
17
26
29 | 7.6
7.2
7.0
6.6 | 3.1
3.1
3.0
2.8
2.8 | 3.9
3.8
3.6
3.6 | | 11
12
13
14
15 | 0.67
0.73
0.81
e0.73
e0.70 | e1.1
e1.0
e0.99
e0.94
e0.90 | 2.5
2.9
3.3
5.4
4.3 | 5.1
4.7
5.7
5.3
5.9 | 14
12
12
12
12 | 58
50
37
32
32 | 43
39
38
47
40 | 483
505
3510
1270
554 | 23
22
21
18
17 | 10
8.6
8.1
7.6
7.3 | 3.9
3.3
5.4
4.6
4.2 | 3.4
3.3
3.4
3.1 | | 16
17
18
19
20 | e0.69
e0.67
e0.65
e0.63
e0.65 | e0.86
e0.83
e0.82
e0.85
e0.99 | 33
1050
145
62
47 | 5.7
5.5
5.4
5.8
5.3 | 11
9.7
8.4
13
15 | 33
28
24
78
478 | 37
34
27
27
30 | 412
7970
1900
654
300 | 17
16
16
15
14 | 7.1
6.7
7.2
6.8
6.1 | 3.9
3.9
3.9
4.1
4.1 | 3.2
3.0
3.2
3.4
4.8 | | 21
22
23
24
25 | e0.72
e0.82
e0.92
e2.3
e3.8 | 1.3
1.3
1.4
2.2 | 31
24
19
19 | 5.2
4.9
5.9
8.6
7.7 | 12
11
10
9.6
9.9 | 168
82
64
46
68 | 36
29
27
403
127 | e155
e102
e83
e66
e58 | 13
12
12
11
10 | 5.4
5.6 | 3.9
3.6
5.2
9.0
5.6 | 3.6
3.0
2.8
2.9
3.0 | | 26
27
28
29
30
31 | e3.0
e2.6
e2.3
e2.1
e1.9
e1.8 | 1.4
1.3
1.6
1.8
1.9 | 12
14
14
14
12
7.1 | 7.0
6.5
6.3
6.5
6.5 | 9.9
9.5
9.1
8.9
 | 69
51
45
40
35 | 83
68
68
40
60 | e52
e46
e44
e41
e38
e35 | 11
11
14
11
9.6 | 4.5
4.3
4.4
4.1
4.8
4.2 | 5.2
5.3
5.1
5.0
4.8
4.7 | 3.0
3.0
2.8
2.9
2.4 | | MEAN
MAX
MIN | 1.11
3.8
0.42 | 1.29
2.2
0.82 | 50.2
1050
1.7 | 8.89
91
4.7 | 21.1
175
8.4 | 85.1
845
8.3 | 62.2
403
15 | 833
7970
24 | 18.4
33
9.6 | 6.82
12
4.1 | 4.23
9.0
2.8 | 3.45
4.8
2.4 | | STATIST | TICS OF MO | ONTHLY ME | AN DATA FO | R WATER Y | EARS 199 | 4 - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN
MAX
(WY)
MIN
(WY) | 4.82
14.6
1997
0.93
2001 | 17.0
93.7
1997
1.29
2002 | 14.9
50.2
2002
3.18
2001 | 11.7
21.8
1999
3.63
2001 | 45.8
201
1999
7.36
1996 | 37.6
85.1
2002
7.25
2001 | 65.3
225
1999
5.26
2000 | 150
833
2002
3.45
2000 | 29.5
138
1998
4.09
2001 | 8.76
28.3
1998
2.38
2001 | 6.18
23.2
1998
1.33
2001 | 6.24
27.9
1996
0.74
2001 | | SUMMARY | STATIST | ICS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 V | WATER YE | AR | WATER YEA | ARS 1994 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 8.90
1050
0.42
0.50

10
3.3
0.73 | Dec :
Oct
Oct | 17
4
3 | 92.7 7970 0.42 0.50 16300 13.22 0.42 67 7.3 1.2 | | 17
4
3
17
17
9 | 33.0
92.7
4.94
7970
0.42
0.50
16300
13.22
0.42
34
7.2
2.5 | Oct
Oct
May 1
May 1 | 2002
2001
17 2002
4 2001
3 2001
17 2002
17 2002
9 2001 | | e Estimated ### 07062000 CLEARWATER LAKE NEAR PIEDMONT, MO LOCATION.--Lat $37^{\circ}08^{\circ}00^{\circ}$, long $90^{\circ}46^{\circ}31^{\circ}$, NW $\frac{1}{4}$ sec.6, T.28 N., R.3 E., Wayne County, Hydrologic Unit 11010007, in intake tower at dam on Black River, 2.3 mi upstream from Brewer Bay, 4.5 mi west of Piedmont, and at mile 257.4. DRAINAGE AREA. -- 898 mi². PERIOD OF RECORD. -- June 1948 to current year. GAGE.--Water-stage recorder. Datum of gage is National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). REMARKS.--Lake is formed by earthfill type dam. Storage began June 3, 1948; conservation pool level reached July 4, 1948. Capacity at crest of spillway 413,700 ac-ft at elevation 567.0 ft, of which 391,800 ac-ft is available for flood-control storage, and 21,920 ac-ft is permanent storage which under normal operating conditions will be maintained for purposes of conservation and recreation at elevation 494.0 ft. Lake is used for flood control and recreational purposes. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES FOR PERIOD OF RECORD.--Maximum contents, 409,700 ac-ft, May 20, 2002, elevation, 566.60 ft; minimum, since initial filling to conservation pool level, 15,800 ac-ft, Jan. 20, 23, 1972, elevation, 490.00 ft. EXTREMES FOR CURRENT YEAR.--Maximum contents, 409,700 ac-ft, May 20, elevation, 566.60 ft; minimum, 20,800 ac-ft, Feb. 14, elevation, 493.31 ft. | | | | ELEVATI | ON, IN FE | | YEAR OCT | | 1 TO SEPT | EMBER 200 | 2 | | | |----------------------------------|--|--|--|--|--|--|--|--|--|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 499.86
499.85
499.84
499.84 | 500.03
499.78
499.46
499.11
498.75 | 497.03
497.75
497.27
496.10
494.78 | 493.93
493.85
493.68
493.59
493.56 | 502.19
505.13
505.08
503.87
501.88 | 493.42
493.55
493.66
493.79
493.86 | 512.86
511.31
509.60
507.75
505.76 | 511.48
511.36
510.58
509.37
508.06 | 562.05
561.45
560.83
560.21
559.62 | 540.54
539.53
538.53
537.47
536.40 | 500.20
500.20
500.23
500.25
500.26 | 500.17
500.17
500.16
500.15
500.13 | | 6
7
8
9 | 499.90
499.90
499.89
499.87 | 498.37
497.87
497.40
496.88
496.39 | 494.31
494.31
494.29
494.18
493.99 | 493.57
493.54
493.50
493.49
493.51 | 499.61
497.88
496.84
495.98
495.03 | 493.65
493.44
493.40
499.78
507.42 | 503.61
502.06
504.38
506.74
506.79 | 506.53
505.57
521.28
530.14
532.95 | 558.97
558.31
557.64
557.21
557.08 | 535.30
534.19
533.04
531.87
530.89 | 500.26
500.24
500.23
500.18
500.16 | 500.13
500.13
500.14
500.14
500.14 | | 11
12
13
14
15 | 500.09
500.18
500.33
500.43 | 495.90
495.39
494.86
494.45
494.32 | 493.78
493.66
493.57
493.70
494.61 | 493.51
493.52
493.51
493.51
493.51 | 494.21
493.82
493.47
493.31
493.39 | 509.38
509.44
509.06
508.06
507.24 | 505.92
505.19
505.88
507.55
508.79 | 534.38
535.81
548.40
551.07
552.12 | 556.57
556.05
555.43
554.78
554.09 | 529.95
528.79
527.56
526.30
525.02 | 500.18
500.21
500.49
500.64
500.54 | 500.13
500.11
500.11
500.15
500.19 | | 16
17
18
19
20 | 500.24
499.97
499.90
499.91
499.94 | 494.26
494.23
494.20
494.17
494.15 | 496.24
505.57
510.29
510.86
509.95 | 493.49
493.46
493.47
493.50
493.53 | 493.49
493.57
493.61
493.92
494.69 | 508.53
509.71
510.14
511.32
516.59 | 508.76
508.04
506.96
506.00
506.82 | 552.75
562.93
565.84
566.50
566.60 | 553.41
552.67
551.92
551.14
550.37 | 523.65
522.23
520.74
519.17
517.53 | 500.35
500.34
500.37
500.35
500.34 | 500.21
500.21
500.22
500.26
500.33 | | 21
22
23
24
25 | 499.97
500.00
500.05
500.13
500.15 | 494.15
494.14
494.13
494.13 | 508.49
506.84
505.00
502.96
500.70 | 493.55
493.55
493.61
493.87
494.00 | 495.08
495.10
495.19
495.16
494.64 | 518.87
519.04
518.52
517.62
517.54 | 507.78
508.11
507.23
509.24
510.82 | 566.49
566.31
565.99
565.60
565.17 |
549.55
548.73
547.89
547.03
546.16 | 515.83
514.03
512.11
510.08
508.13 | 500.34
500.42
500.44
500.78
501.03 | 500.28
500.21
500.17
500.15
500.11 | | 26
27
28
29
30
31 | 500.15
500.16
500.15
500.15
500.14
500.12 | 494.31
494.28
494.32
494.74
495.52 | 498.28
496.49
495.61
494.94
494.21
493.91 | 494.08
494.13
494.05
494.03
493.90
494.95 | 493.86
493.55
493.44
 | 518.63
518.65
517.75
516.65
515.50
514.23 | 511.51
511.85
512.39
512.37
511.66 | 564.70
564.20
563.88
563.60
563.16
562.62 | 545.26
544.36
543.43
542.49
541.53 | 506.37
504.65
502.82
501.26
500.62
500.35 | 500.80
500.36
500.20
500.17
500.16
500.17 | 500.20
500.36
500.31
500.21
500.06 | | MEAN
MAX
MIN | 500.05
500.45
499.84 | 495.79
500.03
494.13 | 498.51
510.86
493.57 | 493.71
494.95
493.46 | 496.32
505.13
493.31 | 508.01
519.04
493.40 | 508.12
512.86
502.06 | 545.01
566.60
505.57 | 552.87
562.05
541.53 | 521.77
540.54
500.35 | 500.35
501.03
500.16 | 500.18
500.36
500.06 | | (-)
(=) | 33000
+500 | 24400
-8600 | 21800
-2600 | 23500
+1700 | 21000
-2500 | 70500
+49500 | 62300
-8200 | 370100
+307800 | 202400
-167700 | 33400
-169000 | 33100
-300 | 32900
-200 | CAL YR 2001...-1200 WTR YR 2002...+ 400 ⁽⁻⁾ Contents, in acre-feet, at the end of the month. ⁽⁼⁾ Change in contents, in acre-feet. #### 07063000 BLACK RIVER AT POPLAR BLUFF, MO LOCATION.--Lat $36^{\circ}45^{\circ}34^{\circ}$, long $90^{\circ}23^{\circ}17^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.2, T.24 N., R.6 E., Butler County, Hydrologic Unit 11010007, on right bank at City Light and Water Plant in Poplar Bluff, 1,500 ft upstream from bridge on Business Route 60, 4.8 mi downstream from Indian Creek, and at mile 211.2. DRAINAGE AREA.--1,245 mi² PERIOD OF RECORD.--October 1936 to September 1937, October 1939 to current year. Gage-height records collected at site 1,800 ft downstream September 1923 to July 1935 and since July 1935 at site 1,500 ft downstream, in reports of the National Weather Service. REVISED RECORDS. -- WSP 927: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 317.48 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1940, nonrecording gage at site 1,500 ft downstream at datum 2.00 ft higher; Oct. 1, 1940, to June 7, 1955, at site 1,500 ft downstream at present datum. Prior to July 12, 1985, at datum 0.10 ft lower. REMARKS.--Records good. Considerable regulation by Clearwater Lake (07062000), 46 mi upstream since June 3, 1948. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of March 1904 reached a maximum discharge of $100,000 \text{ ft}^3/\text{s}$, and flood of Mar. 12, 1935, reached a stage of 21.1 ft, present datum (affected by levees constructed since 1904). DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY DEC OCT NOV JAN FEB APR MAY AUG SEP 7 e490 255 752 e474 e460 e446 624 3650 3780 574 706 MEAN MAX MTN 0.57 2.21 0.68 0.33 0.92 0.45 1.79 2.92 4.08 3.61 3.40 IN. 3.15 STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1949 - 2002a, BY WATER YEAR (WY) MEAN MAX (WY) MIN (WY) SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1949 - 2002a ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Dec 17 May Dec LOWEST DAILY MEAN Oct Oct Sep 25 1966 ANNUAL SEVEN-DAY MINIMUM Sep 28 Oct. Sep 21 1966 MAXIMUM PEAK FLOW May 65600^k 4 1982 4 1982 21.68° MAXIMUM PEAK STAGE ___ 18.45 May Dec INSTANTANEOUS LOW FLOW Oct 1,3-5 Sep 25 1966 ANNUAL RUNOFF (INCHES) 9.44 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS a Post-regulation period. b Determined by indirect measurement. c Former datum. ### 07064533 CURRENT RIVER ABOVE AKERS, MO LOCATION.--Lat $37^{\circ}22'32''$, long $91^{\circ}33'09''$, in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.24, T.31 N., R.6 W., Shannon County, Hydrologic Unit 11010008, on left bank 200 ft above ferry crossing at Akers on Highway K, approximately 20 mi north of Summersville, behind old icehouse behind Akers Ferry General Store. DRAINAGE AREA. -- 295 mi². MAX MIN --- --- --- --- --- PERIOD OF RECORD. -- Aug. 14, 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS. -- Records poor. U.S.G.S. satellite telemeter at station. EXTREMES FOR CURRENT YEAR.--For period Aug. 14 to Sept. 30, maximum discharge, 186 ft³/s, Sept. 9, gage height 1.09 ft; minimum, 130 ft³/s, several days. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2000 TO SEPTEMBER 2001 DAILY MEAN VALUES DAY OCT NOV DEC FEB MAR APR MAY NUTL JUL AUG SEP JAN 137 1 2 ---------------------------------136 ---------___ ___ ___ ___ ___ ___ ---___ ___ 4 133 5 ---------------------132 133 6 ___ ___ ___ ___ ------------------------------134 ------------------------------8 143 ___ 9 168 10 158 11 148 12 144 ------------------13 ___ ---___ 141 ------------143 14 140 15 141 139 138 16 140 139 138 18 ___ ---___ ___ ___ ___ ___ ___ ___ ___ 141 141 ------19 140 139 20 138 136 21 137 135 23 ___ ---___ ------___ ___ ___ ___ ___ 136 136 24 136 136 25 136 133 26 135 133 27 ---------------------135 134 28 ___ ---___ ---___ ___ ___ ___ ___ ___ 133 133 29 133 132 30 135 132 ___ ___ ---___ ___ 31 ___ ___ ___ ___ ___ 139 MEAN 138 --- --- --- --- --- --- 168 # 07064533 CURRENT RIVER ABOVE AKERS, MO--Continued LOCATION.--Lat $37^{\circ}22'32"$, long $91^{\circ}33'09"$, in NE $\frac{1}{4}$ NW $\frac{1}{4}$ Sec.24, T.31 N., R.6 W., Shannon County, Hydrologic Unit 11010008, on left bank 200 ft above ferry crossing at Akers on Highway K, approximately 20 mi north of Summersville, behind old icehouse behind Akers Ferry General Store. DRAINAGE AREA. -- 295 mi². PERIOD OF RECORD. -- July 19, 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records good. U.S.G.S. satellite telemeter at station. | | | DISCHAF | RGE, CUBIC | C FEET PER | | WATER YE
Y MEAN VA | | R 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---------------------------------|--|--|--|--|--|---|---------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 131 | 138 | 223 | 197 | 1970 | 203 | 621 | 579 | 726 | 343 | 241 | 234 | | 2 | 131 | 140 | 196 | 192 | 1110 | 237 | 598 | 562 | 675 | 340 | 245 | 224 | | 3 | 132 | 135 | 184 | 186 | 849 | 313 | 556 | 544 | 639 | 338 | 239 | 220 | | 4 | 133 | 132 | 177 | 182 | 666 | 306 | 520 | 509 | 609 | 338 | 235 | 217 | | 5 | 140 | 133 | 172 | 182 | 546 | 297 | 499 | 471 | 591 | 334 | 235 | 216 | | 6 | 134 | 132 | 169 | 181 | 488 | 298 | 486 | 476 | 568 | 330 | 234 | 214 | | 7 | 130 | 132 | 165 | 175 | 424 | 298 | 486 | 645 | 546 | 327 | 234 | 214 | | 8 | 130 | 132 | 161 | 173 | 378 | 294 | 948 | 12700 | 528 | 321 | 232 | 214 | | 9 | 131 | 131 | 155 | 172 | 350 | 734 | 1140 | 3300 | 512 | 318 | 233 | 216 | | 10 | 135 | 132 | 153 | 169 | 328 | 946 | 924 | 2080 | 527 | 334 | 238 | 217 | | 11 | 142 | 131 | 151 | 165 | 298 | 763 | 818 | 1600 | 523 | 324 | 241 | 217 | | 12 | 139 | 131 | 164 | 163 | 282 | 793 | 754 | 2120 | 493 | 295 | 243 | 214 | | 13 | 142 | 133 | 192 | 162 | 261 | 754 | 712 | 8870 | 508 | 296 | 269 | 215 | | 14 | 138 | 133 | 198 | 159 | 248 | 668 | 1940 | 2460 | 507 | 286 | 279 | 219 | | 15 | 137 | 133 | 192 | 153 | 241 | 605 | 1130 | 1820 | 485 | 280 | 261 | 215 | | 16 | 137 | 132 | 324 | 151 | 232 | 729 | 866 | 1590 | 463 | 276 | 251 | 213 | | 17 | 135 | 132 | 1190 | 150 | 223 | 693 | 800 | 8270 | 446 | 272 | 262 | 219 | | 18 | 136 | 134 | 1010 | 149 | 217 | 611 | 720 | 4370 | 432 | 270 | 246 | 217 | | 19 | 136 | 134 | 710 | 152 | 233 | 917 | 665 | 2260 | 420 | 273 | 249 | 230 | | 20 | 137 | 131 | 534 | 147 | 280 | 2250 | 747 | 1790 | 409 | 268 | 301 | 247 | | 21 | 136 | 132 | 433 | 146 | 277 | 1640 | 1000 | 1540 | 400 | 264 | 328 | 230 | | 22 | 136 | 133 | 387 | 143 | 253 | 1320 | 932 | 1380 | 392 | 261 | 278 | 220 | | 23 | 149 | 137 | 345 | 153 | 241 | 1140 | 826 | 1260 | 385 | 262 | 261 | 212 | | 24 | 151 | 160 | 311 | 253 | 237 | 1010 | 801 | 1180 | 381 | 256 | 256 | 214 | | 25 | 145 | 172 | 287 | 264 | 232 | 953 | 787 | 1100 | 376 | 254 | 249 | 209 | | 26
27
28
29
30
31 | 136
134
132
132
134
135 | 163
156
159
171
228 | 269
250
237
223
212
205 | 230
212
201
194
197
712 | 221
211
206
 | 941
868
819
781
723
666 | 692
658
666
614
574 | 1020
966
913
869
826
777 | 371
367
363
356
349 | 253
251
247
244
242
243 | 244
245
241
237
233
235 | 211
211
207
215
223 | | MEAN | 136 | 142 | 309 | 196 | 411 | 760 | 783 | 2221 | 478 | 288 | 251 | 218 | | MAX | 151 | 228 | 1190 | 712 | 1970 | 2250 | 1940 | 12700 | 726 | 343 | 328 | 247 | | MIN | 130 | 131 | 151 | 143 | 206 | 203 | 486 | 471 | 349 | 242 | 232 | 207 | | | | | | | | | | YEAR (WY | | | | | | MEAN | 136 | 142 |
309 | 196 | 411 | 760 | 783 | 2221 | 478 | 288 | 251 | 178 | | MAX | 136 | 142 | 309 | 196 | 411 | 760 | 783 | 2221 | 478 | 288 | 251 | 218 | | (WY) | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | | MIN | 136 | 142 | 309 | 196 | 411 | 760 | 783 | 2221 | 478 | 288 | 251 | 138 | | (WY) | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2002 | 2001 | | SUMMARY | Y STATISTI | CS | | | FOR 20 | 002 WATER | YEAR | | | WATER YE | ARS 2001 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | | | 1270
1:
1:
Unknov
18.2
1:
9: | 30 Oc
32 N
wn M
20 M | lay 8
it 7,8
iov 6
lay 8
lay 8 | | | 518
518
518
12700
130
132
Unknown
18.20
129
943
253
136 | Oct 7 | 2002
2002
8 2002
,8 2001
6 2001
8 2002
8 2002
1 2001 | # 07065200 JACKS FORK NEAR MOUNTAIN VIEW, MO LOCATION.--Lat $37^{\circ}03^{\circ}22^{\circ}$, long $91^{\circ}40^{\circ}05^{\circ}$, in NW $^{1}/_{4}$ NE $^{1}/_{4}$ SW $^{1}/_{4}$ sec.36, T.28 N., R.7 W., Texas County, Hydrologic Unit 11010008, on downstream side of State Highway 17 bridge, 3.8 mi north of junction with Highway 60 and 8.6 mi south of Summersville. DRAINAGE AREA.--185 mi². PERIOD OF RECORD.--October 2001 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records good except estimated daily discharges, which are poor. U.S.G.S. satellite telemeter at station. EXTREMES FOR CURRENT YEAR.--Maximum instantaneous gage height 27.68 ft, discharge unknown, May 8; minimum discharge, 15 ft³/s, Oct. 3-5. | | | DISCHAR | GE, CUBIC | FEET PER | | | AR OCTOBER | 2001 TC | SEPTEMBE | R 2002 | | | |------|------|---------|-----------|----------|------|-----------|------------|---------|----------|--------|------|------| | | | | | | DAIL | Y MEAN VA | LUES | | | | | | | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 16 | 23 | 84 | e42 | 1650 | 71 | 145 | 202 | 116 | 45 | 53 | 41 | | 2 | 16 | 24 | 65 | e40 | 531 | 101 | 132 | 175 | 108 | 44 | 50 | 40 | | 3 | 15 | 24 | 54 | e39 | 334 | 328 | 114 | 147 | 100 | 43 | 47 | 38 | | 4 | 15 | 23 | 47 | e38 | 237 | 239 | 99 | 134 | 93 | 42 | 45 | 37 | | 5 | 17 | 22 | 42 | 37 | 177 | 196 | 91 | 116 | 99 | 41 | 44 | 40 | | 6 | 20 | 22 | 47 | 39 | 148 | 171 | 84 | 118 | 103 | 40 | 42 | 39 | | 7 | 19 | 22 | 44 | 37 | 128 | 153 | 89 | 452 | 90 | 39 | 41 | 37 | | 8 | 18 | 22 | 41 | 35 | 110 | 137 | 3010 | e9400 | 83 | 38 | 40 | 35 | | 9 | 17 | 22 | 38 | 33 | 98 | 2800 | 1100 | e2160 | 80 | 37 | 39 | 35 | | 10 | 20 | 22 | 36 | 33 | 89 | 918 | 590 | 1130 | 88 | 38 | 39 | 34 | | 11 | 32 | 22 | 34 | 33 | 79 | 519 | 411 | 696 | 247 | 41 | 39 | 33 | | 12 | 31 | 21 | 38 | 32 | 73 | 634 | 317 | 507 | 143 | 44 | 41 | 33 | | 13 | 29 | 21 | 59 | 31 | 67 | 457 | 272 | 1450 | 139 | 51 | e62 | e32 | | 14 | 29 | 21 | 100 | 31 | 62 | 340 | 1860 | 750 | 145 | 45 | e88 | e32 | | 15 | 27 | 21 | 90 | 30 | 59 | 274 | 738 | 492 | 109 | 42 | e74 | e32 | | 16 | 26 | 21 | 404 | 30 | 56 | 624 | 469 | 380 | 93 | 41 | 68 | e31 | | 17 | 25 | 21 | 2470 | 29 | 53 | 397 | 460 | 5090 | 84 | 41 | 61 | e33 | | 18 | 24 | 21 | 713 | 30 | 51 | 296 | 364 | 1860 | 77 | 45 | 56 | e37 | | 19 | 23 | 22 | 356 | 33 | 63 | 1610 | 291 | 861 | 71 | 3050 | 52 | e39 | | 20 | 23 | 22 | 222 | 32 | 261 | 2600 | 322 | 565 | 66 | 719 | 50 | e46 | | 21 | 22 | 21 | 158 | 30 | 236 | 965 | 560 | 413 | 62 | 282 | e48 | e62 | | 22 | 22 | 21 | 125 | 31 | 176 | 553 | 339 | 333 | 59 | 162 | e46 | e58 | | 23 | 22 | 21 | 103 | 35 | 142 | 401 | 260 | 284 | 55 | 128 | e49 | e48 | | 24 | 25 | 28 | 85 | 380 | 121 | 316 | 528 | 244 | 53 | 124 | e53 | 37 | | 25 | 30 | 31 | 73 | 303 | 108 | 357 | 408 | 222 | 63 | 94 | e62 | 35 | | 26 | 27 | 33 | 65 | 192 | 96 | 398 | 298 | 191 | 55 | 79 | e72 | 33 | | 27 | 26 | 32 | 59 | 140 | 84 | 331 | 274 | 171 | 53 | 70 | 59 | 33 | | 28 | 25 | 38 | 55 | 111 | 76 | 285 | 307 | 155 | 51 | 63 | 52 | 32 | | 29 | 23 | 53 | 51 | 94 | | 251 | 260 | 149 | 49 | 57 | 48 | 31 | | 30 | 23 | 77 | 47 | 85 | | 201 | 214 | 138 | 48 | 55 | 46 | 30 | | 31 | 23 | | e44 | 1360 | | 168 | | 126 | | 55 | 42 | | | MEAN | 22.9 | 26.5 | 189 | 111 | 192 | 551 | 480 | 939 | 89.4 | 184 | 51.9 | 37.4 | | MAX | 32 | 77 | 2470 | 1360 | 1650 | 2800 | 3010 | 9400 | 247 | 3050 | 88 | 62 | | MIN | 15 | 21 | 34 | 29 | 51 | 71 | 84 | 116 | 48 | 37 | 39 | 30 | e Estimated # 370857091265901 JACKS FORK ABOVE ALLEY SPRING, MO (Jacks Fork water-quality monitoring network) LOCATION.--Lat 37°08'57", long 91°26'59", in NE $\frac{1}{4}$ SW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.25, T.29 N., R.5 W., Shannon County, Hydrologic Unit 11010008, at Alley Spring Campground, 0.5 mi upstream of Highway 106 bridge, 1.0 mi upstream from Alley Spring Branch, and 5.5 mi west of Eminence. DRAINAGE AREA.--302 mi². PERIOD OF RECORD. -- May 1998 to current year. - 0000 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | | | | | | | | |---|------|-----------------------|---|--|---|--|--|---|--|---|---|--| | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | | OCT | | | | | | | | | | | | | | 02 | 1500 | ENVIRONMENTAL | 29 | 8.8 | 102 | 8.1 | 348 | 21.7 | <.04 | <.10 | E.04 | <.008 | | 10 | 0830 | ENVIRONMENTAL | 33 | 7.5 | 80 | 7.6 | 349 | 17.5 | <.04 | <.10 | .05 | <.008 | | 10 | 1200 | ENVIRONMENTAL | 32 | 8.5 | 92 | 7.8 | 349 | 18.0 | <.04 | <.10 | .05 | <.008 | | 11 | 0840 | ENVIRONMENTAL | 40 | 7.3 | 78 | 7.5 | 344 | 17.5 | <.04 | <.10 | .06 | <.008 | | 11 | 1220 | ENVIRONMENTAL | 42 | 8.3 | 90 | 7.6 | 337 | 17.8 | <.04 | <.10 | .06 | <.008 | | NOV | 1220 | DIVV IICOM IDIVITID | 12 | 0.5 | 50 | 7.0 | 337 | 17.0 | 1.01 | 1.10 | .00 | 1.000 | | 20 | 1645 | ENVIRONMENTAL | 35 | 10.1 | 95 | 8.0 | 353 | 12.2 | E.02 | <.10 | <.05 | <.008 | | APR | 1045 | ENVIRONMENTAL | 33 | 10.1 | 23 | 0.0 | 333 | 12.2 | E.02 | V.10 | 1.05 | <.000 | | 02 | 1110 | ENVIRONMENTAL | 245 | 10.8 | 108 | 8.2 | 254 | 13.8 | <.04 | <.10 | .20 | <.008 | | 30 | 1200 | ENVIRONMENTAL | 382 | 9.5 | 100 | 8.1 | 269 | 16.5 | <.04 | E.08 | .08 | <.008 | | MAY | 1200 | ENVIRONMENTAL | 302 | 9.5 | 100 | 0.1 | 209 | 10.5 | <.04 | E.00 | .00 | <.000 | | 29 | 1025 | ENVIRONMENTAL | 303 | 10.1 | 112 | 8.2 | 268 | 18.6 | <.04 | E.09 | .12 | <.008 | | JUN | 1025 | ENVIRONMENTAL | 303 | 10.1 | 112 | 0.2 | 200 | 10.0 | <.04 | E.09 | .12 | <.000 | | | 1045 | ENTATE ON MACHINERA I | 201 | 8.5 | 103 | 0 0 | 289 | 22 5 | - 01 | E.06 | 17 | <.008 | | 04 | | ENVIRONMENTAL | | | | 8.0 | | 23.5 | < . 04 | | .17 | | | 28 | 0840 | ENVIRONMENTAL | 99 | 6.9 | 84 | 7.7 | 298 | 24.2 | <.04 | E.08 | .15 | <.008 | | 28 | 0841 | REPLICATE | | | | | | | <.04 | E.09 | .15 | <.008 | | 28 | 1255 | ENVIRONMENTAL | 99 | 8.0 | 103 | 7.9 | 307 | 27.0 | | | | | | 29 | 0910 | ENVIRONMENTAL | 92 | 6.9 | 87 | 7.7 | 317 | 25.2 | | | | | | 29 | 1400 | ENVIRONMENTAL | 90 | 8.2 | 106 | 8.0 | 316 | 27.9 | <.04 | .11 | .11 | <.008 | | JUL | | | | | | | | | | | | | | 29 | 1105 | ENVIRONMENTAL | 110 | 8.1 | 103 | 8.2 | 309 | 26.5 | <.04 | <.10 | .06 | <.008 | | AUG | | | | | | | | | | | | | | 06 | 0950 | ENVIRONMENTAL | 84 | 6.5 | 84 | 7.9 | 319 | 26.9 | <.04 | E.06 | <.05 | E.004 | | 06 | 1520 | ENVIRONMENTAL | 82 | 8.5 | 115 | 8.1 | 314 | 29.4 | | | | | | 07 | 0840 | ENVIRONMENTAL | 80 | 6.6 | 82 | 7.8 | 318 | 25.3 | | | | | | 07 | 1330 | ENVIRONMENTAL | 80 | 8.6 | 113 | 8.0 | 323 | 28.2 | <.04 | <.10 | <.05 | E.004 | | | | | ORTHO-
PHOS-
PHATE,
DIS- | PHOS-
PHORUS | E COLI,
MTEC MF | ENTERO-
COCCI,
MEI MF, | COLI-
FORM,
FECAL,
0.7 | FECAL
STREP,
KF STRP
MF, | | | | | | | | | SOLVED | TOTAL | WATER | WATER | μm-MF | WATER | | | | | | | | D3.000 | 00HVED | 101AL | WAILE / | / 1 / | | / 1 / | | | | | | DATE | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | | MEI MF,
WATER
(col./ | 0.7
µm-MF
(col./
100 mL) | KF STRP
MF,
WATER
(col./
100 mL) | |-----------|--|---|-----------|----------------------------|-----------------------------------|--| | OCT | | | | | | | | 02 | <.02 | <.004 | K3 | К9 | К9 | K8 | | 10 | <.02 | <.004 | 47 | K113 | K66 |
41 | | 10 | <.02 | | 29 | 67 | 43 | 35 | | 11 | <.02 | | | K255 | K143 | K190 | | 11
NOV | <.02 | <.004 | 61 | K144 | K109 | 85 | | 20 | <.02 | .009 | <1 | | K4 | K11 | | APR | <.02 | .009 | ν_Τ | | 17.4 | KII | | 02 | <.02 | E.002 | <1 | | <1 | К9 | | 30 | <.02 | E.003 | K3 | 28 | K2 | K11 | | MAY | | | | | | | | 29 | <.02 | E.002 | K15 | | 21 | 42 | | JUN | | | | | | | | 04 | < .04 | E.002 | <1 | 43 | K14 | 26 | | 28 | <.02 | E.003 | K16 | 190 | K12 | 148 | | 28 | <.02 | E.002 | | | | | | 28
29 | | | <2
K12 | 44
170 | K8
K18 | K26
90 | | 29 | <.02 | E.003 | K12 | 64 | K30 | 46 | | JUL | <.02 | E.003 | KIZ | 04 | 1.30 | 40 | | 29 | <.02 | E.003 | K2 | 79 | K13 | 41 | | AUG | | | | | | | | 06 | <.02 | E.003 | K26 | 130 | K24 | 66 | | 06 | | | K22 | 52 | K32 | 56 | | 07 | | | K12 | 164 | K26 | 86 | | 07 | <.02 | E.003 | K4 | 64 | K14 | 112 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. # 07065495 JACKS FORK AT ALLEY SPRING, MO LOCATION.--Lat 37°08'53", long 91°26'35", in SW $\frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.25, T.29 N., R.5 W., Shannon County, Hydrologic Unit 11010008, on downstream end of pier on foot bridge, just downstream of Highway 106 bridge, 0.5 mi upstream from Alley Spring Branch, and 5.5 mi west of Eminence. DRAINAGE AREA. -- 298 mi². PERIOD OF RECORD. -- March 1993 to current year. GAGE.--Water-stage recorder. Datum of gage is 656.74 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1999, datum was 4.0 ft lower. REMARKS.--Records good. U.S.G.S satellite telemeter at station. | | | DISCHARO | E, CUBIC | FEET PER | | WATER YE
MEAN VA | CAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|----------------------------------|----------------------------|--|--|-----------------------|--|---|--|---|--|--|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 29 | 38 | 106 | 60 | 2590 | 117 | 269 | 365 | 256 | 84 | 98 | 78 | | 2 | 29 | 39 | 111 | 57 | 901 | 126 | 244 | 340 | 242 | 83 | 96 | 76 | | 3 | 29 | 39 | 92 | 54 | 546 | 257 | 214 | 292 | 229 | 80 | 92 | 73 | | 4 | 28 | 39 | 80 | 51 | 403 | 345 | 183 | 260 | 218 | 79 | 88 | 71 | | 5 | 31 | 39 | 70 | 48 | 310 | 289 | 162 | 234 | 208 | 78 | 85 | 69 | | 6 | 33 | 37 | 69 | 49 | 259 | 255 | 149 | 220 | 220 | 76 | 83 | 69 | | 7 | 33 | 37 | 68 | 49 | 226 | 233 | 150 | 307 | 207 | 73 | 80 | 68 | | 8 | 33 | 36 | 66 | 47 | 195 | 213 | 2610 | 15800 | 194 | 71 | 78 | 68 | | 9 | 32 | 36 | 61 | 45 | 171 | 2570 | 2000 | 4090 | 184 | 70 | 81 | 66 | | 10 | 33 | 36 | 57 | 45 | 153 | 1840 | 975 | 2200 | 174 | 71 | 86 | 65 | | 11 | 40 | 36 | 53 | 44 | 136 | 880 | 670 | 1330 | 244 | 76 | 85 | 63 | | 12 | 47 | 36 | 55 | 43 | 120 | 810 | 577 | 970 | 273 | 74 | 84 | 62 | | 13 | 56 | 36 | 65 | 41 | 109 | 716 | 546 | 1840 | 246 | 81 | 112 | 62 | | 14 | 54 | 35 | 88 | 40 | 100 | 561 | 1850 | 1480 | 219 | 81 | 209 | 60 | | 15 | 50 | 34 | 128 | 39 | 89 | 469 | 1350 | 951 | 198 | 77 | 163 | 61 | | 16 | 51 | 34 | 193 | 39 | 83 | 604 | 785 | 716 | 173 | 73 | 135 | 61 | | 17 | 47 | 34 | 2360 | 38 | 78 | 596 | 640 | 5770 | 162 | 77 | 115 | 65 | | 18 | 44 | 34 | 1290 | 39 | 73 | 478 | 595 | 3550 | 149 | 77 | 104 | 65 | | 19 | 42 | 35 | 611 | 44 | 91 | 938 | 527 | 1570 | 140 | 960 | 99 | 65 | | 20 | 40 | 35 | 399 | 43 | 233 | 4210 | 462 | 1060 | 133 | 2330 | 97 | 77 | | 21 | 40 | 35 | 292 | 41 | 377 | 1800 | 619 | 770 | 125 | 483 | 91 | 90 | | 22 | 39 | 34 | 233 | 40 | 300 | 964 | 567 | 650 | 119 | 297 | 87 | 95 | | 23 | 39 | 34 | 193 | 44 | 244 | 663 | 463 | 560 | 114 | 218 | 87 | 79 | | 24 | 39 | 48 | 161 | 126 | 209 | 536 | 570 | 490 | 110 | 185 | 106 | 71 | | 25 | 40 | 49 | 136 | 431 | 184 | 512 | 687 | 438 | 110 | 168 | 103 | 66 | | 26
27
28
29
30
31 | 42
42
40
39
39
38 | 48
49
55
72
89 | 118
105
91
81
73
66 | 299
223
176
148
131
214 | 165
144
127
 | 608
557
492
441
373
313 | 523
474
465
452
388 | 390
348
323
303
287
271 | 114
103
97
91
88 | 145
130
119
110
106
102 | 126
115
101
93
86
81 | 65
65
62
59
58 | | MEAN | 39.3 | 41.3 | 244 | 89.9 | 308 | 767 | 672 | 1554 | 171 | 217 | 102 | 68.5 | | MAX | 56 | 89 | 2360 | 431 | 2590 | 4210 | 2610 | 15800 | 273 | 2330 | 209 | 95 | | MIN | 28 | 34 | 53 | 38 | 73 | 117 | 149 | 220 | 88 | 70 | 78 | 58 | | STATIST | CICS OF MO | NTHLY MEAN | I DATA FO | R WATER Y | EARS 1993 | 3 - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN | 116 | 314 | 194 | 200 | 427 | 461 | 496 | 504 | 179 | 115 | 85.9 | 180 | | MAX | 298 | 1426 | 370 | 331 | 976 | 767 | 1121 | 1554 | 381 | 217 | 145 | 1007 | | (WY) | 1999 | 1994 | 1997 | 1995 | 1999 | 2002 | 1994 | 2002 | 1995 | 2002 | 1998 | 1993 | | MIN | 39.3 | 41.3 | 76.6 | 74.5 | 81.6 | 159 | 86.5 | 93.5 | 83.3 | 52.2 | 31.5 | 31.2 | | (WY) | 2002 | 2002 | 2001 | 2000 | 1996 | 2001 | 2000 | 2001 | 2001 | 2001 | 2001 | 2000 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YE | AR | FOR 2002 | WATER YEA | R | WATER YE | ARS 1993 | - 2002 | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | | 131
4470
23
25

237
68
30 | Feb 2
Sep
Sep | 7 | 358
15800
28
30
40000
17.10
28
677
105
39 | May
Oct
Oct
May
May
Oct 3- | 4
1
8
8 | 266
469
95.9
23300
22
23
48700
21.97
22
505
120
49 | Sep 2
Sep 1
Nov 1
Nov 1 | 1994
2000
4 1993
22 2000
7 2000
4 1993
4 1993
22 2000 | | NITRO-GEN, NITRITE DIS-DIS-SOLVED (mg/L as N) (00613) > <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 E.005 > <.008 <.008 <.008 E.004 E.004 ### 370901091262001 ALLEY SPRING BELOW ALLEY, MO (Jacks Fork water-quality monitoring network) LOCATION.--Lat 37°09'01", long 91°26'20", in NE $\frac{1}{4}$ SW $\frac{1}{4}$ SE $\frac{1}{4}$ sec.25, T.29 N., R.5 W., Shannon County, Hydrologic Unit 11010008, at Alley Spring Campground, and 5.0 mi west of Eminence. PERIOD OF RECORD. -- May 1998 to current year. WATER-OUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | | | | | | | | |---|--------------|--------------------------------|---|--|---|--|--|---|--|---|---|---| | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | 1 | | OCT | | | | | | | | | | | | | | 02 | 1430 | ENVIRONMENTAL | 66 | 9.9 | 101 | 7.8 | 318 | 15.2 | <.04 | <.10 | .52 | | | 10 | 0900 | ENVIRONMENTAL | 66 | 9.2 | 92
97 | 7.5 | 321 | 14.4 | <.04 | <.10 | .50 | | | 10
11 | 1240
0920 | ENVIRONMENTAL
ENVIRONMENTAL | 66
66 | 9.7
8.8 | 88 | 7.4
7.5 | 322
320 | 14.5
14.2 | <.04
<.04 | <.10
<.10 | .51
.51 | | | 11 | 1240 | ENVIRONMENTAL | 66 | 9.6 | 96 | 7.5 | 314 | 14.3 | <.04 | .47 | .52 | | | NOV | 1210 | 2117 2110111 2211112 | 00 | 3.0 | ,,, | 7.5 | 311 | 11.5 | | • • • | .52 | | | 20 | 1600 | ENVIRONMENTAL | 62 | 9.3 | 92 | 7.7 | 322 | 14.0 | <.04 | <.10 | .52 | | | APR | | | | | | | | | | | | | | 02 | 1140 | ENVIRONMENTAL | 200 | 10.7 | 106 | 7.3 | 166 | 13.5 | <.04 | E.07 | .69 | | | 30 | 1215 | ENVIRONMENTAL | 250 | 10.3 | 102 | 7.4 | 176 | 13.5 | <.04 | E.06 | .53 | | | MAY
29 | 1100 | ENVIRONMENTAL | 293 | 10.1 | 101 | 7.2 | 179 | 13.6 | <.04 | .10 | .60 | | | JUN | 1100 | ENVIRONMENTAL | 293 | 10.1 | 101 | 1.2 | 1/9 | 13.0 | <.04 | .10 | .60 | | | 04 | 1115 | ENVIRONMENTAL | 226 | 10.8 | 108 | 7.1 | 202 | 14.0 | <.04 | <.10 | .63 | | | 28 | 0955 | ENVIRONMENTAL | 145 | 10.2 | 101 | 7.3 | 239 | 13.8 | <.04 | E.07 | .70 | | | 28 | 1305 | ENVIRONMENTAL | 145 | 10.7 | 108 |
7.2 | 246 | 14.8 | | | | | | 29 | 1000 | ENVIRONMENTAL | 142 | 9.9 | 99 | 7.1 | 250 | 14.4 | | | | | | 29 | 1420 | ENVIRONMENTAL | 142 | 10.6 | 107 | 7.4 | 248 | 14.6 | <.04 | E.07 | .72 | | | JUL | | | | | | | | | | | | | | 29 | 1145 | ENVIRONMENTAL | 118 | 10.6 | 106 | 7.9 | 280 | 14.2 | <.04 | <.10 | .76 | | | AUG
06 | 1045 | ENVIRONMENTAL | 105 | 10 0 | 108 | 7 5 | 280 | 14.0 | <.04 | <.10 | .75 | | | 06 | 1045 | REPLICATE | 105 | 10.8 | 100 | 7.5 | 200 | 14.2 | <.04 | | .75 | | | 06 | 1605 | ENVIRONMENTAL | 105 | | 105 | 7 4 | 278 | 14.4 | | | | | | 07 | 0910 | ENVIRONMENTAL | 105 | 10.2 | 101 | 7.4 | 280 | 14.1 | | | | | | 07 | 1405 | ENVIRONMENTAL | 105

105
105
105 | 10.5
10.2
10.8 | 109 | 7.5

7.4
7.4
7.5 | 286 | 14.7 | <.04 | <.10 | .75 | | | | | DATE | (mg/L
as P) | PHORUS
TOTAL
(mg/L
as P) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | MEI MF,
WATER
(col./ | | MF,
WATER
(col./
100 mL) | | | | | | | | OCT | | | | | | | | | | | | | | 02 | <.02 | .009 | K4 | 20 | K12 | K17 | | | | | | | | 10 | <.02 | .008 | K6 | 45 | 20 | 20 | | | | | | | | 10 | <.02 | .009 | К6 | 21 | K16 | K17 | | | | | | | | 11 | <.02 | .009 | K18 | 28 | K16 | 24 | | | | | | | | 11 | <.02 | .010 | K5 | 31 | K10 | 31 | | | | | | | | NOV
20 | <.02 | E.002 | К1 | | К6 | K5 | | | | | | | | APR | 1.02 | E.002 | KI | | 100 | KS | | | | | | | | 02 | <.02 | .015 | <1 | | K17 | K10 | | | | | | | | 30 | <.02 | .013 | 46 | K368 | K112 | K221 | | | | | | | | MAY | | | | | | | | | | | | | | 29 | <.02 | .021 | 28 | | 41 | 81 | | | | | | | | JUN | | | _ | | | | | | | | | | | 04 | <.04 | .019 | K3 | 57 | 20 | 31 | | | | | | | | 28 | <.02 | .012 | 52 | K26 | K22 | K24 | | | | | | | | 28
29 | | | K4
K16 | K28
K30 | K16
K10 | K20
K18 | | | | | | | | 29 | <.02 | .012 | K10
K2 | K16 | K10 | K22 | | | | | | | | JUL | 02 | . 512 | | 1110 | 110 | | | | | | | | | 29 | <.02 | .013 | K12 | K340 | 56 | K230 | | | | | | | | AIIC | | | | | | | | | | | <.02 <.02 -- <.02 .011 .012 -- .012 K28 --K28 52 112 96 138 52 --K32 40 110 74 72 52 AUG 06... 06... 06... 07... 07... K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. # 370911091223201 MAHANS CREEK ABOVE EMINENCE, MO (Jacks Fork water-quality monitoring network) LOCATION.--Lat $37^{\circ}09^{\circ}11^{\circ}$, long $91^{\circ}22^{\circ}32^{\circ}$, in SW $\frac{1}{4}$ NE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.27, T.29 N., R.4 W., Shannon County, Hydrologic Unit 11010008, 0.25 north of State Highway 106 on county road and 1.0 mi west of Eminence. DRAINAGE AREA. -- 54.0 mi². PERIOD OF RECORD. -- May 1998 to November 2001. | | | | | , | | | | | _ | | | | |---------------------------------|--|---|---|--|---|---|--|--|--|---|---|--| | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | | OCT 02 02 10 10 11 11 NOV 20 20 | 1400
1401
0940
1330
1345
1000
1305 | ENVIRONMENTAL REPLICATE ENVIRONMENTAL BLANK ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL REPLICATE | 3.5

3.9
3.9

4.6
4.6 | 9.3

7.9
8.3

7.8
8.2
10.3 | 102

83
88

82
87 | 8.0

7.6
7.8

7.7
7.7
8.0 | 463

462
462

450
437
456
 | 18.7

16.5
17.3

16.6
16.9 | <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | E.05 <.10 E.06 <.10 <.10 E.09 E.07 | .21
.21
.20
.18
<.05
.18
.18
.20 | <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 | | | | DATE | ORTHO-PHOS-PHATE, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | ENTERO-
COCCI,
MEI MF,
WATER
(col./
100 mL)
(90909) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | | | | | | | | OCT 02 10 10 11 11 NOV 20 20 | E.01
<.02
<.02
<.02
<.02
<.02
<.02
<.02
<.02 | E.003
.006
.005
.004
<.004
.004
.004 | 110

88
K31

220
80
K2
 | 78

374
212

580
460 | K90

92
K66

270
124
K33 | 62

254
128

350
350
K35 | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. #### 07066000 JACKS FORK AT EMINENCE, MO LOCATION.--Lat $37^{\circ}09^{\circ}18^{\circ}$, long $91^{\circ}21^{\circ}31^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.26, T.29 N., R.4 W., Shannon County, Hydrologic Unit 11010008, on right downstream bridge abutment on State Highway 19, 1.5 mi downstream from Mahans Creek, and 8.0 mi upstream from mouth. ### DRAINAGE AREA.--398 mi². #### WATER-DISCHARGE RECORDS PERIOD OF RECORD. --October 1921 to current year. Monthly discharge only for October 1921, published in WSP 1311. REVISED RECORDS.--WSP 787: 1928(M), 1934. WSP 877: 1938. WSP 927: Drainage area. WSP 1281: 1929. WDR MO-85-1: 1935(M), 1943(M), 1949(M), 1950(M), 1956(M), 1966(M), 1969(M), 1974(M), 1983(M). GAGE.--Water-stage recorder. Datum of gage is 615.87 ft above National Geodetic Vertical Datum of 1929. Prior to Oct. 1, 1995, datum of gage 2 ft higher. Prior to Jan. 27, 1934, nonrecording gage at site 1,350 ft upstream at datum 2.11 ft higher; Jan. 27, 1934, to Jan. 10, 1935, nonrecording gage at site 75 ft downstream at datum 0.04 ft lower; Jan. 11, 1935, to July 9, 1964, nonrecording gage at site 50 ft downstream at present datum. REMARKS.--Water-discharge records good. National Weather Service gage-height and U.S.G.S. satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Floods of 1895 and March 1904 reached a stage of about 27 ft, present site and datum, from information by local residents. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 DAILY MEAN VALUES DAY SEP OCT NOV DEC JAN FEB APR MAY AUG 7 112 131 270 1210 3510 253 112 780 ---MEAN MAX MTN 7.36 0.33 1.20 0.67 0.33 3.61 3.21 1.26 0.50 0.53 1.35 1.14 IN. STATISTICS OF MONTHLY MEAN DATA FOR WATER YEARS 1922 - 2002, BY WATER YEAR (WY) MEAN MAX (WY) MIN 76.5 98.1 96 9 89 8 84.8 82.6 73 1 (WY) SUMMARY STATISTICS FOR 2001 CALENDAR YEAR FOR 2002 WATER YEAR WATER YEARS 1922 - 2002 ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN HIGHEST DAILY MEAN Feb 25 Nov 15 1993 May LOWEST DAILY MEAN 102 Sep 5-7,Oct 4 Oct Sep 16 1956 ANNUAL SEVEN-DAY MINIMUM Oct. Sep 16 1956 Sep 1 MAXIMUM PEAK FLOW May Nov 15 1993 MAXIMUM PEAK STAGE ---17.22 May 17.82 Nov 15 1993 INSTANTANEOUS LOW FLOW Oct 1-5 Aug 28 1936 ANNUAL RUNOFF (INCHES) 15.78 21.50 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS # 07066000 JACKS FORK AT EMINENCE, MO--Continued (Jacks Fork water-quality monitoring network) # WATER-QUALITY RECORDS PERIOD OF RECORD. -- May 1998 to current year. WATER-OUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 NITRO- GEN, NITRITE DISSOLVED (mg/L as N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 E.004 E.005 | WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBE | | | | | | | | TEMBER 200 | BER 2002 | | | | | | |---|--------------|--------------------------------|---|---|---|--|--|---|--|------------------------------------|---|---|--|--| | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | (per-
cent
satur-
ation) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg
C)
(00010) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | ORGANIC
TOTAL
(mg/L
as N) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | N | | | | OCT
02 | 1300 | ENVIRONMENTAL | 104 | 10.2 | 105 | 8.2 | 340 | 15.8 | <.04 | <.10 | .28 | | | | | 10 | 1115 | ENVIRONMENTAL | 109 | 7.5 | 78 | 8.1 | 343 | 16.1 | <.04 | <.10 | .32 | | | | | 10 | 1630 | ENVIRONMENTAL | 109 | 9.9 | 104 | 8.2 | 337 | 16.8 | <.04 | <.10 | .26 | | | | | 11 | 1115 | ENVIRONMENTAL | 116 | 7.9 | 82 | 7.9 | 337 | 15.7 | <.04 | E.05 | .30 | | | | | 11 | 1530 | ENVIRONMENTAL | 116 | 9.7 | 102 | 7.9 | 337 | 16.1 | <.04 | E.09 | .28 | | | | | NOV
20 | 1415 | ENVIRONMENTAL | 112 | 12.4 | 115 | 8.2 | 327 | 11.3 | <.04 | <.10 | . 25 | | | | | APR | 1413 | BIVIICINIBILIAL | 112 | 12.1 | 113 | 0.2 | 327 | 11.5 | 1.01 | V.10 | .23 | | | | | 02 | 1315 | ENVIRONMENTAL | 590 | 11.1 | 112 | 8.1 | 234 | 14.4 | <.04 | E.08 | .36 | | | | | 30 | 1340 | ENVIRONMENTAL | 760 | 10.6 | 110 | 8.0 | 246 | 16.0 | <.04 | E.06 | .20 | | | | | 30 | 1350 | REPLICATE | | | | | | | <.04 | E.08 | .19 | | | | | MAY
29 | 1200 | ENVIRONMENTAL | 657 | 10.3 | 110 | 8.0 | 240 | 16.9 | <.04 | E.07 | .30 | | | | | JUN | 1200 | ENVIRONMENTAL | 037 | 10.3 | 110 | 0.0 | 240 | 10.9 | <.04 | E.07 | .30 | | | | | 04 | 1200 | ENVIRONMENTAL | 488 | 11.9 | 134 | 8.0 | 256 | 19.6 | <.04 | <.10 | .29 | | | | | 28 | 1045 | ENVIRONMENTAL | 309 | 9.1 | 102 | 7.6 | 276 | 19.6 | <.04 | E.09 | .40 | | | | | 28 | 1400 | ENVIRONMENTAL | 309 | 10.3 | 120 | 7.7 | 282 | 21.6 | | | | | | | | 29
29 | 1120
1500 | ENVIRONMENTAL
ENVIRONMENTAL | 297
297 | 8.8
10.0 | 98
118 | 7.3
7.9 | 291
288 | 19.8
22.5 | <.04 |
E.09 | .22 | | | | | JUL | 1300 | ENVIRONMENTAL | 291 | 10.0 | 110 | 7.9 | 200 | 22.5 | V.04 | E.09 | . 22 | | | | | 29 | 1420 | ENVIRONMENTAL | 266 | 10.5 | 125 | 8.2 | 300 | 22.8 | <.04 | <.10 | .37 | | | | | AUG | | | | | | | | | | | | | | | | 06 | 1205 | ENVIRONMENTAL | 220 | 9.5 | 109 | 7.9 | 305 | 21.1 | <.04 | <.10 | .33 | | | | | 06
07 | 1630
0945 | ENVIRONMENTAL
ENVIRONMENTAL | 216
216 | 11.6
8.2 | 138
91 | 8.2
7.8 | 299
305 | 22.7
19.7 | | | | | | | | 07 | 1445 | ENVIRONMENTAL | 216 | 10.8 | 128 | 8.1 | 307 | 22.7 | <.04 | E.07 | .31 | | | | | | | DATE | ORTHO-PHOS-PHATE, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | MEI MF,
WATER
(col./
100 mL) | 0.7
µm-MF
(col./
100 mL) | | | | | | | | | | | 0.000 | | | | | | | | | | | | | | | | OCT
02 | <.02 | E.003 | K1 | K12 | K12 | к3 | | | | | | | | | | 10 | | E.002 | K31 | 69 | K36 | 46 | | | | | | | | | | 10 | <.02 | .007 | K15 | 46 | K24 | K37 | | | | | | | | | | 11 | | E.003 | K83 | 300 | 108 | 232 | | | | | | | | | | 11
NOV | <.02 | .004 | K17 | 136 | 80 | 128 | | | | | | | | | | 20 | <.02 | E.002 | <1 | | K3 | K4 | | | | | | | | | | APR | | | | | | | | | | | | | | | | 02 | <.02 | .005 | <1 | | K6 | K5 | | | | | | | | | | 30
30 | <.02
<.02 | .006
.006 | K18 | 77
 | 37 | 49 | | | | | | | | | | MAY | 1.02 | .000 | | | | | | | | | | | | | | 29 | <.02 | .009 | К6 | | 26 | 39 | | | | | | | | | | JUN | - 04 | 005 | .1 | 40 | 77.1 - | 00 | | | | | | | | | | 04
28 | <.04
<.02 | .005 | <1
K12 | 42
29 | K15
K13 | 23
K18 | | | | | | | | | | 28 | | | K4 | K10 | K5 | K11 | | | | | | | | | | 29 | | | K16 | 26 | 27 | 30 | | | | | | | | | | 29 | <.02 | .010 | K4 | К9 | K16 | K15 | | | | | | | | | | JUL
29 | <.02 | .006 | к3 | 26 | 23 | 25 | | | | | | | | | | AUG | <.∪∠ | .000 | c.a | ∠0 | 23 | ∠5 | | | | | | | | | | 06 | < .02 | .004 | K20 | 50 | 56 | K40 | | | | | | | 50 K33 68 44 56 72 42 K183 K40 K25 68 K36 <.02 -- <.02 .004 -- .004 K20 K20 K13 130 06... 06... 07... 07... K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. $370905091204001 \ \ \, \text{JACKS FORK ABOVE 2ND UNNAMED HOLLOW (SOUTH) BELOW EMINENCE, MO} \\ (\text{Jacks Fork water-quality monitoring network})$ LOCATION.--Lat 37°09'05", long 91°20'40", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.25, T.29 N., R.4 W., Shannon County, Hydrologic Unit 11010008, at Jacks Fork Campground and 0.9 mi downstream of Eminence. DRAINAGE AREA.--406 mi². PERIOD OF RECORD. -- May 1998 to current year. | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | $\begin{array}{c} \text{NITRO-}\\ \text{GEN,}\\ \text{NO}_2 + \text{NO}_3\\ \text{DIS-}\\ \text{SOLVED}\\ (\text{mg/L}\\ \text{as N)}\\ (00631) \end{array}$ | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | |------|------|----------------|---|--|---|--|--|---|--|---|--|--| | OCT | | | | | | | | | | | | | | 02 | 1210 | ENVIRONMENTAL | 104 | 10.2 | 107 | 8.2 | 342 | 16.7 | < .04 | E.05 | .36 | <.008 | | 10 | 1055 | ENVIRONMENTAL | 109 | 8.2 | 86 | 8.0 | 342 | 16.4 | <.04 | E.10 | .30 | <.008 | | 10 | 1800 | ENVIRONMENTAL | 109 | 9.2 | 98 | 8.0 | | 16.7 | <.04 | .11 | . 29 | <.008 | | 11 | 1320 | ENVIRONMENTAL | 116 | 9.5 | 99 | 8.1 | 343 | 16.1 | <.04 | <.10 | .48 | <.008 | | 11 | 1715 | ENVIRONMENTAL | 116 | 9.6 | 101 | 8.2 | 340 | 16.5 | < .04 | E.06 | .31 | <.008 | | NOV | | | | | | | | | | | | | | 20 | 1230 | ENVIRONMENTAL | 112 | 11.8 | 108 | 8.3 | 322 | 11.1 | < .04 | <.10 | .27 | <.008 | | APR | | | | | | | | | | | | | | 02 | 1405 | ENVIRONMENTAL | 590 | 11.1 | 112 | 8.1 | 236 | 14.3 | < .04 | E.06 | .37 | <.008 | | 30 | 1410 | ENVIRONMENTAL | 760 | 10.4 | 108 | 8.2 | 247 | 16.0 | < .04 | .14 | .20 | <.008 | | MAY | | | | | | | | | | | | | | 29 | 1245 | ENVIRONMENTAL | 657 | 9.0 | 97 | 8.0 | 243 | 17.2 | < .04 | E.06 | .30 | <.008 | | JUN | | | | | | | | | | | | | | 04 | 1255 | ENVIRONMENTAL | 488 | 11.6 | 132 | 8.0 | 259 | 20.2 | < .04 | .13 | . 29 | <.008 | | 28 | 0845 | ENVIRONMENTAL | 309 | 8.4 | 94 | 7.6 | 296 | 19.4 | < .04 | E.09 | .42 | <.008 | | 28 | 1520 | ENVIRONMENTAL | 309 | 10.4 | 124 | 7.9 | 295 | 22.7 | | | | | | 29 | 1135 | ENVIRONMENTAL | 297 | 8.8 | 100 | 7.9 | 296 | 20.6 | | | | | | 29 | 1630 | ENVIRONMENTAL | 297 | 10.0 | 121 | 8.2 | 297 | 23.3 | <.04 | E.07 | .38 | <.008 | | JUL | | | | | | | | | | | | | | 29 | 1530 | ENVIRONMENTAL | 266 | 10.4 | 125 | 8.2 | 302 | 23.4 | <.04 | E.05 | .37 | <.008 | | AUG | | | | | | | | | | | | | | 06 | 0900 | ENVIRONMENTAL | 220 | 7.6 | 86 | 8.0 | 310 | 20.5 | <.04 | <.10 | .35 | E.005 | | 06 | 1400 | ENVIRONMENTAL | 216 | 10.3 | 120 | 7.7 | 307 | 21.8 | | | | | | 07 | 0830 | ENVIRONMENTAL | 216 | 7.3 | 82 | 7.5 | 313 | 19.8 | | | | | | 07 | 1245 | ENVIRONMENTAL | 216 | 9.7 | 112 | 7.8 | 313 | 21.3 | < .04 | E.09 | .33 | E.005 | | DATE | as P) | as P) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | MEI MF,
WATER
(col./
100 mL) | 0.7
µm-MF
(col./
100 mL) | | |----------------------|-----------------------------|------------------------------|---|---------------------------------------|-----------------------------------|-------------------------| | OCT | | | | | | | | 02
10
10
11 | E.01
<.02
<.02
.02 | .008
.007
.009
.018 | K8
K34
K48
K74 | K21
168
377
351 | 25
104
K60
108 | K4
100
140
164 | | 11
NOV | <.02 | .010 | 88 | 377 | 88 | 196 | | 20
APR | <.02 | E.002 | <1 | | K5 | К7 | | 02 | <.02 | .006 | K4 | | K14 | K11 | | 30
MAY | <.02 | .006 | 25 | 55 | 44 | 64 | | 29
JUN | <.02 | .008 | К9 | | 24 | 28 | | 04 | < .04 | .006 | <1 | 43 | K14 | 41 | | 28 | <.02 | .008 | 54 | 69 | 56 | 50 | | 28 | | | K10 | K14 | К9 | K10 | | 29 | <.02 | .009 | K10
K4 | 20
K12 | 26
K8 | 20
20 | | 29
JUL | <.02 | .009 | K4 | KIZ | 1.8 | 20 | | 29
AUG | <.02 | .008 | <1 | 30 | 23 | 20 | | 06 | <.02 | .004 | 160 | 270 | K187 | 300 | | 06 | | | K24 | 110 | 88 | 58 | | 07
07 | <.02 | .007 | 96
K13 | 287
148 | 112
K63 | 112
K57 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. ### 371014091201301 JACKS FORK ABOVE LICK LOG HOLLOW BELOW EMINENCE, MO (Jacks Fork water-quality monitoring network) LOCATION.--Lat 37°10'14", long 91°20'13", in SE $\frac{1}{4}$ SE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.24, T.29 N., R.4 W., Shannon County, Hydrologic Unit 11010008, 2.4 mi downstream from Eminence. DRAINAGE AREA. -- 409 mi². PERIOD OF RECORD. -- May 1998 to current year. WATER-OUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | |
WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | | | | | | | | | | | | |------------------------------|---|---|---|---|---|--|--|--|--|---|---|--| | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | | OCT
02
10
11
11 | 1130
1015
1600
1000
1500 | ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL | 106
109
109
116
116 | 10.1
8.2
8.9
8.5
9.4 | 105
86
94
89
99 | 8.2
8.1
8.2
7.9 | 343
346
344
338
338 | 16.5
16.6
17.0
16.2
16.4 | <.04
<.04
<.04
<.04
<.04 | E.06
<.10
E.07
.14
E.07 | . 27
. 27
. 31
. 34
. 32 | <.008
<.008
<.008
<.008
<.008 | | NOV
21
21 | 0930
0945 | BLANK
ENVIRONMENTAL |
114 | 10.1 |
90 | 8.4 |
351 | 9.6 | <.04
<.04 | <.10
<.10 | <.05
.25 | <.008
<.008 | | APR
02
02
30
MAY | 1430
1450
1445 | BLANK
ENVIRONMENTAL
ENVIRONMENTAL |
590
760 | 11.3
11.0 | 114
115 | 8.2
8.2 | 233
248 | 14.3
16.1 | <.04
<.04
<.04 | <.10
E.07
E.09 | <.05
.37
.20 | <.008
<.008
<.008 | | 29
JUN | 1315 | ENVIRONMENTAL | 657 | 10.5 | 113 | 8.0 | 244 | 17.3 | <.04 | E.08 | .31 | <.008 | | 04
28
28
29
29 | 1350
1015
1550
1105
1545
1546 | ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL REPLICATE | 488
309
309
297
297 | 11.6
8.8
10.3
8.8
10.1 | 133
99
124
100
122 | 8.0
8.2
7.9
7.7
8.2 | 260
296
297
297
297 | 21.0
20.2
23.1
20.6
23.4 | <.04
<.04

<.04
<.04 | .11
E.09

E.08
.10 | .28
.41

.38
.38 | <.008
<.008

<.008
<.008 | | JUL
29 | 1610 | ENVIRONMENTAL | 266 | 10.6 | | 8.2 | 302 | | <.04 | E.06 | .35 | <.008 | | AUG
06
06
07 | 0945
1430
0900
1315 | ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL | 220
216
216
216
216 | 8.1
10.2
7.7
9.6 | 93
121
87
113 | 8.0
8.3
7.9
8.1 | 312
309
315
314 | 21.2
22.7
20.1
22.4 | <.04

<.04 | E.06

E.06 | .36

.33 | E.005

E.006 | | | | DATE | ORTHO-PHOS-PHATE, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | | | | | | | | OCT
02
10
11
11
NOV | E.02
<.02
<.02
E.01
<.02 | .004
.004
.009
.015 | K17
92
240
120
140 | 21
340
K1480
620
960 | 30
100
440
245
210 | K15
148
309
384
325 | | | | | | | | 21
21 | <.02
<.02 | K.002
K.004 |
<1 | |
K14 |
20 | | | | | | | | APR 02 02 30 | <.02
<.02
<.02 | <.004
.005
.006 |
<1
23 |

63 |
K12
30 |
22
29 | | | | | | | | MAY
29
JUN | <.02 | .007 | K8 | | K19 | 28 | | | | | | | | 04
28
28
29
29 | <.04
<.02

<.02
<.02 | .005
.008

.009 | K4
K18
K2
100
K10 | 97
41
K15
68
20 | K89
34
K11
120
K14 | 47
33
K11
54
26 | | | | | | | | JUL
29
AUG | <.02 | .007 | K2 | 26 | 27 | 27 | | | | | | | | 0.6 | - 02 | 000 | 420 | 171240 | 17700 | 1/2 1 2 Q D | | | | | <.02 -- <.02 .009 -- .007 430 130 K100 K1340 390 188 K780 K650 K266 K1280 173 128 06... 06... K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. # 07066110 JACKS FORK ABOVE TWO RIVERS, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°10'22", long 91°18'00", in SW $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.20, T.29 N., R.3 W., Shannon County, Hydrologic Unit 11010008, at the Shawnee Campground, 4.5 mi downstream from the Eminence Wastewater Treatment Plant. DRAINAGE AREA. -- 425 mi². PERIOD OF RECORD. -- April 1973 to current year. REMARKS.--Ozark National Scenic Riverways station since April 1973 and an Ambient Water-Quality Monitoring Network station since November 1993. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |-----------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
14 | 1350 | ENVIRONM | ENTAL | 97 | 13.2 | 128 | 7.8 | 349 | 13.2 | 200 | 39.0 | 23.9 | .27 | | JAN
22 | 1100 | ENVIRONM | ENTAL | 144 | 12.5 | 104 | 8.0 | 314 | 6.7 | | | | | | MAR
05 | 1030 | ENVIRONM | ENTAL | 504 | 12.7 | 103 | 7.8 | 284 | 5.8 | | | | | | MAY
13 | 1415 | ENVIRONM | ENTAL | 2400 | 8.8 | 89 | 7.7 | 198 | 15.6 | 100 | 21.4 | 12.0 | .29 | | JUL
15 | 1045 | ENVIRONM | | 304 | 7.9 | 90 | 7.9 | 318 | 20.6 | | | | | | SEP | | | | | | | | | | | | | | | 05 | 0830 | ENVIRONM | ENTAL | 288 | 7.1 | 81 | 7.7 | 339 | 21.0 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
14 | 1.79 | 167 | 169 | 206 | 0 | 13.0 | <.1 | 2.9 | <10 | 198 | <.04 | <.10 | .20 | | JAN
22 | | 162 | 163 | 198 | 0 | | | | <10 | | <.04 | E.06 | . 45 | | MAR
05 | | 137 | 139 | 170 | 0 | | | | <10 | | <.04 | E.05 | . 35 | | MAY | | | | | | | | | | | | | | | 13
JUL | 2.36 | 101 | 100 | 122 | 0 | 2.88 | <.1 | 3.5 | 36 | 110 | <.04 | .29 | . 21 | | 15
SEP | | 169 | 170 | 207 | 0 | | | | <40 | | <.04 | E.05 | .32 | | 05 | | 172 | 173 | 211 | 0 | | | | <10 | | <.04 | E.06 | .42 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF
STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV | | | | | | | | | | | | | | | 14
JAN | <.008 | <.06 | <.02 | <.06 | K2 | K1 | K4 | 7 | 14 | .3 | <.04 | <.1 | <6 | | 22
MAR | <.008 | <.06 | <.02 | <.06 | K5 | K4 | K2 | | | | | | | | 05
MAY | <.008 | <.06 | <.02 | <.06 | <1 | K5 | К2 | | | | | | | | 13 | <.008 | <.06 | <.02 | .06 | 460 | 620 | 1700 | 88 | 330 | . 2 | <.04 | <.1 | <6 | | JUL
15 | <.008 | <.06 | <.02 | <.06 | K21 | 45 | 40 | | | | | | | | SEP
05 | <.008 | <.06 | <.02 | <.06 | K28 | 58 | 88 | | | | | | | # 07066110 JACKS FORK ABOVE TWO RIVERS, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 14 | <10 | <.08 | <1 | E1.5 | <.01 | E.2 | 7 | 3 | | JAN | | | | | | | | | | 22 | | | | | | | | | | MAR | | | | | | | | | | 05 | | | | | | | | | | MAY | | | | | | | | | | 13 | 51 | 1.07 | 5 | 9.4 | E.01 | E.2 | | 5 | | JUL | | | | | | | | | | 15 | | | | | | | | | | SEP | | | | | | | | | | 05 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. # 371026091183301 JACKS FORK ABOVE POWELL SPRING ABOVE TWO RIVERS, MO (Jacks Fork water-quality monitoring network) LOCATION.--Lat 37°10'26", long 91°18'33", in SW $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.19, T.29 N., R.3 W., Shannon County, Hydrologic Unit 11010008, 3.1 mi upstream from Two Rivers. DRAINAGE AREA. --412 mi² PERIOD OF RECORD. -- May 1998 to current year. # WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | |-----------------------------|--|---|---|---|---|--|--|--|--|---|---|--| | OCT
02
10
11
11 | 1045
0930
1500
0930
1400 | ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL | 108
109
109
116
116 | 8.9
8.2
10.4
8.1
9.2 | 92
86
110
85
97 | 8.2
8.1
8.2
7.7
7.9 | 347
347
347
340
339 | 16.2
16.6
17.1
16.4
16.6 | <.04
<.04
<.04
<.04
<.04 | <.10
E.06
<.10
E.05
E.05 | . 23
. 24
. 24
. 27
. 29 | <.008 <.008 <.008 <.008 <.008 | | NOV
21
APR | 0845 | ENVIRONMENTAL | 119 | 9.6 | 85 | 8.2 | 350 | 9.1 | <.04 | <.10 | .21 | <.008 | | 02
30
MAY | 1525
1520 | ENVIRONMENTAL
ENVIRONMENTAL | 590
751 | 11.0
10.9 | 111
114 | 8.2
8.2 | 240
251 | 14.3
16.1 | <.04
<.04 | E.07
E.08 | .38
.19 | <.008
<.008 | | 29
JUN | 1345 | ENVIRONMENTAL | 657 | 10.6 | 114 | 8.1 | 246 | 17.3 | | E.10 | | | | 04
04
28
29
29 | 1430
1431
1100
1615
0930
1515 | ENVIRONMENTAL REPLICATE ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL ENVIRONMENTAL | 492

314
314
312
312 | 11.4

9.6
10.4
8.7
10.6 | 132

110
126
99
127 | 7.9

8.0
8.2
7.8
8.0 | 263

299
299
300
299 | 21.4

20.6
23.7
20.6
23.2 | <.04
<.04
<.04

<.04 | E.06
E.09
E.09

E.08 | . 27
. 28
. 40

. 37 | <.008
<.008
.009

<.008 | | JUL
29
AUG | 1630 | ENVIRONMENTAL | 249 | 10.9 | | 8.2 | 305 | | <.04 | E.05 | .34 | E.004 | | 06
06
07
07 | 1030
1500
0930
1400 | ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL | 216
216
216
216 | 8.2
10.5
7.9
10.1 | 96
126
91
121 | 8.0
8.2
8.1
8.2 | 315
312
318
315 | 22.1
23.2
21.0
23.1 | <.04

<.04 | <.10

E.09 | .33

.31 | E.005

E.006 | | | | DATE | ORTHO-PHOS-PHATE, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | MEI MF,
WATER
(col./ | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | | | | | | | | OCT 02 10 11 11 11 NOV 21 | <.02
<.02
<.02
<.02
<.02
<.02 | .004
.005
.005
.006
.006 | K17
64
58
270
84 | 41
149
155
K1050
500 | 39
54
100
420
172
K15 | K16
K30
58
346
208 | | | | | | | | APR
02
30 | <.02
<.02 | .007 | <1
K2 |
38 | K8
29 | K12
28 | | | | | | | | MAY
29 | | .008 | K5 | | 22 | 26 | | | | | | | | JUN
04 | <.04 | .006 | к2 | 70 | K87 | 37 | | | | | | | | 04
28
28
29
JUL | <.04
<.02

<.02 | .006
.005

.007 | K12
K8
29
K3 |
K18
K19
41
K12 | 33
K19
44
K17 | K15
K11
38
K12 | | | | | | | | 29
AUG | <.02 | .007 | K1 | 28 | K16 | K14 | | | | | | | | AUG | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. ### 371019091180101 SHAWNEE CREEK ABOVE TWO RIVERS, MO (Jacks Fork water-quality monitoring network) LOCATION.--Lat $37^{\circ}10^{\circ}19^{\circ}$, long $91^{\circ}18^{\circ}01^{\circ}$, in SW $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.20, T.29 N., R.3 W., Shannon County, Hydrologic Unit 11010008, at Shawnee Creek Campground and 2.4 mi upstream from Two Rivers. DRAINAGE AREA. -- 20.0 mi². PERIOD OF RECORD. -- May 1998 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 NITRO- GEN, NITRITE DIS-SOLVED (mg/L as N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 E.004 E.004 E.005 | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃ N
DIS-
SOLVED
(mg/L
as N)
(00631) | |------------------------------|--------------------------------------|---|---|---|---|--|---|--|--
---|---| | OCT
03
10
11
NOV | 1100
0945
1515
1215
1645 | ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL | 2.8
2.8
2.8
4.6
4.6 | 9.3
7.8
7.3
8.5
8.6 | 96
81
77
89
91 | 8.0
7.9
8.0
8.0 | 515
511
511
516
512 | 16.0
16.1
16.6
16.7
17.0 | <.04
<.04
<.04
<.04
<.04 | E.06
<.10
<.10
<.10 | .14
.11
.10
.11 | | 20
APR | 1115 | ENVIRONMENTAL | 3.0 | 11.8 | 106 | 8.2 | 514 | 10.1 | <.04 | <.10 | .07 | | 03 | 1155 | ENVIRONMENTAL | 20 | 10.9 | 102 | 8.2 | 363 | 11.9 | <.04 | E.07 | .27 | | MAY
01
30 | 1215
0845
0846 | ENVIRONMENTAL
ENVIRONMENTAL
REPLICATE | 28
36
 | 10.4
9.1
 | 109
97
 | 8.3
8.1
 | 379
386
 | 15.9
17.2
 | <.04
<.04
<.04 | .15
E.09
.10 | .12
.14
.14 | | JUN
05
28
29
29 | 1055
1150
1550
1125
1500 | ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL | 32
12
12
12
12 | 8.1
8.2
8.5
8.2
8.2 | 91
99
106
98
101 | 7.9
8.0
8.1
8.0
8.1 | 388
471
471
477
472 | 20.0
23.0
25.0
23.2
25.0 | <.04
<.04

<.04 | .16
E.09

E.10 | . 25
. 24

. 37 | | JUL
30 | 1120 | ENVIRONMENTAL | 11 | 6.3 | 79 | 8.1 | 486 | 25.9 | <.04 | E.06 | .20 | | AUG
06
06
07 | 1145
1545
1005
1330 | ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL
ENVIRONMENTAL | 6.5
6.5
6.5 | 7.3
6.9
6.7
7.3 | 90
86
79
90 | 7.8
8.0
8.1
8.1 | 499
492
501
500 | 24.7
25.4
22.9
24.7 | <.04

<.04 | <.10

.11 | .20

.19 | | | | DATE | ORTHO-PHOS-PHATE, DIS-SOLVED (mg/L as P) (00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | MF,
WATER
(col./
100 mL) | | | | | | | OCT 03 10 11 11 NOV 20 APR 03 MAY 01 30 JUN 05 28 29 | <.02 <.02 <.02 <.02 <.02 <.02 <.02 <.02 | .008
.008
.007
.008
.007
E.003
.004
.017
.005
.006 | K4
K9
K34
120
110
<2
K2
50
K14

K3200
K22
K28
K15
K22 | K33
188
231
530
560

96

K4980
170
230
190
150 | K12
K48
88
144
124
<2
K10
70
K30

K3200
K25
K18
K20
K23 | K8
116
K100
257
271
K8
K10
48
86

K3240
138
154
130 | | | | | | | JUL
30
AUG | <.02 | .009 | К9 | 280 | K20 | 300 | | | | | | | 06
06
07 | <.02

<.02 | .012

.013 | 510
K60
330
200 | 453
K75
330
300 | K933
198
300
240 | 533
K58
270
K167 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. # 371020091174101 JACKS FORK ABOVE LITTLE SHAWNEE CREEK ABOVE TWO RIVERS, MO (Jacks Fork water-quality monitoring network) LOCATION.--Lat $37^{\circ}10^{\circ}20^{\circ}$, long $91^{\circ}17^{\circ}41^{\circ}$, in SW $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.20, T.29 N., R.3 W., Shannon County, Hydrologic Unit 11010008, just below Shawnee Creek Campground and 2.2 mi upstream from Two Rivers. DRAINAGE AREA. -- 433 mi². PERIOD OF RECORD. -- May 1998 to current year. #### WATER-OUDLITTY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 NITRO-GEN, NITRITE DIS- SOLVED (mg/L as N) (00613) <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 E.004 E.005 E.005 | | | WATER | -QUALITY I | DATA, WATE | R YEAR OO | TOBER 200 | 1 TO SEPT | TEMBER 200 | 12 | | | | |------|--------------|--------------------------------|--|-------------------------------------|---|---|-----------------------------------|--|--------------------------------------|------------------------------------|---|---| | DATE | TIME | SAMPLE
TYPE | feet
per
second) | OXYGEN,
DIS-
SOLVED
(mg/L) | (per-
cent
satur-
ation) | WHOLE
FIELD
(stand- | CON-
DUCT-
ANCE
(µS/cm) | TEMPER-
ATURE
WATER
(deg C) | GEN, AMMONIA DIS- SOLVED (mg/L as N) | ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | 1 | | OCT | 1000 | | 1.00 | 0.0 | 2.0 | 0 1 | 251 | 1.5.0 | 0.4 | 1.0 | 0.4 | | | 03 | | | 107 | | | 8.1 | 351 | 16.0 | < .04 | <.10 | . 24 | | | 03 | 1030 | BLANK | | | | | | | <.04
<.04
<.04 | <.10 | <.05 | | | 10 | 1000 | ENVIRONMENTAL | 111 | 7.9 | 83
94 | 8.0 | | 16.5 | <.04 | E.08 | . 24 | | | 10 | 1530 | ENVIRONMENTAL | 111 | | | 8.1 | 343 | 17.0 | <.04 | E.06 | .23 | | | 10 | 1535 | REPLICATE | | | | | | | <.04 | <.10 | .23 | | | 11 | 1200 | ENVIRONMENTAL | 111 | 8.5 | 89 | 8.1 | 350 | 16.6 | <.04 | <.10 | .26 | | | 11 | 1630 | ENVIRONMENTAL | 111 | 9.3 | 98 | 8.2 | 348 | 16.6
16.8 | <.04 | <.10 | . 29 | | | NOV | | | | | | | | | | | | | | 20 | 1045 | ENVIRONMENTAL | 111 | 11.2 | 100 | 8.2 | 349 | 10.0 | <.04 | <.10 | .22 | | | APR | | | | | | | | | | | | | | 03 | 1145 | ENVIRONMENTAL | 551 | 10.7 | 99 | 8.2 | 244 | 11.7 | <.04 | <.10 | .39 | | | MAY | | | | | | | | | | | | | | 01 | 1145 | ENVIRONMENTAL | | 10.2 | 106 | 8.1 | 267 | 15.4 | <.04 | | . 22 | | | 30 | 0930 | ENVIRONMENTAL | 690 | 9.3 | 98 | 7.9 | 251 | 16.8 | <.04 | .11 | .30 | | | JUN | 1120 | | F 40 | 0 6 | 0.4 | | 0.54 | 10 5 | 0.4 | - 00 | 2.5 | | | 05 | 1130 | ENVIRONMENTAL | 548 | 8.6 | 94 | 7.9 | 264 | 18.7 | <.04 | E.08 | .36 | | | 28 | 1140 | ENVIRONMENTAL | 314 | 9.5 | 110 | 8.0 | 309 | 21.2 | <.04 | E.09 | .39 | | | 28 | 1545 | ENVIRONMENTAL | 314 | 10.4
9.3 | 126 | 8.1 | 308 | 23.6 | | | | | | 29 | 1115 | ENVIRONMENTAL | | | 107 | 7.9 | 312 | 21.3 | | | | | | 29 | 1445 | ENVIRONMENTAL | 302 | 10.3 | 122 | 8.1 | 312 | 23.0 | <.04 | E.08 | .35 | | | JUL | | | | | | | | | | | | | | 30 | 1105 | ENVIRONMENTAL | 250 | 8.7 | 102 | 8.1 | 308 | 22.3 | <.04 | E.06 | .35 | | | AUG | | | | | | | | | | | | | | 06 | 1130
1530 | ENVIRONMENTAL
ENVIRONMENTAL | 212
212
212 | 8.8
10.2
8.2 | 104
123 | 8.1
7.9
7.9 | 316
310 | 22.7
23.6 | <.04 | E.05 | .31 | | | 06 | | | 212 | 10.2 | 123 | 7.9 | 310 | | | | | | | 07 | 1000 | ENVIRONMENTAL | | 8.2 | 94 | 7.9 | 313 | 21.4 | | | | | | 07 | 1315 | ENVIRONMENTAL | 212 | 9.3 | 110 | 8.2 | 318 | 22.8 | <.04 | E.09 | .32 | | | | | DATE | ORTHO-PHOS-PHATE, DIS-SOLVED (mg/L as P) (00671) | TOTAL
(mg/L
as P) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | ENTERO-
COCCI,
MEI MF,
WATER
(col./
100 mL)
(90909) | 0.7
µm-MF
(col./
100 mL) | STREP,
KF STRP
MF,
WATER
(col./
100 mL) | | | | | | | | OCT | | | | | | | | | | | | | | 03 | <.02 | .004 | 20 | 34 | 25 | K17 | | | | | | | | 03 | <.02 | <.004 | | | | | | | | | | | | 10 | <.02 | .005 | K44 | 89 | 56 | 80 | | | | | | | | 10 | <.02 | .005 | К9 | 104 | 60 | 40 | | | | | | | | 10 | <.02 | .004 | | | | | | | | | | | | 11 | <.02 | .004 | 160 | K592 | 220 | 284 | | | | | | | | 11 | <.02 | .013 | 91 | K412 | 152 | 188 | | | | | | | | NOV | 2 | .015 | | | 102 | 100 | | | | | | | | 20 | <.02 | E.002 | K1 | | K5 | K10 | | | | | | | | APR | | | | | | | | | | | | | | 03 | <.02 | .005 | <1 | | K5 | К3 | | | | | | | | MAY | | 225 | 26 | 0.5 | 25 | | | | | | | | | 01 | <.02 | .006 | 36 | 97 | 35 | 88 | | | | | | | | 30
JUN | <.02 | .007 | K13 | | 20 | 67 | | | | | | | | JUN
05 | <.04 | .008 | 380 | 770 | K840 | 510 | | | | | | | | 28 | <.04 | .008 | X19 | K18 | 20 | K16 | | | | | | | | 28 | | | K19 | K18
K14 | 20
K9 | K10 | | | | | | | | 29 | | | K20 | K26 | 25 | K10 | | | | | | | | 29 | <.02 | .005 | K20
K3 | K26
K26 | 25
22 | 20 | | | | | | | | Δ9 | <.02 | .005 | 6.71 | NZ0 | 22 | ∠∪ | | | | | | | | 30 | <.02 | .007 | K5 | 105 | K63 | 103 | | | | | | | | 50 | 1.02 | .007 | 103 | 100 | 1000 | 100 | | | | | <.02 --<.02 .006 --.005 K180 710 110 K17 70 910 K26 84 K920 64 K29 K1040 06... 06... 07... 07... K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. > 371054091173501 JACKS FORK BELOW 3RD UNNAMED HOLLOW (NORTH) ABOVE TWO RIVERS, MO (Jacks Fork water-quality monitoring network) LOCATION.--Lat 37°10'54", long 91°17'35", in NE $^1\!\!/_4$ NW $^1\!\!/_4$ SE $^1\!\!/_4$ sec.17, T.29 N., R.3 W., Shannon County, Hydrologic Unit 11010008, 1.4 mi upstream from Two Rivers. DRAINAGE AREA. -- 444 mi². PERIOD OF RECORD. -- May 1998 to current year. NITRO-GEN, NITRITE DIS-SOLVED (mg/L as N) (00613) > <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 <.008 E.005 --E.004 E.005 | | | WATER | -QUALITY D | DATA, WATE | R YEAR OC | TOBER 200 | 1 TO SEPT | TEMBER 200 | 12 | | | |-----------|--------------|--------------------------------|--|---|---|--|--|--|----------------------------------
---|---| | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | DIS-
SOLVED
(mg/L
as N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT | | | | | | | | | | | | | 03 | 0900 | ENVIRONMENTAL | 110 | 7.7 | 79 | 8.2 | 359 | 15.6 | | <.10 | . 23 | | 10
10 | 0845
1430 | ENVIRONMENTAL
ENVIRONMENTAL | 129
129 | 7.7
8.6 | 80
92 | 7.8
8.0 | 350
352 | 16.2
16.9 | <.04
<.04 | E.07
.27 | .24
.22 | | 11 | 1045 | ENVIRONMENTAL | 129 | 8.0 | 84 | 8.1 | 357 | 16.6 | <.04 | E.06 | .27 | | 11 | 1500 | ENVIRONMENTAL | 129 | 8.2 | 87 | 8.1 | 354 | 16.9 | <.04 | <.10 | .26 | | NOV | | | | | | | | | | | | | 20
APR | 0900 | ENVIRONMENTAL | 124 | 10.4 | 93 | 8.1 | 354 | 10.2 | <.04 | | .22 | | 03 | 1000 | ENVIRONMENTAL | 551 | 10.3 | 94 | 8.1 | 250 | 10.8 | <.04 | E.07 | .39 | | MAY | 1000 | DIVVIRONIBIVITIE | 331 | 10.5 | 71 | 0.1 | 230 | 10.0 | 1.01 | D.07 | . 33 | | 01 | 1030 | ENVIRONMENTAL | 728 | 9.7 | 100 | 7.9 | 265 | 15.3 | <.04 | E.07 | .23 | | 30 | 1100 | ENVIRONMENTAL | 738 | 9.6 | 102 | 7.9 | 260 | 17.3 | <.04 | E.08 | . 29 | | JUN
05 | 0940 | ENVIRONMENTAL | 548 | 8.6 | 95 | 7.8 | 277 | 19.1 | <.04 | E.07 | .32 | | 28 | 0910 | ENVIRONMENTAL | 310 | 7.8 | 89 | 7.9 | 319 | 20.5 | <.04 | E.07 | .40 | | 28 | 0911 | REPLICATE | | | | | | | <.04 | E.08 | .40 | | 28 | 1500 | ENVIRONMENTAL | 310 | 10.6 | 127 | 7.9 | 320 | 23.1 | | | | | 29 | 1030 | ENVIRONMENTAL | 298 | 8.4 | 96 | 7.8 | 322 | 21.2 | | | | | 29
JUL | 1345 | ENVIRONMENTAL | 298 | 9.9 | 117 | 8.0 | 323 | 22.7 | <.04 | E.08 | .37 | | 30 | 0945 | ENVIRONMENTAL | 268 | 7.4 | 86 | 8.1 | 320 | 22.0 | <.04 | <.10 | .35 | | 30 | 1000 | BLANK | | | | | | | <.04 | <.10 | <.05 | | AUG | | | | | | | | | | | | | 06
06 | 1015
1445 | ENVIRONMENTAL | 226
226 | 7.7
10.3 | 92 | 8.1
8.3 | 323 | 23.0
23.7 | <.04 | <.10 | .31 | | 07 | 0915 | ENVIRONMENTAL
ENVIRONMENTAL | 226 | 7.5 | 86 | 8.3 | 318
322 | 21.4 | | | | | 07 | 1215 | BLANK | | | 92
125
86

107 | | | | <.04 | <.10 | <.05 | | 07 | 1230 | ENVIRONMENTAL | 226 | 9.1 | 107 | 8.1 | | 22.5 | <.04 | E.08 | .31 | | | | DATE | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | WATER
(col./
100 mL) | MEI MF,
WATER
(col./ | 0.7
µm-MF
(col./ | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | | | | | | | OCT | | | | | | | | | | | | | 03 | <.02 | .004 | 32 | 47 | 42 | 36 | | | | | | | 10
10 | <.02
<.02 | .004 | 100
K21 | 120
112 | 111
46 | 78
K33 | | | | | | | 11 | <.02 | .004 | 240 | K612 | K292 | 244 | | | | | | | 11 | <.02 | .006 | | 324 | 156 | 123 | | | | | | | NOV | | | | | | | | | | | | | 20 | <.02 | | <1 | | 21 | K17 | | | | | | | APR
03 | <.02 | .005 | K2 | | K12 | K13 | | | | | | | MAY | 1.02 | .003 | 112 | | 11.12 | 11.1.5 | | | | | | | 01 | <.02 | .006 | 39 | 97 | 49 | 71 | | | | | | | 30 | <.02 | .008 | K2 | | 22 | 65 | | | | | | | JUN
05 | <.04 | .005 | K20 | 53 | 44 | 182 | | | | | | | 28 | <.02 | .003 | K83 | 230 | 47 | 245 | | | | | | | 28 | <.02 | .006 | | | | | | | | | | | 28 | | | K13 | 32 | K13 | 24 | | | | | | | 29
29 | <.02 | .006 | 27
K9 | 46
v10 | K17 | 20
v11 | | | | | | | JUL | \. ∪∠ | .000 | V2 | K18 | K18 | K11 | | | | | | | 30 | <.02 | .006 | K18 | 220 | 115 | 325 | | | | | | | 30 | <.02 | <.004 | | | | | | | | <.02 <.02 <.02 .004 <.004 .006 96 130 K35 74 124 48 K142 K140 K162 92 50 K18 06... 06... 07... AUG K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numberic result is less than the value shown. ### 07067000 CURRENT RIVER AT VAN BUREN, MO LOCATION.--Lat $36^{\circ}59^{\circ}29^{\circ}$, long $91^{\circ}00^{\circ}53^{\circ}$, in NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.25, T.27 N., R.1 W., Carter County, Hydrologic Unit 11010008, near right bank on downstream side of bridge pier on U.S. Highway 60 in Van Buren, 0.4 mi downstream from Pike Creek, 4.7 mi upstream from Big Creek, and at mile 90.4. DRAINAGE AREA. -- 1,667 mi². PERIOD OF RECORD.--October 1912 to current year. Prior to July 1921 monthly discharge only, published in WSP 1311. REVISED RECORDS.--WSP 877: 1938. WSP 897: 1939. WSP 927: Drainage area. WSP 1281: 1929. GAGE.--Water-stage recorder. Datum of gage is 442.78 ft above National Geodetic Vertical Datum of 1929. Prior to Sept. 1, 1926, nonrecording gage at site 100 ft downstream at datum 3.00 ft higher; Sept. 1, 1926, to Oct. 19, 1934, nonrecording gage and Oct. 20, 1934, to Sept. 30, 1939, water-stage recorder, at present site and datum 3.00 ft higher. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 REMARKS.--Records good. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of Mar. 26, 1904, reached a stage of 29.0 ft, present datum, from floodmarks. | | | DISCHAF | RGE, CUBI | C FEET PEF | | WATER Y | | BER 2001 TO | SEPTEMBE | R 2002 | | | |--|--|--|--|---|-----------------------------|--|--|--|--------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 534 | 585 | 1150 | 1050 | 8750 | 1290 | 3170 | 3610 | 3070 | 1320 | 1140 | 895 | | 2 | 519 | 599 | 1090 | 1010 | 7990 | 1340 | 2940 | 3520 | 2860 | 1290 | 1050 | 873 | | 3 | 523 | 599 | 973 | 971 | 5190 | 1700 | 2710 | 3300 | 2670 | 1320 | 1050 | e858 | | 4 | 524 | 588 | 882 | 940 | 4080 | 2140 | 2460 | 3070 | 2540 | 1280 | 1030 | 858 | | 5 | 540 | 578 | 821 | 920 | 3420 | 2170 | 2280 | 2820 | 2630 | 1250 | 1010 | 849 | | 6 | 561 | 575 | 823 | 928 | 2990 | 2040 | 2150 | 2650 | 2660 | 1230 | 990 | 837 | | 7 | 549 | 573 | 819 | 907 | 2670 | 1930 | 2130 | 3510 | 2400 | 1200 | 991 | 830 | | 8 | 536 | 571 | 802 | 881 | 2390 | 1850 | 6840 | 28100 | 2240 | 1180 | 962 | 827 | | 9 | 533 | 566 | 765 | 866 | 2170 | 7060 | 10100 | 53100 | 2170 | 1160 | 944 | 821 | | 10 | 560 | 563 | 734 | 857 | 1980 | 10700 | 6710 | 17500 | 2250 | 1250 | 935 | 812 | | 11 | 608 | 564 | 714 | 843 | 1810 | 6590 | 5260 | 10200 | 2180 | 2010 | 952 | 804 | | 12 | 643 | 561 | 733 | 823 | 1660 | 5930 | 4510 | 7940 | 2220 | 1870 | 987 | 801 | | 13 | 657 | 559 | 863 | 812 | 1540 | 5560 | 4230 | 19400 | 2290 | 1770 | 1110 | 794 | | 14 | 679 | 559 | 1130 | 807 | 1440 | 4810 | 5720 | 23500 | 2200 | 1380 | 1420 | 799 | | 15 | 641 | 561 | 1250 | 794 | 1350 | 4320 | 8610 | 10100 | 2060 | 1300 | 1300 | 864 | | 16 | 631 | 559 | 1820 | 780 | 1300 | 4630 | 6070 | 7750 | 1950 | 1300 | 1180 | 840 | | 17 | 620 | 558 | 8460 | 773 | 1240 | 4770 | 5050 | 24300 | 1870 | 1250 | 1100 | 905 | | 18 | 600 | 556 | 9620 | 777 | 1180 | 4250 | 4600 | 40200 | 1780 | 1210 | 1040 | 980 | | 19 | 593 | 561 | 5700 | 805 | 1230 | 5290 | 4160 | 16800 | 1700 | 1360 | 1030 | 888 | | 20 | 589 | 560 | 4160 | 793 | 1990 | 14600 | 3860 | 9960 | 1650 | 3880 | 1030 | 953 | | 21 | 588 | 554 | 3340 | 775 | 2520 | 12600 | 3950 | 7910 | 1600 | 2600 | 1070 | 994 | | 22 | 580 | 553 | 2780 | 768 | 2370 | 7650 | 4480 | 6790 | 1550 | 1730 | 1100 | 939 | | 23 | 582 | 558 | 2410 | 798 | 2080 | 6100 | 4070 | 6040 | 1510 | 1460 | 1050 | 890 | | 24 | 624 | 650 | 2100 | 1140 | 1870 | 5220 | 4740 | 5470 | 1480 | 1340 | 1050 | 846 | | 25 | 685 | 687 | 1850 | 1620 | 1720 | 5060 | 6000 | 5000 | 1460 | 1270 | 1030 | 823 | | 26
27
28
29
30
31 | 652
626
609
595
589
584 | 688
668
700
831
1060 | 1650
1500
1380
1280
1180
1110 | 1890
1620
1430
1300
1220
2350 | 1610
1480
1360
 | 5570
4990
4500
4160
3810
3480 | 4980
4360
4160
3950
3660 | 4560
4190
3990
3720
3480
3280 | 1440
1420
1490
1400
1360 | 1220
1180
1140
1120
e1120
e1460 | 1010
1000
976
942
920
904 | 809
810
807
797
786 | | MEAN | 592 | 612 | 2061 | 1040 | 2549 | 5036 | 4597 | 11150 | 2003 | 1466 | 1042 | 853 | | MAX | 685 | 1060 | 9620 | 2350 | 8750 | 14600 | 10100 | 53100 | 3070 | 3880 | 1420 | 994 | | MIN | 519 | 553 | 714 | 768 | 1180 | 1290 | 2130 | 2650 | 1360 | 1120 | 904 | 786 | | IN. | 0.41 | 0.41 | 1.43 | 0.72 | 1.59 | 3.48 | 3.08 | 7.72 | 1.34 | 1.01 | 0.72 | 0.57 | | MEAN | 1091 | 1710 | 1909 | 1995 | 2266 | 2842 | 3417 | 3124 | 2118 | 1326 | 1093 | 1029 | | MAX | 4087 | 7171 | 10740 | 7357 | 6764 | 7148 | 11730 | 11150 | 9761 | 6465 | 3581 | 3860 | | (WY) | 1985 | 1994 | 1983 | 1950 | 1985 | 1945 | 1927 | 2002 | 1928 | 1951 | 1927 | 1993 | | MIN | 492 | 573 | 535 | 538 | 658 | 778 |
805 | 679 | 628 | 575 | 532 | 495 | | (WY) | 1957 | 1955 | 1956 | 1956 | 1934 | 1941 | 1956 | 1936 | 1936 | 1936 | 1954 | 1956 | | SUMMARY | STATISTI | CS | FOR | 2001 CALEN | IDAR YEAR | : | FOR 2002 | WATER YEAR | | FOR P | ERIOD OF | RECORD | | LOWEST A HIGHEST LOWEST I ANNUAL S MAXIMUM MAXIMUM INSTANTA ANNUAL I 10 PERCI 50 PERCI | MEAN ANNUAL ME DAILY ME DAILY ME DAILY MEA DAILY MEA DAILY MEA DAILY MEA PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE W FLOW NCHES) DS DS | | 10400
519 Seg
529
8.72
1700
734
554 | Feb 26
6,0ct 2
Sep 28 | | 2760 53100 519 536 67000 22.80 506 22.48 5620 1290 589 | May 9
Oct 2
Oct 1
May 9
May 9
Oct 2,3,5 | | 1990
4811
799
72000
476
479
125000
27, 39
473
16, 22
3740
1250
693 | Oct
Oct
Aug
Nov | 1985
1954
15 1993
8 1956
6 1956
21 1915
15 1993
7 1956 | e Estimated ### 07067500 BIG SPRING NEAR VAN BUREN, MO LOCATION.--Lat 36°57'05", long 90°59'36", in SW $\frac{1}{4}$ NE $\frac{1}{4}$ sec.6, T.26 N., R.1 E., Carter County, Hydrologic Unit 11010008, on right bank 400 ft downstream from spring outlet, 0.4 mi upstream from Current River, and 3.5 mi southeast of Van Buren. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1921 to September 1996, Feb. 8, 2000 to current year. Prior to Oct. 1, 1923, published as "near Chicopee". Monthly discharge only for some periods, published in WSP 1311. REVISED RECORDS.--WSP 1311: 1922-23, 1928(M), 1929. GAGE.--Water-stage recorder. Gage height record furnished by the National Park Service. Datum of gage is 429.08 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 19, 1971, nonrecording gage; prior to Oct. 1, 1934, at datum 1.0 ft higher. Water-stage recorder Feb. 19, 1971 to March 15, 1978, at present datum; March 1978 to September 1996, nonrecording DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 REMARKS.--Water-discharge records fair except for estimated daily discharges, which are poor. | | | DISCHAF | GE, CUBI | C PEET PER | | MEAN V | EAR OCTOBE
ALUES | R 2001 TO | SEPTEMBE | IR 2002 | | | |------------------------------|--|------------------|--------------|-----------------------------------|-------------------------------|-------------|-------------------------------------|----------------|-------------|-----------------------------------|-------------|----------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 271 | 269 | 271 | 366 | e800 | 393 | 677 | 611 | 710 | 523 | 473 | 436 | | 2 | 268 | e261 | 271 | 362 | e750 | 386 | 645 | 580 | 701 | 521 | 468 | 434 | | 3 | 268 | e261 | 271 | 356 | e680 | 371 | 598 | 558 | 695 | 518 | 466 | 431 | | 4
5 | e265
e265 | 270
e261 | 268
265 | 354
351 | 624
576 | 373
381 | 580
571 | 547
538 | 689
686 | 515
513 | 464
462 | 429
432 | | | | | | | | | | | | | | | | 6
7 | e265
266 | e260
e260 | 263
264 | 346
337 | 566
539 | 386
383 | 575
577 | 551
606 | 684
661 | 510
507 | 460
456 | 431
426 | | 8 | e265 | e261 | e258 | 344 | 516 | 394 | e750 | e800 | 647 | 504 | 455 | 420 | | 9 | e264 | e260 | e259 | 341 | 499 | e750 | e900 | e1100 | 641 | 509 | 455 | 429 | | 10 | 269 | 271 | 261 | 334 | 469 | e850 | e950 | e950 | 642 | 510 | 454 | 428 | | 11 | 269 | 269 | 260 | 326 | 457 | e850 | 809 | e900 | 633 | 521 | 451 | 422 | | 12
13 | 271
270 | 270
270 | 260
267 | 336
335 | 450
434 | 759
679 | 708
676 | e850
e1100 | 627
624 | 535
540 | 453
454 | 423
421 | | 14 | e263 | 269 | 275 | 325 | 426 | 602 | e750 | e1100 | 616 | 526 | 461 | 415 | | 15 | e262 | 267 | 276 | 313 | 414 | 568 | e950 | e1000 | 606 | 524 | 458 | 410 | | 16 | e262 | 267 | 374 | 329 | 403 | 639 | e900 | e960 | 599 | 521 | 454 | 413 | | 17 | e261 | 267 | e800 | 324 | 392 | 683 | 780 | e1000 | 591 | 514 | 455 | 414 | | 18
19 | 267
267 | 267
e257 | e750
e620 | 327
328 | 390
388 | 652
803 | 716
664 | e1100
e1000 | 582
573 | 514
522 | 453
452 | 413
410 | | 20 | 266 | e257 | e560 | 329 | 415 | e1050 | 631 | e920 | 567 | 649 | 445 | 400 | | 21 | 267 | 266 | 533 | 318 | 404 | e1050 | 630 | e860 | 562 | 555 | 445 | 390 | | 22 | 268 | 265 | 495 | 323 | 401 | e1000 | 665 | e880 | 556 | 514 | 444 | 386 | | 23 | e261 | 265 | 468 | 327 | 409 | 996 | 628 | e920 | 551 | 499 | 444 | 389 | | 24 | e262 | e256 | 453 | 398 | 407 | 864 | 680 | e880 | 548 | 496 | 442 | 387 | | 25 | e261 | e255 | 441 | 390 | 398 | 843 | e800 | e850 | 545 | 493 | 440 | 385 | | 26 | e260 | e255 | 424 | 392 | 383 | 983 | 737 | 825 | 541 | 489 | 440 | 383 | | 27
28 | e260
268 | e255
265 | 412
399 | 384
377 | 384
402 | 896
821 | 679
642 | 786
770 | 538
535 | 486
481 | 436
432 | 372
361 | | 28
29 | 268
e261 | 205
e259 | 370 | 377 | 402 | 789 | 616 | 770
752 | 530 | 481 | 432 | 366 | | 30 | e261 | e260 | 365 | 366 | | 736 | 612 | 734 | 526 | 477 | 433 | 365 | | 31 | e262 | | 370 | 445 | | 707 | | 720 | | 477 | 434 | | | MEAN | 265 | 263 | 381 | 350 | 478 | 698 | 703 | 831 | 607 | 514 | 451 | 408 | | MAX | 271 | 271 | 800 | 445 | 800 | 1050 | 950 | 1100 | 710 | 649 | 473 | 436 | | MIN | 260 | 255 | 258 | 313 | 383 | 371 | 571 | 538 | 526 | 477 | 432 | 361 | | IN. | 3.06 | 2.94 | 4.40 | 4.04 | 4.98 | 8.05 | 7.85 | 9.58 | 6.77 | 5.93 | 5.20 | 4.55 | | STATIST | rics of MC | ONTHLY MEA | AN DATA F | OR WATER Y | EARS 1922 | - 2002 | , BY WATER | YEAR (WY) | | | | | | MEAN | 344 | 388 | 414 | 440 | 463 | 520 | 577 | 563 | 486 | 417 | 378 | 353 | | MAX | 599 | 769 | 1070 | 828 | 823 | 836 | 902 | 944 | 950 | 772 | 702 | 525 | | (WY) | 1950 | 1986 | 1983 | 1937 | 1949 | 1945 | 1973 | 1957 | 1927 | 1928 | 1927 | 1927 | | MIN
(WY) | 243
1957 | 248
1957 | 252
1956 | 247
1956 | 279
1977 | 279
1936 | 279
1936 | 261
1936 | 253
1936 | 249
1936 | 252
1936 | 250
1956 | | , | | | | | | | | | | | | | | SUMMARY | Y STATISTI | ICS | FO | R 2001 CAI | LENDAR YEAI | ? | FOR 2002 | WATER YEA | R | WATER YE | ARS 1922 | - 2002 | | LOWEST
HIGHEST
LOWEST | T ANNUAL M
ANNUAL ME
T DAILY ME
DAILY MEA | EAN
EAN
AN | | 315
800
255 | Dec 1'
Nov 25-2'
Nov 24 | 7
7 | 496
1100 ^a May
255 | Nov 25-2 | | 446
648
289
2000
236 | Oct | 1950
1936
3 1982
6 1956 | | ANNUAL
10 PERC
50 PERC | SEVEN-DAY RUNOFF (1 CENT EXCENTENTE
EXCENT | EDS
EDS | | 258
42.73
385
296
264 | Nov 2 | 4 | 258
67.33
800
451
265 | Nov 2 | 4 | 238
60.57
690
395
290 | Oct | 1 1956 | | | | | | | | | | | | | | | e Estimated a During period of estimated record. # 07067500 BIG SPRING NEAR VAN BUREN, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--April 1973 to current year. REMARKS.--Ozark National Scenic Riverways station from April 1975 to October 1996, Ambient Water-Quality Monitoring Network station since November 1993. | DATE | TIME | SAMPL
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | DEC 03 | 1420 | ENVIRONM | ENTAL. | 267 | 8.7 | 87 | 7.3 | 348 | 14.8 | | | | | | MAR
05
05 | 1310
1311 | ENVIRONM
BLANK | | 381 | 10.2 | 100 | 7.4 | 293 | 14.3 | 160 | 32.9 | 18.9
E.005 | .14
<.10 | | MAY
13 | 1620 | ENVIRONM | ENTAL | 1100 | 9.3 | 92 | 6.9 | 177 | 13.9 | | | | | | AUG
19 | 1215 | BLANK | | | | | | | | | <.01 | <.008 | <.10 | | 19 | 1230 | ENVIRONM | ENTAL | 452 | 10.0 | 100 | 7.4 | 323 | 14.7 | 180 | 36.9 | 20.6 | .80 | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | DEC
03
MAR | | 185 | 186 | 227 | 0 | | | | <10 | | <.04 | <.10 | .23 | | 05
05 | 1.29
.27 | 150
 | 151
 | 184 | 0 | 2.87 | E.1
<.1 | 2.4
E.1 | <10
<10 | 162
<10 | <.04
<.04 | <.10
<.10 | .46
<.05 | | MAY
13
AUG | | 91 | 92 | 112 | 0 | | | | <10 | | <.04 | E.05 | .47 | | 19
19 | <.09
1.41 |
164 |
165 |
201 | 0 | <.30
1.79 | <.1
<.1 | <.1
1.9 | <10
<10 | <10
182 | <.04
<.04 | <.10
<.10 | <.05
.42 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | DEC
03
MAR | <.008 | <.06 | <.02 | <.06 | K1 | K2 | K15 | | | | | | | | 05
05 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | <1 | K1
 | K1
 | 6
<1 | 19
3 | E.2
<.2 | <.04
<.04 | <.1
<.1 | <6
<6 | | MAY
13 | <.008 | <.06 | <.02 | <.06 | K20 | K60 | 800 | | | | | | | | AUG
19
19 | <.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 |
K1 |
K1 |
K6 | <1
1 | <2
18 | <.2
E.2 | <.04
<.04 | <.1
<.1 | <6
<6 | # 07067500 BIG SPRING NEAR VAN BUREN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | DEC | | | | | | | | | | 03 | | | | | | | | | | MAR | | | | | | | | | | 05 | E7 | <.08 | <1 | <2.0 | <.01 | <.3 | | 2 | | 05 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | | 6 | | MAY | | | | | | | | | | 13 | | | | | | | | | | AUG | | | | | | | | | | 19 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | <1 | <1 | | 19 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | <1 | 1 | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### 07068000 CURRENT RIVER AT DONIPHAN, MO LOCATION.--Lat $36^{\circ}37'19"$, long $90^{\circ}50'51"$, in NW $\frac{1}{4}$ NW $\frac{1}{4}$ sec.27, T.23 N., R.2 E., Ripley County, Hydrologic Unit 11010008, on right bank 0.5 mi upstream from U.S. Highway 160, 1.0 mi west of Doniphan, 2.5 mi upstream from Briar Creek, and at mile 51.3. DRAINAGE AREA. -- 2,038 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1918 to current year. Prior to July 1921 monthly discharge only, published in WSP 1311. REVISED RECORDS.--WSP 877: 1937-38(M). WSP 927: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 321.21 ft above National Geodetic Vertical Datum of 1929. Prior to July 3, 1936, nonrecording gages at several sites 0.5 mi downstream at various datums. July 1936 to Sept. 30, 1971, datum was 1.00 ft higher. REMARKS.--Water-discharge records
good. National Weather Service gage-height and U.S. Army Corps of Engineers satellite telemeters at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Flood of March 1904 reached a stage of 25.9 ft, from floodmarks, present site and datum, discharge, 130,000 ${\rm ft}^3/{\rm s}$, from rating curve extended above 60,000 ${\rm ft}^3/{\rm s}$. | | | DISCHAF | RGE, CUBI | C FEET PER | | WATER T | | ER 2001 TO | SEPTEMBE | ER 2002 | | | |---|--|---|--|---|---------------------------------------|--|--|---|---------------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 890
887
887
886
918 | 952
964
966
956
948 | 1730
1670
1560
1450
1370 | 1570
1480
1420
1380
1350 | 8550
11400
7580
5780
4800 | 1890
1820
1960
2260
2530 | 4520
4210
3910
3630
3400 | 4350
4260
4100
3890
3660 | 4220
3950
3690
3480
3470 | 2040
2010
1990
2000
1950 | 1800
1710
1680
1650
1610 | 1710
1700
1690
1670
1660 | | 6
7
8
9
10 | 923
916
906
895
918 | 941
941
938
935
930 | 1340
1340
1330
1330
1280 | 1350
1310
1280
1250
1230 | 4130
3680
3340
3050
2810 | 2460
2350
2270
4480
11900 | 3220
3100
5020
10600
9730 | 3460
3480
15000
46300
54100 | 3660
3340
3120
3010
3140 | 1920
1890
1860
1830
1840 | 1590
1570
1550
1520
1500 | 1650
1630
1620
1620
1610 | | 11
12
13
14
15 | 1020
988
1050
1060
1050 | 927
927
927
927
927 | 1240
1210
e1290
1510
1800 | 1200
1180
1160
1140
1120 | 2600
2420
2260
2130
2010 | 9850
7400
7000
6220
5490 | 7000
5960
5540
9160
10000 | 17700
11200
16500
27000
21900 | 3060
3000
3250
3080
2950 | 2110
2730
2790
2320
2780 | 1480
1510
1860
2300
2290 | 1600
1590
1580
1580
1610 | | 16
17
18
19
20 | 1020
997
985
969
962 | 927
924
922
931
926 | e2120
e5410
11800
10700
5960 | 1110
1100
1090
1110
1090 | 1920
1840
1790
1830
2300 | 5470
5770
5450
6460
14500 | 8750
6880
6080
5500
5120 | 11100
15800
38400
43900
16400 | 2850
2750
2630
2520
2450 | 2370
2190
2110
2290
2700 | 2170
2050
1970
1930
1900 | 1630
1620
1720
1710
1760 | | 21
22
23
24
25 | 956
955
952
964
1010 | 922
919
920
1030
1040 | 4650
3940
3340
2940
2630 | 1080
1070
1850
4660
2530 | 2990
3110
2850
2600
2420 | 19500
12200
8550
7140
8000 | 4950
5250
5200
4900
6410 | 11300
9520
8350
7550
6920 | 2370
2320
2260
2220
2210 | 5090
2850
2290
2090
1970 | 1900
1920
1960
1980
1900 | 1740
1720
1680
1630
1590 | | 26
27
28
29
30
31 | 1030
1000
981
964
960
954 | 1070
1090
1170
1340
1660 | 2370
2160
2000
1860
1740
1640 | 2630
2450
2230
2010
1970
3600 | 2260
2120
1990
 | 9360
7670
6590
5960
5440
4950 | 6130
5410
4970
4790
4530 | 6360
5850
5580
5380
4930
4580 | 2170
2150
2150
2180
2090 | 1900
1840
1790
1740
1710
2130 | 1880
1840
1820
1790
1750
1730 | 1580
1570
1570
1560
1550 | | MEAN
MAX
MIN
IN. | 963
1060
886
0.54 | 997
1660
919
0.55 | 2797
11800
1210
1.58 | 1645
4660
1070
0.93 | 3449
11400
1790
1.76 | 6545
19500
1820
3.70 | 3100
3.17 | 14160
54100
3460
8.01 | 2858
4220
2090
1.57 | 2230
5090
1710
1.26 | 1810
2300
1480
1.02 | 1638
1760
1550
0.90 | | | | | | | | | | R YEAR (WY) | | 1001 | 1600 | 1500 | | MEAN
MAX
(WY)
MIN
(WY) | 1637
4596
1985
872
1957 | 2378
8514
1994
927
1955 | 2687
16210
1983
950
1956 | 2854
9054
1949
917
1956 | 3127
7971
1985
1122
1934 | 3873
9260
1935
1218
1941 | 4607
16140
1927
1476
1956 | 4219
14160
2002
1183
1936 | 2970
12610
1928
1075
1936 | 1981
7676
1951
959
1934 | 1680
5001
1927
933
2001 | 1577
4547
1993
903
1954 | | SUMMARY | Y STATISTI | ICS | FOR | 2001 CALEN | DAR YEAR | | FOR 2002 V | WATER YEAR | | WATER YE | ARS 1921 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM INSTANT ANNUAL 10 PERC | MEAN F ANNUAL MANNUAL ME T DAILY ME DAILY ME SEVEN-DAY M PEAK FIC FANEOUS LC RUNOFF (1 CENT EXCER CENT EXCER | EAN EAN AN MINIMUM OW AGE OW FLOW INCHES) EDS | | 14500
883
892

10.74
2370
1230
918 | Feb 26
Sep 7
Sep 28 | | 3753
54100
886
901
70400
20.58
879
25.00
7460
2000
961 | May 10
Oct 4
Oct 1
May 10
May 10
Oct 4 | | 2795
5856
1326
90000
852
852
122000
25.49
852
18.63
4980
1920 | Oct
Oct
Dec
Dec | 1985
1954
12 1935
8 1956
8 1956
3 1982
3 1982
8 1956 | e Estimated # 07068000 CURRENT RIVER AT DONIPHAN, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--July 1969 to July 1975, October 1979 to September 1980, October 1981 to September 1982, October 1983 to June 1989, November 1992 to current year. | DATE | TIME | SAMPL:
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|---|--|---|---|---|--|--|---|---|--|---|--| | OCT 24 | 1000 | ENVIRONM | ENTAL | 960 | 8.8 | 96 | 7.9 | 342 | 18.4 | | | | | | NOV
05 | 1240 | ENVIRONM | ENTAL | 944 | 10.9 | 109 | 7.9 | 338 | 15.3 | 190 | 38.3 | 23.4 | E.09 | | DEC
05 | 1335 | ENVIRONM | ENTAL | 1360 | 7.6 | 73 | 7.8 | 340 | 13.1 | | | | | | JAN
14 | 1230 | ENVIRONM | ENTAL | 1140 | 12.4 | 106 | 7.7 | 294 | 7.9 | 160 | 32.9 | 19.3 | .22 | | FEB
04 | 1350 | ENVIRONM | ENTAL | 5670 | 10.6 | 91 | 7.9 | 243 | 9.1 | | | | | | MAR
27 | 1420 | ENVIRONM | ENTAL | 7480 | 10.6 | 96 | 7.9 | 204 | 10.6 | | | | | | APR
16 | 1545 | ENVIRONM | ENTAL | 8250 | 8.9 | 97 | 7.5 | 209 | 18.7 | | | | | | MAY
16 | 1345 | ENVIRONM | ENTAL | 10900 | 8.2 | 85 | 7.7 | 198 | 16.5 | 100 | 22.0 | 11.4 | .25 | | JUN
10 | 1245 | ENVIRONM | ENTAL | 3190 | 7.2 | 81 | 7.9 | 253 | 20.5 | | | | | | JUL
08
08 | 1515
1516 | ENVIRONM
REPLICAT | | 1860 | 6.4 | 80 | 8.1 | 319
 | 26.1 | 160
170 | 34.0
34.2 | 18.9
19.4 | .96
.96 | | AUG
19 | 1600 | ENVIRONM | ENTAL | 1930 | 7.9 | 96 | 7.9 | 317 | 24.2 | | | | | | SEP
16 | 1150 | ENVIRONM | ENTAL | 1630 | 8.8 | 101 | 8.0 | 344 | 21.6 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as
C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT 24 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N) | | OCT
24
NOV
05 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT
24
NOV
05
DEC
05 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) | | OCT 24 NOV 05 DEC 05 JAN 14 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
175 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 | | OCT 24 NOV 05 DEC 05 JAN 14 FEB 04 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
175
178 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
180
194 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
218
220
237 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED
(mg/L
as Cl)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED (mg/L
as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 <.10 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.09 | | OCT 24 NOV 05 DEC 05 JAN 14 FEB 04 MAR 27 | DIS-
SOLVED
(mg/L
as Na)
(00930)

2.40

2.11 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 175 178 193 149 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
180
194
151 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
218
220
237
184 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

2.42 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

<.1

E.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 <.10 E.06 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.09
.07
.15 | | OCT 24 NOV 05 DEC 05 JAN 14 FEB 04 MAR 27 APR 16 | DIS-
SOLVED
(mg/L
as Na)
(00930)

2.40

2.11 | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCC ₃)
(00410)
175
178
193
149
123 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
180
194
151
121 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
218
220
237
184
148 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

2.42

2.82 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

<.1

E.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 2.4 4.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608)
<.04
<.04
E.03
<.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 <.10 E.06 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED (mg/L
as N)
(00631)
.09
.07
.15
.41 | | OCT 24 NOV 05 DEC 05 JAN 14 FEB 04 MAR 27 APR 16 | DIS-
SOLVED
(mg/L
as Na)
(00930)

2.40

2.11 | WATER
UNFITRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410)
175
178
193
149
123
94 | WATER UNFLTRD 1T FIELD (mg/L as CaCO ₃) (00419) 179 180 194 151 121 92 | BICAR-
BONATE
IT
FIELD (mg/L as
HCO ₃) (00450)
218
220
237
184
148 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

2.42

2.82 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

<.1

E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

2.4

4.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 <.10 E.06 .13 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .09 .07 .15 .41 .42 | | OCT 24 NOV 05 DEC 05 JAN 14 FEB 04 MAR 27 APR 16 MAY 16 JUNN 10 | DIS-
SOLVED
(mg/L
as Na)
(00930)

2.40

2.11
 | WATER UNFITRD FET FIELD (mg/L as CaCO ₃) (00410) 175 178 193 149 123 94 93 | WATER UNFLTRD TT FIELD (mg/L as CaCO ₃) (00419) 179 180 194 151 121 92 94 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
218
220
237
184
148
112 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

2.42

2.82 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

<.1

E.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 2.4 4.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <12 12 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 184 146 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 <.10 E.06 .13 .32 .23 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
.09
.07
.15
.41
.42
.28
.27 | | OCT 24 NOV 05 DEC 05 JAN 14 FEB 04 MAR 27 APR 16 MAY 16 JUN 10 JUL 08 | DIS-
SOLVED (mg/L as Na) (00930)
2.40
2.11

2.20 | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCC ₃)
(00410)
175
178
193
149
123
94
93 | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419)
179
180
194
151
121
92
94 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450)
218
220
237
184
148
112
115 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

2.42

2.82

1.98 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

<.1

E.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 2.4 4.1 4.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 184 146 108 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 <.10 E.06 .13 .32 .23 .16 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) .09 .07 .15 .41 .42 .28 .27 .25 | | OCT 24 NOV 05 DEC 05 JAN 14 FEB 04 MAR 27 APR 16 MAY
16 JUN 10 JUL 08 | DIS-
SOLVED (mg/L as Na) (00930) 2.40 2.11 2.20 1.47 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 175 178 193 149 123 94 93 95 129 158 | WATER UNFLITRD IT FIELD (mg/L as CaCO ₃) (00419) 179 180 194 151 121 92 94 94 129 159 | BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) 218 220 237 184 148 112 115 115 115 115 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

2.42

2.82

1.98

2.24 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

<.1

E.1

<.1

<.1 | DIS-
SOLVED (mg/L as SO ₄) (00945) 2.4 4.1 4.2 2.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L)(70300) 184 146 108 175 | GEN, AMMONIA DIS-SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + MONIA + CORGANIC TOTAL (mg/L as N) (00625) E.08 <.10 <.10 E.06 .13 .32 .23 .16 .17 E.09 | GEN, NO ₂ +NO ₃ DIS-SOLVED (mg/L as N) (00631) .09 .07 .15 .41 .42 .28 .27 .25 | # 07068000 CURRENT RIVER AT DONIPHAN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |-----------------|--|--|--|--|--|---|--|---|---|--|--|--|--| | OCT 24 | <.008 | <.06 | <.02 | <.06 | <1 | 21 | 55 | | | | | | | | NOV
05 | <.008 | <.06 | <.02 | <.06 | K2 | К3 | К6 | 7 | 9 | E.1 | <.04 | <.1 | <6 | | DEC
05 | <.008 | <.06 | <.02 | <.06 | K2 | К7 | K15 | | | | | | | | JAN
14 | E.004 | <.06 | <.02 | <.06 | <1 | K1 | K2 | 14 | 22 | .2 | <.04 | <.1 | <6 | | FEB 04 | <.008 | <.06 | <.02 | <.06 | К8 | 40 | K35 | | | | | | | | MAR
27 | <.008 | <.06 | <.02 | <.06 | K17 | К2 | K16 | | | | | | | | APR
16 | <.008 | <.06 | <.02 | <.06 | К7 | K250 | 108 | | | | | | | | MAY
16 | E.006 | <.06 | <.02 | E.03 | K38 | 109 | 260 | 85 | 263 | .3 | E.02 | <.1 | <6 | | JUN
10 | <.008 | <.06 | <.02 | <.06 | K30 | 103 | 81 | | | | | | | | JUL
08
08 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | <1
<1 | 21
K13 | K2
K2 | 8
2 | 34
31 | .2 | <.04
<.04 | <.1
<.1 | <6
<6 | | AUG
19 | <.008 | <.06 | <.02 | <.06 | К6 | K15 | K14 | | | | | | | | SEP
16 | <.008 | <.06 | <.02 | <.06 | К7 | K12 | 110 | DA | TE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT | | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | | | | | | OCT
2
NOV | 4 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV
0
DEC | 4 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | | | | | | OCT
2
NOV
0
DEC
0
JAN | 4
5
5 |
DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED (µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) <1 | | | | | | OCT
2
NOV
0
DEC
0
JAN
1
FEB | 4
5
4 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) <1 | | | | | | OCT
2
NOV
0
DEC
0
JAN
1
FEB
0
MAR | 4
5
4 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

E8 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV-ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

E2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.0101 | NIUM,
DIS-
SOLVED (µg/L
as Se) (01145)

<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) <1 2 | | | | | | OCT
2
NOV
0
DEC
0
JAN
1
FEB
0
MAR
2
APR | 4
5
4
4 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

E8 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mm)
(01056)

E2.0
3.2 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.0101 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) <1 2 | | | | | | OCT
2
NOV
0
DEC
0
JAN
1
FEB
0
MAR
2
APR
1
MAY | 4
5
4
4 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

E8 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

E2.0

3.2 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.0101 | NIUM,
DIS-
SOLVED (µg/L
as Se) (01145)

<.3

<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) <1 2 | | | | | | OCT
2
NOV
0
DEC
0
JAN
1
FEB
0
MAR
2
APR
1
MAY
1
JUN | 4
5
4
7
6
0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

E8
 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

E2.0

3.2
 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.0101 | NIUM,
DIS-
SOLVED (µg/L
as Se) (01145)

<.3

<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) <1 2 | | | | | | OCT
2
NOV
0
DEC
0
JAN
1
FEB
0
MAR
2
APR
1
MAY
1
JUN
1
JUN
1 | 4
5
4
7
6
0 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

E8

102

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08

46

E.05 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 1 1 1 1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

E2.0

3.2

11.7

4.0 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01010101010101 | NIUM, DIS- SOLVED (µg/L as Se) (01145) <.3 <.3 <.3 <.3 <.3 <.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) <1 2 10 1 | | | | | | OCT
22
NOV
0
DEC
0
JAN
1
FEB
0
MAR
2
APR
1
MAY
1
JUN
1
JUN
0
0 | 4
5
4
4
7
6
6
0
8 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

E8

102

<10
<10 | DIS-
SOLVED (µg/L as Pb) (01049)
<.08
<.08
46
E.05 <.08 | TOTAL RECOV-ERABLE (μg/L as Pb) (01051) <1 <1 <1 <1 <1 <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mm)
(01056)

E2.0

3.2

11.7

4.0
3.9 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) <.0101 E.01 <.01 E.0102 | NIUM, DIS- SOLVED (µg/L as Se) (01145) <.3 <.3 E.2 <.3 <.3 <.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) <1 2 10 | | | | | | OCT
2
NOV
0
DEC
0
JAN
1
FEB
0
MAR
2
APR
1
MAY
1
JUN
1
JUL
0
0
0
AUG
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MAY
1
MA | 4
5
4
7
6
6
8
9 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

E8

102

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08

46

E.05 | TOTAL RECOV- ERABLE (μg/L as Pb) (01051) <1 1 1 1 1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

E2.0

3.2

11.7

4.0 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) <.01010101010101 | NIUM, DIS- SOLVED (µg/L as Se) (01145) <.3 <.3 <.3 <.3 <.3 <.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV-ERABLE (µg/L as Zn) (01092) <1 2 10 1 | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. $<--Numeric \ result$ is less than the value shown. ### 07068510 LITTLE BLACK RIVER BELOW FAIRDEALING, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 36°37'54", long 90°34'31", in NE $^{1}\!\!/_{4}$ SW $^{1}\!\!/_{4}$ NE $^{1}\!\!/_{4}$ sec.24, T.23 N., R.4 W., Butler County, Hydrologic Unit 11010008, approximately 5.0 mi below Beaver Dam Creek and 3.1 mi southeast of Fairdealing on Ball Mill Bridge. DRAINAGE AREA. --
194 mi². PERIOD OF RECORD.--August 1980 to September 1986, November 1999 to current year. PERIOD OF DAILY RECORD.--WATER TEMPERATURE: May 1981 to September 1986. SUSPENDED-SEDIMENT DISCHARGE: July 1980 to September 1986. EXTREMES FOR PERIOD OF DAILY RECORD.-WATER TEMPERATURE: Minimum 30.0 °C several days in July 1980; minimum 0.0 °C on many days. SUSPENDED-SEDIMENT CONCENTRATION: Maximum daily mean, 643 mg/L, Aug. 16, 1982; minimum daily mean, 1 mg/L on many days. SUSPENDED-SEDIMENT LOAD: Maximum daily, 11,100 tons, Dec. 2, 1982; minimum daily, 0.12 tons, Dec. 19, 1982. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|---|---|--|--|---|---|---|--|--| | NOV
05 | 1415 | ENVIRONM | ENTAL | 73 | 10.9 | 109 | 7.5 | 338 | 15.3 | 160 | 34.1 | 19.3 | .57 | | JAN
14 | 1430 | ENVIRONM | ENTAL | 89 | 11.5 | 103 | 7.2 | 223 | 9.8 | | | | | | MAR
27 | 1055 | ENVIRONM | | 2820 | 10.9 | 90 | 7.2 | 53 | 7.1 | | | | | | MAY
16 | 0945 | ENVIRONM | | 554 | 7.9 | 83 | 7.1 | 91 | 17.5 | 44 | 9.39 | 4.90 | .64 | | JUL
08 | 1715 | ENVIRONM | | 45 | 4.6 | 59 | 7.7 | 263 | 28.1 | | | | | | SEP
16 | 1340 | ENVIRONM | | 49 | 6.0 | 71 | 7.6 | 285 | 22.8 | | | | | | | | | | | | . – | | | | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N) | | | (00930) | (00410) | (00419) | (00450) | (00447) | (00940) | (00950) | (00945) | (00530) | (70300) | (00608) | (00625) | (00631) | | NOV
05
JAN | 2.45 | 156 | 156 | 191 | 0 | 2.81 | <.1 | 2.8 | 26 | 172 | <.04 | .19 | <.05 | | 14
MAR | | 109 | 109 | 133 | 0 | | | | <10 | | <.04 | E.09 | .14 | | 27
MAY | | 19 | 17 | 21 | 0 | | | | 14 | | <.04 | .34 | .08 | | 16
JUL | 1.55 | 39 | 37 | 45 | 0 | 1.52 | <.1 | 3.6 | 19 | 51 | <.04 | .34 | .09 | | 08
SEP | | 128 | 129 | 157 | 0 | | | | <10 | | <.04 | .18 | .07 | | 16 | | 142 | 143 | 175 | 0 | | | | <10 | | <.04 | .14 | E.02 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
05 | <.008 | <.06 | E.01 | E.04 | 44 | 64 | 80 | 15 | 79 | . 4 | <.04 | <.1 | <6 | | JAN
14 | <.008 | <.06 | <.02 | <.06 | K12 | 33 | K15 | | | | | | | | MAR
27 | <.008 | <.06 | E.01 | .06 | 960 | 1120 | 1060 | | | | | | | | MAY
16 | E.004 | <.06 | E.01 | E.04 | 130 | 192 | 213 | 207 | 194 | .5 | <.04 | <.1 | <6 | | JUL
08 | <.008 | <.06 | .02 | <.06 | 30 | K70 | K20 | 207 | 194 | | | | | | SEP
16 | <.008 | <.06 | <.02 | <.06 | 68 | 68 | K10 | # 07068510 LITTLE BLACK RIVER BELOW FAIRDEALING, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 05 | 140 | E.06 | <1 | 78.7 | <.01 | <.3 | | 1 | | JAN | 110 | 2.00 | -= | , , , , | | | | _ | | 14 | | | | | | | | | | MAR | | | | | | | | | | 27 | | | | | | | | | | MAY | | | | | | | | | | 16 | 252 | .32 | M | 43.5 | E.01 | <.3 | | 5 | | JUL | | | | | | | | | | 08 | | | | | | | | | | SEP | | | | | | | | | | 16 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. ### 07071000 GREER SPRING AT GREER, MO LOCATION.--Lat $36^\circ47^\circ11^*$, long $91^\circ20^\circ53^*$, in SE $\frac{1}{4}$ SW $\frac{1}{4}$ sec.36, T.25 N., R.4 W., Oregon County, Hydrologic Unit 11010011, on right bank 300 ft downstream from lower outlet of spring, 1 mi north of Greer, and 1 mi upstream from Eleven Point River. #### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--August to December 1904, October 1921 to current year. August to December 1904, gage height and discharge measurements only. October to December 1921 monthly discharge only, published in WSP 1311. GAGE.--Water-stage recorder. Datum of gage is 564.00 ft above National Geodetic Vertical Datum of 1929. Aug. 10 to Dec. 31, 1904, nonrecording gage at site 250 ft downstream at different datum; Nov. 17, 1921, to June 25, 1934, nonrecording gage at site 250 ft downstream at datum 0.74 ft lower than present datum. DISCHARGE, CUBIC FEET PER SECOND, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 ${\tt REMARKS.--Water-discharge\ records\ fair.\ Occasional\ runoff\ from\ drainage\ area\ of\ 2.97\ mi^2\ included\ in\ record.}$ | | | DISCHAR | GE, CUBIC | . FEET PER | | MEAN VA | | JR 2001 10 | SEP LEMBE | R 2002 | | | |--|--|---------------------------------|--|---|---------------------------|--|---|--|---------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 116 | 113 | 119 | 217 | 485 | 245 | 576 | 564 | 565 | 465 | 413 | 366 | | 2 | 116 | 112 | 116 | 205 | 476 | 246 | 571 | 558 | 563 | 463 | 410 | 363 | | 3 | 116 | 110 | 116 | 199 | 460 | 265 | 566 | 554 | 561 | 459 | 406 | 361 | | 4 | 116 | 109 | 113 | 193 | 432 | 270 | 558 | 546 | 557 | 455 | 402 | 358 | | 5 | 116 | 111 | 113 | 187 | 403 | 269 | 551 | 545 | 557 | 453 | 400 | 355 | | 6 | 114 | 112 | 113 | 182 | 379 | 266 | 544 | 540 | 556 | 449 | 396 | 352 | | 7 | 113 | 112 | 114 | 175 | 362 | 265 | 539 | 539 | 552 | 444 | 392 | 352 | | 8 | 113 | 111 | 115 | 171 | 349 | 262 | 667 | 782 | 551 | 440 | 389 | 348 | | 9 | 114 | 110 | 113 | 168 | 340 | 469 | 655 | 658 | 547 | 437 | 386 | 346 | | 10 | 115 | 111 | 113 | 162 | 330 | 557 | 625 | 616 | 545 | 434 | 384 | 343 | | 11 | 116 | 111 |
113 | 158 | 317 | 555 | 608 | 587 | 545 | 433 | 383 | 343 | | 12 | 116 | 110 | 114 | 156 | 308 | 549 | 590 | 584 | 543 | 431 | 380 | 339 | | 13 | 118 | 110 | 126 | 152 | 298 | 542 | 586 | 681 | 539 | 429 | 390 | 338 | | 14 | 118 | 111 | 129 | 150 | 287 | 533 | 799 | 631 | 535 | 427 | 439 | 336 | | 15 | 116 | 110 | 129 | 145 | 279 | 527 | 734 | 598 | 533 | 424 | 441 | 333 | | 16 | 115 | 110 | 185 | 144 | 271 | 534 | 700 | 587 | 529 | 422 | 432 | 331 | | 17 | 113 | 110 | 421 | 140 | 264 | 533 | 684 | 657 | 527 | 420 | 420 | 329 | | 18 | 115 | 110 | 437 | 137 | 258 | 525 | 665 | 672 | 523 | 416 | 412 | 327 | | 19 | 116 | 110 | 409 | 136 | 257 | 600 | 638 | 634 | 522 | 427 | 410 | 327 | | 20 | 115 | 110 | 372 | 134 | 293 | 784 | 620 | 613 | 517 | 470 | 404 | 324 | | 21 | 113 | 110 | 346 | 133 | 305 | 695 | 612 | 592 | 510 | 476 | 397 | 323 | | 22 | 114 | 111 | 330 | 130 | 294 | 648 | 596 | 586 | 504 | 471 | 390 | 320 | | 23 | 116 | 113 | 315 | 131 | 285 | 625 | 586 | 586 | 500 | 465 | 387 | 316 | | 24 | 116 | 114 | 301 | 190 | 279 | 602 | 585 | 582 | 496 | 458 | 383 | 314 | | 25 | 113 | 111 | 290 | 198 | 273 | 592 | 580 | 580 | 491 | 451 | 389 | 311 | | 26
27
28
29
30
31 | 111
110
110
110
110
112 | 111
110
111
118
123 | 278
267
257
245
232
224 | 190
185
179
173
167
267 | 264
256
250
 | 657
626
601
583
582
580 | 580
578
575
570
569 | 580
578
575
574
570
569 | 488
483
478
474
467 | 444
438
432
427
422
417 | 388
382
378
374
370
368 | 310
310
306
303
301 | | MEAN
MAX
MIN | 114
118
110 | 112
123
109 | 215
437
113 | 170
267
130 | 323
485
250 | 503
784
245 | 610
799
539 | 597
782
539
YEAR (WY) | 525
565
467 | 442
476
416 | 397
441
368 | 333
366
301 | | MEAN | 258 | 283 | 305 | 327 | 347 | 396 | 445 | 443 | 401 | 336 | 296 | 269 | | MAX | 448 | 586 | 750 | 648 | 652 | 674 | 724 | 776 | 861 | 611 | 563 | 503 | | (WY) | 1985 | 1985 | 1928 | 1928 | 1949 | 1975 | 1927 | 1927 | 1927 | 1945 | 1927 | 1928 | | MIN | 111 | 111 | 113 | 108 | 144 | 152 | 180 | 143 | 140 | 127 | 122 | 120 | | (WY) | 1957 | 1955 | 1956 | 1956 | 1981 | 1981 | 1936 | 1936 | 1936 | 1936 | 1936 | 1955 | | SUMMARY | Y STATISTI | CS | FOR 2 | 001 CALE | NDAR YEAR | F | OR 2002 W | ATER YEAR | | WATER YE | ARS 1922 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MAXIMUM INSTANT 10 PERC | MEAN F ANNUAL ME ANNUAL ME DAILY ME SEVEN-DAY FEAK FLO FANEOUS LO CENT EXCEE CENT EXCEE | AN AN N MINIMUM W GE W FLOW DS | | 184
614
109
110

299
156
113 | Feb 26
Nov 4
Nov 15 | | 799
109
110
1600
2.80
107
587
374
113 | Apr 14
Nov 4
Nov 15
May 8
May 8
Nov 3-5 | | 342
566
174
1010
104
105
1770
2.97
104
546
322
168 | Nov 1
Nov 1
Dec
Dec | 1928
1956
3 1982
16 1956
13 1956
3 1982
3 1982
16 1956 | # 07071000 GREER SPRING AT GREER, MO--Continued # WATER-QUALITY RECORDS PERIOD OF RECORD. -- November 1993 to current year. | DEC 03 MAR 18 MAY 20 AUG 26 | TIME 1100 1310 1135 1210 | SAMPI
TYPE
ENVIRONA
ENVIRONA
ENVIRONA
ENVIRONA | E
MENTAL
MENTAL | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061)
118
522
610
389 | OXYGEN,
DIS-
SOLVED (mg/L)
(00300)
7.1
8.6
8.6
8.7 | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301)
72
86
84
87 | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400)
7.5
7.2
7.0 | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095)
366
218
176
310 | TEMPER-ATURE WATER (deg C) (00010) 14.8 14.1 13.6 14.3 | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900)
210
110
77
170 | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915)
42.8
22.3
16.4
35.1 | MAGNE-
SIUM,
DIS-
SOLVED (mg/L
as Mg) (00925)
24.3
12.2
8.77 | POTAS-
SIUM,
DIS-
SOLVED (mg/L
as K) (00935)
.55
.76
E.10 | |-----------------------------|---|--|--|---|--|---|---|--|--|--|---|---|--| | DATE DEC 03 MAR | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | CaCO ₃)
(00410) | CaCO ₃)
(00419) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L as
CO ₃)
(00447) | as C1)
(00940)
7.52 | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SILICA,
DIS-
SOLVED
(mg/L
as
SiO ₂)
(00955) | SULFATE DIS-
SOLVED (mg/L as SO ₄) (00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | | 18
MAY | 1.93 | 106 | 106 | 130 | 0 | 3.02 | <.1 | | 2.6 | <10 | 127 | <.04 | .15 | | 20
AUG | 2.48 | 83 | 84 | 103 | 0 | 2.28 | <.1 | | 2.5 | <10 | 104 | <.04 | .10 | | 26 | 1.43 | 150 | 151 | 185 | 0 | 2.63 | <.1 | | 2.0 | <10 | 171 | <.04 | <.10 | | DATE | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | ORTHO-
PHOS-
PHATE,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µM-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | BARIUM,
DIS-
SOLVED
(µg/L
as Ba)
(01005) | BERYL-
LIUM,
DIS-
SOLVED
(µg/L
as Be)
(01010) | | DEC
03
MAR | .46 | <.008 | <.06 | E.01 | <.06 | К1 | <1 | K2 | 8 | 13 | . 4 | | | | 18
MAY | .88 | <.008 | E.03 | <.02 | E.05 | K25 | K40 | K52 | 67 | 211 | .3 | | | | 20
AUG | .74 | <.008 | <.06 | E.01 | <.06 | 44 | K73 | 325 | 50 | 166 | <.2 | | | | 26 | 1.00 | <.008 | <.06 | E.01 | <.06 | K10 | 37 | LA | 1 | 39 | .3 | | | | DATE | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | CHRO-
MIUM,
DIS-
SOLVED
(µg/L
as Cr)
(01030) | COBALT,
DIS-
SOLVED
(µg/L
as Co)
(01035) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | LITHIUM
DIS-
SOLVED
(µg/L
as Li)
(01130) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | MOLYB-
DENUM,
DIS-
SOLVED
(µg/L
as Mo)
(01060) | NICKEL,
DIS-
SOLVED
(µg/L
as Ni)
(01065) | | DEC 03 | .08 | <.1 | | | E5 | <10 | .25 | <1 | | <2.0 | <.01 | | | | MAR
18 | .00 | ~ | | | 13 | -10 | .23 | -1 | | | | | | | | - 01 | _ 1 | | | -6 | 20 | 17 | I/u | | 3 3 | - n1 | | | | MAY | <.04 | <.1 | | | <6 | 38 | .17 | M | | 3.3 | <.01 | | | | MAY
20
AUG
26 | <.04
<.04
E.02 | <.1
<.1
<.1 |
 | | <6
<6
<6 | 38
40
<10 | .17 | M
M
<1 | | 3.3
4.2
<2.0 | <.01
<.01
<.01 | | | ### 07071000 GREER SPRING AT GREER, MO--Continued | DATE | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | STRON-
TIUM,
DIS-
SOLVED
(µg/L
as Sr)
(01080) | VANA-
DIUM,
DIS-
SOLVED
(µg/L
as V)
(01085) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 2,6-DI-
ETHYL
ANILINE
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82660) | ACETO-
CHLOR,
WATER
FLTRD
REC
(µg/L)
(49260) | ALA-
CHLOR,
WATER,
DISS,
REC,
(µg/L)
(46342) | ALPHA
BHC
DIS-
SOLVED
(µg/L)
(34253) | ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(39632) | BEN-
FLUR-
ALIN
WAT FLD
0.7 µ
GF, REC
(µg/L)
(82673) | BUTYL-
ATE,
WATER,
DISS,
REC
(µg/L)
(04028) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | |------------------|--|---
---|--|--|---|--|---|--|---|---|---|--| | DEC | П 2 | 35.4 | | | 3 | . 002 | . 004 | . 000 | . 005 | . 007 | . 010 | . 000 | - 041 | | 03
MAR
18 | E.2 | 35.4 | | | 4 | <.002
<.006 | <.004 | <.002
<.004 | <.005
<.005 | <.007
<.007 | <.010
<.010 | <.002
<.002 | <.041
<.041 | | MAY
20 | <.3 | | | | 4 | <.006 | <.006 | <.004 | <.005 | .138 | <.010 | <.002 | <.041 | | AUG
26 | E.2 | | | 2 | 2 | <.006 | <.006 | <.004 | <.005 | E.007 | <.010 | <.002 | <.041 | | 20 | E.Z | | | 2 | 2 | <.000 | <.000 | V.004 | <.003 | E.007 | <.010 | <.002 | V.041 | | DATE | CARBO-
FURAN
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82674) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CYANA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04041) | DCPA
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82682) | DEETHYL
ATRA-
ZINE,
WATER,
DISS,
REC
(µg/L)
(04040) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | DI-
ELDRIN
DIS-
SOLVED
(µg/L)
(39381) | DISUL-
FOTON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82677) | EPTC
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82668) | ETHAL-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82663) | ETHO-
PROP
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82672) | FONOFOS
WATER
DISS
REC
(µg/L)
(04095) | LINDANE
DIS-
SOLVED
(µg/L)
(39341) | | DEC 03 | <.020 | <.005 | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | MAR
18 | <.020 | <.005 | <.018 | <.003 | <.006 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | MAY
20 | <.020 | <.005 | <.018 | <.003 | E.018 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | AUG
26 | <.020 | <.005 | <.018 | <.003 | E.004 | <.005 | <.005 | <.02 | <.002 | <.009 | <.005 | <.003 | <.004 | | DATE | LIN-
URON
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82666) | MALA-
THION,
DIS-
SOLVED
(µg/L)
(39532) | METHYL
AZIN-
PHOS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82686) | METHYL
PARA-
THION
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82667) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | METRI-
BUZIN
SENCOR
WATER
DISSOLV
(µg/L)
(82630) | MOL-
INATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82671) | NAPROP-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82684) | P,P'
DDE
DISSOLV
(µg/L)
(34653) | PARA-
THION,
DIS-
SOLVED
(µg/L)
(39542) | PEB-
ULATE
WATER
FILTRD
0.7 µ
GF, REC
(µg/L)
(82669) | PENDI-
METH-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82683) | PER-
METHRIN
CIS
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82687) | | DEC 03 | <.035 | <.027 | <.050 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | <.007 | <.002 | <.010 | <.006 | | MAR
18 | <.035 | <.027 | <.050 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | | MAY
20
AUG | <.035 | <.027 | <.050 | <.006 | E.005 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | | 26 | <.035 | <.027 | <.050 | <.006 | <.013 | <.006 | <.002 | <.007 | <.003 | <.010 | <.004 | <.022 | <.006 | | DATE | PHORATE WATER FLTRD 0.7 µ GF, REC (µg/L) (82664) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PRON-
AMIDE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82676) | PROPA-
CHLOR,
WATER,
DISS,
REC
(µg/L)
(04024) | PRO-
PANIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82679) | PRO-
PARGITE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82685) | SI-
MAZINE,
WATER,
DISS,
REC
(µg/L)
(04035) | TEBU-
THIURON
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82670) | TER-
BACIL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82665) | TER-
BUFOS
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82675) | THIO-BENCARB
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82681) | TRIAL-
LATE
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82678) | TRI-
FLUR-
ALIN
WAT FLT
0.7 µ
GF, REC
(µg/L)
(82661) | | DEC
03
MAR | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.011 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | 18
MAY | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | 20
AUG | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | | 26 | <.011 | <.01 | <.004 | <.010 | <.011 | <.02 | <.005 | <.02 | <.034 | <.02 | <.005 | <.002 | <.009 | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. LA--Laboratory accident. ### 07071500 ELEVEN POINT RIVER NEAR BARDLEY, MO LOCATION.--Lat 36°38'55", long 91°12'03", in NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.17, T.23 N., R.2 W., Oregon County, Hydrologic Unit 11010011, on downstream side of right pier of main truss of bridge on U.S. Highway 160, 7.0 mi southwest of Bardley, 7.5 mi upstream from Fredericks Fork, and at mile 53.7. DRAINAGE AREA.--793 mi². ### WATER-DISCHARGE RECORDS PERIOD OF RECORD.--October 1921 to current year. October 1921 monthly discharge only, published in WSP 1311. REVISED RECORDS. -- WSP 827: 1927-28, 1935. WSP 927: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 410.84 ft above National Geodetic Vertical Datum of 1929. Prior to June 26, 1934, nonrecording gage at site 100 ft upstream at datum 0.06 ft higher; June 26, 1934, to Oct. 19, 1939, nonrecording gage at present site and datum. REMARKS.--Water-discharge records good. U.S. Army Corps of Engineers satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.—Maximum stage, 19.7 ft, August 1915, from floodmarks, discharge, 44,000 ft 3 /s, from rating curve extended above 25,000 ft 3 /s. | | | DISCHARG | E, CUBIC | FEET PER | | WATER Y | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|---|---------------------------------------|--|--|-----------------------------|--|---|--|---------------------------------|---|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 184 | 187 | 268 | 374 | 3370 | 430 | 1460 | 1110 | 1410 | 791 | 665 | 543 | | 2 | 184 | 192 | 241 | 359 | 1620 | 442 | 1380 | 1080 | 1360 | 777 | 655 | 536 | | 3 | 184 | 186 | 225 | 348 | 1250 | 463 | 1280 | 1030 | 1320 | 766 | 641 | 529 | | 4 | 184 | 183 | 216 | 335 | 1060 | 490 | 1180 | 1000 | 1290 | 757 | 629 | 526 | | 5 | 194 | 183 | 206 | 330 | 928 | 487 | 1120 | 968 | 1300 | 746 | 618 | 518 | | 6 | 189 | 182 | 216 | 329 | 850 | 479 | 1070 | 952 | 1330 | 732 | 610 | 511 | | 7 | 184 | 183 | 214 | 314 | 789 | 471 | 1050 | 991 | 1240 | 718 | 605 | 506 | | 8 | 183 | 183 | 229 | 305 | 729 | 463 | 3250 | 12300 | 1190 | 709 | 594 | 501 | | 9 | 183 | 181 | 227 | 300 | 688 | 1730 | 3490 | 15500 | 1180 | 701 | 586 | 497 | | 10 | 191 | 181 | 220 | 295 | 655 | 2210 | 2240 | 4840 | 1200 | 695 | 580 | 495 | | 11 | 208 | 181 | 214 | 285 | 613 | 1550 | 1880 | 3210 | 1160 | 691 | 573 | 494 | | 12 | 202 | 180 | 219 | 280 | 584 | 1600 | 1700 | 2630 | 1120 | 704 | 571 | 488 | | 13 | 220 | 180 | 232 | 275 | 555 | 1520 | 1600 | 7290 | 1110 | 714 | 664 | 483 | | 14 | 212 | 180 | 278 | 273 | 527 | 1400 | 6110 | 5470 | 1070 | 685 | 1910 | 480 | | 15 | 204 | 181 | 301 | 265 | 509 | 1290 | 4170 | 3240 | 1040 | 721 | 1030 | 496 | | 16 | 199 | 179 | 499 | 262 | 491 | 1710 | 2540 | 2650 | 1020 | 713 | 850 | 495 | | 17 | 192 | 179 | 2100 | 258 | 470 | 1590 | 2120 | 5890 | 1030 | 690 | 776 | 485 | | 18 | 191 | 180 | 1580 | 255 | 453 | 1370 | 1880 | 6420 | 998 | 687 | 729 | e480 | | 19 | 192 | 183 | 1130 | 259 | 467 | 2770 | 1750 | 3820 | 964 | 905 | 709 | e550 | | 20 | 193 | 180 | 907 | 252 | 570 | 9370 | 1640 | 2960 | 938 | 1230 | 677 | e500 | | 21 | 192 | 179 | 774 | 250 | 603 | 5440 | 1570 | 2530 | 915 | 1010 | 650 | e560 | | 22 | 191 | 179 | 695 | 244 | 569 | 2870 | 1480 | 2280 | 893 | 883 | 630 | e500 | | 23 | 193 | 181 | 633 | 256 | 539 | 2270 | 1410 | 2110 | 881 | 823 | 615 | 465 | | 24 | 197 | 213 | 583 | 566 | 522 | 1980 | 1370 | 1980 | 870 | 794 | 622 | 449 | | 25 | 195 | 204 | 547 | 629 | 507 | 1970 | 1300 | 1870 | 865 | 756 | 639 | 445 | | 26
27
28
29
30
31 | 189
185
184
184
184
185 |
202
193
216
252
290 | 513
488
464
437
410
390 | 529
473
437
411
386
716 | 484
459
442
 | 3300
2670
2210
1950
1740
1580 | 1250
1220
1200
1140
1120 | 1760
1680
1620
1570
1510
1450 | 849
841
856
846
811 | 739
717
697
682
673
667 | 627
606
589
575
563
552 | 445
449
444
437
433 | | MEAN | 192 | 192 | 505 | 350 | 761 | 1930 | 1866 | 3346 | 1063 | 760 | 688 | 491 | | MAX | 220 | 290 | 2100 | 716 | 3370 | 9370 | 6110 | 15500 | 1410 | 1230 | 1910 | 560 | | MIN | 183 | 179 | 206 | 244 | 442 | 430 | 1050 | 952 | 811 | 667 | 552 | 433 | | IN. | 0.28 | 0.27 | 0.73 | 0.51 | 1.00 | 2.81 | 2.63 | 4.87 | 1.50 | 1.11 | 1.00 | 0.69 | | MEAN | 422 | 593 | 708 | 785 | 835 | 1071 | 1311 | 1171 | 882 | 607 | 487 | 433 | | MAX | 1291 | 2082 | 4048 | 3007 | 2223 | 3556 | 5037 | 3346 | 3107 | 1559 | 1354 | 1183 | | (WY) | 1985 | 1994 | 1983 | 1985 | 1949 | 1945 | 1927 | 2002 | 1928 | 1951 | 1927 | 1975 | | MIN | 168 | 176 | 170 | 159 | 224 | 264 | 340 | 266 | 245 | 213 | 199 | 181 | | (WY) | 1957 | 1957 | 1956 | 1956 | 1963 | 1981 | 1981 | 1936 | 1936 | 1936 | 1936 | 1956 | | SUMMARY | STATISTIC | CS | FOF | 2001 CAL | ENDAR YEA | AR. | FOR 2002 V | WATER YE | AR | WATER YE | ARS 1922 | - 2002 | | LOWEST ANIUAL ANNUAL ANIUAL ANIUAL ANIUAL ANIUAL ANIUAL 10 PERC. | MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY PEAK FLOV PEAK STA ANEOUS LOV RUNOFF (I) ENT EXCEEI ENT EXCEEI | AN AN N MINIMUM W SE W FLOW NCHES) OS | | 317 2100 179 Nov 1 18044 519 247 186 | Dec 1
6,17,21,2
Nov 1 | 22
L2 | 1015
15500
179 Nov 16
27700
16.43
178 Sev
17.38
1970
615
190 | May
5,17,21,
Nov
May
May
veral Da | 22
12
9
9 | 775
1782
303
26800
155
157
49800
21.64
152
13.27
1420
552
263 | Jan 2
Jan 2
Dec
Dec | 1985
2001
4 1927
26 1956
21 1956
3 1982
3 1982
27 1956 | e Estimated # 07071500 ELEVEN POINT RIVER NEAR BARDLEY, MO--Continued (Ambient Water-Quality Monitoring Network) # WATER-QUALITY RECORDS PERIOD OF RECORD.--November 1993 to current year. | DATE | TIME | SAMPL:
TYPE | E | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
26
26 | 1205
1210 | BLANK
ENVIRONM | ENTAL |
198 |
8.5 |
79 |
8.0 |
362 |
11.3 |
190 |
38.6 | 22.0 |
<.10 | | JAN
07 | 1140 | ENVIRONM | ENTAL | 315 | 12.1 | 104 | 7.5 | 327 | 8.4 | | | | | | MAR
21 | 1030 | ENVIRONM | ENTAL | 5280 | 9.4 | 86 | 7.4 | 158 | 11.1 | | | | | | MAY
21 | 1020 | ENVIRONM | ENTAL | 2550 | 9.0 | 89 | 7.4 | 204 | 14.0 | 90 | 19.2 | 10.2 | .11 | | JUL
22 | 1200 | ENVIRONM | ENTAL | 877 | 10.2 | 115 | 7.9 | 326 | 19.4 | | | | | | SEP
16 | 1155 | ENVIRONM | ENTAL | 499 | 9.5 | 102 | 7.7 | 342 | 18.6 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
26
26 |
2.27 |
199 |
201 |
245 |
0 |
2.78 |
E.1 | 2.5 | <10
<10 |
202 | E.02 | <.10
E.07 | <.05
.24 | | JAN
07 | | 153 | 153 | 187 | 0 | | | | <10 | | <.04 | <.10 | .69 | | MAR
21 | | 72 | 73 | 89 | 0 | | | | 69 | | <.04 | .43 | .46 | | MAY
21 | 2.37 | 103 | 102 | 125 | 0 | 1.81 | <.1 | 2.6 | <10 | 123 | <.04 | .15 | . 43 | | JUL
22 | | 170 | 170 | 208 | 0 | | | | <10 | | <.04 | E.08 | .60 | | SEP
16 | | 163 | 163 | 199 | 0 | | | | <10 | | <.04 | E.09 | .60 | | | | | | | · | | | | | | | | | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
26
26
JAN | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 |
K1 |
K6 |
K15 | 6
6 | 8
11 | <.2 | <.04
<.04 | <.1
<.1 | <6
<6 | | 07
MAR | <.008 | <.06 | <.02 | <.06 | K1 | K3 | K3 | | | | | | | | MAR
21
MAY | E.006 | E.03 | .02 | .09 | K210 | 1000 | 747 | | | | | | | | 21 | .012 | <.06 | <.02 | <.06 | K53 | 184 | 306 | 40 | 128 | <.2 | E.02 | <.1 | <6 | | JUL
22 | E.005 | <.06 | <.02 | <.06 | K14 | 68 | K31 | | | | | | | | SEP
16 | <.008 | <.06 | <.02 | <.06 | К2 | K13 | К6 | | | | | | | # 07071500 ELEVEN POINT RIVER NEAR BARDLEY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 26 | <10 | <.08 | <1 | <2.0 | <.01 | <.3 | | 3 | | 26 | E7 | <.08 | <1 | 3.8 | <.01 | <.3 | | 3
3 | | JAN | | | | | | | | | | 07 | | | | | | | | | | MAR | | | | | | | | | | 21 | | | | | | | | | | MAY | | | | | | | | | | 21 | 54 | .98 | 3 | 9.6 | <.01 | <.3 | | 4 | | JUL | | | | | | | | | | 22 | | | | | | | | | | SEP | | | | | | | | | | 16 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. ### 07185765 SPRING RIVER AT CARTHAGE, MO LOCATION.--Lat 37°11'11", long 94°19'56", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.33, T.29 N., R.31 W., Jasper County, Hydrologic Unit 11070207, on left downstream wingwall of St. Francis Street bridge 0.8 mi northwest of junction with Highway 96 in Carthage. DRAINAGE AREA. -- 425 mi². PERIOD OF REOCRD.--October 1966 to Sept. 30, 1980, May 23, 2001 to current year. Occasional discharge measurements 1951-1954. Intermittent gage readings since Oct. 31, 1945, collected by Corps of Engineers. GAGE.--Water-stage recorder. Datum of gage is unknown. Jan. 26, 1967 to September 1980, gage located approximately 0.75 mi upstream, at datum of 923.68 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 26, 1967, nonrecording gage at site 0.87 mi upstream of current site, at former datum. REMARKS.--Records good. U.S.G.S. satellite telemeter
at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 18, 1943, reached a stage of 22.0 ft by highwater mark 1 mi upstream. EXTREMES FOR CURRENT YEAR.-- For period May 23 to Sept. 30, maximum discharge 598 ft^3/s , June 3, gage height, 4.27 ft ; minimum, 33 ft^3/s , Sept. 6 and 7. | DAY | | | DISCHARGE | , CUBIC | FEET PER | | | YEAR OCTOBER
VALUES | R 2000 TO | SEPTEMBER | 2001 | | | |--|----------|------------|-----------|---------|------------|-----------|--------|------------------------|-----------|-----------|------|------|------| | 2 | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 2 | 1 | | | | | | | | | 163 | 147 | 110 | 42 | | 4 | | | | | | | | | | | | | | | 5 | 3 | | | | | | | | | 282 | 127 | 91 | 40 | | 66 | 4 | | | | | | | | | 225 | 116 | 81 | 38 | | 7 | 5 | | | | | | | | | 191 | 111 | 77 | 36 | | 7 | _ | | | | | | | | | 1.67 | 1.07 | 71 | 2.4 | | 8 145 91 86 44 49 134 89 84 52 10 134 80 87 36 64 11 14 133 86 73 64 11 15 133 86 73 64 11 15 133 86 73 64 11 15 133 86 73 64 11 15 133 86 73 64 11 15 133 86 73 64 11 15 133 86 73 64 11 11 15 12 12 12 66 52 69 62 11 12 15 13 11 19 77 66 53 11 14 15 15 15 15 15 15 15 15 15 15 15 15 15 | | | | | | | | | | | | | | | 9 | | | | | | | | | | | | | | | 10 | - | | | | | | | | | | | | | | 122 1119 779 66 53 133 1111 777 61 499 144 1111 775 58 46 155 1110 775 58 46 156 1120 775 58 46 156 1120 775 58 46 157 1120 775 58 46 158 1178 80 54 46 188 1178 80 54 46 188 1178 80 54 46 189 1177 80 54 46 189 1177 80 54 46 189 1177 80 54 46 189 1177 80 74 46 199 1177 80 74 46 199 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 44 192 127 61 44 48 192 127 61 41 45 193 127 61 41 45 194 194 195 44 46 194 194 195 194 54 46 41 195 120 197 194 54 46 195 197 152 84 44 40 196 197 152 84 44 40 196 197 186 144 141 42 67 198 198 198 198 198 198 198 198 198 198 | | | | | | | | | | | | | | | 122 1119 779 66 53 133 1111 777 61 499 144 1111 775 58 46 155 1110 775 58 46 156 1120 775 58 46 156 1120 775 58 46 157 1120 775 58 46 158 1178 80 54 46 188 1178 80 54 46 188 1178 80 54 46 189 1177 80 54 46 189 1177 80 54 46 189 1177 80 54 46 189 1177 80 74 46 199 1177 80 74 46 199 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 43 191 119 67 45 44 192 127 61 44 48 192 127 61 41 45 193 127 61 41 45 194 194 195 44 46 194 194 195 194 54 46 41 195 120 197 194 54 46 195 197 152 84 44 40 196 197 152 84 44 40 196 197 186 144 141 42 67 198 198 198 198 198 198 198 198 198 198 | | | | | | | | | | | | | | | 13 | | | | | | | | | | | | | | | 144 | | | | | | | | | | | | | | | 156 | | | | | | | | | | | | | | | 16 | | | | | | | | | | | | | | | 17 | 15 | | | | | | | | | 128 | 74 | 53 | 42 | | 17 | 16 | | | | | | | | | 129 | 71 | 54 | 41 | | 18 | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | 1 | | | | | | | | | | | | | | | 22 | 20 | | | | | | | | | 119 | 67 | 45 | 43 | | 22 | | | | | | | | | | | | | | | 23 | | | | | | | | | | | | | | | 24 | | | | | | | | | | | | | | | 25 | | | | | | | | | | | | | | | 26 197 152 84 44 51 27 186 144 141 42 67 28 177 158 201 39 66 29 168 219 194 39 66 30 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 175 126 44 MEAN 176 169 144 47 64 31 176 175 126 44 MEAN 176 175 126 44 MEAN 162 98.1 60.4 48.0 MAX 101 53 39 34 IN 39 IN 101 53 39 34 IN 101 53 39 34 IN 101 53 39 39 IN 101 53 39 34 IN 101 53 39 39 IN 101 53 39 IN 101 53 39 IN 104 108 IN | | | | | | | | | | | | | | | 27 | 23 | | | | | | | | 212 | 100 | 33 | - 11 | 40 | | 28 177 158 201 39 66 29 176 169 144 39 66 30 176 169 144 47 64 31 175 169 144 47 64 31 175 169 144 47 64 31 175 169 144 47 64 31 175 126 44 MEAN 175 126 44 MEAN 157 126 44 MEAN 157 162 98.1 60.4 48.0 MAX 101 53 39 34 IN IN. 7 1043 0.27 0.16 0.13 STATISTICS OF MONTHLY MEAN DATA FOR PERIOD OF RECORD, BY WATER YEAR (WY) MEAN 231 501 389 331 429 701 545 483 418 262 131 218 MAX 561 1785 1475 908 1567 1854 1701 1186 1343 1038 296 625 (WY) 1974 1973 1979 1975 1973 1979 1974 1976 1979 1971 MIN 72.5 65.8 57.7 50.0 104 108 138 174 70.8 49.3 53.4 46.3 (WY) 1967 1977 1977 1977 1977 1977 1972 1977 1971 1972 1972 | 26 | | | | | | | | 197 | 152 | 84 | 44 | 51 | | 29 168 219 194 39 66 30 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 31 176 169 144 47 64 48.0 MAX 176 175 162 98.1 60.4 48.0 MAX 176 175 162 98.1 60.4 48.0 MAX 176 175 176 175 176 MIN 176 175 177 170 170 170 170 170 170 170 170 170 | 27 | | | | | | | | 186 | 144 | 141 | 42 | 67 | | 30 | 28 | | | | | | | | 177 | 158 | 201 | 39 | 66 | | 31 | | | | | | | | | | | | | | | MEAN | | | | | | | | | | | | | | | MAX | 31 | | | | | | | | 175 | | 126 | 44 | | | MAX | MEAN | | | | | | | | | 162 | 00 1 | 60 4 | 49 N | | MIN | | | | | | | | | | | | | | | IN | | | | | | | | | | | | | | | MEAN 231 501 389 331 429 701 545 483 418 262 131 218 | | | | | | | | | | | | | | | MEAN 231 501 389 331 429 701 545 483 418 262 131 218 MAX 561 1785 1475 908 1567 1854 1701 1186 1343 1038 296 625 (WY) 1974 1973 1974 1973 1975 1973 1973 1979 1974 1976 1979 1971 MIN 72.5 65.8 57.7 50.0 104 108 138 174 70.8 49.3 53.4 46.3 (WY) 1967 1977 1977 1977 1977 1972 1977 1971 1972 1972 | | | | | | | | | | | | | | | MAX 561 1785 1475 908 1567 1854 1701 1186 1343 1038 296 625 (WY) 1974 1973 1974 1973 1974 1975 1973 1973 1979 1974 1976 1979 1971 MIN 72.5 65.8 57.7 50.0 104 108 138 174 70.8 49.3 53.4 46.3 (WY) 1967 1977 1977 1977 1977 1972 1977 1971 1972 1972 | STATISTI | ICS OF MOI | THLY MEAN | DATA FO | R PERIOD (| OF RECORD | , BY W | NATER YEAR (V | WY) | | | | | | (WY) 1974 1973 1974 1973 1975 1973 1973 1979 1974 1976 1979 1971 MIN 72.5 65.8 57.7 50.0 104 108 138 174 70.8 49.3 53.4 46.3 (WY) 1967 1977 1977 1972 1971 1971 1972 1972 1972 1972 1980 SUMMARY STATISTICS FOR PERIOD OF RECORD ANNUAL MEAN 390 HIGHEST ANNUAL MEAN 836 1973 LOWEST ANNUAL MEAN 168 1977 HIGHEST DAILY MEAN 11800 Nov 25 1973 LOWEST DAILY MEAN 34 Sep 6 2001 ANNUAL SEVEN-DAY MINIMUM 39 Sep 1 2001 MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | | | | | | | | | | | | MIN 72.5 65.8 57.7 50.0 104 108 138 174 70.8 49.3 53.4 46.3 (WY) 1967 1977 1977 1977 1972 1977 1971 1972 1972 | | | | | | | | | | | | | | | (WY) 1967 1977 1977 1972 1972 1971 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1972 1973 1973 1973 1974 | | | | | | | | | | | | | | | SUMMARY STATISTICS FOR PERIOD OF RECORD ANNUAL MEAN 390 HIGHEST ANNUAL MEAN 836 1973 LOWEST ANNUAL MEAN 168 1977 HIGHEST DAILY MEAN 11800 Nov 25 1973 LOWEST DAILY MEAN 34 Sep 6 2001 ANNUAL SEVEN-DAY MINIMUM 39 Sep 1 2001 MAXIMUM PEAK FLOW 24800 Nov 1 1972 MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | | | | | | | | | | | | ANNUAL MEAN 390 HIGHEST ANNUAL MEAN 836 1973 LOWEST ANNUAL MEAN 168 1977 HIGHEST DAILLY MEAN 11800 Nov 25 1973 LOWEST DAILLY MEAN 34 Sep 6 2001 ANNUAL SEVEN-DAY MINIMUM 39 Sep 1 2001 MAXIMUM PEAK FLOW 24800 Nov 1 1972 MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | 1977 | | | | 1977 | 19/1 | 1972 | 1972 | 1972 | 1900 | | HIGHEST ANNUAL MEAN 836 1973 LOWEST ANNUAL MEAN 168 1977 HIGHEST DAILY MEAN 11800 Nov 25 1973 LOWEST DAILY MEAN 34 Sep 6 2001 ANNUAL SEVEN-DAY MINIMUM 39 Sep 1 2001 MAXIMUM PEAK FLOW 24800 Nov 1 1972 MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | | | | | | | | | | | | HIGHEST DAILY MEAN 11800 Nov 25 1973 LOWEST DAILY MEAN 34 Sep 6 2001 ANNUAL SEVEN-DAY MINIMUM 39 Sep 1 2001 MAXIMUM PEAK FLOW 24800 Nov 1 1972 MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES)
12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | EAN | | | | 1973 | | | | | | | | LOWEST DAILY MEAN 34 Sep 6 2001 ANNUAL SEVEN-DAY MINIMUM 39 Sep 1 2001 MAXIMUM PEAK FLOW 24800 Nov 1 1972 MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | | | | 1977 | | | | | | | | LOWEST DAILY MEAN 34 Sep 6 2001 ANNUAL SEVEN-DAY MINIMUM 39 Sep 1 2001 MAXIMUM PEAK FLOW 24800 Nov 1 1972 MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | HIGHEST | DAILY MEA | AN | | 11800 | Nov 25 | 1973 | | | | | | | | MAXIMUM PEAK FLOW 24800 Nov 1 1972 MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | LOWEST I | DAILY MEAN | 1 | | 34 | | | | | | | | | | MAXIMUM PEAK STAGE 17.15 Nov 1 1972 INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | | | | | | | | | | | | INSTANTANEOUS LOW FLOW 33 Sep 6,7 2001 ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | | | | | | | | | | | | ANNUAL RUNOFF (INCHES) 12.46 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | | | | | | | | | | | | 10 PERCENT EXCEEDS 749 50 PERCENT EXCEEDS 210 | | | | | | Sep 6,7 | 200I | | | | | | | | 50 PERCENT EXCEEDS 210 | ### 07185765 SPRING RIVER AT CARTHAGE, MO--Continued LOCATION.--Lat 37°11'11", long 94°19'56", in SW $\frac{1}{4}$ NW $\frac{1}{4}$ SW $\frac{1}{4}$ sec.33, T.29 N., R.31 W., Jasper County, Hydrologic Unit 11070207, on left downstream wingwall of St. Francis Street bridge 0.8 mi northwest of junction with Highway 96 in Carthage. DRAINAGE AREA. -- 425 mi². PERIOD OF REOCRD.--October 1966 to Sept. 30, 1980, May 23, 2001 to current year. Occasional discharge measurements 1951-1954. Intermittent gage readings since Oct. 31, 1945, collected by Corps of Engineers. GAGE.--Water-stage recorder. Datum of gage is unknown. Jan. 26, 1967 to September 1980, gage located approximately 0.75 mi upstream, at datum of 923.68 ft above National Geodetic Vertical Datum of 1929. Prior to Jan. 26, 1967, nonrecording gage at site 0.87 mi upstream of current site, at former datum. REMARKS.--Records good. U.S.G.S. satellite telemeter at station. EXTREMES OUTSIDE PERIOD OF RECORD.--Flood of May 18, 1943, reached a stage of 22.0 ft by highwater mark 1 mi upstream. | | | DISCHAR | RGE, CUBIO | C FEET PEI | | WATER YI
MEAN V | | R 2001 TO | SEPTEMBER | 2002 | | | |--|--|--|--|---|---------------------------------|---|---|---|---------------------------------|--|--|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 60 | 93 | 136 | 239 | 1450 | 263 | 419 | 382 | 858 | 319 | 181 | 100 | | 2 | 62 | 225 | 143 | 228 | 1020 | 298 | 400 | 361 | 795 | 311 | 171 | 98 | | 3 | 63 | 314 | 146 | 218 | 839 | 322 | 376 | 335 | 740 | 316 | 166 | 102 | | 4 | 62 | 276 | 145 | 210 | 728 | 315 | 353 | 315 | 692 | 311 | 159 | 100 | | 5 | 104 | 241 | 142 | 205 | 642 | 326 | 339 | 300 | 666 | 302 | 155 | 96 | | 6
7
8
9 | 86
86
85
108
2880 | 215
194
179
165
153 | 137
131
126
120
116 | 200
194
186
182
178 | 593
558
520
489
457 | 400
436
428
419
396 | 326
323
336
360
349 | 285
591
11200
9980
3210 | 647
600
562
806
842 | 282
264
252
249
239 | 154
164
166
151
150 | 95
90
87
86
85 | | 11 | 1490 | 143 | 113 | 171 | 423 | 378 | 331 | 1560 | 621 | 262 | 147 | 83 | | 12 | 447 | 136 | 132 | 165 | 402 | 368 | 321 | 1750 | 791 | 262 | 143 | 80 | | 13 | 342 | 129 | 185 | 160 | 382 | 356 | 341 | 4850 | 806 | 543 | 145 | 79 | | 14 | 271 | 122 | 247 | 156 | 361 | 345 | 453 | 2220 | 1370 | 356 | 147 | 84 | | 15 | 228 | 117 | 269 | 151 | 347 | 333 | 427 | 1440 | 848 | 275 | 144 | 84 | | 16 | 199 | 112 | 295 | 147 | 332 | 319 | 380 | 1240 | 686 | 245 | 136 | 83 | | 17 | 178 | 109 | 879 | 142 | 317 | 306 | 361 | 2970 | 612 | 261 | 150 | 85 | | 18 | 162 | 112 | 992 | 140 | 304 | 297 | 338 | 3760 | 562 | 274 | 148 | 80 | | 19 | 149 | 121 | 724 | 140 | 313 | 305 | 331 | 1810 | 522 | 400 | 157 | 109 | | 20 | 138 | 111 | 586 | 136 | 356 | 376 | 894 | 1420 | 489 | 453 | 144 | 101 | | 21 | 128 | 108 | 513 | 133 | 336 | 419 | 1360 | 1230 | 461 | 344 | 135 | 89 | | 22 | 120 | 107 | 467 | 130 | 313 | 384 | 838 | 1100 | 434 | 277 | 126 | 83 | | 23 | 117 | 107 | 424 | 131 | 303 | 373 | 658 | 1010 | 415 | 287 | 120 | 77 | | 24 | 128 | 109 | 387 | 131 | 296 | 373 | 572 | 2430 | 402 | 263 | 123 | 76 | | 25 | 151 | 129 | 360 | 129 | 286 | 831 | 510 | 3220 | 386 | 237 | 119 | 74 | | 26
27
28
29
30
31 | 131
119
110
104
99
96 | 142
139
134
132
132 | 337
318
302
285
266
251 | 125
123
121
120
178
1640 | 275
265
258
 | 781
592
537
506
475
443 | 483
477
454
412
384 | 1370
1150
1040
1240
1090
943 | 441
400
375
353
331 | 222
211
198
192
191
187 | 119
119
112
108
105
102 | 71
70
70
68
64 | | MEAN | 274 | 150 | 312 | 210 | 470 | 410 | 464 | 2123 | 617 | 283 | 141 | 85.0 | | MAX | 2880 | 314 | 992 | 1640 | 1450 | 831 | 1360 | 11200 | 1370 | 543 | 181 | 109 | | MIN | 60 | 93 | 113 | 120 | 258 | 263 | 321 | 285 | 331 | 187 | 102 | 64 | | IN. | 0.74 | 0.39 | 0.85 | 0.57 | 1.15 | 1.11 | 1.22 | 5.76 | 1.62 | 0.77 | 0.38 | 0.22 | | MEAN | 234 | 477 | 384 | 323 | 432 | 682 | 540 | 592 | 431 | 263 | 131 | 210 | | MAX | 561 | 1785 | 1475 | 908 | 1567 | 1854 | 1701 | 2123 | 1343 | 1038 | 296 | 625 | | (WY) | 1974 | 1973 | 1974 | 1973 | 1975 | 1973 | 1973 | 2002 | 1974 | 1976 | 1979 | 1971 | | MIN | 72.5 | 65.8 | 57.7 | 50.0 | 104 | 108 | 138 | 174 | 70.8 | 49.3 | 53.4 | 46.3 | | (WY) | 1967 | 1977 | 1977 | 1977 | 1977 | 1972 | 1977 | 1971 | 1972 | 1972 | 1972 | 1980 | | SUMMARY | STATIST | ics | | | FOR | 2002 WA | TER YEAR | | | FOR PE | ERIOD OF | RECORD | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
ANNUAL
10 PERC
50 PERC | MEAN ANNUAL ME ANNUAL ME DAILY ME DAILY ME DEAK FLC PEAK STE ANEOUS LC RUNOFF (1) RUNT EXCEE ENT EXCEE ENT EXCEE | CAN CAN AN MINIMUM OW AGE OW FLOW CINCHES) CDS | | | 20
14 | 463 1200 60 70 0000 ^a 1.97 58 4.79 844 274 100 | May 8
Oct 1
Sep 24
May 8
May 8
Oct 1 | | | 395
836
168
11800
34
39
24800
17.15 ^b
33
12.62
754
213
78 | Nov
Sep
Sep
Nov
Nov
Sep | 1973
1977
25 1973
6 2001
1 1972
1 1972
1 1972
6 2001 | $_{\text{b}}^{\text{a}}$ From rating extended above 11,000 $\text{ft}^{3}/\text{s.}$ Former datum. ### 07186000 SPRING RIVER NEAR WACO, MO LOCATION.--Lat $37^{\circ}14^{\circ}44^{\circ}$, long $94^{\circ}33^{\circ}58^{\circ}$, on line between SE $\frac{1}{2}$ sec.7 and NE $\frac{1}{2}$ sec.18, T.29 N., R.33 W., Jasper County, Hydrologic Unit 11070207, on downstream side of left pier of county highway bridge, 0.8 mi downstream from Blackberry Creek, 1.5 mi east of Waco, and 47.6 mi upstream from mouth. DRAINAGE AREA. -- 1,164 mi². PERIOD OF RECORD.--April 1924 to current year. REVISED RECORDS.--WSP 1117: Drainage area. GAGE.--Water-stage recorder. Datum of gage is 833.23 ft above National Geodetic Vertical Datum of 1929. Prior to Feb. 23, 1935, nonrecording gage at same site and datum. REMARKS.--Records fair except for estimated daily discharges, which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER Y | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBE | R 2002 | | | |--|--|--|--|---|-----------------------|--|--|--|---------------------------------|--|---------------------------------------|---| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | e108 | e204 | e183 | 305 | 7500 | 363 | 626 | 624 | 1140 | 379 | 186 | 94 | | 2 | e108 | 2370 | e189 | 287 | 4640 | 540 | 584 | 577 | 1030 | 365 | 172 | 93 | | 3 | e108 | 1600 | e192 | 273 | 2040 | 795 | 544 | 516 | 948 | 351 | 163 | 93 | | 4 | e108 | 771 | e193 | 265 | 1280 | 740 | 502 | 466 | 873 | 346 | 156 | 96 | | 5 | 560 | 528 | e189 | 246 | 1080 | 747 | 468 | 431 | 815 | 337 | 152 | 93 | | 6 | 1400 | 414 | e185 | 240 | 968 | 1830 | 447 | 409 | 787 | 320 | 152 | 93 | | 7 | 508 | 347 | e181 |
236 | 905 | 1730 | 438 | 632 | 741 | 293 | 150 | 91 | | 8 | e189 | 303 | e179 | 233 | 844 | 1160 | 454 | 18100 | 693 | 287 | 156 | 85 | | 9 | 304 | 265 | e176 | 228 | 779 | 929 | 492 | 32900 | 2460 | 277 | 362 | 83 | | 10 | 6850 | 241 | e173 | 224 | 720 | 827 | 507 | 24100 | 3890 | 273 | 140 | 85 | | 11 | 7080 | 221 | e170 | 218 | 659 | 718 | 475 | 15200 | 1520 | 266 | 142 | 84 | | 12 | 2880 | 214 | e185 | 211 | 617 | 661 | 448 | 5380 | 4610 | 277 | 137 | 82 | | 13 | 1020 | e196 | 214 | 207 | 580 | 620 | 429 | 12700 | 3560 | 282 | 141 | 79 | | 14 | 589 | e185 | 338 | 202 | 547 | 585 | 524 | 11600 | 5080 | 563 | 143 | 80 | | 15 | 444 | e181 | 432 | 199 | 513 | 547 | 584 | 6110 | 2340 | 339 | 141 | 82 | | 16 | 360 | e175 | 477 | 198 | 485 | 509 | 514 | 3580 | 1320 | 307 | 137 | 82 | | 17 | 312 | e173 | 1080 | 198 | 456 | 475 | 487 | 8710 | 1010 | 299 | 136 | 82 | | 18 | 278 | e189 | 1730 | 196 | 436 | 453 | 457 | 11200 | 866 | 308 | 181 | 84 | | 19 | 252 | e189 | 1260 | 195 | 454 | 457 | 436 | 7120 | 766 | 313 | 151 | 94 | | 20 | 235 | e186 | 898 | e192 | 604 | 530 | 861 | 3270 | 695 | 398 | 146 | 126 | | 21 | 221 | e178 | 737 | e189 | 658 | 649 | 2730 | 1870 | 635 | 450 | 138 | 98 | | 22 | e208 | e167 | 654 | e186 | 579 | 648 | 1940 | 1560 | 585 | 369 | 132 | 86 | | 23 | e198 | e162 | 589 | e188 | 508 | 561 | 1110 | 1370 | 540 | 465 | 126 | 84 | | 24 | 214 | e165 | 532 | e186 | 462 | 528 | 872 | 7990 | 507 | 563 | 125 | 79 | | 25 | 212 | e186 | 483 | e183 | 429 | 928 | 748 | 12100 | 478 | 475 | 124 | 77 | | 26
27
28
29
30
31 | e198
e191
e185
e181
e173
e175 | e192
e194
e191
e186
e180 | 444
419
399
372
346
323 | e180
e176
e173
e174
354
8410 | 403
382
362
 | 1560
1190
899
804
734
670 | 689
708
1100
1030
725 | 5080
2530
1680
1570
1540
1290 | 474
614
543
455
407 | 359
284
e245
220
212
200 | 118
116
111
104
100
98 | 73
70
68
67
64 | | MEAN | 834 | 358 | 449 | 482 | 1068 | 787 | 731 | 6523 | 1346 | 336 | 146 | 84.9 | | MAX | 7080 | 2370 | 1730 | 8410 | 7500 | 1830 | 2730 | 32900 | 5080 | 563 | 362 | 126 | | MIN | 108 | 162 | 170 | 173 | 362 | 363 | 429 | 409 | 407 | 200 | 98 | 64 | | IN. | 0.83 | 0.34 | 0.44 | 0.48 | 0.96 | 0.78 | 0.70 | 6.46 | 1.29 | 0.33 | 0.14 | 0.08 | | MEAN | 667 | 946 | 712 | 712 | 944 | 1215 | 1465 | 1610 | 1400 | 708 | 428 | 555 | | MAX | 6997 | 6726 | 4704 | 3222 | 6372 | 5809 | 7542 | 11640 | 5521 | 4323 | 7812 | 10260 | | (WY) | 1942 | 1986 | 1993 | 1973 | 1985 | 1973 | 1927 | 1943 | 1928 | 1976 | 1927 | 1993 | | MIN | 21.0 | 30.5 | 33.3 | 29.7 | 31.0 | 33.6 | 38.2 | 120 | 73.4 | 15.2 | 7.71 | 22.0 | | (WY) | 1957 | 1954 | 1964 | 1964 | 1964 | 1954 | 1956 | 1932 | 1954 | 1954 | 1954 | 1956 | | SUMMARY | Y STATISTI | CS | FOF | 2001 CAL | ENDAR YEA | AR | FOR 2002 | WATER YEA | AR | WATER YE | ARS 1924 | - 2002 | | LOWEST HIGHEST LOWEST ANNUAL MAXIMUM MINSTANT ANNUAL 10 PERC 50 PERC | MEAN T ANNUAL M ANNUAL ME T DAILY MEA SEVEN-DAY M PEAK FIC M PEAK STA FANEOUS LC RUNOFF (I ENT EXCEE CENT EXCEE | CAN CAN LIN MINIMUM OW LGE OW FLOW CNCHES) CDS | | 754 18700 73 77 8.80 1540 272 88 | Feb 2
Sep
Sep | 7 | 32900
64
71
35900
24.74
61
12.84
1730
382
110 | May
Sep :
Sep :
May
May
Sep : | 30
24
9
9 | 940
3093
61.4
108000
4.5
5.0
151000 ^a
34.06
4.2
10.97
1810
300
66 | Aug
Sep
Sep
Sep | 1993
1954
25 1993
28 1954
2 1954
26 1993
26 1993
28 1954 | e Estimated $^{\rm a}$ From rating extended above 85,000 ${\rm ft}^3/{\rm s}$. # 07186480 CENTER CREEK NEAR SMITHFIELD, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°09'20", long 94°36'10", in NW $\frac{1}{4}$ SE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.14, T.28 N., R.34 W., Jasper County, Hydrologic Unit 11070207, approximately 1.0 mi above the mouth of Center Creek, 1.0 mi south of Smithfield on county road. DRAINAGE AREA. -- 303 mi². PERIOD OF RECORD.--October 1968 to July 1975, July 1977 to June 1989, April 1993 to August 1995, November 1999 to current year. WATER-QUALITY DATA, WATER YEAR OCTOBER 2001 TO SEPTEMBER 2002 | DATE | TIME | SAMPLE
TYPE | 3 | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |--|---|--|---|--|--|---|---|--|--|---|--|---|--| | NOV
28
28 | 0830
0900 | BLANK
ENVIRONME | ד ע בנועב |
79 |
10.9 |
94 |
7.8 |
432 |
7.7 |
200 | .09
74.2 | .011
3.92 | <.10
1.17 | | JAN
08 | 0845 | ENVIRONME | | 105 | 13.6 | 104 | 7.8 | 264 | 2.9 | | | | | | 08
FEB
12 | 0900
0855 | BLANK
ENVIRONME | ENTAL | 263 | 12.6 | 104 | 7.1 | 351 | 6.1 | | | | | | 12
MAR
12 | 0856
1300 | BLANK
BLANK | | | | | | | | | | | | | 12
APR
16 | 1355
1430 | ENVIRONME
BLANK | ENTAL | 273 | 12.1 | 111 | 8.0 | 365 | 10.2 | | | | | | 16
MAY | 1445 | ENVIRONME | ENTAL | 192 | 9.8 | 113 | 8.1 | 372 | 20.4 | | | | | | 22
22
JUN | 0845
1010 | BLANK
ENVIRONME | ENTAL | 973 | 8.3 |
86 | 8.0 | 314 | 15.8 | 150 | .09
54.6 | .010
2.56 | <.10
1.51 | | 18
18
JUL | 1145
1230 | BLANK
ENVIRONME | ENTAL | 453 | 9.7 | 110 | 7.7 | 337 | 20.0 | | | | | | 23
23
SEP | 1500
1600 | BLANK
ENVIRONME | ENTAL |
349 | 9.2 |
117 | 7.7 | 342 | 26.2 |
150 | .03
57.2 | E.006
2.43 | <.10
3.35 | | 10 | 1445 | ENVIRONME | ENTAL | 51 | 10.6 | 137 | 8.1 | 384 | 27.0 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
28
28 | DIS-
SOLVED
(mg/L
as Na) | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) | WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) | | NOV
28
28
JAN
08 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER
UNFLTRD
FET
FIELD
(mg/L as
CaCO ₃)
(00410) | WATER UNFLTRD IT FIELD (mg/L as CaCO ₃) (00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
28
28
JAN
08
08
FEB
12 |
DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER UNFLITED FET FIELD (mg/L as CaCO ₃) (00410) 150 133 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₂) (00447) 0 | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
<.30
11.8 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
E.1
45.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 E.03 | GEN,AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) <.10 .14 .15 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 2.02 3.15 | | NOV
28
28
JAN
08
08
FEB
12 | DIS-
SOLVED
(mg/L
as Na)
(00930)
.49
7.83 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 150 133 169 | WATER UNFLITRD IT FIELD (mg/L as CaCO ₃) (00419) 150 134 170 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₂) (00447) | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)
<.30
11.8 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
E.1
45.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608)
<.04
<.04
E.03
<.04 | GEN, AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625)
<.10
.14
.15
<.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 2.02 3.15 <.05 E3.11 | | NOV
28
28
JAN
08
08
FEB
12
12
MAR
12 | DIS-
SOLVED (mg/L as Na) (00930)
. 49
7.83 | WATER UNFLITRD FET FIELD (mg/L as CaCO ₃) (00410) 150 133 169 | WATER
UNFLITED
IT
FIELD
(mg/L as
CaCO ₃)
(00419)

150
134

170
 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
<.30
11.8 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
E.1
45.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) <.10 .14 .15 <.10 .12 <.08 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 2.02 3.15 <.05 E3.11 <.05 <.05 | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 12 APR 16 | DIS-
SOLVED (mg/L as Na) (00930)
.49 7.83 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 150 133 169 124 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 150 134 170 124 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-BONATE BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
<.30
11.8 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
<.1
.2

 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
E.1
45.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) <.10 .14 .15 <.10 .12 <.08 <.10 .27 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 2.02 3.15 <.05 E3.11 <.05 <.05 2.42 <.05 | | NOV 28 28 JAN 08 68 FEB 12 12 MAR 12 APR 16 16 MAY 22 | DIS-
SOLVED (mg/L as Na) (00930)
. 49 7.83 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 150 133 169 124 134 | WATER UNFLITED IT FIELD (mg/L as CaCO ₃) (00419) 150 134 170 124 134 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940)
<.30
11.8

<.30 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
<.1
.2

 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
E.1
45.5 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
<10
262

<10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.0 | GEN, AM- MONTA + ORGANIC TOTAL (mg/L as N) (00625) <.10 .14 .15 <.10 .27 <.08 <.10 .27 <.10 .21 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 2.02 3.15 <.05 <.05 <.05 2.42 <.05 1.88 <.05 | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 12 APR 16 16 MAY 22 2UN 18 | DIS-
SOLVED (mg/L as Na) (00930) .49 7.83 | WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) 150 133 169 124 134 116 | WATER UNFLITED TT FIELD (mg/L as CaCO ₃) (00419) 150 134 170 124 134 117 | BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | CAR-
BONATE
IT
FIELD (mg/L
as CO ₃)
(00447) | RIDE, DIS- SOLVED (mg/L as C1) (00940) <.30 11.8 <.30 6.13 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)
<.1
.2

 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)
E.1
45.5

3
21.7 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300)
<10
262

10
190 | GEN, AMMONIA DIS-SOLVED (mg/L as N) (00608) <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONTA + ORGANIC TOTAL (mg/L as N) (00625) <.10 .14 .15 <.10 .27 <.08 <.10 .27 <.10 .21 <.10 .21 <.10 .21 <.10 .21 <.10 .22 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) <.05 2.02 3.15 <.05 <.05 2.42 <.05 1.88 <.05 2.04 <.05 <.05 <.05 <.05 <.05 <.05 <.05 <.05 | # 07186480 CENTER CREEK NEAR SMITHFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as Al)
(01105) | ARSENIC DIS- SOLVED (µg/L as As) (01000) | CADMIUM DIS- SOLVED (µg/L as Cd) (01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |--|---|---|--|---|---|--|--|--|---|---|---|---|--| | NOV
28
28
JAN | <.008
E.004 | <.06
.08 | <.02
.07 | <.06
.10 |
K10 |
K86 |
40 | 5
10 | 7
30 | <.2 | <.04 | <.1
1.2 | <6
<6 | | 08 | E.005 | E.06
<.06 | .06
<.02 | .07
<.06 | 41 | 190 | 45
 | | | | | | | | FEB
12
12 | E.004
<.006 | E.06 | E.05 | .07
<.06 | K20
 | K24 | 40 | | | | | | | | MAR
12
12 | <.008
E.004 | <.06
E.04 | <.02 | <.06
E.04 |
K3 |
K1 |
K5 | | | | | | | | APR
16
16 | <.008
.011 | <.06
.06 | <.02 | <.06
E.06 |
LA |
36 |
K16 | | | | | | | | MAY
22
22 | <.008 | <.06
E.06 | <.02 | <.06
.09 |
110 |
156 |
264 | <1
53 | <2
290 | <.2 | <.04
1.45 | <.1
2.4 | <6
<6 | | JUN
18
18 | <.008
E.005 | <.06
.07 | <.02 | <.06
.09 |
68 |
98 |
80 | | | | | | | | JUL
23
23 | <.008
E.007 | <.06
.12 | <.02 | <.06
.20 |
590 |
2700 |
5600 | <1
3 | <2
579 | <.2 | <.04
1.59 | <.1
5.7 | <6
E3 | | SEP
10 | E.005 | .15 | .14 | .16 | 68 | К4 | 20 | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) |
1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | 26DIMET
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | 3-BETA-
COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | NOV
28 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L) | | NOV
28
28
JAN
08 | DIS-
SOLVED (µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049)
<.08
.34 | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
<2.0
30.3 | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900)
E.01
<.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | NAPH-
THALENE
WATER,
FLITERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | NOV
28
28
JAN
08
5EB | DIS-
SOLVED (µg/L as Fe) (01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049)
<.08
.34 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 2 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)
<2.0
30.3 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
<.3
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 371 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | NOV 28 28 JAN 08 08 FEB 12 | DIS-
SOLVED (µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049)
<.08
.34 | TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
<2.0
30.3 | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900)
E.01
<.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | NOV
28
28
JAN
08
08
FEB
12 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
23 | DIS-
SOLVED (µg/L
as Pb)
(01049)
<.08
.34 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 2 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
<2.0
30.3 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
<.3
<.3 | DIS-
SOLVED (µg/L
as Zn)
(01090)
<1
169
 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 371 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | NOV 28 28 JAN 08 68 FEB 12 12 MAR 12 12 APR 16 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
23

 | DIS-
SODIVED
(µg/L
as Pb)
(01049)
<.08
.34

 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 2 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
<2.0
30.3 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
<.3
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) <1 169 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 371 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | NOV 28 28 JAN 08 68 FEB 12 12 MAR 12 APR 16 16 MAY | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
23

 | DIS-
SOLVED
(µg/L
as Pb)
(01049)
<.08
.34

 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 2 | NESE,
DIS-
SOLVED (µg/L
as Mn) (01056)
<2.0
30.3 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
<.3
<.3

 | DIS-
SOLVED
(µg/L
as Zn)
(01090)
<1
169

 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 371 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLITERD
REC
(µg/L)
(62057) | | NOV 28 28 JAN 08 FEB 12 12 MAR 12 APR 16 16 MAY 22 JUN | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
23

 | DIS-
SODIVED
(µg/L
as Pb)
(01049)
<.08
.34

 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 2 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
<2.0
30.3 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
<.3
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) <1 169 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 371 | CHLORO-
BENZENE
DISSOLV
(μg/L)
(34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 12 APR 16 16 MAY 22 22 JUN 18 | DIS-
SOLVED
(µg/L
as Fe)
(01046)
<10
23

<10 | DIS-
SODIVED
(µg/L
as Pb)
(01049)
<.08
.34

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 2 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
<2.0
30.3

<2.0 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 <.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
<.3

 | DIS-
SOLVED
(µg/L
as Zn)
(01090) <1
169 <1 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 371 2 | CHLORO- BENZENE DISSOLV (μg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | NOV 28 28 JAN 08 68 FEB 12 12 MAR 12 12 APR 16 16 MAY 22 JUN 18 | DIS-
SOLVED (µg/L
as Fe) (01046)
<10
23

 | DIS-
SODIVED
(µg/L
as Pb)
(01049)
<.08
.34

<.08
.84 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 2 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056)
<2.0
30.3

 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 <.01 <.01 E.01 E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)
<.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) <1
169 | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 3 371 2 387 | CHLORO-
BENZENE
DISSOLV
(μg/L)
(34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | # 07186480 CENTER CREEK NEAR SMITHFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | 3METHYL
1(H)-
INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62058) | 3-TERT-
BHA,
WATER,
FLTERD
REC
(µg/L)
(62059) | 4-CUMYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62060) | 4-OCTYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62061) | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62062) | 1HBENZO | ACETO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62064) | AHT
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62065) | ANTHRA-
CENE
DISSOLV
(µg/L)
(34221) | ANTHRA-
QUINONE
WATER,
FLTERD
REC
(µg/L)
(62066) | BENZO-
A-
PYRENE
DISSOLV
(µg/L)
(34248) | BENZO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | BETA-
SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | |---|---|---
--|--|--|--|---|---|---|--|--|---|---| | NOV 28 | | | | | | | | | | | | | | | 28
JAN | | | | | | | | | | | | | | | 08 | | | | | | | | | | | | | | | 08
FEB | | | | | | | | | | | | | | | 12
12 | | | | | | | | | | | | | | | MAR
12 | | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | | APR
16 | | | | | | | | | | | | | | | 16
MAY | | | | | | | | | | | | | | | 22
22 |
<1 |
<5 |
<1 |
<1 |
<1 | <2 |
<.5 |
<.5 |
<.5 |
<.5 |
<.5 |
<.5 |
<2 | | JUN
18 | | | | | | | | | | | | | | | 18 | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <2 | | JUL
23 | | | | | | | | | | | | | | | 23
SEP | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | <.5 | <.5 | <.5 | <.5 | M | M | | 10 | DATE | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | BRO-
MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | BROMO-
FORM
DISSOLV
(µg/L)
(34288) | CAF-
FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | CAMPHOR
WATER,
FLTERD
REC
(µg/L)
(62070) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | COT-
ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | FLUOR-
ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV
28
28 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | | NOV
28
28
JAN
08 | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM
DISSOLV
(µg/L)
(34288) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV
28
28
JAN | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM
DISSOLV
(µg/L)
(34288) | FEINE,
WATER
FLITRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV
28
28
JAN
08
08
FEB
12 | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM
DISSOLV
(µg/L)
(34288) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(μg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV
28
28
JAN
08
FEB
12
MAR | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV
28
28
JAN
08
08
FEB
12
12
MAR
12 | NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | MACIL,
WATER,
DISS,
REC (μg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572)

 | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 APR 16 | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL
WATER
FLIRD
0.7 µ
GF, REC
(µg/L)
(82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV 28 28 JAN 08 FEB 12 12 MAR 12 APR | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLITRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 μ GF, REC (μg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572)

 | NENE, WATER, FLTERD REC (µg/L) (62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 12 APR 16 16 MAY 22 | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (μg/L) (04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLITED 0.7 µ GF, REC (µg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON,
DIS-
SOLVED
(μg/L)
(39572)

 | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 16 APR 16 MAY 22 JUN | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (µg/L) (04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 μ GF, REC (μg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE, WATER, FLTERD REC (µg/L) (62073) | ANTHENE DISSOLV (µg/L) (34377) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 APR 16 16 MAY 22 JUN 18 | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL, WATER, DISS, REC (µg/L) (04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER, FLITERD REC
(µg/L) (62070) | BARYL WATER FLTRD 0.7 μ GF, REC (μg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE DISSOLV (µg/L) (34377) | | NOV 28 28 JAN 08 68 FEB 12 12 MAR 12 16 16 MAY 22 JUN 18 18 JUL 23 | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (μg/L) (04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FITRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE, WATER, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS DIS- SOLVED (µg/L) (38933) | TEROL, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE DISSOLV (µg/L) (34377) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 16 APR 16 MAY 22 JUN 18 JUL | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL, WATER, DISS, REC (µg/L) (04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 μ GF, REC (μg/L) (82680) | ZOLE, WATER, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL, WATER, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | # 07186480 CENTER CREEK NEAR SMITHFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | HHHMCP-
BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62076) | ISOBOR-
NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | ISO-
PHORONE
DISSOLV
(µg/L)
(34409) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | MENTHOL
WATER,
FLTERD
REC
(µg/L)
(62080) | METAL-
AXYL
WATER
FLTRD
REC
(µg/L)
(50359) | METHYL
SALICY-
LATE,
WATER,
FLTERD
REC
(µg/L)
(62081) | METO-
LACHLOR
WATER
DISSOLV
(μg/L)
(39415) | DEET,
WATER,
FLTERD
REC
(µg/L)
(62082) | NAPHTH-
ALENE
DISSOLV
(µg/L)
(34443) | NONYL-
PHENOL,
DIETHOX
WATER,
FLTERD
REC
(µg/L)
(62083) | |--|---|---|--|--|---|---|---|---|--|--|--|---|--| | NOV | | | | | | | | | | | | | | | 28 | | | | | | | | | | | | | | | JAN
08 | | | | | | | | | | | | | | | 08
FEB | | | | | | | | | | | | | | | 12
12 | | | | | | | | | | | | | | | MAR
12 | | | | | | | | | | | | | | | 12 | | | | | | | | | | | | | | | APR
16 | | | | | | | | | | | | | | | 16
MAY | | | | | | | | | | | | | | | 22
22 |
<.5
M |
M |
<.5 |
<5 | | JUN | | | | | | | | | | | | | | | 18
18 | <.5 | <.5 | <.5 | E.3 | <.5 | <.5 | <.5 | <.5 | <.5 | M | M | <.5 | <5 | | JUL
23 | | | | | | | | | | | | | | | 23
SEP | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | E.1 | М | E.1 | <.5 | <5 | | 10 | DATE | DI-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | MONO-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | PARA-
CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | PARA-
NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | PENTA-
CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | PHENAN
-THRENE
DISSOLV
(µg/L)
(34462) | PHENOL
WATER
FILTRD
(µg/L)
(34466) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PYRENE
DISSOLV
(µg/L)
(34470) | STIGMA-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | TETRA-
CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | FYROL
CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | FYROL
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV
28
28 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
PHENOL
DISSOLV
(µg/L) | -THRENE
DISSOLV
(µg/L) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L) | DISSOLV
(µg/L) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L) | CEF,
WATER,
FLTERD
REC
(µg/L) | PCF,
WATER,
FLTERD
REC
(µg/L) | | NOV
28
28
JAN
08 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER FILTRD (µg/L) (34466) | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLITERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV
28
28
JAN | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER FILTRD (µg/L) (34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLITERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV
28
28
JAN
08
08
FEB
12 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER FILTRD (µg/L) (34466) | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLITERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV 28 28 JAN 08 08 12 12 MAR 12 12 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L)
(34466)

 | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) |
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 12 APR 16 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-ETHY- LENE DISSOLV (µg/L) (34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 APR | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-PHENOL DISSOLV (µg/L) (34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 16 APR 16 MAY 22 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-ETHY- LENE DISSOLV (µg/L) (34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 12 APR 16 16 MAY 22 22 JUN 18 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-ETHY- LENE DISSOLV (µg/L) (34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV 28 28 JAN 08 08 FEB 12 12 MAR 12 12 APR 16 16 MAY 22 JUN 18 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL, WATER, FLTERD REC (µg/L) (62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD (µg/L) (34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | # 07186480 CENTER CREEK NEAR SMITHFIELD, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | | | CITRATE
WATER,
FLTERD
REC
(µg/L) | TRIPHNL
PHOS-
PHATE,
WATER,
FLTERD
REC
(µg/L)
(62092) | | |------|-----|-----|--|--|-----| | NOV | | | | | | | 28 | | | | | | | 28 | | | | | | | JAN | | | | | | | 08 | | | | | | | 08 | | | | | | | FEB | | | | | | | 12 | | | | | | | 12 | | | | | | | MAR | | | | | | | 12 | | | | | | | 12 | | | | | | | APR | | | | | | | 16 | | | | | | | 16 | | | | | | | MAY | | | | | | | 22 | <.5 | <1 | <.5 | <.5 | <.5 | | JUN | <.5 | < 1 | <.5 | <.5 | <.5 | | 18 | | | | | | | 18 | <.5 | <1 | <.5 | <.5 | <.5 | | JUL | <.5 | < T | <.5 | <.5 | <.5 | | 23 | | | | | | | 23 | <.5 | <1 | <.5 | E.1 | <.5 | | SEP | ` | ~1 | ~.5 | ъ.т | ٠.٥ | | 10 | | | | | | | ±0 | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. LA--Laboratory accident. # 07186600 TURKEY CREEK NEAR JOPLIN, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 37°07'15", long 94°34'55", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ SE $\frac{1}{4}$ sec.25, T.28 N., R.34 W., Jasper County, Hydrologic Unit 11070207, approximately 3.0 mi northwest of Joplin on County Highway P, 2.5 mi upstream from the mouth of Turkey Creek. DRAINAGE AREA. -- 41.8 mi². PERIOD OF RECORD.--August 1963 to September 1977, November 1999 to current year. | DATE | TIME | SAMPLI
TYPE | <u> </u> | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------|--|--|--|---|--|---|--|---|--|---|--|---|---| | NOV
27 | 1500 | ENVIRONME | ENTAL | 23 | 11.0 | 104 | 7.6 | 619 | 11.6 | 260 | 93.6 | 5.80 | 6.79 | | JAN
08 | 1025 | ENVIRONME | ENTAL | 22 | 11.5 | 96 | 7.5 | 618 | 6.1 | | | | | | FEB
11 | 1530 | ENVIRONM | ENTAL | 49 | 12.3 | 109 | 7.2 | 535 | 9.0 | | | | | | MAR
12 | 1510 | ENVIRONME | ENTAL | 48 | 11.6 | 113 | 8.0 | 563 | 12.4 | | | | | | APR
17 | 0835 | ENVIRONME | ENTAL | 27 | 6.6 | 72 | 7.8 | 594 | 17.6 | | | | | | MAY
21 | 1515 | ENVIRONME | ENTAL | 116 | 8.3 | 90 | 7.9 | 465 | 18.2 | 210 | 75.4 | 4.36 | 2.54 | | JUN
18 | 1435 | ENVIRONME | ENTAL | 92 | 7.1 | 83 | 7.6 | 475 | 21.2 | | | | | | JUL
24 | 0910 | ENVIRONM | ENTAL | 42 | 5.7 | 69 | 7.7 | 486 | 23.6 | 210 | 75.3 | 4.42 | 5.38 | | SEP
10 | 1315 | ENVIRONME | ENTAL | 11 | 9.3 | 119 | 7.9 | 689 | 26.0 | | | | | | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | ANC
WATER
UNFLTRD
IT
FIELD
(mg/L as
CaCO ₃)
(00419) | ANC BICAR- BONATE IT FIELD (mg/L as HCO ₃) (00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | NOV
27 | 24.7 | 145 | 146 | 178 | 0 | 34.5 | .2 | 93.8 | <10 | 402 | <.04 | .60 | 5.45 | | JAN
08 | | 163 | 163 | 199 | 0 | | | | <10 | | E.03 | .41 | 3.21 | | FEB
11 | | 136 | 138 | 168 | 0 | | | | <10 | | E.08 | .55 | E3.46 | | MAR
12 | | 145 | 144 | 176 | 0 | | | | <10 | | <.04 | .44 | 3.15 | | APR
17 | | 150 | 150 | 183 | 0 | | | | <10 | | <.04 | .56 | 3.31 | | MAY
21 | 10.4 | 133 | 135 | 164 | 0 | 12.8 | E.1 | 64.9 | <10 | 281 | <.04 | .37 | 1.17 | | JUN
18 | | 141 | 143 | 175 | 0 | | | | <10 | | <.04 | .89 | 1.99 | | JUL
24 | 15.1 | 136 | 135 | 165 | 0 | 19.1 | .2 | 66.0 | <10 | 305 | <.04 | 1.2 | 1.90 | | SEP
10 | | 143 | 142 | 173 | 0 | | | | <10 | | <.04 | 3.7 | 9.70 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) |
CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
27
JAN | .032 | .87 | .83 | .96 | K27 | K183 | К35 | 6 | 13 | .6 | 1.72 | 1.9 | <6 | | 08
FEB | <.008 | .62 | .57 | .62 | K27 | 110 | 54 | | | | | | | | 11
MAR | E.017 | .54 | E.51 | .55 | K11 | 105 | 46 | | | | | | | | 12
APR | <.008 | .47 | .47 | .51 | K15 | K8 | K8 | | | | | | | | 17 | .009 | .81 | .74 | .83 | 67 | 190 | 41 | | | | | | | | MAY
21 | .006 | .14 | .11 | .16 | K20 | 216 | 115 | 10 | 41 | <.2 | 3.10 | 3.4 | <5 | | JUN
18 | <.008 | .26 | .23 | .26 | 140 | K800 | 80 | | | | | | | | JUL
24
SEP | E.004 | .34 | .33 | .35 | 100 | K480 | 760 | 4 | 34 | .6 | 2.52 | 2.8 | <6 | | 10 | .009 | 1.52 | 1.40 | 1.54 | 53 | 240 | 83 | | | | | | | 513 # 07186600 TURKEY CREEK NEAR JOPLIN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | 26DIMET
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | 3-BETA-
COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | |-----------|--|---|--|---|--|--|---|--|---|---|---|---|--| | NOV
27 | 18 | 1.01 | 4 | 6.2 | .01 | .3 | 199 | 330 | | | | | | | JAN
08 | | | _ | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 11
MAR | | | | | | | | | | | | | | | 12
APR | | | | | | | | | | | | | | | 17
MAY | | | | | | | | | | | | | | | 21
JUN | 19 | .74 | 6 | 21.2 | .01 | .6 | 457 | 617 | <.5 | <.5 | <.5 | <.5 | <2 | | 18 | | | | | | | | | <.5 | <.5 | <.5 | <.5 | <2 | | JUL
24 | E7 | 1.23 | 9 | 13.3 | .01 | E.2 | 383 | 384 | <.5 | <.5 | <.5 | <.5 | <2 | | SEP
10 | | | | | | | | | | | | | | | DATE | 3METHYL
1(H)-
INDOLE,
WATER,
FLITERD
REC
(µg/L)
(62058) | 3-TERT-
BHA,
WATER,
FLTERD
REC
(µg/L)
(62059) | 4-CUMYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62060) | 4-OCTYL
PHENOL,
WATER,
FLITERD
REC
(µg/L)
(62061) | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62062) | 5METHYL
1HBENZO
TRIAZLE
WATER,
FLITERD
REC
(µg/L)
(62063) | ACETO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62064) | AHT NAPH- THALENE WATER, FLTERD REC (µg/L) (62065) | ANTHRA-
CENE
DISSOLV
(µg/L)
(34221) | ANTHRA-
QUINONE
WATER,
FLITERD
REC
(µg/L)
(62066) | BENZO-
A-
PYRENE
DISSOLV
(µg/L)
(34248) | BENZO-
PHENONE
WATER,
FLITERD
REC
(µg/L)
(62067) | BETA-
SITOS-
TEROL,
WATER,
FLITERD
REC
(µg/L)
(62068) | | NOV
27 | | | | | | | | | | | | | | | JAN
08 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 11
MAR | | | | | | | | | | | | | | | 12
APR | | | | | | | | | | | | | | | 17
MAY | | | | | | | | | | | | | | | 21
JUN | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | E.1 | <.5 | <.5 | <.5 | M | <2 | | 18
JUL | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | E.2 | <.5 | <.5 | <.5 | М | <2 | | 24
SEP | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | E.1 | <.5 | <.5 | <.5 | M | М | | 10 | | | | | | | | | | | | | | | DATE | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | BRO-
MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | BROMO-
FORM
DISSOLV
(µg/L)
(34288) | CAF-
FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | CAMPHOR
WATER,
FLTERD
REC
(µg/L)
(62070) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | COT-
ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | FLUOR-
ANTHENE
DISSOLV
(µg/L)
(34377) | | NOV 27 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 08
FEB | | | | | | | | | | | | | | | 11
MAR | | | | | | | | | | | | | | | 12
APR | | | | | | | | | | | | | | | 17
MAY | | | | | | | | | | | | | | | 21
JUN | М | E.1 | <.5 | M | <.5 | <1 | <.5 | <.5 | <2 | <1 | M | <.5 | <.5 | | 18
JUL | <1 | М | <.5 | E.1 | <.5 | <1 | <.5 | <.5 | <2 | <1 | М | <.5 | <.5 | | 24 | <1 | E.3 | <.5 | <.5 | <.5 | М | <.5 | <.5 | <2 | <1 | М | <.5 | <.5 | | SEP
10 | | | | | | | | | | | | | | # 07186600 TURKEY CREEK NEAR JOPLIN, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | HHHMCP-
BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62076) | ISOBOR-
NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | ISO-
PHORONE
DISSOLV
(µg/L)
(34409) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | MENTHOL
WATER,
FLTERD
REC
(µg/L)
(62080) | METAL-
AXYL
WATER
FLTRD
REC
(µg/L)
(50359) | METHYL
SALICY-
LATE,
WATER,
FLTERD
REC
(µg/L)
(62081) | METO-
LACHLOR
WATER
DISSOLV
(µg/L)
(39415) | DEET,
WATER,
FLTERD
REC
(µg/L)
(62082) | NAPHTH-
ALENE
DISSOLV
(µg/L)
(34443) | NONYL-
PHENOL,
DIETHOX
WATER,
FLTERD
REC
(µg/L)
(62083) | |-----------|---|---|--|--|---|---|---|---|--|--|--|---|--| | NOV | | | | | | | | | | | | | | | 27
JAN | | | | | | | | | | | | | | | 08
FEB | | | | | | | | | | | | | | | 11 | | | | | | | | | | | | | | | MAR
12 | | | | | | | | | | | | | | | APR
17 | | | | | | | | | | | | | | | MAY
21 | М | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | E.1 | <.5 | <5 | | JUN
18 | М | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | E.1 | <.5 | <5 | | JUL | | | | | | | | | | | | | | | 24
SEP | М | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | E.1 | <.5 | E.1 | <.5 | <5 | | 10 | | | | | | | | | | | | | | | DATE | DI-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | MONO-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | PARA-
CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | PARA-
NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | PENTA-
CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | PHENAN
-THRENE
DISSOLV
(µg/L)
(34462) | PHENOL
WATER
FILTRD
(µg/L)
(34466) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PYRENE
DISSOLV
(µg/L)
(34470) | STIGMA-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | TETRA-
CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | FYROL
CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | FYROL
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | NOV 27 | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 08
FEB | | | | | | | | | | | | | | | 11
MAR | | | | | | | | | | | | | | | 12
APR | | | | | | | | | | | | | | | 17
MAY | | | | | | | | | | | | | | | 21 | <1 | <1 | <1 | <5 | <2 | <.5 | E.2 | <.5 | <.5 | <2 | <.5 | M | M | | 18
JUL | <1 | <1 | <1 | <5 | <2 | <.5 | .7 | <.5 | <.5 | <2 | <.5 | M | M | | 24 | <1 | <1 | <1 | <5 | M | <.5 | 1.2 | <.5 | <.5 | М | <.5 | E.1 | E.1 | | SEP
10 | TRIBUTL PHOS- PHATE, WATER, | TRICLO-
SAN,
WATER, |
TRI-
ETHYL
CITRATE
WATER, | TRIPHNL
PHOS-
PHATE,
WATER, | TRIS(2-
BUTOXE-
PHOS-
PHATE, | | | | | | DATE | | | FLTERD
REC
(µg/L) | TRIPHNL PHOS- PHATE, WATER, FLTERD REC (µg/L) (62092) | BUTOXE—
PHOS-
PHATE,
WATER,
FLTERD
(µg/L) | |-----------|-----|----|-------------------------|---|--| | NOV | | | | | | | 27
JAN | | | | | | | 08 | | | | | | | FEB | | | | | | | 11
MAR | | | | | | | 12 | | | | | | | APR
17 | | | | | | | MAY | | | | | | | 21 | <.5 | <1 | <.5 | M | E.1 | | JUN
18 | <.5 | <1 | M | <.5 | E.8 | | JUL | | | _ | | | | 24
SEP | E.1 | <1 | <.5 | E.1 | E.1 | | 10 | | | | | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown.</pre> ### 07186690 SHOAL CREEK AT PIONEER, MO LOCATION.--Lat 36°49'45", long 94°02'57" in NW $\frac{1}{4}$ NE $\frac{1}{4}$ NW $\frac{1}{4}$ sec.3, T.24 N., R.29 W., Barry County, Hydrologic Unit 11070207, on right bank on private property, 0.25 mi downstream from Highway 97 bridge. DRAINAGE AREA.--68.3 mi^2 . PERIOD OF RECORD.--October 2001 to current year. GAGE. -- Water-stage recorder. Datum of gage is unknown. REMARKS.--Records poor. U.S.G.S. satellite telemeter at station. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YEA | | 2001 TO | SEPTEMBER | R 2002 | | | |------|------|----------|----------|----------|------|-----------|------|---------|-----------|--------|------|------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 22 | 19 | 44 | 40 | 153 | 41 | 69 | 50 | 153 | 106 | 47 | 34 | | 2 | 23 | 31 | 43 | 38 | 118 | 61 | 65 | 45 | 149 | 104 | 66 | 32 | | 3 | 24 | 25 | 41 | 37 | 107 | 59 | 61 | 44 | 144 | 94 | 56 | 31 | | 4 | 23 | 20 | 34 | 36 | 93 | 61 | 59 | 44 | 139 | 107 | 37 | 32 | | 5 | 45 | 18 | 31 | 37 | 86 | 66 | 59 | 44 | 139 | 77 | 43 | 35 | | 6 | 27 | 17 | 29 | 36 | 84 | 69 | 58 | 363 | 133 | 72 | 40 | 39 | | 7 | 22 | 17 | 27 | 32 | 73 | 66 | 63 | 142 | 129 | 77 | 39 | 37 | | 8 | 20 | 16 | 25 | 33 | 69 | 64 | 101 | 2040 | 128 | 76 | 40 | 32 | | 9 | 22 | 17 | 23 | 36 | 64 | 62 | 92 | 730 | 131 | 76 | 41 | 35 | | 10 | 45 | 17 | 22 | 33 | 55 | 56 | 86 | 457 | 141 | 107 | 39 | 34 | | 11 | 55 | 16 | 22 | 30 | 51 | 57 | 85 | 221 | 136 | 96 | 42 | 33 | | 12 | 44 | 15 | 33 | 31 | 50 | 54 | 80 | 264 | 140 | 87 | 64 | 31 | | 13 | 30 | 15 | 32 | 32 | 47 | 53 | 78 | 500 | 225 | 78 | 72 | 32 | | 14 | 22 | 16 | 34 | 29 | 46 | 51 | 78 | 228 | 217 | 65 | 77 | 33 | | 15 | 18 | 16 | 33 | 26 | 45 | 47 | 71 | 194 | 153 | 58 | 50 | 33 | | 16 | 18 | 16 | 114 | 27 | 43 | 46 | 67 | 177 | 141 | 55 | 44 | 30 | | 17 | 17 | 16 | 236 | 25 | 42 | 45 | 66 | 1630 | 130 | 57 | 44 | 30 | | 18 | 17 | 39 | 187 | 26 | 42 | 45 | 64 | 733 | 120 | 57 | 54 | 36 | | 19 | 17 | 89 | 145 | 27 | 49 | 59 | 63 | 618 | 113 | 59 | 56 | 33 | | 20 | 17 | 57 | 123 | 26 | 45 | 68 | 62 | 376 | 106 | 56 | 48 | 29 | | 21 | 17 | 48 | 112 | 25 | 42 | 67 | 60 | 228 | 100 | 51 | 43 | 28 | | 22 | 16 | 37 | 99 | 26 | 40 | 66 | 57 | 209 | 94 | 50 | 39 | 26 | | 23 | 17 | 37 | 83 | 31 | 41 | 68 | 57 | 195 | 90 | 49 | 39 | 26 | | 24 | 16 | 97 | 74 | 34 | 41 | 68 | 55 | 199 | 109 | 44 | 36 | 25 | | 25 | 20 | 52 | 69 | 30 | 39 | 98 | 49 | 180 | 134 | 44 | 38 | 25 | | 26 | 19 | 45 | 65 | 30 | 37 | 85 | 53 | 171 | 124 | 53 | 38 | 25 | | 27 | 19 | 32 | 63 | 29 | 37 | 84 | 54 | 166 | 109 | 57 | 36 | 25 | | 28 | 18 | 31 | 60 | 31 | 38 | 80 | 53 | 173 | 90 | 51 | 32 | 26 | | 29 | 17 | 32 | 51 | 32 | | 77 | 50 | 182 | 92 | 43 | 31 | 28 | | 30 | 17 | 40 | 46 | 53 | | 73 | 51 | 166 | 101 | 42 | 32 | 24 | | 31 | 18 | | 44 | 162 | | 71 | | 158 | | 40 | 35 | | | MEAN | 23.3 | 31.4 | 65.9 | 36.1 | 59.9 | 63.4 | 65.5 | 352 | 130 | 67.4 | 45.1 | 30.6 | | MAX | 55 | 97 | 236 | 162 | 153 | 98 | 101 | 2040 | 225 | 107 | 77 | 39 | | MIN | 16 | 15 | 22 | 25 | 37 | 41 | 49 | 44 | 90 | 40 | 31 | 24 | | ~ | ~~~ | | | | | | | | | | | | | SUMMARY STATISTICS | FOR 2002 WATER YEAR | |--|---| | ANNUAL MEAN HIGHEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE INSTANTANEOUS LOW FLOW 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | 81.3
2040 May 8
15 Nov 12,13
16 Nov 11
6100 ^a May 8
10.14 May 8
15 Sep 16
143
48
22 | $^{^{\}rm a}\,$ Discharge determined by indirect measurement. ### 07187000 SHOAL CREEK ABOVE JOPLIN, MO LOCATION.--Lat 37°01'23", long 94°30'58", in SE $\frac{1}{4}$ NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.34, T.27 N., R.33 W., Newton County, Hydrologic Unit 11070207, on right bank 250 ft upstream from mouth of Spring Creek, 1,400 ft downstream from bridge on State Highway 86, 0.5 mi south of city limits of Joplin, and 13.2 mi above mouth. DRAINAGE AREA. -- 427 mi². PERIOD OF RECORD. -- October 1941 to current year. REVISED RECORDS.--WSP 1117: Drainage area. GAGE.--Water-stage recorder and crest-stage gage. Datum of gage is 886.87 ft above National Geodetic Vertical Datum of 1929. Prior to July 21, 1966, water-stage recorder at site 1.8 mi upstream, at datum 15.5 ft higher; Apr. 21, 1924, to Nov. 6, 1941, records were collected at site about 3 mi downstream, datum unknown. | | | DISCHARO | E, CUBIC | FEET PER | SECOND, W | | YEAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |---|--|---------------------------------------|--|--|-----------------------------|--|---|--|---------------------------------|--|--|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 61 | 79 | 117 | 225 | 1090 | 248 | 392 | 318 | 1020 | 425 | 233 | 146 | | 2 | 60 | 228 | 118 | 214 | 976 | 297 | 378 | 307 | 948 | 417 | 226 | 151 | | 3 | 58 | 214 | 116 | 203 | 845 | 327 | 362 | 291 | 883 | 427 | 224 | 143 | | 4 | 58 | 178 | 112 | 196 | 744 | 342 | 341 | 279 | 832 | 409 | 221 | 144 | | 5 | 157 | 153 | 110 | 192 | 664 | 364 | 326 | 268 | 809 | 404 | 209 | 178 | | 6 | 169 | 134 | 107 | 187 | 607 | 399 | 317 | 295 | 781 | 383 | 204 | 146 | | 7 | 134 | 122 | 103 | 179 | 560 | 435 | 317 | 654 | 730 | 364 | 228 | 139 | | 8 | 105 | 115 | 98 | 170 | 514 | 449 | 347 | 2240 | 691 | 348 | 210 | 133 | | 9 | 103 | 109 | 95 | 166 | 479 | 452 | 400 | 5140 | 687 | 335 | 201 | 129 | | 10 | 1370 | 104 | 91 | 163 | 448 | 421 | 390 | 2620 | 650 | 347 | 220 | 126 | | 11 | 499 | 99 | 87 | 156 | 412 | 401 | 378 | 1680 | 618 | 380 | 231 | 124 | | 12 | 376 | 94 | 111 | 152 | 389 | 392 | 371 | 1730 | 862 | 438 | 201 | 122 | | 13 | 315 | 88 | 130 | 148 | 371 | 380 | 364 | 3740 | e2400 | 398 | 195 | 123 | | 14 | 253 | 85 | 145 | 143 | 348 | 366 | 369 | 2500 | 1620 | 423 | 205 | 125 | | 15 | 209 | 86 | 149 | 138 | 335 | 355 | 357 | 1630 | 1180 | 350 | 202 | 123 | | 16 | 178 | 84 | 184 | 135 | 319 | 336 | 343 | 1360 | 962 | 330 | 192 | 128 | | 17 | 160 | 82 | 457 | 133 | 304 | 322 | 344 | 3090 | 857 | 322 | 246 | 130 | | 18 | 146 | 84 | 750 | 129 | 291 | 308 | 326 | 7700 | 787 | 320 | 247 | 125 | | 19 | 133 | 103 | 681 | 130 | 300 | 320 | 323 | 3200 | 729 | 311 | 206 | 181 | | 20 | 124 | 125 | 589 | 127 | 318 | 349 | 366 | 2000 | 675 | 306 | 191 | 199 | | 21 | 117 | 142 | 521 | 123 | 301 | 374 | 366 | 1640 | 632 | 294 | 177 | 152 | | 22 | 108 | 126 | 470 | 120 | 287 | 377 | 350 | 1400 | 597 | 284 | 170 | 134 | | 23 | 104 | 118 | 425 | 122 | 281 | 377 | 341 | 1240 | 566 | 302 | 166 | 125 | | 24 | 101 | 113 | 385 | 130 | 274 | 379 | 335 | 1600 | 538 | 284 | 170 | 120 | | 25 | 97 | 133 | 354 | 126 | 264 | 422 | 317 | 1750 | 519 | 270 | 172 | 117 | | 26
27
28
29
30
31 | 91
88
86
84
82
80 | 144
127
121
119
120 | 327
307
291
273
254
239 | 122
120
116
115
196
982 | 253
245
239
 | 465
458
458
453
438
415 | 330
345
345
330
319 | 1310
1170
1100
1760
1310
1130 | 577
511
481
458
442 | 262
251
241
242
245
241 | 165
156
153
150
149
149 | 115
112
112
110
106 | | MEAN | 184 | 121 | 264 | 179 | 445 | 383 | | 1821 | 801 | 334 | 196 | 134 | | MAX | 1370 | 228 | 750 | 982 | 1090 | 465 | | 7700 | 2400 | 438 | 247 | 199 | | MIN | 58 | 79 | 87 | 115 | 239 | 248 | | 268 | 442 | 241 | 149 | 106 | | IN. | 0.50 | 0.32 | 0.71 | 0.48 | 1.09 | 1.03 | | 4.92 | 2.09 | 0.90 | 0.53 | 0.35 | | MEAN | 291 | 402 | 357 | 327 | 392 | 562 | 650 | 721 | 578 | 350 | 215 | 250 | | MAX | 1709 | 2034 | 1993 | 1145 | 1233 | 1961 | 3281 | 4691 | 2470 | 2049 | 2337 | 1872 | | (WY) | 1960 | 1986 | 1993 | 1973 | 1968 | 1973 | 1945 | 1943 | 1995 | 1993 | 1950 | 1993 | | MIN | 48.3 | 55.4 | 57.3 | 54.9 | 61.7 | 57.9 | 56.0 | 121 | 81.4 | 47.0 | 37.1 | 47.0 | | (WY) | 1957 | 1964 | 1964 | 1964 | 1964 | 1954 | 1954 | 1963 | 1954 | 1954 | 1954 | 1953 | | SUMMARY | STATISTI | CS | FOR | 2001 CAL | ENDAR YEAR | 2 | FOR 2002 1 | WATER YEA | AR. | WATER YEA | ARS 1942 | - 2002 | |
LOWEST ANIUAL ANNUAL MAXIMUM MAXIMUM INSTANT. ANNUAL 10 PERC. | MEAN ANNUAL ME ANNUAL ME DAILY MEA SEVEN-DAY PEAK FLO PEAK STA ANEOUS LO RUNOFF (I ENT EXCEE ENT EXCEE | AN AN N MINIMUM GE E W FLOW NCHES) DS | | 257 6120 58 71 8.16 446 175 93 | Feb 25
Oct 3,4
Sep 28 | ŀ | 7700
58
84
9360
11.31
55
13.84
859
281
110 | May 1
Oct 3,
Oct 2
May 1
May 1
Oct 3- | 4
26
.8 | 424
1221
77.8
36700
15
16
62100
16.80 ^a
12
13.50
871
236 | Sep
Sep
May 1
May 1 | 1993
1954
8 1943
7 1954
1 1954
8 1943
8 1943
7 1954 | e Estimated Former site and datum. ### 07188653 BIG SUGAR CREEK NEAR POWELL, MO LOCATION.--Lat 36°36'57", long 94°10'57", in NW $\frac{1}{4}$ NW $\frac{1}{4}$ NE $\frac{1}{4}$ sec. 36, T.22 N., R.33 W., McDonald County, Hydrologic Unit 11070208, on left bank of county road, 1.0 mi west of Powell. DRAINAGE AREA.--141 mi². PERIOD OF RECORD.--May 25, 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. | | | DISCHAR | GE, CUBIC | FEET PER | | WATER YE | CAR OCTOBER | 2001 TO | SEPTEMBE | R 2002 | | | |--|--|---|-------------------------------------|--|-----------------------------------|--|--|---|------------------------------------|--|--------------------------------------|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 8.8
8.8
8.7
9.0 | 28
40
98
79
66 | 190
156
123
102
88 | 79
74
70
66
63 | 781
426
299
226
183 | 89
231
289
239
218 | 133
127
118
110
106 | 100
97
93
88
82 | 235
205
183
168
219 | 58
60
62
88
77 | 30
28
32
28
25 | 14
13
12
12
12 | | 6
7
8
9
10 | 25
19
16
18
31 | 57
50
46
43
39 | 77
69
62
56
52 | 60
57
54
52
51 | 162
147
141
136
130 | 218
207
188
172
151 | 101
108
1200
666
421 | 92
85
924
1070
638 | 214
181
161
149
143 | 65
57
52
48
46 | 24
24
21
20
20 | 11
11
10
10
9.8 | | 11
12
13
14
15 | 105
212
123
92
74 | 36
33
30
29
27 | 48
58
77
86
93 | 49
47
45
44
42 | 122
116
110
106
101 | 143
137
129
123
115 | 314
254
259
219
185 | 379
280
596
416
292 | 135
243
775
409
285 | 48
48
70
65
55 | 22
20
21
32
30 | 9.6
9.5
9.4
9.6
9.9 | | 16
17
18
19
20 | 62
55
49
45
42 | 25
24
24
34
50 | 819
1820
756
441
298 | 40
39
38
38
36 | 97
92
88
98
118 | 109
103
99
199
530 | 161
158
147
138
132 | 231
5420
1450
669
454 | 225
188
164
145
130 | 50
45
44
122
83 | 24
23
25
22
20 | 11
11
10
12
12 | | 21
22
23
24
25 | 38
36
39
60
52 | 45
41
45
147
117 | 226
184
155
138
126 | 35
34
37
92
91 | 117
112
110
107
104 | 392
287
232
199
263 | 124
116
119
121
113 | 374
311
267
275
252 | 117
106
97
89
83 | 68
58
58
51
45 | 19
19
18
19 | 10
9.3
8.7
8.2
7.7 | | 26
27
28
29
30
31 | 45
40
37
35
32
30 | 85
67
62
66
133 | 116
109
102
96
89
83 | 84
79
74
70
85
750 | 97
92
88
 | 252
217
193
174
155
143 | 114
114
111
107
104 | 218
204
373
531
370
285 | 78
73
69
64
61 | 42
39
36
39
36
32 | 18
16
15
14
14 | 7.2
7.1
7.3
7.3
7.3 | | MEAN
MAX
MIN | 47.3
212
8.7 | 55.5
147
24 | 222
1820
48 | 79.8
750
34 | 161
781
88 | 200
530
89 | 207
1200
101 | 546
5420
82 | 180
775
61 | 56.4
122
32 | 21.8
32
13 | 9.96
14
7.1 | | STATIS | | | | | | | BY WATER | | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 30.4
47.3
2002
13.5
2001 | 54.4
55.5
2002
53.2
2001 | 138
222
2002
53.8
2001 | 92.5
105
2001
79.8
2002 | 281
401
2001
161
2002 | 155
200
2002
109
2001 | 122
207
2002
37.8
2001 | 294
546
2002
42.8
2001 | 264
558
2000
53.3
2001 | 74.0
138
2000
27.2
2001 | 23.9
40.5
2000
9.52
2001 | 10.1
10.8
2001
9.66
2000 | | SUMMAR | Y STATISTI | CS | FOR | 2001 CAL | ENDAR YEA | R | FOR 2002 | WATER YEA | R | WATER YE | ARS 2000 | - 2002 | | LOWEST HIGHES LOWEST ANNUAL MAXIMU MAXIMU INSTAN 10 PER 50 PER | MEAN T ANNUAL M ANNUAL ME T DAILY ME SEVEN-DAY M PEAK FIC TANEOUS LC CENT EXCEE CENT EXCEE | CAN CAN LN MINIMUM OW LGE OW FLOW CDS CDS | | 91.6
3570
5.7
6.8

157
45
9.9 | Feb 2
Sep
Sep | 7 | 149 5420 7.1 7.4 11000 15.70 7.1 285 83 14 | May 1
Sep 2
Sep 2
May 1
May 1
Sep 25-3 | 7
4
7
7 | 112
149
74.2
6020
5.1
5.6
15500
18.95
4.5
219
52
10 | Sep 2
Sep 1
Jun 1
Jun 1 | 2002
2001
7 2000
2000
2000
7 2000
7 2000
9 2000 | ### 07188885 INDIAN CREEK NEAR LANAGAN, MO LOCATION.--Lat 36°35'57", long 94°26'58", in NW $^1\!\!/_4$ NW $^1\!\!/_4$ NE $^1\!\!/_4$ sec. 36, T. 22 N., R.33 W., McDonald County, Hydrologic Unit 11070208, on downstream side of Highway EE bridge, 0.5 mi southeast of Lanagan. DRAINAGE AREA.--239 mi^2 . PERIOD OF RECORD.--May 24, 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. | | | DISCHARG | E, CUBIC | FEET PER | | WATER YE
MEAN V | EAR OCTOBER
ALUES | 2001 TO | SEPTEMBER | 2002 | | | |--|--|--|--|---|-----------------------------------|--|--|--|-----------------------------------|--|--|--------------------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 28
28
27
27
41 | 37
44
52
49
46 | 61
60
60
60
58 | 101
95
91
88
86 | 581
484
409
347
300 | 112
149
197
219
226 | 219
206
191
178
168 | 148
141
133
127
120 | 462
429
402
378
371 | 176
177
180
180
174 | 74
72
72
68
66 | 51
50
50
49
49 | | 6
7
8
9
10 | 51
45
41
39
62 | 44
42
40
41
40 | 55
52
51
48
46 | 85
82
79
77
76 | 267
238
215
197
182 | 244
268
270
259
233 | 159
162
259
306
299 | 1480
993
5730
2260
1430 | 350
327
310
296
291 | 161
150
142
136
130 | 64
63
62
60 |
49
47
47
46
46 | | 11
12
13
14
15 | 111
138
116
93
76 | 38
37
37
36
36 | 45
58
73
88
98 | 73
71
70
69
67 | 166
156
147
137 | 217
208
197
187
178 | 284
266
245
228
214 | 985
828
2390
1300
945 | 283
359
633
647
525 | 132
136
148
139
128 | 60
58
60
66
63 | 46
45
45
48
49 | | 16
17
18
19
20 | 64
57
52
49
46 | 36
35
37
61
95 | 168
536
618
485
387 | 66
65
63
62 | 125
119
114
122
135 | 166
155
149
170
241 | 201
192
180
171
173 | 772
3790
3230
1270
1010 | 451
397
357
326
300 | 120
115
112
108
105 | 59
59
63
60
57 | 50
51
50
53
55 | | 21
22
23
24
25 | 45
43
43
43
40 | 91
81
74
77
76 | 321
273
235
205
182 | 62
60
62
65
61 | 138
135
132
130
125 | 279
275
259
247
294 | 163
155
157
156
148 | 880
800
716
758
733 | 279
262
247
236
228 | 99
99
109
99
93 | 55
53
53
59
61 | 51
48
46
45
43 | | 26
27
28
29
30
31 | 39
38
37
37
36
36 | 71
66
63
61
61 | 164
150
139
128
117
108 | 59
58
58
58
80
336 | 119
113
108
 | 321
316
299
281
259
237 | 151
158
162
158
152 | 632
577
547
638
545
498 | 285
232
211
196
185 | 88
84
81
83
83
79 | 57
54
52
52
51
51 | 43
42
42
42
39 | | MEAN
MAX
MIN | 52.5
138
27 | 53.5
95
35 | 166
618
45 | 80.3
336
58 | 199
581
108 | 229
321
112 | 195
306
148 | 1174
5730
120 | 342
647
185 | 124
180
79 | 60.1
74
51 | 47.2
55
39 | | STATIST | ICS OF MO | NTHLY MEAN | DATA FOR | R WATER Y | EARS 2000 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 49.8
52.5
2002
47.2
2001 | 63.3
73.1
2001
53.5
2002 | 110
165
2002
55.2
2001 | 115
150
2001
80.3
2002 | 439
679
2001
199
2002 | 244
259
2001
229
2002 | 148
195
2002
99.8
2001 | 621
1174
2002
67.2
2001 | 350
519
2000
190
2001 | 138
215
2000
75.6
2001 | 53.2
64.0
2000
35.5
2001 | 40.9
47.2
2002
32.7
2001 | | SUMMARY | STATISTI | CS | FOR 20 | 001 CALEN | OAR YEAR | F | FOR 2002 WAT | TER YEAR | | WATER YE | ARS 2000 - | 2002 | | LOWEST ANIUAL ANNUAL ANIUAL ANIUM MAXIMUM INSTANTAL 10 PERCES P | MEAN ANNUAL ME ANNUAL ME DAILY MEA DAILY MEA SEVEN-DAY PEAK FLOI PEAK STA ANEOUS LOI ENT EXCEE ENT EXCEE | AN
AN
N
MINIMUM
GE
W FLOW
DS | | 5800
27
28

275
76
34 | Feb 24
Oct 3,4
Sep 28 | | 228 5730 27 35 Unknown 10.73 27 438 113 44 | May 8
Oct 3,4
Oct 1
May 8
May 8
Oct 2-5 | | 186
228
143
5800
27
28
Known
10.80
27 Sep
326
81
38 | Feb 24
Oct 3,4
Sep 28
Feb 24
Feb 24
7,0ct 2-5 | 2001
2001
2001
2001 | # 07188950 PATTERSON CREEK NEAR TIFF CITY, MO (Ambient Water-Quality Monitoring Network) LOCATION.--Lat 36°39'45", long 94°31'54", in SW $\frac{1}{4}$ SE $\frac{1}{4}$ Sec.6, T.22 N., R.33 W., McDonald County, Hydrologic Unit 11070208, 6.0 mi east of Tiff City, approximately 2.7 mi south of State Highway 43 on County Road 7628. DRAINAGE AREA.--9.73 mi². PERIOD OF RECORD. -- November 1999 to current year. | DATE | TIME | SAMPL
TYPE | | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |------------------------|--|--|--|---|---|---|--|--|---|---|---|--|--| | NOV
27
27 | 1020
1021 | ENVIRONM
REPLICAT | | 1.8 | 9.8 | 89
 | 7.6
 | 329
 | 10.0 | 160
160 | 61.0
62.0 | 1.76
1.78 | .98
1.40 | | 07 | 1415 | ENVIRONM | ENTAL | 2.8 | 11.4 | 102 | 7.8 | 313 | 9.2 | | | | | | MAR
12 | 1025 | ENVIRONM | ENTAL | 5.4 | 10.7 | 101 | 7.0 | 292 | 11.2 | | | | | | MAY
21 | 1215 | ENVIRONM | ENTAL | 29 | 9.4 | 98 | 7.6 | 241 | 16.0 | 82 | 30.4 | 1.41 | . 25 | | JUL
23 | 1130 | ENVIRONM | ENTAL | 4.7 | 8.5 | 96 | 7.8 | 312 | 20.0 | | | | | | SEP
10 | 1110 | ENVIRONM | ENTAL | 2.1 | 8.3 | 92 | 7.8 | 332 | 18.8 | | | | | | | SODIUM,
DIS-
SOLVED | ANC
WATER
UNFLTRD
FET
FIELD | ANC
WATER
UNFLTRD
IT
FIELD | ANC
BICAR-
BONATE
IT
FIELD | ANC
CAR-
BONATE
IT
FIELD | CHLO-
RIDE,
DIS-
SOLVED | FLUO-
RIDE,
DIS-
SOLVED | SULFATE
DIS-
SOLVED | RESIDUE
TOTAL
AT 105
DEG. C,
SUS- | SOLIDS,
RESIDUE
AT 180
DEG. C | NITRO-
GEN,
AMMONIA
DIS-
SOLVED | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED | | DATE | (mg/L
as Na)
(00930) | (mg/L as
CaCO ₃)
(00410) | (mg/L as
CaCO ₃)
(00419) | (mg/L as
HCO ₃)
(00450) | (mg/L
as CO ₃)
(00447) | (mg/L
as Cl)
(00940) | (mg/L
as F)
(00950) | (mg/L
as SO ₄)
(00945) | PENDED
(mg/L)
(00530) | SOLVED
(mg/L)
(70300) | (mg/L
as N)
(00608) | (mg/L
as N)
(00625) | (mg/L
as N)
(00631) | | NOV
27
27
JAN | 6.19
5.80 | 137 | 140 | 171
 | 0 | 9.20
8.91 | <.1
E.1 | 4.2
4.1 | <10
<10 | 198
206 | <.04
<.04 | E.09
E.08 | 3.09
3.12 | | 07
MAR | | 127 | 130 | 159 | 0 | | | | <10 | | <.04 | E.09 | 4.03 | | 12
MAY | | 98 | 98 | 120 | 0 | | | | <10 | | <.04 | E.09 | 4.38 | | 21 | 4.67 | 91 | 90 | 110 | 0 | 5.67 | <.1 | 5.3 | <10 | 147 | <.04 | E.10 | 3.92 | | JUL
23 | | 132 | 133 | 162 | 0 | | | | <10 | | <.04 | .11 | 3.40 | | SEP
10 | | 135 | 135 | 164 | 0 | | | | <10 | | <.04 | E.06 | 3.56 | | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as Al)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
aS Al)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER
DIS-
SOLVED
(µg/L
as Cu)
(01040) | | NOV
27
27 | .029 | <.06
<.06 | <.02
<.02 | <.06
.10 | K15
 | 35
 | 140 | 9
9 | 20
18 | E.1 | <.04
<.04 | <.1
<.1 | <6
<6 | | JAN
07 | E.004 | <.06 | E.01 | <.06 | <1 | K11 | K13 | | | | | | | | MAR
12 | <.008 | <.06 | E.01 | <.06 | K13 | 24 | К9 | | | | | | | | MAY
21 | E.004 | E.04 | .03 | E.03 | K28 | 78 | 142 | 29 | 51 | <.2 | <.04 | <.1 | <6 | | JUL
23 | E.006 | <.06 | E.02 | <.06 | K120 | 210 | 435 | | | | | | | | SEP
10 | E.005 | <.06 | E.01 | <.06 | K15 | K14 | 335 | | | | | | | # 07188950 PATTERSON CREEK NEAR TIFF CITY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(μg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(μg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------|---|---|--|---|--|--|---|--| | NOV | | | | | | | | | | 27 | 11 | <.08 | M | 3.9 | E.01 | <.3 | | 10
 | 27 | 11 | <.08 | <1 | 3.9 | E.01 | <.3 | | 18 | | JAN | | | | | | | | | | 07 | | | | | | | | | | MAR | | | | | | | | | | 12 | | | | | | | | | | MAY | | | | | | | | | | 21 | 23 | E.05 | <1 | 6.6 | <.01 | <.3 | | 4 | | JUL | | | | | | | | | | 23 | | | | | | | | | | SEP | | | | | | | | | | 10 | | | | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. # 07189000 ELK RIVER NEAR TIFF CITY, MO LOCATION.--Lat $36^\circ37^\circ53^\circ$, long $94^\circ35^\circ12^\circ$, in NE $\frac{1}{4}$ NE $\frac{1}{4}$ sec.22, T.22 N., R.34 W., McDonald County, Hydrologic Unit 11070208, near right abutment of bridge on State Highway 43, 0.8 mi downstream from Blackfoot Branch, 2.8 mi upstream from Buffalo Creek, 3.0 mi southeast of Tiff City, and at mile 15.8. DRAINAGE AREA. -- 872 mi². PERIOD OF RECORD. -- October 1939 to current year. REVISED RECORDS.--WSP 927: 1940. WSP 1117: Drainage area. GAGE.--Water stage recorder. Datum of gage is 750.61 ft above National Geodetic Vertical Datum of 1929 (levels by U.S. Army Corps of Engineers). Sept. 6, 1960 to Aug. 25, 1961, at site 100 ft downstream. | | | DISCHARO | E VIA | SATELLITE, | | ATER YEA
MEAN VA | | 2001 TO : | SEPTEMBER | 2002 | | | |--|--|---|--|--|-----------------------|---|--|---|---------------------------------|--|--|----------------------------| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1 | 117 | 235 | 431 | 492 | 4670 | 530 | 891 | 726 | 1370 | 408 | 240 | 124 | | 2 | 116 | 242 | 522 | 465 | 3210 | 580 | 826 | 711 | 1230 | 391 | 227 | 122 | | 3 | 112 | 256 | 503 | 442 | 2160 | 860 | 773 | 684 | 1110 | 407 | 215 | 119 | | 4 | 112 | 282 | 441 | 422 | 1640 | 1080 | 721 | 661 | 1020 | 439 | 207 | 116 | | 5 | 162 | 326 | 405 | 407 | 1320 | 1080 | 679 | 633 | 990 | 509 | 198 | 112 | | 6 | 200 | 324 | 376 | 399 | 1130 | 1130 | 647 | 1620 | 999 | 512 | 194 | 108 | | 7 | 236 | 311 | 352 | 388 | 993 | 1210 | 640 | 2410 | 950 | 436 | 189 | 103 | | 8 | 226 | 301 | 333 | 377 | 895 | 1190 | 2110 | 6680 | 880 | 385 | 184 | 102 | | 9 | 218 | 296 | 316 | 366 | 832 | 1110 | 4900 | 8400 | 819 | 356 | 177 | 101 | | 10 | 245 | 288 | 301 | 358 | 780 | 1000 | 2950 | 6520 | 787 | 342 | 170 | 95 | | 11 | 390 | 282 | 290 | 347 | 734 | 910 | 2140 | 3530 | 760 | 332 | 169 | 94 | | 12 | 780 | 269 | 304 | 338 | 692 | 856 | 1710 | 2600 | 765 | 331 | 168 | 93 | | 13 | 788 | 262 | 329 | 331 | 661 | 811 | 1440 | 6410 | 1580 | 338 | 178 | 90 | | 14 | 631 | 255 | 381 | 322 | 630 | 769 | 1310 | 5230 | 2740 | 329 | 198 | 91 | | 15 | 518 | 248 | 424 | 317 | 601 | 734 | 1170 | 3310 | 1670 | 322 | 223 | 93 | | 16 | 442 | 246 | 606 | 309 | 575 | 697 | 1060 | 2530 | 1240 | 311 | 220 | 99 | | 17 | 393 | 240 | 6540 | 303 | 551 | 661 | 977 | 8980 | 1030 | 298 | 206 | 105 | | 18 | 361 | 238 | 6030 | 299 | 528 | 633 | 921 | 20600 | 914 | 326 | 198 | 102 | | 19 | 334 | 271 | 3310 | 295 | 532 | 673 | 863 | 6210 | 829 | 553 | 188 | 121 | | 20 | 314 | 323 | 2170 | 292 | 587 | 1440 | 832 | 3740 | 756 | 525 | 177 | 121 | | 21 | 299 | 348 | 1610 | 287 | 645 | 2260 | 791 | 2810 | 698 | 441 | 167 | 117 | | 22 | 286 | 336 | 1300 | 284 | 650 | 1820 | 754 | 2250 | 646 | 365 | 160 | 108 | | 23 | 277 | 324 | 1070 | 283 | 639 | 1490 | 749 | 1880 | 604 | 402 | 151 | 102 | | 24 | 274 | 330 | 912 | 299 | 627 | 1280 | 765 | 1740 | 561 | 361 | 148 | 97 | | 25 | 272 | 472 | 816 | 363 | 611 | 1390 | 751 | 1780 | 533 | 325 | 159 | 91 | | 26
27
28
29
30
31 | 274
267
258
248
242
238 | 512
437
398
377
378 | 741
687
640
597
557
522 | 387
372
360
355
386
1280 | 588
565
540
 | 1670
1530
1350
1210
1080
974 | 742
766
774
760
737 | 1540
1370
1340
1920
1970
1580 | 575
552
492
458
431 | 312
296
285
287
294
274 | 159
153
145
138
134
127 | 85
81
79
74
73 | | MEAN | 311 | 314 | 1091 | 385 | 1021 | 1097 | 1172 | 3625 | 933 | 371 | 180 | 101 | | MAX | 788 | 512 | 6540 | 1280 | 4670 | 2260 | 4900 | 20600 | 2740 | 553 | 240 | 124 | | MIN | 112 | 235 | 290 | 283 | 528 | 530 | 640 | 633 | 431 | 274 | 127 | 73 | | IN. | 0.41 | 0.40 | 1.44 | 0.51 | 1.22 | 1.45 | 1.50 | 4.79 | 1.19 | 0.49 | 0.24 | 0.13 | | STATIST | ICS OF MO | NTHLY MEAN | DATA | FOR WATER | YEARS 1940 | - 2002, | BY WATER | YEAR (WY |) | | | | | MEAN | 418 | 722 | 773 | 687 | 897 | 1339 | 1588 | 1526 | 986 | 488 | 260 | 292 | | MAX | 2938 | 4094 | 3651 | 2509 | 2971 | 5020 | 6119 | 8964 | 4245 | 2565 | 2418 | 2164 | | (WY) | 1942 | 1975 | 1993 | 1985 | 1951 | 1945 | 1945 | 1943 | 1995 | 1976 | 1950 | 1993 | | MIN | 25.7 | 49.8 | 58.5 | 55.9 | 70.7 | 75.7 | 145 | 227 | 78.6 | 14.3 | 12.0 | 30.9 | | (WY) | 1957 | 1964 | 1964 | 1964 | 1954 | 1956 | 1956 | 1964 | 1954 | 1954 | 1954 | 1953 | | SUMMARY STATISTICS | | FOR 2001 CALENDAR YEAR | | | FOR 2002 WATER YEAR | | | WATER YEARS 1940 - 2002 | | | | | | ANNUAL MEAN HIGHEST ANNUAL MEAN LOWEST ANNUAL MEAN LOWEST DAILY MEAN LOWEST DAILY MEAN ANNUAL SEVEN-DAY MINIMUM MAXIMUM PEAK FLOW MAXIMUM PEAK STAGE ANNUAL RUNOFF (INCHES) 10 PERCENT EXCEEDS 50 PERCENT EXCEEDS 90 PERCENT EXCEEDS | | 19800 Feb 25
79 Aug 23
83 Sep 1

9.64
1130
329
117 | | 885 20600 May 18 73 Sep 30 83 Sep 24 33100 May 18 20.57 May 18 13.78 1690 441 136 | | | 830
1881
135
68600
5.1
5.6
137000
28.40
12.93
1750
343
88 | 81 1993
35 1954
00 Apr 19 1941
.1 Sep 5 1954
.6 Sep 2 1954
00 Apr 19 1941
40 Apr 19 1941
93 50
43 | | | | | # 07189000 ELK RIVER NEAR TIFF CITY, MO--Continued (Ambient Water-Quality Monitoring Network) ### WATER-QUALITY RECORDS PERIOD OF RECORD.--August 1962 to June 1963, November 1965 to July 1975, October 1980 to September 1981, October 1982 to June 1990, November 1992 to current year. | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L)
(00300) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | HARD-
NESS
TOTAL
(mg/L
as
CaCO ₃)
(00900) | CALCIUM
DIS-
SOLVED
(mg/L
as Ca)
(00915) | MAGNE-
SIUM,
DIS-
SOLVED
(mg/L
as Mg)
(00925) | POTAS-
SIUM,
DIS-
SOLVED
(mg/L
as K)
(00935) | |---|--|---|--|---
---|--|--|--|---|--|--|---| | OCT 24 | 1210 | ENVIRONMENTA | AL 274 | 8.4 | 95 | 8.0 | 317 | 19.1 | | | | | | NOV
27 | 0835 | ENVIRONMENTA | AL 437 | 9.4 | 86 | 7.7 | 317 | 10.6 | 150 | 55.2 | 3.71 | 1.87 | | DEC 11 | 0900 | ENVIRONMENTA | AL 290 | 10.9 | 92 | 7.7 | 318 | 6.9 | | | | | | JAN
07 | 1250 | ENVIRONMENTA | AL 388 | 12.8 | 105 | 7.5 | 315 | 5.8 | 160 | 57.2 | 3.31 | 1.71 | | FEB
11
11 | 1245
1246 | ENVIRONMENTA
REPLICATE | AL 734 | 12.5 | 105 | 7.7 | 294 | 7.0 | | | | | | MAR
12 | 0845 | ENVIRONMENTA | AL 856 | 11.3 | 108 | 8.1 | 284 | 12.1 | | | | | | APR
16 | 1100 | ENVIRONMENTA | AL 1060 | 9.9 | 107 | 8.0 | 272 | 17.8 | | | | | | MAY
21 | 1010 | ENVIRONMENTA | AL 2810 | 9.2 | 93 | 7.8 | 260 | 15.3 | 120 | 44.3 | 2.35 | 1.37 | | JUN
18 | 0915 | ENVIRONMENTA | AL 914 | 7.9 | 92 | 7.9 | 293 | 21.2 | | | | | | JUL
23 | 0900 | BLANK | | | | | | | | .02 | E.004 | <.10 | | 23
AUG | 0945 | ENVIRONMENTA | | 6.0 | 76 | 7.8 | 304 | 26.2 | 140 | 52.2 | 2.98 | 2.58 | | 26
SEP | 1340 | ENVIRONMENTA | | 9.2 | 121 | 8.0 | 307 | 27.9 | | | | | | 10 | 1000 | ENVIRONMENTA | AL 95 | 6.1 | 75 | 7.9 | 318 | 24.6 | DATE | SODIUM,
DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER WATER WATER UNFLTRD UNF FET I FIELD FI (mg/L as (mg/CaCO ₃) | ANC ANC ATER BICAR- FILTRD BONATE T IT ELLD FIELD 7/L as (mg/L as (aCO ₃) HCO ₃) 419) (00450) | | CHLO-
RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | FLUO-
RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | SULFATE
DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | RESIDUE
TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L)
(00530) | SOLIDS,
RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | DATE OCT 24 | DIS-
SOLVED
(mg/L
as Na) | WATER WATER UNFLITRD UNFLITRD FET I (mg/L as (mg/L as (ng/L (ng | TER BICAR- FLTRD BONATE T IT ELD FIELD g/L as (mg/L as acO ₃) HCO ₃) | CAR-
BONATE
IT
FIELD
s (mg/L
as CO ₃) | RIDE,
DIS-
SOLVED
(mg/L
as Cl) | RIDE,
DIS-
SOLVED
(mg/L
as F) | DIS-
SOLVED
(mg/L
as SO ₄) | TOTAL
AT 105
DEG. C,
SUS-
PENDED
(mg/L) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L) | GEN, AMMONIA DIS- SOLVED (mg/L as N) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N) | | OCT 24
NOV 27 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER WATER UNFILTED UNFIFT OF THE CACO3 CO | ATER BICAR- FLTRD BONATE TT IT LELD FIELD J/L as (mg/L as laCO ₃) HCO ₃) 419) (00450) | CAR-BONATE IT FIELD s (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT 24 NOV 27 DEC 11 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER WP UNFLIRD UNF FET I FIELD FI (Mg/L as (Mg CaCO ₃) (OO (00410) (OO 133 1 130 1 | ATER BICAR- PLITED BONATE TT IT LELLD FIELD g/L as (mg/L as aCO ₃) HCO ₃) 4119) (00450) | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) | GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | | OCT 24 NOV 27 DEC 11 JAN 07 | DIS-
SOLVED
(mg/L
as Na)
(00930) | WATER WATER UNFILTED UNFIFT CACO (1) CO (1) CACO | ATER BICAR- FLITT BONATE T IT ELLD FIELD J/L as (mg/L as (acO ₃) HCO ₃) A419) (00450) 31 159 31 160 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED
(mg/L
as C1)
(00940) | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950) | DIS-
SOLVED
(mg/L
as SO ₄)
(00945) | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.38 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.45

5.06 | WATER WATER UNFILTED UNFIFET COMPANY C | ATER BICAR- PLITED BONATE TT IT LELLD FIELD J/L as (mg/L as acO ₃) (00450) 31 159 .31 160 .36 166 .36 166 .21 147 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

9.33

9.03 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

E.1
 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

9.5

8.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTTAL (mg/L as N) (00625) .13 E.10 .16 E.09 E.07 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.38 1.70 1.89 2.99 E2.81 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 | DIS-
SOLVED (mg/L
as Na)
(00930)

6.45

5.06 | WATER WATER UNFILTED UNFIFET UNFIFE | ATER BICAR- FLITED BONATE TT IT EELD FIELD 3/L as (mg/L as (2aCO ₃) HCO ₃) 4419) (00450) 31 159 31 160 36 166 36 166 36 166 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) | RIDE,
DIS-
SOLVED (mg/L
as C1)
(00940)

9.33

9.03 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

E.1

E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

9.5

8.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 186 184 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .13 E.10 .16 E.09 E.07 | GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631)
1.38
1.70
1.89
2.99
E2.81
E2.78 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR | DIS-
SOLVED (mg/L
as Na) (00930) | WATER WATER UNFLITED UNFERFORM I TELLO FILED (Mg/L as (Mg/CaCO ₃) (OO410) (OO | ATER BICAR- FLITT IT ELD FIELD (Mg/L as (mg/L as (acO ₃) HCO ₃) (419) (00450) 31 159 31 160 36 166 36 166 21 147 19 145 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

9.33

9.03 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

E.1

E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

9.5

8.2
 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .13 E.10 .16 E.09 E.07 E.07 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.38 1.70 1.89 2.99 E2.81 E2.78 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY | DIS-
SOLVED
(mg/L
as Na)
(00930)

6.45

5.06 | WATER WATER UNFILTED UNFIFET COMMENT OF COMM | ATER BICAR- PLITED BONATE TT IT LELD FIELD 3/L as (mg/L as (2CO ₃) (00450) .31 159 .31 160 .36 166 .36 166 .21 14719 145 .22 149 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

9.33

9.03 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

E.1

E.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

9.5

8.2 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE
AT 180
DEG. C
DIS-
SOLVED
(mg/L)
(70300) | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTTAL (mg/L as N) (00625) .13 E.10 .16 E.09 E.07 E.07 .10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.38 1.70 1.89 2.99 E2.81 E2.78 2.19 1.80 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN | DIS-
SOLVED (mg/L
as Na) (00930) 6.45 5.06 3.41 | WATER WATER UNFLITED UNFLITED IN FIELD FI (mg/L as | ATER BICAR- PLITED BONATE TT IT FIELD FIELD 3/L as (mg/L as (ACO_3) (00450) 3.31 159 3.31 160 3.36 166 3.36 166 3.36 166 3.31 147 1.19 145 3.22 149 3.04 127 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

9.33

9.03

4.97 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

E.1

E.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

9.5

8.2

6.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <11 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 186 184 155 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .13 E.10 .16 E.09 E.07 E.07 .10 .11 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.38 1.70 1.89 2.99 E2.81 E2.78 2.19 1.80 2.16 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN 18 JUL | DIS-
SOLVED (mg/L as Na) (00930) 6.45 5.06 3.41 | WATER UNFLITED UNFFET I FIELD (mg/L as (caco)) (00410) (0051) (10 | ATER BICAR- PLITED BONATE TT IT LELD FIELD 3/L as (mg/L as (2CO ₃) (00450) .31 159 .31 160 .36 166 .36 166 .21 14719 145 .22 149 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as C1) (00940)

9.33

9.03

4.97 | RIDE,
DIS-
SOLVED
(mg/L
as F)
(00950)

E.1

E.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

9.5

8.2

6.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 186 184 155 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONITA + ORGANIC TOTAL (mg/L as N) (00625) .13 E.10 .16 E.09 E.07 E.07 .10 .11 .12 .15 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.38 1.70 1.89 2.99 E2.81 E2.78 2.19 1.80 2.16 1.95 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN 18 JUN 18 JUL 23 | DIS-
SOLVED (mg/L
as Na) (00930) 6.45 5.06 3.41 | WATER WATER UNFLITED | ATER BICAR- PLITED BONATE TT IT ELLD FIELD (/L as (mg/L as (acO ₃) HCO ₃) (419) (00450) 31 159 31 160 36 166 36 166 21 147 19 145 22 149 04 127 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE,
DIS-
SOLVED (mg/L
as Cl) (00940)

9.33

9.03

4.97 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

E.1

E.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

9.5

8.2

6.0 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <11 <10 <10 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 186 184 155 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .13 E.10 .16 E.09 E.07 E.07 .10 .11 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.38 1.70 1.89 2.99 E2.81 E2.78 2.19 1.80 2.16 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN 18 JUL 23 | DIS-
SOLVED (mg/L
as Na) (00930) 6.45 5.06 3.41 <.09 | WATER UNFLITED UNFFET I FIELD FI CACO3 (00410) (00011) (10011) | ATER BICAR- PLITED BONATE TT IT ELLD FIELD 3/L as (mg/L as (ACO ₃) (M0450) 31 159 31 160 36 166 36 166 36 166 31 147 19 145 22 149 04 127 25 153 | CAR-BONATE IT FIELD (mg/L as CO ₃) (00447) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | RIDE, DIS- SOLVED (mg/L as C1) (00940) 9.33 9.03 4.97 <.30 | RIDE,
DIS-
SOLVED (mg/L
as F)
(00950)

E.1

E.1

<.1 | DIS-
SOLVED
(mg/L
as SO ₄)
(00945)

9.5

8.2

6.0

<.1 | TOTAL AT 105 DEG. C, SUS- PENDED (mg/L) (00530) <10 <10 <10 <10 <10 <10 <10 <10 <10 <1 | RESIDUE AT 180 DEG. C DIS- SOLVED (mg/L) (70300) 186 184 155 <10 | GEN, AMMONIA DIS- SOLVED (mg/L as N) (00608) E.03 <.04 <.04 <.04 <.04 <.04 <.04 <.04 <.04 | GEN, AM- MONIA + ORGANIC TOTAL (mg/L as N) (00625) .13 E.10 .16 E.09 E.07 E.07 .10 .11 .12 .15 <.10 | GEN, NO ₂ +NO ₃ DIS- SOLVED (mg/L as N) (00631) 1.38 1.70 1.89 2.99 E2.81 E2.78 2.19 1.80 2.16 1.95 <.05 | # 07189000 ELK RIVER NEAR TIFF CITY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | ALUM-
INUM,
DIS-
SOLVED
(µg/L
as A1)
(01106) | ALUM-
INUM,
TOTAL
RECOV-
ERABLE
(µg/L
as A1)
(01105) | ARSENIC
DIS-
SOLVED
(µg/L
as As)
(01000) | CADMIUM
DIS-
SOLVED
(µg/L
as Cd)
(01025) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | COPPER,
DIS-
SOLVED
(µg/L
as Cu)
(01040) | |--|--|--|--|--|--|---|--|--|---|---|---|---
---| | OCT 24 | E.004 | .31 | .31 | .32 | 20 | K4 | К9 | | | | | | | | NOV 27 | <.008 | .21 | .20 | .21 | K10 | 57 | 68 | 8 | 16 | .3 | <.04 | <.1 | <6 | | DEC 11 | <.008 | .07 | .07 | .09 | 44 | K64 | 21 | | | | | | | | JAN
07 | E.006 | .07 | .07 | .08 | <1 | К3 | K11 | 13 | 22 | .2 | <.04 | <.1 | <6 | | FEB
11
11 | <.006
<.006 | .07 | E.06
E.07 | .06 | K1
 | K3
 | K2
 | | | | | | | | MAR
12 | <.008 | E.06 | .06 | .06 | 23 | 23 | К3 | | | | | | | | APR
16 | <.008 | E.06 | .05 | .06 | К5 | 22 | 24 | | | | | | | | MAY
21
JUN | E.004 | .07 | .05 | .08 | 50 | 160 | 400 | 19 | 144 | <.2 | <.04 | <.1 | <6 | | 18
JUL | E.007 | .09 | .07 | .09 | 48 | 115 | 78 | | | | | | | | 23
23 | <.008
.011 | <.06 | <.02 | <.06
.24 |
29 |
K83 |
260 | <1
1 | <2
16 | <.2 | <.04
E.02 | <.1
<.1 | <6
<6 | | AUG
26 | E.004 | .21 | .19 | .20 | K1 | 20 | 46 | | | | | | | | SEP
10 | E.004 | .31 | .30 | .31 | К5 | K16 | 53 | DATE | IRON,
DIS-
SOLVED
(µg/L
as Fe)
(01046) | LEAD,
DIS-
SOLVED
(µg/L
as Pb)
(01049) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | MANGA-
NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056) | MERCURY
TOTAL
RECOV-
ERABLE
(μg/L
as Hg)
(71900) | SELE-
NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | ZINC,
DIS-
SOLVED
(µg/L
as Zn)
(01090) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | 1,4-DI-
CHLORO-
BENZENE
DISSOLV
(µg/L)
(34572) | 1METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | 26DIMET
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | 2METHYL
NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | 3-BETA-
COPRO-
STANOL,
WATER,
FLITERD
REC
(µg/L)
(62057) | | DATE OCT 24 | DIS-
SOLVED
(µg/L
as Fe) | DIS-
SOLVED
(µg/L
as Pb) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(μg/L
as Mn) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn) | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L) | | OCT 24
NOV 27 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL
RECOV-
ERABLE
(µg/L
as Pb) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg) | NIUM,
DIS-
SOLVED
(µg/L
as Se) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L) | | OCT
24
NOV
27
DEC
11 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L) | | OCT 24 NOV 27 DEC 11 JAN 07 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL
RECOV-
ERABLE
(µg/L
as Hg)
(71900) | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 | DIS-
SOLVED
(µg/L
as Fe)
(01046) | DIS-
SOLVED
(µg/L
as Pb)
(01049) | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED
(µg/L
as Mn)
(01056) | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145) | DIS-
SOLVED
(µg/L
as Zn) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 | CHLORO-
BENZENE
DISSOLV
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR | DIS-
SOLVED (µg/L as Fe) (01046)
<10
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- RERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

E1.2

E1.5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR | DIS-
SOLVED (µg/L as Fe) (01046)
<10
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

E1.2

E1.5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 | DIS-
SOLVED (µg/L as Fe) (01046)
<10
<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

E1.2

E1.5 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED
(µg/L
as Se)
(01145)

<.3

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLTERD
REC (µg/L)
(62057) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

<10 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

E1.2

E1.5 | TOTAL RECOV-ERABLE (µg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN | DIS-
SOLVED (µg/L
as Fe) (01046)

<10
<10
10
11 | DIS-
SOLVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 | NESE,
DIS-
SOLVED (μg/L
as Mn)
(01056)

E1.2

E1.5 | TOTAL RECOV- ERABLE (μg/L as Hg) (71900) E.01 <.01 | NIUM,
DIS-
SOLVED (µg/L
as Se)
(01145)

<.3

E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- RECOV- ERABLE (µg/L as Zn) (01092) 5 2 5 5 5 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN 18 JUL | DIS-
SOLVED
(µg/L
as Fe)
(01046)

<10

<10

19 | DIS-
SODIVED
(µg/L
as Pb)
(01049)

<.08

<.08 | TOTAL RECOV- ERABLE (µg/L as Pb) (01051) <1 <1 1 1 1 | NESE,
DIS-
SOLVED
(μg/L
as Mn)
(01056)

E1.2

E1.5

5.4 | TOTAL RECOV- ERABLE (µg/L as Hg) (71900) E.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Se) (01145) <.3 E.3 E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) |
TOTAL RECOV- ERABLE (µg/L as Zn) (01092) 5 2 5 5 | CHLORO-BENZENE DISSOLV (µg/L) (34572) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN 18 JUL 23 | DIS-
SOLVED (µg/L
as Fe) (01046)

<10
<10
19
19 | DIS-
SODIVED
(µg/L
as Pb)
(01049)

<.08

.08 | TOTAL RECOV- RECOV- ERABLE (µg/L as Pb) (01051) <11 1 1 1 | NESE,
DIS-
SOLVED (μg/L
as Mn) (01056)

E1.2
E1.5

5.4
<2.0 | TOTAL RECOV-ERABLE (μg/L as Hg) (71900) E.01 <.01 <.01 <.01 <.01 | NIUM, DIS- SOLVED (µg/L as Se) (01145) <.3 E.3 E.3 | DIS-
SOLVED
(µg/L
as Zn)
(01090) | TOTAL RECOV- RECOV- REABLE (µg/L as Zn) (01092) 5 2 5 5 41 | CHLORO-BENZENE DISSOLV (µg/L) (34572) <.5 <.5 | NAPH- THALENE WATER, FLTERD REC (µg/L) (62054) <.5 <.5 | NAPH-
THALENE
WATER,
FLTERD
REC
(µg/L)
(62055) | NAPH- THALENE WATER, FLTERD REC (µg/L) (62056) | COPRO-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62057) | 524 WHITE RIVER BASIN # 07189000 ELK RIVER NEAR TIFF CITY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | 3METHYL
1(H)-
INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62058) | 3-TERT-
BHA,
WATER,
FLTERD
REC
(µg/L)
(62059) | 4-CUMYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62060) | 4-OCTYL
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62061) | 4-TERT-
OCTYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62062) | 5METHYL
1HBENZO
TRIAZLE
WATER,
FLTERD
REC
(µg/L)
(62063) | ACETO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62064) | AHT NAPH- THALENE WATER, FLTERD REC (µg/L) (62065) | ANTHRA-
CENE
DISSOLV
(µg/L)
(34221) | ANTHRA-
QUINONE
WATER,
FLTERD
REC
(µg/L)
(62066) | BENZO-
A-
PYRENE
DISSOLV
(µg/L)
(34248) | BENZO-
PHENONE
WATER,
FLTERD
REC
(µg/L)
(62067) | BETA-
SITOS-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62068) | |--|---|---|--|--|--|---|---|--|---|--|--|---|---| | OCT 24 | | | | | | | | | | | | | | | NOV
27 | | | | | | | | | | | | | | | DEC | | | | | | | | | | | | | | | JAN | | | | | | | | | | | | | | | 07
FEB | | | | | | | | | | | | | | | 11
11 | | | | | | | | | | | | | | | MAR
12 | | | | | | | | | | | | | | | APR
16 | | | | | | | | | | | | | | | MAY
21 | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | <.5 | <.5 | <.5 | М | <.5 | <2 | | JUN
18 | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <2 | | JUL
23 | | | | | | | | | | | | | | | 23
AUG | <1 | <5 | <1 | <1 | <1 | <2 | <.5 | <.5 | <.5 | <.5 | <.5 | М | <2 | | 26
SEP | | | | | | | | | | | | | | | 10 | DATE | BISPHE-
NOL A,
WATER,
FLTERD
REC
(µg/L)
(62069) | BRO-
MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | BROMO-
FORM
DISSOLV
(µg/L)
(34288) | CAF-
FEINE,
WATER
FLTRD
REC
(µg/L)
(50305) | CAMPHOR
WATER,
FLTERD
REC
(µg/L)
(62070) | CAR-
BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | CARBA-
ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | CHLOR-
PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | CHOLES-
TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | COT-
ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | DI-
AZINON,
DIS-
SOLVED
(µg/L)
(39572) | D-LIMO-
NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | FLUOR-
ANTHENE
DISSOLV
(µg/L)
(34377) | | OCT | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | | OCT
24
NOV | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | | OCT 24
NOV 27
DEC | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L) | ANTHENE
DISSOLV
(µg/L) | | OCT 24
NOV 27
DEC 11 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 µ
GF, REC
(µg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L) | FORM
DISSOLV
(µg/L) | FEINE,
WATER
FLTRD
REC
(µg/L) | WATER,
FLTERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L) | PYRIFOS
DIS-
SOLVED
(µg/L) | TEROL,
WATER,
FLTERD
REC
(µg/L) | ININE,
WATER,
FLTERD
REC
(µg/L) | AZINON,
DIS-
SOLVED
(µg/L) | NENE,
WATER,
FLITERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(µg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE,
WATER
FLITRD
REC
(µg/L)
(50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM
DISSOLV
(µg/L)
(34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER,
FLITERD REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(μg/L)
(34377) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 | NOL A,
WATER,
FLTERD
REC
(µg/L) | MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM
DISSOLV
(µg/L)
(34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE, WATER, FLTERD REC (µg/L) (62073) | ANTHENE
DISSOLV
(µg/L)
(34377)

 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 | NOL A,
WATER,
FLTERD
REC
(µg/L) |
MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM
DISSOLV
(µg/L)
(34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER,
FLITERD
REC
(µg/L)
(62070) | BARYL
WATER
FLTRD
0.7 μ
GF, REC
(μg/L)
(82680) | ZOLE,
WATER,
FLTERD
REC
(µg/L)
(62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE,
WATER,
FLTERD
REC
(µg/L)
(62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE
DISSOLV
(µg/L)
(34377)

 | | OCT | NOL A, WATER, FLTERD REC (µg/L) (62069) | MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 μ GF, REC (μg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933) | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON,
DIS-
SOLVED
(µg/L)
(39572)

 | NENE, WATER, FLTERD REC (µg/L) (62073) | ANTHENE
DISSOLV
(µg/L)
(34377)

 | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN 18 JUN 23 | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (µg/L) (04029) <.5 <.5 | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) <1 <1 | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS DIS- SOLVED (µg/L) (38933) <.5 <.5 | TEROL, WATER, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE, WATER, FLTERD REC (µg/L) (62073) | ANTHENE DISSOLV (µg/L) (34377) | | OCT | NOL A, WATER, FITERD REC (µg/L) (62069) | MACIL,
WATER,
DISS,
REC
(μg/L)
(04029) | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLTRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS
DIS-
SOLVED
(µg/L)
(38933)

 | TEROL,
WATER,
FLTERD
REC
(µg/L)
(62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE,
WATER,
FLTERD
REC
(µg/L)
(62073) | ANTHENE DISSOLV (µg/L) (34377) | | OCT | NOL A,
WATER,
FLTERD
REC
(μg/L)
(62069) | MACIL, WATER, DISS, REC (µg/L) (04029) <.5 <.5 | FORM DISSOLV (µg/L) (34288) | FEINE, WATER FLIRD REC (µg/L) (50305) | WATER, FLITERD REC (µg/L) (62070) | BARYL WATER FLTRD 0.7 µ GF, REC (µg/L) (82680) <1 <1 | ZOLE, WATER, FLTERD REC (µg/L) (62071) | PYRIFOS DIS- SOLVED (µg/L) (38933) | TEROL, WATER, WATER, FLTERD REC (µg/L) (62072) | ININE, WATER, FLTERD REC (µg/L) (62005) | AZINON, DIS- SOLVED (µg/L) (39572) | NENE, WATER, FLTERD REC (µg/L) (62073) | ANTHENE DISSOLV (µg/L) (34377) | # 07189000 ELK RIVER NEAR TIFF CITY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | HHHMCP-
BENZO-
PYRAN,
WATER,
FLTERD
REC
(µg/L)
(62075) | INDOLE,
WATER,
FLTERD
REC
(µg/L)
(62076) | ISOBOR-
NEOL,
WATER,
FLTERD
REC
(µg/L)
(62077) | ISO-
PHORONE
DISSOLV
(µg/L)
(34409) | ISO-
PROPYL
BENZENE
WATER,
FLTERD
REC
(µg/L)
(62078) | ISO-
QUIN-
OLINE,
WATER,
FLTERD
REC
(µg/L)
(62079) | MENTHOL
WATER,
FLTERD
REC
(µg/L)
(62080) | METAL-
AXYL
WATER
FLTRD
REC
(µg/L)
(50359) | METHYL
SALICY-
LATE,
WATER,
FLTERD
REC
(µg/L)
(62081) | METO-
LACHLOR
WATER
DISSOLV
(μg/L)
(39415) | DEET,
WATER,
FLTERD
REC
(µg/L)
(62082) | NAPHTH-
ALENE
DISSOLV
(µg/L)
(34443) | NONYL-
PHENOL,
DIETHOX
WATER,
FLTERD
REC
(µg/L)
(62083) | |--|---|---|--|--|---|---|---|---|--|--|--|---|--| | OCT 24 | | | | | | | | | | | | | | | NOV 27 | | | | | | | | | | | | | | | DEC 11 | | | | | | | | | | | | | | | JAN
07 | | | | | | | | | | | | | | | FEB | | | | | | | | | | | | | | | 11
11 | | | | | | | | | | | | | | | MAR
12 | | | | | | | | | | | | | | | APR
16 | | | | | | | | | | | | | | | MAY | _ | | | _ | | | | | _ | | | | | | 21
JUN | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | М | М | <.5 | <5 | | 18
JUL | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | E.1 | <.5 | <5 | | 23 | | | | | | | | | | | | | | | 23
AUG | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | <.5 | E.1 | <.5 | E.3 | <.5 | <5 | | 26
SEP | | | | | | | | | | | | | | | 10 | DATE | DI-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | MONO-
ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61706) | PARA-
CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | PARA-
NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | PENTA-
CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | PHENAN
-THRENE
DISSOLV
(µg/L)
(34462) | PHENOL
WATER
FILTRD
(µg/L)
(34466) | PRO-
METON,
WATER,
DISS,
REC
(µg/L)
(04037) | PYRENE
DISSOLV
(µg/L)
(34470) | STIGMA-
STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | TETRA-
CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | FYROL
CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | FYROL
PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT
24
NOV | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
PHENOL
DISSOLV
(µg/L) | -THRENE
DISSOLV
(µg/L) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(µg/L) | DISSOLV
(µg/L) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L) | CEF,
WATER,
FLTERD
REC
(µg/L) | PCF,
WATER,
FLTERD
REC
(µg/L) | | OCT
24 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L) | STANOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24
NOV 27
DEC 11 | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L)
(61705) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L) | METON,
WATER,
DISS,
REC
(μg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24
NOV 27
DEC 11
JAN 07 | ETHOXY-
OCTYL-
PHENDL
WAT FLT
REC
(µg/L)
(61705) | ETHOXY-
OCTYL-
PHENOL
WAT FLT
REC
(µg/L) | CRESOL,
WATER,
FLITERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV
(µg/L)
(34470) | STANOL,
WATER,
FLITERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB
11 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462)

 | WATER FILTRD (µg/L) (34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV
(μg/L)
(34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462) | WATER FILTRD (µg/L) (34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE
DISSOLV
(µg/L)
(34462)

 | WATER
FILTRD (µg/L) (34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL,
WATER,
FLTERD
REC
(µg/L)
(62085) | CHLORO-
PHENOL
DISSOLV
(µg/L)
(34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON,
WATER,
DISS,
REC
(µg/L)
(04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN 18 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL- PHENOL, WATER, FLTERD REC (µg/L) (62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD (µg/L) (34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 MAR 12 APR 16 MAY 21 JUN | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL,
WATER,
FLTERD
REC
(µg/L)
(62084) | NONYL-
PHENOL, WATER, FLTERD REC (µg/L) (62085) | CHLORO-PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466)

7 | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-ETHY- LENE DISSOLV (µg/L) (34476) | CEF, WATER, FLTERD REC (µg/L) (62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 11 MAR 12 APR 16 MAY 21 JUN 18 JUL 23 23 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) <1 <1 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) | CRESOL, WATER, FLTERD REC (µg/L) (62084) | NONYL- PHENOL, WATER, FLTERD REC (µg/L) (62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL,
WATER,
FLTERD
REC
(µg/L)
(62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF,
WATER,
FLTERD
REC
(µg/L)
(62087) | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | | OCT 24 NOV 27 DEC 11 JAN 07 FEB 11 MAR 12 MAR 12 APR 16 MAY 21 JUN 18 JUL 23 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61705) <1 <1 | ETHOXY- OCTYL- PHENOL WAT FLT REC (µg/L) (61706) <1 <1 | CRESOL, WATER, FLTERD REC (µg/L) (62084) | NONYL-
PHENOL, WATER, FLTERD REC (µg/L) (62085) | CHLORO-
PHENOL DISSOLV (µg/L) (34459) | -THRENE DISSOLV (µg/L) (34462) | WATER
FILTRD
(µg/L)
(34466) | METON, WATER, DISS, REC (µg/L) (04037) | DISSOLV (µg/L) (34470) | STANOL, WATER, FLTERD REC (µg/L) (62086) | CHLORO-
ETHY-
LENE
DISSOLV
(µg/L)
(34476) | CEF, WATER, FLTERD REC (µg/L) (62087) <.5 <.5 | PCF,
WATER,
FLTERD
REC
(µg/L)
(62088) | 526 WHITE RIVER BASIN # 07189000 ELK RIVER NEAR TIFF CITY, MO--Continued (Ambient Water-Quality Monitoring Network) | DATE | | TRICLO-
SAN,
WATER,
FLTERD
REC
(µg/L)
(62090) | CITRATE
WATER,
FLTERD
REC
(µg/L) | PHATE,
WATER,
FLTERD
REC
(µg/L) | PHOS-
PHATE,
WATER,
FLTERD
(µg/L) | |-----------|-----|---|--|---|---| | OCT 24 | | | | | | | NOV | | | | | | | 27
DEC | | | | | | | 11 | | | | | | | JAN
07 | | | | | | | FEB
11 | | | | | | | 11 | | | | | | | MAR | | | | | | | 12 | | | | | | | APR | | | | | | | 16
MAY | | | | | | | 21 | <.5 | <1 | <.5 | <.5 | <.5 | | JUN | | | | | | | 18 | <.5 | <1 | <.5 | <.5 | <.5 | | JUL
23 | | | | | | | 23 | <.5 | <1 | <.5 | <.5 | <.5 | | AUG | | | | | | | 26 | | | | | | | SEP | | | | | | | 10 | | | | | | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. M--Presence of material verified, but not quantified. <--Numeric result is less than the value shown. #### ARKANSAS RIVER BASIN 527 ### 07189100 BUFFALO CREEK AT TIFF CITY, MO LOCATION.--Lat 36°40'15", long 94°36'14", in NW $\frac{1}{4}$ NE $\frac{1}{4}$ Sec. 4, T.22 N., R.34 W., McDonald County, Hydrologic Unit 11070208, on downstream side of Highway 76 bridge, 0.5 mi east of Tiff City. DRAINAGE AREA.--60.8 \mbox{mi}^{2} . PERIOD OF RECORD.--May 24, 2000 to current year. GAGE.--Water-stage recorder. Datum of gage is unknown. REMARKS.--Records fair except for discharges below 5 ft^3/s , which are poor. U.S. Army Corps of Engineers satellite telemeter at station. | | | DISCHAR | GE, CUBI | C FEET PER | | WATER YE
MEAN VA | AR OCTOBER
LUES | 2001 TO S | SEPTEMBE | R 2002 | | | |--|---|---|--------------------------------------|--|-----------------------------------|--------------------------------------|---|--|------------------------------------|--|---|--| | DAY | OCT | NOV | DEC | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | | 1
2
3
4
5 | 3.6
3.2
2.8
2.8 | 7.0
9.5
11
9.8 | 16
15
14
13 | 26
23
21
19
18 | 610
384
296
218
170 | 35
38
41
50
56 | 65
60
54
50
47 | 83
74
66
59
53 | 98
87
77
68
65 | 20
20
20
21
24 | 5.3
4.5
4.7
4.8
4.1 | 0.48
0.63
0.62
0.43
0.25 | | 6
7
8
9
10 | 15
34
35
28
32 | 20
17
15
13
12 | 11
9.9
9.6
8.9
8.0 | 17
16
16
15 | 134
106
84
69
58 | 72
101
108
104
88 | 44
46
66
99
109 | 778
561
1360
1210
780 | 58
51
46
43
40 | 20
20
17
17 | 5.5
4.9
4.0
3.4
3.1 | 0.29
0.26
0.27
0.28
0.23 | | 11
12
13
14
15 | 39
68
81
65
50 | 10
10
9.4
9.1
9.0 | 7.9
12
14
19
27 | 13
13
13
12
11 | 50
45
40
38
35 |
79
73
66
62
56 | 112
105
95
84
76 | 472
528
1730
731
474 | 36
62
159
121
100 | 18
19
18
18 | 3.0
3.0
3.1
3.8
3.3 | 0.29
0.21
0.22
0.28
0.27 | | 16
17
18
19
20 | 41
32
26
22
18 | 8.4
8.1
9.1
66
133 | 48
422
327
225
165 | 10
9.8
9.6
9.5
9.2 | 34
31
30
32
35 | 52
48
46
48
53 | 73
75
72
68
92 | 329
1270
900
553
391 | 84
73
62
53
44 | 18
17
16
14 | 2.6
2.5
2.1
1.6
1.4 | 0.28
0.17
0.11
1.9
3.5 | | 21
22
23
24
25 | 16
14
13
11 | 87
63
50
40
33 | 127
104
85
72
61 | 8.9
8.7
9.7
10 | 38
42
41
41 | 67
72
71
70
81 | 116
105
101
95
85 | 286
220
177
243
258 | 38
37
33
33
30 | 11
10
11
10
8.9 | 1.3
1.1
1.1
1.4
1.6 | 2.3
1.3
0.83
0.54
0.42 | | 26
27
28
29
30
31 | 9.4
9.2
8.4
7.9
7.3 | 28
23
21
18
17 | 52
46
42
37
32 | 11
11
11
14
90
1020 | 40
37
35
 | 103
102
95
88
80
72 | 85
85
94
95
89 | 186
153
137
136
126
112 | 30
29
26
23
21 | 7.7
6.4
5.9
6.2
6.9
6.2 | 1.4
1.8
1.1
0.70
0.55
0.41 | 0.59
0.74
0.86
0.70
0.54 | | MEAN
MAX
MIN | 23.3
81
2.8 | 26.1
133
7.0 | 66.8
422
7.9 | 48.4
1020
8.7 | 100
610
30 | 70.2
108
35 | 81.4
116
44 | 466
1730
53 | 57.6
159
21 | 14.7
24
5.9 | 2.68
5.5
0.41 | 0.66
3.5
0.11 | | STATIST | ICS OF MO | NTHLY MEA | N DATA F | OR WATER Y | EARS 2000 | - 2002, | BY WATER | YEAR (WY) | | | | | | MEAN
MAX
(WY)
MIN
(WY) | 13.4
23.3
2002
3.38
2001 | 22.0
26.1
2002
17.8
2001 | 37.7
66.8
2002
8.57
2001 | 73.3
98.2
2001
48.4
2002 | 178
256
2001
100
2002 | 68.9
70.2
2002
67.5
2001 | 53.8
81.4
2002
26.3
2001 | 239
466
2002
12.2
2001 | 152
254
2000
57.6
2002 | 27.4
49.0
2000
14.7
2002 | 4.80
8.27
2000
2.68
2002 | 1.98
3.46
2001
0.66
2002 | | SUMMARY | STATISTI | :CS | FO | R 2001 CAL | ENDAR YEA | R | FOR 2002 1 | WATER YEAR | 2 | WATER YEA | ARS 2000 | - 2002 | | LOWEST
HIGHEST
LOWEST
ANNUAL
MAXIMUM
MAXIMUM
INSTANT
10 PERC
50 PERC | MEAN ANNUAL ME DAILY ME SEVEN-DAY PEAK FLC PEAK STP ANEOUS LC ENT EXCEE ENT EXCEE | CAN CAN ON MINIMUM OW AGE OW FLOW CDS CDS | | 2050
1.7
1.9

110
20
3.4 | Feb 2
Sep 7,
Sep | 8 | 1730
0.11
0.22
2660
7.67
0.09
133
28 | May 13
Sep 18
Sep 12
May 13
May 13
Sep 17 | 3
2
3 | 66.7
80.1
53.3
2390
0.11
0.22
5500
10.23
0.09
110
19 | Sep 1
Sep 1
Jun
Jun | 2002
2001
1 2000
8 2002
2 2002
3 2001
3 2001
7 2002 | Figure 14. Location of partial-record stations. #### DISCHARGE AT PARTIAL-RECORD STATIONS The following table contains annual maximum discharges for crest-stage partial-record stations. A crest-stage gage is a device which will register the peak stage occurring at the station between inspections of the gage. A stage-discharge relation for each gage is developed from discharge measurements made by indirect measurements of peak flow or by current meter. The date of the maximum discharge is not always certain but is usually determined by comparison with nearby continuous-record stations, weather records, or local inquiry. Only the maximum discharge for each water year is given. Information on some lower floods may have been obtained but is not published herein. The years given in the period of record represent water years for which the annual maximum has been determined. Maximum discharge at crest-stage partial-record stations | | | David a d | Water ye | ar 2002 m | aximum | Period o | of record | maximum | |---|--|------------------------|---------------------------------|--------------------------|--|------------------|--------------------------|--| | Station number
and name | Location and basin characteristics | Period
of
record | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | | Fabius | River Basin | | | | | | | 05497485
Brushy Creek
near Queen
City, Mo. | Lat 40°24'01", long 92°25'31",
in NE 1/4 sec.35, T.65 N.,
R.14 W., Hydrologic Unit
07110002, Schuyler County,
on downstream side of bridge | 1997- | 05-14-02 Record: 1997 03-31-98 | 12.32
<6.71
11.21 | 2,020 ^a + + | 05-14-2002 | 12.32 | 2,020 ^a | | | on State Highway E, about 7 miles east of Queen City. Drainage area 5.35 mi ² , slope 23.1 ft/mi. | | 05-07-99
2000
06-14-01 | 11.49
<6.71
11.86 | + | | | | | 05499200
Little Fabius | Lat 40°03'29", long 92°10'29",
in SW 1/4 sec.30, T.61 N., | 1997- | 05-14-02 | 18.17 | 4,660 ^a | 05-14-2002 | 18.17 | 4,660ª | | River near | R.11 W., Hydrologic Unit | | Record: | 16 47 | 2 520 | | | | | Edina, Mo. | 07110003, Knox County, on downstream side of bridge on | | 05-28-97
04-01-98 | 16.47
17.45 | 2,530
3,630 | | | | | | State Highway 15, about 7 | | 10-07-98 | 16.22 | 2,290 | | | | | | miles south of Edina. | | 06-26-00 | 9.86 | 339 | | | | | | Drainage area 23.8 mi ² , slope 7.02 ft/mi. | | 06-05-01 | 16.17 | 2,250 | | | | | 05499850
Troublesome
Creek near | Lat 39°59'52", long 91°50'37",
in SE 1/4 sec.13, T.60 N.,
R.9 W., Hydrologic Unit | 1997- | 05-14-02
Record: | 19.98 | + | 05-14-2002 | 19.98 | + | | Lewistown, Mo. | 07110003, Lewis County, on | | 04-16-97 | 18.37 | + | | | | | | downstream side of bridge on | | 04-01-98 | 18.43 | + | | | | | | State Highway 156, about 7 miles south of Lewistown. | | 10-07-98
06-26-00 | 19.23
14.84 | +
781 | | | | | | Drainage area 92.3 mi ² , slope 4.57 ft/mi. | | 05-13-01 | 18.43 | + | | | | | | | Salt R | iver Basin | | | | | | | 05506193
Mud Creek near | Lat 39°34'34", long 92°20'59", at center sec.10, T.55 N., | 1997- | 05-10-02 | 15.07 | 6,500 ^a | 05-10-2002 | 15.07 | 6,500 ^a | | Moberly, Mo. | R.13 W., Hydrologic Unit
07110006, Randolph County, | | Record:
04-13-97 | 13.57 | 3,120 | | | | | | on downstream side of bridge | | 07-04-98 | 13.83 | 3,555 | | | | | | on State Highway J, about 16 | | 07-01-99 | 14.36 | 4,580 | | | | | | miles northeast of Moberly. | | 06-26-00 | 11.73 | 1,190 | | | | | | Drainage area 24.0 mi²,
slope 11.6 ft/mi. | | 06-06-01 | 12.89 | 2,180 | | | | | | | Cuivre | River Basin | | | | | | | 05514170
Irvine Branch | Lat 39°17'24", long 91°16'07",
in SW 1/4 sec.8, T.52 N., | 1997- | 05-16-02 | 13.32 | 1,300 ^a | 06-04-2001 | 14.31 | 1,900 ^b | | near Bowling | R.3 W., Hydrologic Unit | | Record: | 0 00 | | | | | | Green, Mo. | 07110008, Pike County, on | | 1997
07-05-98 | <8.81
13.91 | +
1,600 ^b | | | | | | downstream side of bridge on
State Highway Y, about 6 | | 06-25-99 | 12.91 | 1,100 | | | | | | miles southwest of Bowling | | 06-26-00 | 11.10 | 502 | | | | | | Green. Drainage area 12.9 mi ² , slope 26.3 ft/mi. | | 06-04-01 | 14.31 | 1,900 ^b | | | | Maximum discharge at crest-stage partial-record stations--continued | | | David : 3 | Water ye | ear 2002 ma | aximum | Period of | record ma | aximum | |----------------------------------|---|------------------|-----------------------|--------------------------|--|------------------|--------------------------|--| | Station number and name | Location and basin characteristics | Period of record | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | | Little Ta | arkio Creek B | asin | | | | | | 06815530
Little Tarkio | Lat 40°24'38", long 95°16'23",
in SE 1/4 sec.27, T.65 N., | 1997- | 2002 | <10.35 | + | 06-14-2001 | 16± ^C | + | | Creek near
Tarkio, Mo. | R.39 W., Hydrologic Unit
10240005, Atchison County, | | Record: | 11 56 | | | | | | Tarkio, Mo. | on downstream side of bridge | | 05-07-97
06-15-98 | 11.56
12.41 | + | | | | | | on State Highway N, 7 miles | | 05-21-99 | 10.46 | + | | | | | | east of Tarkio. Drainage area 16.1 mi ² , slope 19.0 ft/mi. | | 2000
06-14-01 | <10.36
16±° | + + | | | | | | | Platt | e River Basiı | ı | | | | | | 06819025 | Lat 40°03'41", long 94°42'01", | 1997- | 10-05-01 | 11.76 | + | 06-19-2001 | 18.85 | + | | Agee Creek near | at center sec.26, T.61 N., | | | | | | | | | Savannah, Mo. | R.34 W., Hydrologic Unit
10240012, Andrew County, on | | Record: | | | | | | | | downstream side of bridge on | | 1997-1998
10-05-98 | <11.05 | + | | | | | | State Highway 48, 14 miles | | 2000 | 17.37
<11.05 | + | | | | | | northeast of Savannah.
Drainage area 6.54 mi ² ,
slope 24.5 ft/mi. | | 06-19-01 | 18.85 | + | | | | | | | Fishir | ng River Basi | n | | | | | | 06894250 | Lat 39°27'29", long 94°18'22", | 1997- | 08-18-02 | 8.69 | + | 10-05-1998 | 14.39 | + | | New Hope Creek
near Holt, Mo. | in SW 1/4 sec.30, T.54 N.,
R.30 W., Hydrologic Unit | | Record: | | | | | | | | 10300101, Clinton County, on downstream side of bridge on | | 1997 | <6.71 | + | | | | | | State Highway PP, 2 miles | | 06-23-98 | 8.79 | + | | | | | | east of Holt.
Drainage area | | 10-05-98 | 14.39 | + | | | | | | 6.79 mi^2 , slope 28.6 ft/mi . | | 09-23-00
06-05-01 | 10.91
11.88 | + | | | | | | | Tabo | Creek Basin | | | | | | | 06895192
Tabo Creek near | Lat 39°04'40", long 93°46'12",
in NW 1/4 sec.3, T.49 N., | 1997- | 05-09-02 | 19.58 | + | 02-12-1999 | 19.80 | + | | Higginsville,
Mo. | R.26 W., Hydrologic Unit
10300101, Lafayette County, | | Record: | 15 50 | | | | | | P10 . | on downstream side of bridge | | 04-11-97
09-14-98 | 17.70
19.65 | + | | | | | | on State Highway FF, 2 miles | | 02-12-99 | 19.80 | + | | | | | | west of Higginsville. | | 06-27-00 | 17.63 | + | | | | | | Drainage area 24.0 mi ² , slope 11.4 ft/mi. | | 06-06-01 | 18.50 | + | | | | | | | Grand | d River Basin | | | | | | | 06896370
Big Muddy Creek | Lat 40°25'38", long 94°10'31",
in NW 1/4 sec.21, T.65 N., | 1997- | 2002 | <8.22 | + | 04-08-2001 | 16.39 | + | | near Bethany, | R.29 W., Hydrologic Unit | | Record: | | | | | | | Mo. | 10280101, Harrison County, on downstream side of bridge | | 04-15-97 | 13.38 | + | | | | | | on State Highway M, 18 miles | | 07-04-98
06-13-99 | 14.73
12.73 | + | | | | | | northwest of Bethany. Drain- | | 2000 | <8.23 | + | | | | | | age area 29.4 mi ² , slope
14.2 ft/mi. | | 04-08-01 | 16.39 | + | | | | | 06897507
Marrowbone | Lat 39°49'02", long 94°05'34",
in SW 1/4 sec.19, T.58 N., | 1997- | 05-06-02 | 12.95 | 964 | 10-05-1998 | 17.43 | + | | Creek near | R.28 W., Hydrologic Unit | | Record: | | | | | | | Gallatin, Mo. | 10280101, Daviess County, on | | 04-16-97 | 16.38 | + | | | | | | downstream side of bridge on
State Highway J, 12 miles | | 07-04-98 | 17.16 | + | | | | | | southwest of Gallatin. | | 10-05-98
06-25-00 | 17.43
10.46 | +
535 | | | | | | Drainage area 17.7 mi ² , slope 17.1 ft/mi. | | 06-25-00 | 16.51 | + | | | | Maximum discharge at crest-stage partial-record stations--continued | | | D. J. J. | Water y | ear 2002 n | naximum | Period of | record m | aximum | |---|---|------------------|----------------------|--------------------------|--|------------------|--------------------------|--| | Station number and name | Location and basin characteristics | Period of record | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | | Grand Rive | er Basin-cont | inued | | | | | | 06900690 | Lat 39°52′51″, long 93°19′39″, | 1997- | 05-10-02 | 14.75 | + | 02-08-2001 | 15.43 | | | Smokey Creek
near Linneus, | in NE 1/4 sec.2, T.58 N.,
R.22 W., Hydrologic Unit | | Record: | | | | | + | | Mo. | 10280103, Linn County, on | | 04-15-97 | 14.77 | + | | | + | | | downstream side of bridge on | | 03-19-98 | 14.34 | + | | | | | | State Highway B, about 7 miles west of Linneus. | | 10-06-98 | 15.13 | + | | | | | | Drainage area 10.5 mi ² , | | 2000 | <10.63 | + | | | | | | slope 13.5 ft/mi. | | 02-08-01 | 15.43 | + | | | | | 06901100
Locust Creek at
Reger, Mo. | Lat 40°08'31", long 93°11'07", in NE 1/4 SW 1/4 SE 1/4 sec.30, T.62 N., R.20 W., Hydrologic Unit 10280201, Sullivan County, on downstream side of State Highway 6 and 0.3 mile east of Reger. Datum of gage is 774.67 ft above sea level. Drainage area 232 mi ² . | 1987- | 05-14-02 | 15.43 | 6,390 | 07-07-1993 | 21.88 | 19,700 | | | - | | | | | | | | | 06903190
Rock Branch | Lat 39°32′10″, long 93°27′32″,
in SE 1/4 sec.34, T.55 N., | 1997- | 05-11-02 | 13.42 | + | 11-02-1998 | 14.53 | + | | near Carroll- | R.23 W., Hydrologic Unit | | Record: | | | | | | | ton, Mo. | 10280103, Carroll County, on | | 04-15-97 | 12.36 | + | | | | | | downstream side of bridge on
State Highway WW, 12 miles | | 03-17-98 | 10.98 | + | | | | | | north of Carrollton. Drain- | | 11-02-98 | 14.53 | + | | | | | | age area $4.45~\mathrm{mi}^2$, slope $30.6~\mathrm{ft/mi}$. | | 2000
06-07-01 | <6.63
11.81 | + | | | | | | | Oh a sai b | Pi P | :_ | | | | | | 06904600 | Lat 40°20'34", long 92°57'18", | 1997- | on River Bas | 11.72 | 1,960 ^a | 06-06-2001 | 12.13 | + | | Spring Creek | in SE 1/4 sec.18, T.64 N., | 1997- | 05-20-02 | 11.72 | 1,900 | 06-06-2001 | 12.13 | Τ. | | near Milan, | R.18 W., Hydrologic Unit | | Record: | | | | | | | Mo. | 10280202, Sullivan County, on downstream side of bridge | | 1997 | <7.40 | + | | | | | | on State Highway 129, 16 | | 06-19-98
10-04-98 | 8.50
11.25 | + | | | | | | miles northeast of Milan or | | 2000 | <7.38 | + | | | | | | about 5.5 miles north of | | 06-06-01 | 12.13 | + | | | | | | Green City. Drainage area 13.7 mi², slope 17.8 ft/mi. | | | | | | | | | 06904950 | Lat 40°06'24", long 92°45'23", | 1997- | 05-12-02 | 22.14 | 14,000ª | 05-12-2002 | 22.14 | 14,000ª | | Walnut Creek | in NW 1/4 sec.12, T.61 N., | | | | | | | | | near Novinger, | R.17 W., Hydrologic Unit | | Record: | | | | | | | Mo. | 10280202, Adair County, on downstream side of bridge on | | 05-01-97 | 9.30 | 648 | | | | | | State Highways 11 and 149, | | 07-26-98
10-06-98 | 19.86
13.28 | 5,650 | | | | | | 11 miles south of Novinger. | | 2000 | <8.97 | 1,880 | | | | | | Drainage area 13.5 mi², slope 14.1 ft/mi. | | 07-25-01 | 14.61 | 2,390 | | | | | | | T.amin | e River Basi: | n | | | | | | 06906715 | Lat 38°30'37", long 93°08'25", | 1997- | 2002 | <5.51 | + | 04-13-2001 | 15.08 | + | | Lake Creek near
Cole Camp, Mo. | | | Record: | | | | | | | | 10300103, Benton County, on | | 1997 | <5.51 | + , | | | | | | downstream side of bridge on
State Highway JJ, 6 miles | | 07-26-98 | 11.53 | 5,210 ^b | | | | | | northeast of Cole Camp. | | 05-05-99 | 9.03 | 2,490 | | | | | | Drainage area 12.2 mi ² , | | 2000
04-13-01 | <5.51
15.08 | + | | | | | | slope 35.3 ft/mi. | | 01 15 01 | | • | | | | Maximum discharge at crest-stage partial-record stations--continued | | | Period . | Water ye | ear 2002 m | aximum | Period of | record ma | aximum | |----------------------------------|---|--------------|----------------------|--------------------------|--|------------------|--------------------------|--| | Station number
and name | Location and basin
characteristics | of
record | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | | Lamine Riv | ver Basin-con | tinued | | | | | | 06907710 | Lat 38°50'40", long 93°32'50", | 1997- | 05-12-02 | 14.50 | + | 07-30-1998 | 15.66 | + | | Little Walnut
Creek near | in SW 1/4 sec.22, T.47 N.,
R.24 W., Hydrologic Unit | | D | | | | | | | Knob Noster, | 10300104, Johnson County, on | | Record:
04-13-97 | 8.76 | + | | | | | Mo. | downstream side of bridge on | | 07-30-98 | 15.66 | + | | | | | | State Highway 23, 5 miles | | 10-06-98 | 14.11 | + | | | | | | north of Knob Noster. | | 05-27-00 | 14.29 | + | | | | | | Drainage area 8.20 mi², slope 23.3 ft/mi. | | 03-15-01 | 15.11 | + | | | | | 06908495 | Lat 39°06'12", long 93°03'21", | 1997- | 05-12-02 | 14.24 | + | 06-08-2001 | 14.24 | + | | Camp Creek near
Marshall, Mo. | in NW 1/4 sec.24, T.50 N.,
R.20 W., Hydrologic Unit | | Record: | | | 05-12-2002 | | | | narbnarr, no. | 10300104, Saline County, on | | 04-14-97 | 10.60 | 1,100 | | | | | | downstream side of bridge on | | 07-30-98 | 13.39 | 2,650 ^b | | | | | | State Highway 41, 7 miles | | 01-31-99 | 11.94 | 1,730 ^b | | | | | | east of Marshall. Drainage area 10.8 mi ² , slope 16.9 | | 2000 | <7.09 | + | | | | | | ft/mi. | | 06-08-01 | 14.24 | + | | | | | | | Bonne Fe | emme Creek Ba | sin | | | | | | 06909220 | Lat 39°15'54", long 92°39'51", | 1997- | 05-12-02 | 13.36 | + | 07-30-1998 | 14.03 | + | | Ganaway Creek
near Fayette, | in NW 1/4 sec.36, T.52 N.,
R.16 W., Hydrologic Unit | 200. | Record: | 13.30 | · | 0. 30 1330 | 11.03 | · | | Mo. | 10300102, Howard County, on | | 04-11-97 | 10.68 | + | | | | | | downstream side of culvert | | 07-30-98 | 14.03 | + | | | | | | on State Highway U, 11 miles | | 07-01-99 | 13.67 | + | | | | | | north of Fayette or 2.5 | | 06-21-00 | 11.69 | + | | | | | | miles east of Armstrong.
Drainage area 4.55 mi ² ,
slope 57.9 ft/mi. | | 06-08-01 | 13.24 | + | | | | | | | Monite | au Creek Bas | in | | | | | | 06910265 | Lat 38°43′57″, long 92°38′17″, | 1997- | 08-22-02 | 11.01 | 4,800 | 07-30-1998 | 15.60 | + | | Moniteau Creek
near Califor- | in E 1/2 sec.23, T.46 N.,
R.16 W., Hydrologic Unit | | Record: | | | | | | | nia, Mo. | 10300102, Cooper County, on | | 05-27-97 | 10.08 | 3,860 | | | | | | downstream side of bridge on | | 07-30-98 | 15.60 | + | | | | | | State Highway O, 9 miles northwest of California. | | 10-20-98 | 15.57 | + | | | | | | Drainage area 67.6 mi ² , | | 03-28-00 | 9.12 | 3,010 | | | | | | slope 16.0 ft/mi. | | 06-08-01 | 14.49 | + | | | | | | | Osage | e River Basin | ı | | | | | | 06918270
Clear Creek | Lat 37°41'20", long 94°13'35", in SW 1/4 sec.16, T.34 N., | 1997- | 05-08-02 | 13.65 | 1,630 | 05-05-1999 | 16.29 | + | | near Nevada, | R.30 W., Hydrologic Unit | | Record: | | | | | | | Mo. | 10290105, Vernon County, on downstream side of bridge on | | 02-21-97 | 13.91 | 1,870 | | | | | | State Highway DD, 16 miles | | 03-20-98
05-05-99 | 12.49
16.29 | 920 | | | | | | southeast of Nevada. Drain- | | 05-05-99 | 6.52 | 220 | | | | | | age area 23.2 mi^2 , slope 13.5 ft/mi . | | 02-28-01 | 14.38 | 2,320 | | | | |
06919004 | Lat 37°35′00″, long 93°28′02″, | 1997- | 05-17-02 | 8.26 | 1,800ª | 05-05-1999 | 8.35 | 1,850 ^b | | Bear Creek near
Bolivar, Mo. | in NW 1/4 sec.21, T.33 N.,
R.23 W., Hydrologic Unit | 1991- | Record: | 0.20 | ±,000 | 03-03-1333 | 0.33 | ±,000 | | | 10290106, Polk County, on | | 08-19-97 | 6.54 | 828 | | | | | | downstream side of bridge on | | 03-19-98 | 6.00 | 622 | | | | | | State Highway T, 3.5 miles southwest of Bolivar. | | 05-05-99 | 8.35 | 1,850 ^b | | | | | | Drainage area 7.45 mi ² , | | 07-12-00 | 4.88 | 313 | | | | | | slope 26.0 ft/mi. | | 07-05-01 | 6.83 | 957 | | | | Maximum discharge at crest-stage partial-record stations--continued | | | Period - | Water ye | ear 2002 m | maximum | Period of | record m | aximum | |-------------------------|---|--------------|----------------------|--------------------------|--|------------------|--------------------------|--| | Station number and name | Location and basin
characteristics | of
record | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | | | Osage Rive | er Basin-cont | inued | | | | | | 06921712
Clear Creek | Lat 38°37′35″, long 94°11′27″, in NW 1/4 sec.12, T.44 N., | 1997- | 05-09-02 | 14.85 | + | 05-09-2002 | 14.85 | + | | near Harrison- | R.30 W., Hydrologic Unit | | Record: | | | | | | | ville, Mo. | 10290108, Cass County, on downstream side of bridge on | | 05-27-97 | 14.18 | + | | | | | | State Highway Z, 9 miles | | 09-16-98 | 12.84 | + | | | | | | east of Harrisonville, | | 05-04-99 | 14.71 | + | | | | | | Drainage area 11.4 mi², | | 07-12-00
06-07-01 | 13.44
12.46 | + | | | | | | slope 14.8 ft/mi. | | 00 07 01 | 12.10 | · | | | | | 06925432 | Lat 37°59′52″, long 92°31′39″, | 1997- | 04-19-02 | 7.00 | 1,700ª | 04-19-2002 | 7.00 | 1,700ª | | Barnett Hollow | in SW 1/4 sec.25, T.38 N., | | | | , | | | , | | near Camden- | R.15 W., Hydrologic Unit | | Record: | | | | | | | ton, Mo. | 10290109, Camden County, on | | 1997 | <4.91 | + | | | | | | downstream side of bridge on | | 07-27-98 | 5.19 | + | | | | | | State Highway A, 14 miles east of Camdenton or 5 miles | | 1999-2001 | <4.91 | + | | | | | | northeast of Montreal. Drainage area 6.98 mi ² , slope 55.5 ft/mi. | | | | | | | | | | | Gascona | ade River Bas | in | | | | | | 06927746 | Lat 37°33'13", long 92°40'52", | 1997- | 05-12-02 | 3.88 | 187 | 07-28-2001 | 5.49 | 1,430 ^b | | Selvage Hollow | in NW 1/4 sec.27, T.33 N., | | | | | | | | | near Lebanon, | R.16 W., Hydrologic Unit | | Record: | | 2 | | | | | Mo. | 10290201, Laclede County, on downstream side of culvert | | 11-22-96 | 5.05 | 870 ^a | | | | | | on State Highway C, 5.5 | | 03-21-98 | 3.83 | 174 | | | | | | miles east of Phillipsburg | | 04-16-99 | 3.76 | 156 | | | | | | or 9 miles south of Lebanon. | | 2000
07-28-01 | <2.04
5.49 | 1,430 ^b | | | | | | Drainage area 9.72 mi ² slope | | 07-28-01 | 5.49 | 1,430 | | | | | | 40.2 ft/mi. | | | | | | | | | 06928850 | Lat 37°11'47", long 92°05'43", | 1997- | 05-20-02 | 9.42 | 4,600ª | 05-20-2002 | 9.42 | 4,600 ^a | | Hamilton Creek | in N 1/2 sec.13, T.29 N., | | | | | | | | | near Cabool, | R.11 W., Hydrologic Unit | | Record: | | | | | | | Mo. | 10290202, Texas County, on | | 02-27-97 | 5.21 | 1,070 | | | | | | downstream side of bridge on
State Highway PP, 5 miles | | 1998 | <4.71 | + | | | | | | north of Cabool. Drainage | | 02-07-99 | 8.51 | 3,300 | | | | | | area 9.29 mi ² , slope 42.9 | | 2000 | <4.71 | + | | | | | | ft/mi. | | 02-26-01 | 6.61 | 1,890 | | | | | | | Loutr | e River Basin | ı | | | | | | 06934680 | Lat 38°46'29", long 91°33'53", | 1997- | 12-18-01 | 7.56 | + | 12-18-2001 | 7.56 | + | | Dry Fork near | in SW 1/4 sec.2, T.46 N., | | | | | | | | | Hermann, Mo. | R.6 W., Hydrologic Unit | | Record: | | | | | | | | 10300200, Montgomery County, on downstream side of bridge | | 06-23-97 | 7.13 | + | | | | | | on State Highway P, 11 miles | | 03-22-98 | 5.48 | + | | | | | | northwest of Hermann or 20 | | 02-08-99
06-12-00 | 6.49
6.61 | + | | | | | | miles south of Montgomery | | 2001 | <3.59 | + | | | | | | City. Drainage area 7.66 mi ² , slope 68.7 ft/mi. | | 2001 | <3.59 | + | | | | | | | Roeuf | E Creek Basin | | | | | | | 06935175 | Lat 38°27'44", long 91°18'29", | 1997- | 04-20-02 | 11.07 | 1,360 | 05-07-2000 | 17.67 | 10,600ª | | Cedar Fork near | in NW 1/4 sec.19, T.43 N., | | | | | | | - | | Gerald, Mo. | R.3 W., Hydrologic Unit | | Record: | | | | | | | GCIAIG, NO. | 10300200, Franklin County, | | 06-22-97 | 8.64 | 634 | | | | | Gerard, Mo. | 4 13 63 13 | | | | | | | | | Gerard, Mo. | on downstream side of bridge | | 07-26-98 | 10.44 | 1,160 | | | | | Gerara, Mo. | on State Highway ZZ, 4.5 | | 11-02-98 | 11.52 | 1,530 | | | | | Gerara, Mo. | | | | | | | | | Maximum discharge at crest-stage partial-record stations--continued | | | Period | Water ye | ear 2002 m | aximum | Period of | record m | naximum | |---|--|--------------|---|---------------------------------|---|------------------|--------------------------|--| | Station number
and name | Location and basin characteristics | of
record | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | 07015757
Upper Peavine
Creek near
Belle, Mo. | Lat 38°11'54", long 91°42'03",
in SE 1/4 sec.16, T.40 N.,
R.7 W., Hydrologic Unit
07140103, Maries County, on
downstream side of bridge on
State Highway C, 7 miles | 1997- | 05-09-02 Record: 06-22-97 06-04-98 1999-2000 | 9.21
12.19
10.04
<8.61 | 696 ^b + 1,050 ^b + | 06-22-1997 | 12.19 | + | | | south of Belle. Drainage area 6.79 mi ² , slope 32.0 ft/mi. | | 02-25-01 | 9.33 | 742 ^b | | | | | 07017733
Bates Creek at
Potosi, Mo. | Lat 37°56'35", long 90°48'23",
near sec.9, T.37 N., R.2 E.,
Hydrologic Unit 07140104, | 1997- | 05-20-02
Record: | 7.47 | 1,200 ^a | 11-06-1997 | 8.64 | + | | | Washington County, on down- | | 08-20-97 | 8.44 | 1,880 ^b | | | | | | stream side of bridge on | | 11-06-97 | 8.64 | 2,050 ^b | | | | | | State Highway 8, 0.5 mile | | 04-03-99 | 8.60 | 2,020 ^b | | | | | | <pre>west of Potosi. Drainage area 14.1 mi², slope 39.8 ft/mi.</pre> | | 2000
03-15-01 | <5.61
7.19 | 1,030 | | | | | | | adwater Di | version Chann | el Basin | | | | | | 07020895 | Lat 37°34'40", long 90°09'50", | 1997- | 05-20-02 | 12.30 | 5,810 | 04-03-1999 | 15.58 | 11,500 ^a | | Castor River | in S 1/2 sec.4, T.33 N., R.8 | 100, | | 12.50 | 37010 | 01 03 1333 | 13.30 | 11,500 | | near Freder- | E., Hydrologic Unit | | Record: | | | | | | | icktown, Mo. | 07140107, Madison County, on downstream side of bridge on | | 05-31-97 | 10.20 | 3,780 | | | | | | State Highway J, 7 miles | | 03-20-98
04-03-99 | 10.42 | 3,960 | | | | | | east of Fredericktown. | | 02-26-00 | 15.58
6.30 | 11,500 ^a
1,100 | | | | | | Drainage area 33.5 mi²,
slope 28.6 ft/mi. | | 02-25-01 | 8.30 | 2,330 | | | | | 07020965
Bear Creek near | Lat 37°13'30", long 90°19"31", in SW 1/4 sec.31, T.30 N., | 1997- | 05-19-02 | 13.46 | 8,890 ^a | 05-19-2002 | 13.46 | 8,890 ^a | | Patterson, Mo. | R.7 E., Hydrologic Unit | | Record: | | | | | | | | 07140107, Wayne County, on downstream side of bridge on | | 05-31-97 | 8.91 | 2,230 | | | | | | State Highway 34, 10.5 miles | | 04-18-98 | 8.19 | 1,840 | | | | | | east of Patterson or 20 | | 04-03-99
06-18-00 | 9.00
11.58 | 2,280
4,390 | | | | | | miles west of Marble Hill.
Drainage area 13.1 mi²,
slope 33.5 ft/mi. | | 2001 | <6.30 | + | | | | | | | White | e River Basin | ı | | | | | | 07050545
North Carolina | Lat 37°14′53″, long 93°00′30″, in SE 1/4 sec.4, T.29 N., | 1997- | 05-20-02 | 5.51 | + | 05-20-2002 | 5.51 | + | | Creek near | R.19 W., Hydrologic Unit | | Record: | | | | | | | Marshfield, | 11010002, Webster County, on | | 11-07-96 | 4.35 | 1,000ª | | | | | Mo. | downstream side of culvert on State Highway B, 8 miles | | 03-20-98 | 3.23 | 142 | | | | | | southwest of Marshfield. | | 05-05-99 | 5.41 | + | | | | | | Drainage area 6.30 mi ² , | | 2000
02-24-01 | <2.39
3.33 | +
174 | | | | | | slope 57.0 ft/mi. | | 02-24-01 | 3.33 | 1/4 | | | | | 07052370
Dry Crane Creek | Lat 36°56′18″, long 93°26′05″,
in SE 1/4 sec.22, T.26 N., | 1997- | 2002 | <8.30 | + | 03-20-1998 | 8.79 | + | | near Crane, | R.23 W., Hydrologic Unit | | Record: | | | | | | | Mo. | 11010002, Stone County, on | | 1997 | <8.30 | + | | | | | | downstream side of bridge on
State Highway A, 10 miles
east of Crane. Drainage
area 10.9 mi ² , slope 29.6 | | 03-20-98
1999-2002 | 8.79
<8.30 | + | | | | | | ft/mi. | | | | | | | | Maximum discharge at crest-stage partial-record stations--continued | | | Period | Water ye | ear 2002 n | naximum | Period of | record m | aximum | |-----------------------------|--|--------------|------------------|--------------------------|--|------------------|--------------------------|--| | Station number and name | Location and basin characteristics | of
record | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | Probable
date | Gage
height
(feet) | Dis-
charge
(ft ³ /s) | | 07054047
Little Beaver |
Lat 36°53'55", long 92°52'04", in SW 1/4 sec.36, T.26 N., | 1997- | 05-19-02 | 10.72 | 3,380 ^b | 05-19-2002 | 10.72 | 3,380 ^b | | Creek near | R.18 W., Hydrologic Unit | | Record: | | | | | | | Ava, Mo. | 11010003, Douglas County, on | | 1997-1998 | <7.17 | + , | | | | | | downstream side of bridge on | | 05-05-99 | 9.99 | 2,640 ^b | | | | | | State Highway T, 13 miles southwest of Ava. Drainage area 25.5 mi ² , slope 47.4 ft/mi. | | 2000-2001 | <7.14 | + | | | | | 07061260
East Fork Black | Lat 37°36'14", long 90°47'19",
in SE 1/4 sec.35, T.34 N., | 1997- | 05-19-02 | 15.41 | 9,900 ^a | 05-19-2002 | 15.41 | 9,900 ^a | | River near | R.2 E., Hydrologic Unit | | Record: | | | | | | | Ironton, Mo. | 11010007, Iron County, on | | 05-31-97 | 10.02 | 2,260 | | | | | | downstream side of bridge on | | 03-19-98 | 7.62 | 603 | | | | | | State Highway N, 10 miles west of Ironton at Iron/Rey- | | 02-07-99 | 10.42 | 2,640 | | | | | | nolds County line. Drainage | | 2000 | <7.04 | + | | | | | | area 16.2 mi ² , slope 60.7 ft/mi. | | 07-29-01 | 7.78 | 680 | | | | | 07063470
Tenmile Creek | Lat 36°46'59", long 90°33'35",
in SE 1/4 sec.30, T.25 N., | 1997- | 05-19-02 | 13.81 | 11,700 ^b | 05-19-2002 | 13.81 | 11,700 ^b | | near Poplar | R.5 E., Hydrologic Unit | | Record: | | | | | | | Bluff, Mo. | 11010007, Butler County, on | | 04-06-97 | 11.82 | 8,130 ^b | | | | | | downstream side of bridge on | | 07-31-98 | 7.10 | 2,780 | | | | | | State Highway TT, 8 miles west of Poplar Bluff. | | 04-04-99 | 8.79 | 4,440 | | | | | | Drainage area 59.0 mi ² , | | 06-18-00 | 9.26 | 4,950 | | | | | | slope 17.0 ft/mi. | | 07-29-01 | 5.56 | 1,500 | | | | | 07071750
Louse Creek | Lat 36°34'37", long 91°19'06",
near center sec.8, T.22 N., | 1997- | 01-30-02 | 5.74 | 364 ^b | 04-05-1997 | 7.20 | + | | near Alton, | R.3 W., Hydrologic Unit | | Record: | | | | | | | Mo. | 11010011, Oregon County, on | | 04-05-97 | 7.20 | + | | | | | | downstream side of bridge on | | 1998-1999 | <4.44 | + | | | | | | State Highway E, 10 miles | | 06-18-00 | 7.00 | + | | | | | | southeast of Alton. Drain- | | 06-14-01 | 5.48 | 282 | | | | | | age area $5.69~\mathrm{mi}^2$, slope $48.1~\mathrm{ft/mi}$. | | 30 14 01 | J. 40 | 202 | | | | ⁺ Not determined. a Discharge determined by indirect method. b Rating extrapolated beyond indirect peak discharge. c Gage height based on poor field estimate. Water-quality partial-record stations are sites where chemical-quality, biological, and/or sediment data are collected systematically over a period of years for use in hydrologic analyses. The data are collected bi-annually rather than quarterly. | DATE | TIME | SAMPLE
TYPE | DIS-
CHARGE,
INST.
(cubic
feet
per
second)
(00061) | OXYGEN,
DIS-
SOLVED
(mg/L) | OXYGEN,
DIS-
SOLVED
(per-
cent
satur-
ation)
(00301) | pH
WATER
WHOLE
FIELD
(stand-
ard
units)
(00400) | SPE-
CIFIC
CON-
DUCT-
ANCE
(µS/cm)
(00095) | TEMPER-
ATURE
WATER
(deg C)
(00010) | ANC WATER UNFLTRD FET FIELD (mg/L as CaCO ₃) (00410) | CaCO ₃) | ANC
BICAR-
BONATE
IT
FIELD
(mg/L as
HCO ₃)
(00450) | ANC
CAR-
BONATE
IT
FIELD
(mg/L
as CO ₃)
(00447) | NITRO-
GEN,
AMMONIA
DIS-
SOLVED
(mg/L
as N)
(00608) | |------------------|--------------|----------------------------|---|-------------------------------------|---|--|--|---|--|---------------------|---|--|--| | | | | | 070 | 64400 M | ONTAUK SP | RINGS AT | MONTAUK | | | | | | | OCT
03 | 1600 | ENVIRONMENTAL | 46 | 8.4 | 85 | 7.4 | 314 | 13.9 | 154 | 155 | 189 | 0 | <.04 | | MAY
30 | 1700 | ENVIRONMENTAL | 155 | 9.2 | 98 | 7.2 | 194 | 16.1 | 86 | 87 | 107 | 0 | <.04 | | | | | | 07064440 | CURRENT | RIVER BE | LOW MONTA | UK STATE | PARK | | | | | | OCT
03 | 1430 | ENVIRONMENTAL | 48 | 12.3 | 130 | 8.0 | 311 | 16.5 | 152 | 154 | 188 | 0 | <.04 | | MAY
30
30 | 1515
1545 | BLANK
ENVIRONMENTAL | 189 | 9.8 |
106 | 7.2 |
194 |
17.4 |
79 |
78 |
96 |
0 | <.04
E.02 | | | | | | 07 | 064530 | WELCH SPR | ING NEAR | AKERS | | | | | | | OCT
03 | 1130 | ENVIRONMENTAL | 90 | 8.6 | 87 | 7.4 | 343 | 14.0 | 175 | 177 | 216 | 0 | <.04 | | MAY
30 | 1330 | ENVIRONMENTAL | | 9.3 | 91 | 6.9 | 210 | 13.2 | 94 | 94 | 115 | 0 | <.04 | | | | | | 0706455 | 5 PULLT | ITE SPRIN | G NEAR RO | UND SPRIN | G | | | | | | OCT | | | | | | | | | | | | | | | 03
MAY | 0900 | ENVIRONMENTAL | | 8.3 | 83 | 7.7 | 321 | 13.7 | 161 | 162 | 198 | 0 | <.04 | | 30 | 1015 | ENVIRONMENTAL | 150 | 9.6 | 96 | 6.9 | 162 | 13.1 | 73 | 76 | 93 | 0 | <.04 | | | | | | 0706 | 5000 RO | UND SPRIN | G AT ROUN | D SPRING | | | | | | | OCT
02
MAY | 1415 | ENVIRONMENTAL | 16 | 8.6 | 87 | 7.5 | 343 | 14.7 | 179 | 181 | 220 | 0 | <.04 | | 29 | 1715 | ENVIRONMENTAL | 153 | 9.1 | 91 | 7.1 | 217 | 13.8 | 82 | 82 | 100 | 0 | <.04 | | | | | | 0 | 7065500 | ALLEY SP | RING AT A | LLEY | | | | | | | OCT
02
02 | 1630
1631 | ENVIRONMENTAL
REPLICATE | 70
 | 10.7 | 107 | 7.5 | 320 | 14.3 | 163
 | 164 | 200 | 0 | <.04
<.04 | | MAY
29 | 0810 | ENVIRONMENTAL | 311 | 9.4 | 93 | 6.9 | 175 | 13.4 | 54 | 53 | 65 | 0 | <.04 | | | | | | 070665 | 10 CURR | ENT RIVER | ABOVE PO | WDER MILL | | | | | | | OCT
02 | 1030 | ENVIRONMENTAL | 411 | 8.8 | 92 | 8.0 | 345 | 16.6 | 182 | 185 | 226 | 0 | <.04 | | MAY
29 | 1345 | ENVIRONMENTAL | | 9.9 | 105 | 7.5 | 233 | 16.9 | 110 | 110 | 134 | 0 | <.04 | | | | | | 070 | 66550 B | LUE SPRIN | G NEAR EM | INENCE | | | | | | | OCT | | | | | | | | | | | | | | | 02
MAY | 0845 | ENVIRONMENTAL | | 8.3 | 83 | 7.4 | 319 | 14.0 | 154 | 154 | 188 | 0 | <.04 | | 28 | 1500 | ENVIRONMENTAL | 239 | 9.1 | 89 | 6.9 | 159 | 13.7 | 59 | 60 | 73 | 0 | <.04 | | ogm | | | | 07067800 | CURREN | T RIVER B | ELOW HAWE | S CAMPGRO | UND | | | | | | OCT
01
MAY | 1150 | ENVIRONMENTAL | 820 | 11.2 | 117 | 7.6 | 342 | 16.9 | 171 | 171 | 209 | 0 | <.04 | | 29
29 | 1115
1116 | ENVIRONMENTAL
REPLICATE | 4800 | 9.3 | 98 | 7.6 | 222 | 16.8 | 114 | 116 | 141 | 0 | <.04
<.04 | | DATE | NITRO-
GEN,AM-
MONIA +
ORGANIC
TOTAL
(mg/L
as N)
(00625) | NITRO-
GEN,
NO ₂ +NO ₃
DIS-
SOLVED
(mg/L
as N)
(00631) | NITRO-
GEN,
NITRITE
DIS-
SOLVED
(mg/L
as N)
(00613) | PHOS-
PHORUS
DIS-
SOLVED
(mg/L
as P)
(00666) | PHOS-
PHORUS
ORTHO,
DIS-
SOLVED
(mg/L
as P)
(00671) | PHOS-
PHORUS
TOTAL
(mg/L
as P)
(00665) | E COLI,
MTEC MF
WATER
(col./
100 mL)
(31633) | COLI-
FORM,
FECAL,
0.7
µm-MF
(col./
100 mL)
(31625) | FECAL
STREP,
KF STRP
MF,
WATER
(col./
100 mL)
(31673) | CADMIUM
WATER
UNFLTRD
TOTAL
(µg/L
as Cd)
(01027) | LEAD,
TOTAL
RECOV-
ERABLE
(µg/L
as Pb)
(01051) | SILVER,
TOTAL
RECOV-
ERABLE
(µg/L
As Ag)
(01077) | ZINC,
TOTAL
RECOV-
ERABLE
(µg/L
as Zn)
(01092) | |------------------|---|---|--|--|--|---|---|--|--|--|--|--|--| | | | | | C | 7064400 | MONTAUK S | PRINGS AT | MONTAUK | | | | | | | OCT
03
MAY | <.10 | .61 | <.008 | <.06 | <.02 | <.06 | K8 | K12 | 48 | <.1 | <1 | <.3 | <20 | | 30 | E.06 | .44 | <.008 | <.06 | <.02 | <.06 | K8 | K8 | 27 | <.1 | <1 | <.3 | E20 | | | | | | 0706444 | 0 CURREN | TT RIVER B | BELOW MONT | AUK STATE | PARK | | | | | | OCT | | | | | | | | | | | | | | | 03
MAY | .11 | . 47 | E.007 | <.06 | <.02 | E.03 | К9 | 21 | K17 | <.1 | <1 | <.3 | <20 | | 30
30 | <.10
.13 | <.05
.43 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 |
K3 |
21 |
22 | <.1
<.1 | <1
<1 | <.3
<.3 | E20
E20 | | | | | | C | 7064530 | WELCH SPR | ING NEAR | AKERS MO | | | | | | | OCT | | | | | | | | | | | | | | | 03
MAY | <.10 | .57 | <.008 | <.06 | <.02 | <.06 | K2 | К3 | К3 | <.1 | <1 | <.3 | <20 | | 30 | E.08 | .82 | <.008 | <.06 | <.02 | <.06 | 21 | K12 | 48 | <.1 | <1 | <.3 | <20 | | | | | | 07064 | 1555 PULL | TITE SPRI | NG NEAR R | OUND SPRI | NG | | | | | | OCT | 1.0 | 45 | 000 | 0.5 | 20 | 0.5 | | | 20 | | | 2 | 20 | | 03
MAY | <.10 | . 45 | <.008 | <.06 | <.02 | <.06 | К9 | K12 | 38 | <.1 | <1 | <.3 | <20 | | 30 | E.09 | .33 | <.008 | <.06 | E.01 | <.06 | K14 | K14 | 26 | <.1 | <1 | <.3 | <20 | | | | | | 070 |)65000 R | OUND SPRI | NG AT ROU | ND SPRING | }
| | | | | | OCT
02 | <.10 | . 29 | <.008 | <.06 | <.02 | <.06 | К9 | K10 | K13 | <.1 | <1 | <.3 | <20 | | MAY
29 | E.07 | . 43 | <.008 | <.06 | <.02 | <.06 | 27 | 23 | 36 | <.1 | <1 | <.3 | <20 | | | _,_, | , | | | | ALLEY S | | | | | _ | | | | OCT | | | | | 07003300 | ALLEI S | FRING AI | ALDET | | | | | | | 02
02
MAY | <.10
<.10 | .50
.490 | E.006
.020 | <.06
<.060 | <.02
<.020 | <.06
<.060 | K7
 | K7
 | K15
 | <.1
<.1 | <1
<1 | <.3
<.3 | <20
<20 | | 29 | E.07 | .61 | <.008 | <.06 | E.01 | <.06 | 31 | K71 | 62 | <.1 | <1 | <.3 | E20 | | | | | | 0706 | 6510 CUR | RENT RIVE | R ABOVE P | OWDER MII | ıL | | | | | | OCT | | | | | | | | | | | | | | | 02
MAY | <.10 | .19 | <.008 | <.06 | <.02 | <.06 | K4 | K11 | К7 | <.1 | <1 | <.3 | <20 | | 29 | E.10 | .36 | <.008 | <.06 | <.02 | <.06 | K8 | K15 | 20 | <.1 | <1 | <.3 | 60 | | | | | | C | 7066550 | BLUE SPRI | NG NEAR E | MINENCE | | | | | | | OCT
02
MAY | <.10 | .32 | <.008 | <.06 | <.02 | <.06 | <1 | К3 | К3 | <.1 | <1 | <.3 | <20 | | 28 | E.05 | .60 | <.008 | <.06 | <.02 | <.06 | К6 | К9 | К9 | <.1 | <1 | <.3 | E10 | | | | | | 070678 | 300 CURRE | NT RIVER | BELOW HAW | ES CAMPGE | OUND | | | | | | OCT | | | | | | | _ | | | _ | _ | _ | | | 01
MAY | <.10 | .14 | <.008 | <.06 | <.02 | <.06 | <1 | К3 | К3 | <.1 | <1 | <.3 | <20 | | 29
29 | E.06
E.10 | .36
.36 | <.008
<.008 | <.06
<.06 | <.02
<.02 | <.06
<.06 | K16
67 | 59
43 | 150
125 | <.1
<.1 | <1
<1 | <.3
<.3 | <20
E20 | K--Results based on colony count outside the acceptable range (non-ideal colony count). E--Laboratory estimated value. <--Numeric result is less than the value shown. | A | | Barnett Hollow near Camdenton | 533 | |---|-----------|--|----------| | | | Base discharge, definition of | 19 | | Access to USGS water data | 18 | Base flow, definition of | 20 | | Accuracy of data and computed results | 14 | Bates Creek at Potosi | 534 | | Acid neutralizing capacity, definition of | 19 | Battlefield | | | Acre-foot, definition of | 19 | Wilson Creek near | 412 | | Adenosine triphosphate, definition of | 19
530 | Bear Creek at Hannibal | 60 | | Agee Creek near Savannah | 530 | near Bolivar | 532 | | Agency Platte River near | 101 | near Patterson | 534 | | Akers | 101 | Bear Creek Basin, hydrologic records in | 60 | | Current River above | 472 | Beaver Creek at Bradleyville | 452 | | Welch Spring near | 536 | Bed load, definition of | 20 | | Algae | | Bed material, definition ofBed-load discharge, definition of | 20
20 | | Blue-green, definition of | 20 | Belle | | | Fire, definition of | 23 | Upper Peavine Creek near | 534 | | Green, definition of | 24 | Bellefontaine Neighbors | | | Algal growth potential, definition of | 19 | Maline Creek at | 274 | | Alkalinity, definition of | 19 | Watkins Creek at | 270 | | Allendale | 126 | Bennett Spring | | | East Fork Grand River at | 136 | Niangua River below | 211 | | Alley Chring at | E26 | Benthic organisms, definition of | 20 | | Alley Spring below | 536 | Berryman | | | Alley Spring below | 477 | Courtois Creek at | 315 | | Alley Spring Jacks Fork above | 475 | Bethany | | | Jacks Fork at | 476 | Big Muddy Creek near | 530 | | Alley Spring at Alley | 536 | East Fork Big Creek near | 138 | | below Alley | 477 | Big Creek at Des Arc | 380 | | Alton | 1// | at Sam A. Baker State Park | 381 | | Louse Creek near | 535 | Big Muddy Creek near Bethany | 530 | | Ambient Water-Quality Network, | 333 | Big Piney | 225 | | definition of | 8 | Big Piney River near | 225 | | Analyses of samples collected at water- | • | below Ft. Leonard Wood | 226 | | quality partial-record stations | 536 | near Big Piney | 225 | | Annapolis | | Big River at Byrnesville | 328 | | Black River below | 467 | at Irondale | 324 | | Black River near | 466 | near Richwoods | 325 | | Annual 7-day minimum, definition of | 19 | Big Spring near Van Buren | 490 | | Annual runoff, definition of | 19 | Big Sugar Creek near Powell | 517 | | Arkansas River Basin, | | Biochemical oxygen demand, definition of | 20 | | hydrologic records in | 504 | Biomass pigment ratio, definition of | 20 | | Arnold | | Biomass, definition of | 20 | | Martigney Creek near | 309 | Black Jack | | | Aroclor | 19 | Coldwater Creek near | 265 | | Arrangement of records | 15 | Spanish Lake Trib near | 269 | | Artificial substrate, definition of | 19 | Black River at Poplar Bluff | 471 | | Ash mass, definition of | 19 | below Annapolis | 467 | | Aspect, definition of | 19 | near Annapolis | 466 | | Atlanta | | Blackwater River near Blue Lick | 177 | | Long Branch Creek at | 167 | Blank samples, explanation of | 17 | | Ava | F 2 F | Blue Lick | | | Little Beaver Creek near | 535 | Blackwater River near | 177 | | В | | Blue River at Kansas City | 109 | | _ | | at 12th St in Kansas City | 129 | | Bacteria, definition of | 19 | Blue River Basin, hydrologic records in | 109 | | Bagnell | | Blue Spring near Eminence | 536 | | Lake of the Ozarks near | 214 | Blue Springs | 101 | | Osage River near | 215 | Blue Springs Reservoir near | 131 | | Ballwin | | Blue Springs Reservoir near Blue Springs | 131 | | Kiefer Creek near | 330 | Blue-green algae, definition of | 20 | | Bankfull stage, definition of | 19 | Boaz James River near | 419 | | Bardley | | Boeuf Creek Basin, hydrologic records in | 533 | | Eleven Point River near | 501 | booki creek basin, nyarorogic records in | 533 | | Bolivar | | Caulks Creek at Chesterfield | 247 | |--|-----------|---|-----------------| | Bear Creek near | 532 | Cedar Creek near Pleasant View | 196 | | Bonhomme Creek near Clarkson Valley | 242 | Cedar Fork near Gerald | 533 | | near Ellisville | 241 | Cells volume, definition of | 20 | | Bonne Femme Creek Basin, | | Cells/volume, definition of | 20 | | hydrologic records in | 532 | Center | | | Boonville | | Mark Twain Lake near | 69 | | Missouri River at | 178 | Salt River near | 71 | | Bottom material, definition of | 20 | Center Creek near Smithfield | 507 | | Bourbeuse River above Union | 321 | Centerville | | | at Union | 323 | West Fork Black River at | 459 | | near High Gate | 320 | Cfs-day, definition of | 20 | | Bowling Green | | Channel bars, definition of | 20 | | Irvine Branch near | 529 | Chariton River at Livonia | 160 | | Bradleyville | | at Novinger | 161 | | Beaver Creek at | 452 | near Prairie Hill | 162 | | Branson | | Chariton River Basin, | | | Lake Taneycomo at | 445 | hydrologic records in | 160 | | Table Rock Lake near | 439 | Chemical oxygen demand, definition of | 20 | | White River bl Table Rock Dam near | 440 | Chester, IL | | | White River near | 442 | Mississippi River at | 360 | | Bridgeton | 0=0 | Chesterfield | | | Cowmire Creek at | 259 | Caulks Creek at | 247 | | Fee Fee Creek near | 253 | Creve Coeur Creek at | 248 | | Brookline | 400 | Clarkson Valley | 0.40 | | Wilson Creek near | 407 | Bonhomme Creek near | 242 | | Brush Creek | 110 | Classification of records | 15 | | at Rockhill Rd in Kansas City | 119 | Clear Creek near Harrisonville | 533 | | at Ward Pkwy in Kansas | 118 | near Nevada | 532 | | Brushy Creek near Queen City | 529 | Clearwater Lake near Piedmont | 470 | | Bryant Creek below Evans | 456 | Clinton | 200 | | near Tecumseh | 458 | South Grand River near | 208 | | Buffalo Creek at Tiff City | 527 | Clostridium perfringens, definition of Coldwater Creek near Black Jack | 21
265 | | Bulk electrical conductivity, definition of | 20 | | 205 | | | 20 | Cole Camp | F 2 1 | | Bull Creek near Walnut Shade | 449
79 | Lake Creek near | 531
21 | | Burgermeister Spring near Weldon Spring Butler | 19 | Coliphages, definition of | 21 | | Miami Creek near | 180 | Lake Taneycomo at | 443 | | Byrnesville | 100 | Color unit, definition of | 21 | | Big River at | 328 | Confined aquifer, definition of | 21 | | big kiver at | 340 | Contents, definition of | 21 | | C | | Contents, table of | Z I | | | | Continuous-record station, definition of | 21 | | Cabool | | Control structure, definition of | 21 | | Hamilton Creek near | 533 | Control, definition of | 21 | | Calendar for water year 2002 | Front | Cooperation | 1 | | | Cover | Courtois Creek at Berryman | 315 | | California | | Cowmire Creek at Bridgeton | 259 | | Moniteau Creek near | 532 | Crane | 233 | | Camdenton | | Dry Crane Creek near | 534 | | Barnett Hollow near | 533 | Creve Coeur | JJ 1 | | Camp Creek near Marshall | 532 | Creve Coeur Creek near | 249 | | Canton | | Creve Coeur Creek at Chesterfield | 248 | | Wyaconda River above | 49 | near Creve Coeur | 249 | | Caplinger Mills | | Crooked Creek near Paris | 63 | | Sac River near | 197 | Cubic foot per second per square mile, | 33 | | Carrollton | | definition of | 21 | | Rock Branch near | 531 | Cubic foot per second, definition of | 21 | | Carthage | | Cubic foot per second-day, definition of | 21 | | Spring River near | 504 | Cuivre River Basin, | | | Cassville | | hydrologic records in | 74 | | Roaring River Spring near | 396 | Cuivre River near Troy | 74 | | Castor River at Zalma | 365 | | , 1 | | near Fredericktown | 534 | | | | Current River above Akers | 472 | East Fork Black River near Ironton4 | 61,535 | |---|-------|---|--------| | above Powder Mill | 536 | near Lesterville | 463 | | at Doniphan | 493 | East Fork Grand River at Allendale | 136 | | at Van Buren | 489 | East Fork Little Chariton River | | | below Hawes Campground | 536 | near Huntsville | 170 | | below Montauk State Park | 536 | near Macon | 169 | | | | Edina | | | D | | Little Fabius River near | 529 | | Dadanilla | | Eleven Point River near Bardley | 501 | | Dadeville Sac River near | 100 | Elk Fork Salt River
near Madison | 67 | | | 188 | Elk River near Tiff City | 521 | | Daily mean suspended-sediment | 0.1 | Ellington | | | concentration, definition of | 21 | Logan Creek at | 469 | | Daily-record station, definition of | 21 | Ellisville | | | Dardenne Creek at O'Fallon | 77 | Bonhomme Creek near | 241 | | at Old Town St. Peters | 78 | Embeddedness, definition of | 22 | | Dardenne Creek Basin, | | Eminence | | | hydrologic records in | 77 | Blue Spring near | 536 | | Data collection and computation | 10 | Jacks Fork ab 2nd unnamed hollow bl | 481 | | Data collection platform, definition of | 21 | Jacks Fork ab Lick Log Hollow bl | 482 | | Data logger, definition of | 21 | Jacks Fork at | 479 | | Data presentation | 11,16 | Mahans Creek above | 478 | | Data table of daily mean values | 12 | Engelholm Creek near Wellston | 288 | | Datum, definition of | 21 | Enterococcus bacteria, definition of | 22 | | Davis Creek at Mound City | 91 | EPT Index, definition of | 22 | | Deer Creek at Ladue | 292 | Escherichia coli (E. coli), | | | at Maplewood | 299 | definition of | 23 | | Deerfield | | Estimated (E) concentration value, | | | Dry Wood Creek near | 182 | definition of | 23 | | Definition of terms | 19 | Euglenoids, definition of | 23 | | Des Arc | | Eureka | | | Big Creek at | 380 | Meramec River near | 329 | | DeSoto, KS | | Evans | | | Kansas River at | 107 | Bryant Creek below | 456 | | Devil's Elbow | | Ewing | | | Big Piney River at | 227 | Troublesome Creek near | 52 | | Diagram showing system for numbering | | Explanation of the records | 9 | | miscellaneous sites (latitude | | Extractable organic halides, | | | and longitude) | 10 | definition of | 23 | | Diatom, definition of | 21 | | | | Diel, definition of | 21 | F | | | Discharge at partial-record stations | 529 | | | | Discharge, definition of | 22 | Fabius River Basin, | | | Dissolved oxygen, definition of | 22 | hydrologic records in | 50 | | Dissolved trace-element concentrations | 17 | Factors for converting inch-pound units | | | Dissolved, definition of | 22 | to International System Units (SI) | Back | | Dissolved-solids concentration, | | | Cove | | definition of | 22 | Fairdealing | | | Diversity index, definition of | 22 | Little Black River below | 496 | | Doniphan | | Fayette | | | Current River at | 493 | Ganaway Creek near | 532 | | Downstream order and station number | 9 | Fecal coliform bacteria, definition of | 23 | | Drainage area, definition of | 22 | Fecal streptococcal bacteria, | | | Drainage basin, definition of | 22 | definition of | 23 | | Dry Crane Creek near Crane | 534 | Fee Fee Creek near Bridgeton | 253 | | Dry Fork near Hermann | 533 | Fenton | | | Dry mass, definition of | 22 | Fenton Creek near | 349 | | Dry weight, definition of | 22 | Yarnell Creek at | 348 | | Dry Wood Creek near Deerfield | 182 | Fenton Creek near Fenton | 349 | | Dunlap | | Finley Creek below Riverdale | 426 | | No Creek near | 145 | Fire algae, definition of | 23 | | 77 | | Fishing River Basin, | | | E | | hydrologic records in | 530 | | East Fork Big Creek near Bethany | 138 | Fishpot Creek at Valley Park | 338 | | | _50 | Flat Creek at Jenkins | 437 | Н | Florissant | | | | |--|------------|--|-------| | Mill Creek near | 264 | Habitat quality index, definition of | 24 | | Flow, definition of | 22 | Habitat, definition of | 24 | | Flow-duration percentiles, definition of | 23 | Hagers Grove | | | Fox River at Wayland | 46 | North Fork Salt River at | 61 | | Fox River Basin, hydrologic records in | 46 | Hamilton Creek near Cabool | 533 | | Frankford | | Hannibal | | | Spencer Creek below Plum Creek near | 73 | Bear Creek at | 60 | | Fredericktown | | Hardness, definition of | 24 | | Castor River near | 534 | Harris | | | Freeman | | Little Medicine Creek near | 150 | | South Grand River below | 204 | Medicine Creek at | 147 | | Ft. Leonard Wood | | Harrisonville | | | Big Piney below | 226 | Clear Creek near | 533 | | Roubidoux Creek above | 220 | Harry S. Truman Reservoir at Warsaw | 209 | | Roubidoux Creek below | 221 | Hawes Campground | | | Roubidoum Cicch Below | 221 | Current River below | 536 | | G | | Hazelgreen | | | | | Gasconade River near | 219 | | Gage datum, definition of | 23 | Headwater Diversion Channel Basin, | | | Gage height, definition of | 23 | hydrologic records in | 365 | | Gage values, definition of | 23 | Hermann | | | Gaging station, definition of | 23 | Dry Fork near | 533 | | Galena | | Missouri River at | 235 | | James River at | 431 | Hermitage | 233 | | Gallatin | | Pomme de Terre Lake near | 202 | | Grand River near | 139 | Pomme de Terre River near | 203 | | Marrowbone Creek near | 530 | Higginsville | 203 | | Ganaway Creek near Fayette | 532 | 33 | E 2 0 | | Gas chromatography/flame ionization | 332 | Tabo Creek near | 530 | | detector, definition of | 23 | High Gate | 200 | | Gasconade River above Jerome | 229 | Bourbeuse River near | 320 | | | | High tide, definition of | 24 | | at Jerome | 233
219 | Hilsenhoff's Biotic Index, definition of | 24 | | near Hazelgreen | | Holliday | | | near Rich Fountain | 234 | Middle Fork Salt River near | 66 | | Gasconade River Basin, | 010 | Holt | | | hydrologic records in | 219 | New Hope Creek near | 530 | | Geomorphic channel units, definition of | 24 | Horizontal datum, definition of | 24 | | Gerald | F 2 2 | Horton | | | Cedar Fork near | 533 | Little Osage River at | 181 | | Glasgow | | Huntsville | | | Missouri River at | 173 | East Fork Little Chariton River near | 170 | | Grafton, IL | | Huzzah Creek near Steelville | 313 | | Mississippi River at | 82 | Hydrologic Benchmark Network | 8 | | Graham | | Hydrologic index stations, definition of | 24 | | Nodaway River near | 93 | Hydrologic unit, definition of | 24 | | Grand Glaize Creek near Manchester | 342 | | | | near Valley Park | 344 | I | | | Grand River Basin, hydrologic records in | 134 | | | | Grand River near Gallatin | 139 | Identifying estimated daily discharge | 14 | | near Sumner | 155 | Illustrations, list of | vi | | Grant City | | Inch, definition of | 24 | | Middle Fork Grand River near | 134 | Indian Creek near Lanagan | 518 | | Graphs showing comparison of 2002 water- | | Instantaneous discharge, definition of | 24 | | year mean discharge to long-term mean | | Introduction | 1 | | discharge | 6 | Irondale | | | Gravois Creek near Mehlville | 305 | Big River at | 324 | | Green algae, definition of | 24 | Ironton | | | Greenfield | | East Fork Black River near 46 | 1,535 | | Turnback Creek above | 189 | Irvine Branch near Bowling Green | 529 | | Greer | | Island, definition of | 24 | | Greer Spring at | 498 | | | | Greer Spring at Greer | 498 | | | | J | | Long Branch Reservoir near Macon | 168 | |-------------------------------------|------------|---|------------| | | | Longview Reservoir at Kansas City | 130 | | Jacks Fork above Alley Spring | 475 | Mark Twain Lake near Center | 69 | | ab 2nd unnamed hollow bl Eminence | 481 | Pomme de Terre Lake near Hermitage | 202 | | ab L. Shawnee Creek ab Two Rivers | 487 | Smithville Reservoir near Smithville | 103 | | ab Lick Log Hollow bl Eminence | 482 | Stockton Lake near Stockton | 194 | | ab Powell Spring ab Two Rivers | 485 | Table Rock Lake near Branson | 439 | | above Two Rivers | 483 | Wappapello Lake at Wappapello | 384 | | at Alley Spring | 476 | Lamine River Basin, hydrologic records in | 174 | | at Eminence | 479 | Lamine River near Otterville | 174 | | bl 3rd unnamed hollow ab Two Rivers | 488 | near Pilot Grove | 175 | | near Mountain View | 474 | Lanagan | | | James River at Galena | 431
419 | Indian Creek near | 518 | | near Springfield | 419 | Land-surface datum, definition of | 24 | | Jefferson City | 403 | Laredo | | | Moreau River near | 179 | Medicine Creek at | 149 | | Jenkins | 110 | Latent heat flux, definition of | 24 | | Flat Creek at | 437 | Lebanon | F22 | | Jerome | 137 | Selvage Hollow near | 533 | | Gasconade River above | 229 | East Fork Black River near | 463 | | Gasconade River at | 233 | Taum Sauk Creek near | 464 | | Joplin | 255 | Lewistown | 404 | | Shoal Creek above | 516 | Troublesome Creek near | 529 | | Turkey Creek near | 512 | Lick Creek at Perry | 68 | | | | Light-attenuation coefficient, | 00 | | K | | definition of | 25 | | | | Lindley Creek near Polk | 201 | | Kansas City | | Linneus | 201 | | Blue River at | 109 | Locust Creek near | 154 | | Blue River at 12th St in | 129 | Smokey Creek near | 531 | | Brush Creek at Rockhill Rd in | 119 | Lipid, definition of | 25 | | Brush Creek at Ward Pkwy in | 118 | List of discontinued surface-water | | | Longview Reservoir at | 130 | discharge or stage-only stations | xii | | Missouri River at | 108 | List of discontinued surface-water | | | Kansas River at DeSoto, KS | 107 | quality stations | xv | | Kansas River Basin, | 107 | List of surface-water stations, in | | | hydrologic records in | 330 | downstream order, for which records | | | Kirkwood | 330 | are published in this volume | vii | | Sugar Creek at | 343 | Little Beaver Creek near Ava | 535 | | Knob Noster | 343 | Little Black River below Fairdealing | 496 | | Little Walnut Creek near | 532 | Little Blue River Basin, | | | Erecre warnae erech near | 332 | hydrologic records in | 130 | | L | | Little Blue River near Lake City | 132 | | | | Little Chariton River Basin, | | | Laboratory measurements | 16 | hydrologic records in | 167 | | Laboratory reporting level, | | Little Fabius River near Edina | 529 | | definition of | 24 | Little Medicine Creek near Harris | 150 | | Ladue | | Little Osage River at Horton | 181 | | Deer Creek at | 292 | Little Piney Creek at Newburg | 232 | | Lake City | | Little Platte River at Smithville | 104 | | Little Blue River near | 132 | near Plattsburg | 102 | | Lake Creek near Cole Camp | 531 | Little River Ditch 1 near Morehouse | 391 | | Lake of the
Ozarks near Bagnell | 214 | Little River Ditches near Rives | 392 | | Lake Taneycomo at Branson | 445 | Little Sac River near Morrisville | 193 | | at College of the Ozarks | 443 | near Walnut Grove | 191 | | Lakes and Reservoirs | | Little Tarkio Creek Basin, | F 2 0 | | Blue Springs Reservoir | 101 | hydrologic records in | 530 | | near Blue Springs | 131 | Little Tarkio Creek near Tarkio | 530 | | Clearwater Lake near Piedmont | 470 | Little Walnut Creek near Knob Noster | 532 | | Harry S. Truman Reservoir at Warsaw | 209 | Livonia | 1.00 | | Lake of the Ozarks near Bagnell | 214 | Chariton River at | 160
521 | | Lake Taneycomo | 11E | Locust Creek at Reger | 531 | | at Branson | 445 | near Linneusnear Unionville | 154 | | at correge of the Ozarks | 443 | medi niiiniiviiie | 152 | | Logan Creek at Ellington | 469 | Maryville | | |---|-----|---|-----------| | Long Branch Creek at Atlanta | 167 | One Hundred and Two River at | 100 | | Long Branch near Santa Fe | 65 | Mattese | | | Long Branch Reservoir near Macon | 168 | Mattese Creek near | 355 | | Long-term method detection level, | | Mattese Creek near Mattese | 355 | | definition of | 25 | Maximum discharge at crest-stage | | | Longview Reservoir at Kansas City | 130 | partial-record stations | 529 | | Louse Creek near Alton | 535 | Mean concentration of suspended sediment, | | | Loutre River Basin, | | definition of | 25 | | hydrologic records in | 533 | Mean discharge, definition of | 25 | | Low flow, 7-day 10-year, definition of | 29 | Mean high tide, definition of | 25 | | Low tide, definition of | 25 | Mean low tide, definition of | 25 | | Lower Mississippi River Basin, | | Mean sea level, definition of | 25 | | hydrologic records in | 270 | Measuring point, definition of | 25 | | М | | Medicine Creek at Harris | 147 | | IvI | | at Laredo | 149 | | Mackenzie Creek near Shrewsbury | 304 | Mehlville | | | Macks Creek | | Gravois Creek near | 305 | | Niangua River at Tunnel Dam near | 213 | Membrane filter, definition of | 25 | | Macon | | Meramec River at Paulina Hills | 353 | | East Fork Little Chariton River near | 169 | near Eureka | 329 | | Long Branch Reservoir near | 168 | near Steelvillenear Sullivan | 312 | | Macrophytes, definition of | 25 | Meramec River Basin, | 317 | | Madison | | hydrologic records in | 310 | | Elk Fork Salt River near | 67 | Metamorphic stage, definition of | 25 | | Mahans Creek above Eminence | 478 | Method detection limit, definition of | 25 | | Maline Creek at Bellefontaine Neighbors | 274 | Methylene blue active substances, | 2.5 | | Manchester | | definition of | 25 | | Grand Glaize Creek near | 342 | Miami Creek near Butler | 180 | | Map showing location of crest-stage | | Micrograms per gram, definition of | 25 | | partial record stations | 528 | Micrograms per kilogram, definition of | 25 | | Map showing location of Metropolitan | | Micrograms per liter, definition of | 26 | | St. Louis Sewer District stations | 39 | Microsiemens per centimeter, | | | Map showing location of stations | | definition of | 26 | | in the Bootheel | 45 | Middle Fabius River near Monticello | 51 | | Map showing location of stations | | Middle Fork Grand River near Grant City | 134 | | in the East Ozarks | 44 | Middle Fork Salt River near Holliday | 66 | | Map showing location of stations | | Milan | | | in the Northeast Prairie | 41 | Spring Creek near | 531 | | Map showing location of stations | 4.0 | Mill Creek | | | in the Northwest Prairie | 40 | St. Francis River near | 377 | | Map showing location of stations in the West Central Plains | 42 | Mill Creek near Florissant | 264 | | Map showing location of stations | 42 | Milligrams per liter, definition of | 26 | | in the West Ozarks | 43 | Minimum reporting level, definition of | 26 | | Map showing location of surface-water | 43 | Miscellaneous site, definition of | 26 | | quality stations | 38 | Mississippi River at Chester, IL | 360 | | Map showing location of surface-water | 30 | at Grafton, IL | 82 | | stations | 37 | at St. Louis | 278 | | Map showing major drainage basin, | 3, | at Thebes, IL | 368 | | physiographic areas, and areas of | | Mississippi River Main Stem, | | | greater-than-mean discharge | | hydrologic records in | 82 | | during 2002 | 5 | Missouri River at Boonville | 178 | | Maplewood | | at Glasgow | 173 | | Deer Creek at | 299 | at Hermann | 235 | | Maramec Spring near St. James | 310 | at Kansas City | 108 | | Mark Twain Lake near Center | 69 | at Rulo, NE | 90
258 | | Marmaton River below Nevada | 183 | at St. Charles | 258
97 | | Marrowbone Creek near Gallatin | 530 | at St. Joseph | | | Marshall | | at Waverly | 133 | | Camp Creek near | 532 | Missouri River Main Stem, | 90 | | Marshfield | | hydrologic records in | 90 | | North Carolina Creek near | 534 | Moberly Mud Creek near | 529 | | Martigney Creek near Arnold | 309 | riud CICCA Heal | 243 | | Moniteau Creek Basin, | | North American Vertical Datum of 1988, | | |---|------|--|-----------------------| | hydrologic records in | 532 | definition of | 26 | | Moniteau Creek near California | 532 | North Carolina Creek near Marshfield | 534 | | Montauk | | North Fabius River at Monicello | 50 | | Montauk Springs at | 536 | North Fork River near Tecumseh | 453 | | Montauk Springs at Montauk | 536 | North Fork Salt River at Hagers Grove | 61 | | Montauk State Park | | near Shelbina | 62 | | Current River below | 536 | North River at Palmyra | 59 | | Monticello | | North River Basin, hydrologic records in | 59 | | Middle Fabius River near | 51 | Novinger | | | North Fabius River at | 50 | Chariton River at | 161 | | Moreau River Basin, | 30 | Walnut Creek near | 531 | | hydrologic records in | 179 | Numbering system for wells and | 331 | | Moreau River near Jefferson City | 179 | miscellaneous sites | 1.0 | | - | 179 | miscellaneous sites | 10 | | Morehouse | 201 | 0 | | | Little River Ditch 1 near | 391 | O . | | | Morrisville | | O'Fallon | | | Little Sac River near | 193 | Dardenne Creek at | 77 | | Most probable number (MPN), | | Old Town St. Peters | , , | | definition of | 26 | Dardenne Creek at | 78 | | Mound City | | | | | Davis Creek at | 91 | One Hundred and Two River at Maryville | 100 | | Squaw Creek near | 92 | On-site measurements | | | Mount Moriah | | and sample collection | 15 | | Thompson River near | 140 | Open or screened interval, definition of | 26 | | Mountain View | | Organic carbon, definition of | 26 | | Jacks Fork near | 474 | Organic mass, definition of | 26 | | Mud Creek near Moberly | 529 | Organism count/area, definition of | 26 | | Multiple-plate samplers, definition of | 26 | Organism count/volume, definition of | 27 | | Multiple-place samplers, definition of | 20 | Organochlorine compounds, definition of | 27 | | Manual Barbaras Mantha | 1.65 | Osage River above Schell City | 184 | | Mussel Fork near Mystic | 165 | below St. Thomas | 216 | | Mystic | | bl Harry S. Truman Dam at Warsaw | 210 | | Mussel Fork near | 165 | near Bagnell | 215 | | 27 | | Osage River Basin, hydrologic records in | 180 | | N | | Other data available | 14 | | Nanograms per liter, definition of | 26 | Otterville | 11 | | National Atmospheric Deposition | 20 | Lamine River near | 174 | | | 8 | Lamine River hear | 1/4 | | Program/National Trends Network National Geodetic Vertical Datum of 1929. | 8 | P | | | | | 1 | | | definition of | 26 | Pagedale | | | National Stream-Quality Accounting | | River des Peres Trib at | 287 | | Network, definition of | 8 | Palmyra | 207 | | National Water-Quality Assessment | | North River at | 59 | | Program, definition of | 8 | | 27 | | Natural substrate, definition of | 26 | Parameter Code, definition of | 21 | | Nekton, definition of | 26 | Paris | | | Nephelometric turbidity unit, | | Crooked Creek near | 63 | | definition of | 26 | Partial-record station, definition of | 27 | | Nevada | | Particle size, definition of | 27 | | Clear Creek near | 532 | Particle-size classification, | | | Marmaton River below | 183 | definition of | 27 | | New Hope Creek near Holt | 530 | Patterson | | | New London | 330 | Bear Creek near | 534 | | Salt River near | 72 | St. Francis River near | 383 | | | 12 | Patterson Creek near Tiff City | 519 | | Newburg | | Peak flow, definition of | 27 | | Little Piney Creek at | 232 | Pearson Creek near Springfield | 398 | | Niangua River | | Peerless Park | 550 | | at Tunnel Dam near Macks Creek | 213 | Williams Creek near | 334 | | below Bennett Springs | 211 | | 33 4
27 | | No Creek near Dunlap | 145 | Percent composition, definition of | | | Nodaway River Basin, | | Percent shading, definition of | 27 | | hydrologic records in | 93 | Periodic station, definition of | 27 | | Nodaway River near Graham | 93 | Periphyton, definition of | 27 | | Perry | | Records of stage and water discharge | 10 | |---|-----|---|-----| | Lick Creek at | 68 | Records of surface-water quality | 15 | | Perryville | | Recoverable, bottom material, | | | South Fork Saline Creek near | 364 | definition of | 28 | | Pesticides, definition of | 27 | Recurrence interval, definition of | 29 | | pH, definition of | 27 | Reference samples, explanation of | 18 | | Physiography | 4 | Reger | | | Phytoplankton, definition of | 28 | Locust Creek at | 531 | | Picocurie, definition of | 28 | Remark codes | 17 | | Piedmont | | Replicate samples, definition of | 29 | | Clearwater Lake near | 470 | Replicate samples, explanation of | 18 | | Pilot Grove | | Report documentation page | iv | | Lamine River near | 175 | Return period, definition of | 29 | | Pioneer | | Rich Fountain | | | Shoal Creek at | 515 | Gasconade River near | 234 | | Plankton, definition of | 28 | Richwoods
| | | Platte River at Sharps Station | 105 | Big River near | 325 | | near Agency | 101 | Riffle, definition of | 29 | | Platte River Basin, | | River des Peres near University City | 282 | | hydrologic records in | 100 | River des Peres Trib at Pagedale | 287 | | Plattsburg | | River mileage, definition of | 29 | | Little Platte River near | 102 | Riverdale | | | Pleasant View | | Finley Creek below | 426 | | Cedar Creek near | 196 | Rives | | | Polk | | Little River Ditches near | 392 | | Lindley Creek near | 201 | Roaring River Spring near Cassville | 396 | | Pomme de Terre River near | 198 | Rock Branch near Carrollton | 531 | | Polychlorinated biphenyls (PCB s), | | Roubidoux Creek above Ft. Leonard Wood | 220 | | definition of | 28 | below Ft. Leonard Wood | 221 | | Polychlorinated naphthalenes, | | Roubidoux Spring at Waynesville | 222 | | definition of | 28 | Round Spring | | | Pomme de Terre Lake near Hermitage | 202 | Pulltite Spring near | 536 | | Pomme de Terre River near Hermitage | 203 | Round Spring at | 536 | | near Polk | 198 | Round Spring at Round Spring | 536 | | Pool, definition of | 28 | Rulo, NE | | | Poplar Bluff | | Missouri River at | 90 | | Black River at | 471 | Run, definition of | 29 | | Tenmile Creek near | 535 | Runoff, definition of | 29 | | Potosi | | | | | Bates Creek at | 534 | S | | | Powder Mill | | Sac River at Highway J below Stockton | 195 | | Current River above | 536 | near Caplinger Mills | 197 | | Powell | | near Dadeville | 188 | | Big Sugar Creek near | 517 | Saco | 100 | | Prairie Hill | | St. Francis River near | 378 | | Chariton River near | 162 | Saline Creek Basin, | 370 | | Preface | iii | hydrologic records in | 364 | | Primary productivity, definition of | 28 | Salt River Basin, hydrologic records in | 61 | | Carbon method, definition of | 28 | Salt River near Center | 71 | | Oxygen method, definition of | 28 | near New London | 72 | | Princeton | | Sam A. Baker State Park | , - | | Weldon River at | 142 | Big Creek at | 381 | | Pulltite Spring near Round Spring | 536 | Santa Fe | 501 | | | | Long Branch near | 65 | | Q | | South Fork Salt River above | 64 | | Quality assurance of water-quality data | 16 | Savannah | 0. | | Queen City | 10 | Agee Creek near | 530 | | Brushy Creek near | 529 | Schell City | 220 | | Drabing Green near | 242 | Osage River above | 184 | | R | | Sea level, definition of | 29 | | | | Sediment | 16 | | Radiochemical programs, definition of | 9 | Sediment, definition of | 29 | | Radioisotopes, definition of | 28 | Selvage Hollow near Lebanon | 533 | | Reach, definition of | 28 | Sensible heat flux, definition of | 29 | | | | | | | Sharps Station | | St. Francis River at Wappapello | 386 | |---|----------|--|-----| | Platte River at | 105 | near Mill Creek | 377 | | Shawnee Creek above Two Rivers | 486 | near Patterson | 383 | | Shelbina | | near Saco | 378 | | North Fork Salt near | 62 | St. Francis River Basin, | | | Shelves, definition of | 29 | hydrologic records in | 377 | | Shoal Creek above Joplin | 516 | St. James | | | at Pioneer | 515 | Maramec Spring near | 310 | | Shrewsbury | | St. Joseph | | | Mackenzie Creek near | 304 | Missouri River at | 97 | | Smithfield | | St. Louis | | | Center Creek near | 507 | Mississippi River at | 278 | | Smithville | | St. Thomas | | | Little Platte River at | 104 | Osage River below | 216 | | Smithville Reservoir near | 103 | Stable isotope ratio, definition of | 30 | | Smithville Reservoir near Smithville | 103 | Stage (see gage height) | 30 | | Smokey Creek near Linneus | 531 | Stage-discharge relation, definition of | 30 | | Sodium adsorption ratio, definition of | 29 | Station identification numbers | 9 | | Soil heat flux, definition of | 29 | Station manuscript | 11 | | Soil-water content, definition of | 30 | Statistics of monthly mean data | 13 | | South Creek near Springfield | 406 | Steelville | | | South Fabius River near Taylor | 54 | Huzzah Creek near | 313 | | South Fork Little Dry Sac River | 31 | Meramec River near | 312 | | near Springfield | 190 | Stockton | 312 | | South Fork Saline Creek near Perryville | 364 | Sac River at Highway J below | 195 | | South Fork Salt River above Santa Fe | 64 | Stockton Lake near | 194 | | South Grand River below Freeman | 204 | Stockton Lake near Stockton | 194 | | near Clinton | 204 | | | | | | Streamflow, definition of | 30 | | Spanish Lake Trib near Black Jack | 269
8 | | 30 | | Special networks and programs | 30 | definition of | 19 | | Specific conductance, definition of | 30 | Substrate, artificial, definition of | | | Spencer Creek below Plum Creek | 72 | Substrate, definition of | 30 | | near Frankford | 73 | Sugar Creek at Kirkwood | 343 | | Spike samples, explanation of | 18 | Sullivan | | | Spring Creek near Milan | 531 | Meramec River near | 317 | | Spring River at Carthage | 504 | Summary of hydrologic conditions | 4 | | near Waco | 506 | Summary statistics | 13 | | Springfield | | Sumner | | | James River near | 403 | Grand River near | 155 | | Pearson Creek near | 398 | Surface area, definition of | 30 | | South Creek near | 406 | Surface waterstreamflow | 4 | | South Fork Little Dry Sac River near | 190 | Surficial bed material, definition of | 30 | | Wilson Creek at | 404 | Suspended sediment, definition of | 30 | | Wilson Creek near | 405 | Suspended solids, total residue at 105 °C | | | Springs | | concentration, definition of | 31 | | Alley Spring | | Suspended, definition of | 30 | | at Alley | 536 | Recoverable, definition of | 30 | | below Alley | 477 | Total, definition of | 31 | | Big Spring near Van Buren | 490 | Suspended-sediment concentration, | | | Blue Spring near Eminence | 536 | definition of | 30 | | Burgermeister Spring | | Suspended-sediment discharge, | | | near Weldon Spring | 79 | definition of | 31 | | Greer Spring at Greer | 498 | Suspended-sediment load, definition of | 31 | | Maramec Spring near St. James | 310 | Swan | | | Montauk Springs at Montauk | 536 | Swan Creek near | 450 | | Pulltite Spring near Round Spring | 536 | Swan Creek near Swan | 450 | | Roaring River Spring near Cassville | 396 | Synoptic studies, definition of | 31 | | Roubidoux Spring at Waynesville | 222 | | | | Round Spring at Round Spring | 536 | Т | | | Welch Spring near Akers | 536 | Mahla sising semanises of 0000 7 day 3 | | | Squaw Creek near Mound City | 92 | Table giving comparisons of 2002 7-day low | | | St. Charles | | flows to 7-day, 2-year low flows and | | | Missouri River at | 258 | minimum flows for the period of | | | | | record for selected stations | 7 | INDEX 547 | Table giving comparisons of peak discharge | | Ū | | |---|----------|---|------------| | for the 2002 water year with those for | | | | | period of record for selected stations . | 4 | Ultraviolet (UV) absorbance (absorption), | 32 | | Table giving minimum and maximum daily mean | | definition of | 33 | | suspended-sediment concentrations at two | - | Union | 33 | | selected stations for the water year | 7 | Bourbeuse River above | 321 | | Table giving range of dissolved-solids concentrations in selected streams | | Bourbeuse River at | 323 | | during the water year | 7 | Unionville | | | Table Rock Lake near Branson | 439 | Locust Creek near | 152 | | Tables, list of | vi | University City | | | Tabo Creek Basin, hydrologic records in | 530 | River des Peres near | 282 | | Tabo Creek near Higginsville | 530 | Upper Mississippi River Basin, | | | Tarkio | | hydrologic records in | 46 | | Little Tarkio Creek near | 530 | Upper Peavine Creek near Belle | 534 | | Taum Sauk Creek near Lesterville | 464 | | | | Taxa (Species) richness, definition of | 31 | V | | | Taxonomy, definition of | 31 | Valley Park | | | Taylor | | Fishpot Creek at | 338 | | South Fabius River near | 54 | Grand Glaize Creek near | 344 | | Tecumseh | | Van Buren | | | Bryant Creek near | 458 | Big Spring near | 490 | | North Fork River near | 453 | Current River at | 489 | | Tenmile Creek near Poplar Bluff | 535 | Vertical datum, definition of | 33 | | Thalweg, definition of | 31 | Volatile organic compounds, | | | Mississippi River at | 368 | definition of | 33 | | Thermograph, definition of | 31 | W | | | Thompson River at Trenton | 144 | W | | | near Mount Moriah | 140 | Waco | | | Tiff City | | Spring River near | 506 | | Buffalo Creek at | 527 | Walnut Creek near Novinger | 531 | | Elk River near | 521 | Walnut Grove | | | Patterson Creek near | 519 | Little Sac River near | 191 | | Time-weighted average, definition of | 31 | Walnut Shade | | | Tons per acre-foot, definition of | 31 | Bull Creek near | 449 | | Tons per day, definition of | 31 | Wappapello | | | Total coliform bacteria, definition of | 32 | St. Francis River at | 386 | | Total length definition of | 32
32 | Wappapello Lake at | 384
384 | | Total length, definition of | 32 | Wappapello Lake at Wappapello | 304 | | Total organism count, definition of | 32 | Harry S. Truman Reservoir at | 209 | | Total recoverable, definition of | 32 | Osage River bl Harry S. Truman Dam at | 210 | | Total sediment discharge, definition of | 32 | Water Quality-Control Data | 17 | | Total sediment load, definition of | 32 | Water qualitystreamflow | 7 | | Total, bottom material, definition of | 32 | Water table, definition of | 33 | | Total, definition of | 31 | Water temperature | 15 | | Transect, definition of | 32 | Water year, definition of | 33 | | Trenton | | Water-table aquifer, definition of | 33 | | Thompson River at | 144 | Watkins Creek at Bellefontaine Neighbors | 270 | | Troublesome Creek near Ewing | 52 | Waverly | | | near Lewistown | 529 | Missouri River at | 133 | | Troy | 7.4 | Wayland | 4.0 | | Cuivre River near | 74
32 | Fox River at | 46 | | Turkey Creek near Joplin | 512 | Roubidoux Spring at | 222 |
| Turnback Creek above Greenfield | 189 | WDR, definition of | 33 | | Two Rivers | 100 | Weighted average, definition of | 33 | | Jacks Fork ab L. Shawnee Creek ab | 487 | Welch Spring near Akers | 536 | | Jacks Fork ab Powell Spring ab | 485 | Weldon River at Princeton | 142 | | Jacks Fork above | 483 | Weldon Spring | | | Jacks Fork bl 3rd unnamed hollow ab | 488 | Burgermeister Spring near | 79 | | Shawnee Creek above | 486 | Wellston | | | | | Engelholm Creek near | 288 | | | | West Fork Black River at Centerville | 459 | | Wet mass, definition of | 33 | |-----------------------------------|-----| | Wet weight, definition of | 33 | | White River | | | below Table Rock Dam near Branson | 440 | | near Branson | 442 | | Williams Creek near Peerless Park | 334 | | Wilson Creek at Springfield | 404 | | near Battlefield | 412 | | near Brookline | 407 | | near Springfield | 405 | | WSP, definition of | 33 | | Wyaconda River above Canton | 49 | | Wyaconda River Basin, | | | hydrologic records in | 49 | | | | | Y | | | | | | Yarnell Creek at Fenton | 348 | | 7. | | | Δ | | | Zalma | | | Castor River at | 365 | | Zooplankton, definition of | 33 | | • | | ### **CONVERSION FACTORS AND VERTICAL DATUM** | Multiply | Ву | To obtain | |--|---|---| | | Length | | | inch (in.) | $2.54 \times 10^{1} \\ 2.54 \times 10^{-2}$ | millimeter | | foot (ft) | 2.54×10^{-2} 3.048×10^{-1} | meter | | foot (ft)
mile (mi) | 1.609×10^{0} | meter
kilometer | | nine (nii) | 1.009X10 | KHOIHETEI | | | Area | | | acre | 4.047×10^3 | square meter | | | 4.047×10^{-1} | square hectometer | | | 4.047×10^{-3} | square kilometer | | square mile (mi ²) | 2.590×10^{0} | square kilometer | | | Volume | | | | 3.785×10^{0} | liter | | gallon (gal) | 3.785×10^{0} | cubic decimeter | | | 3.785×10^{-3} | cubic meter | | million gallons (Mgal) | 3.785×10^3 | cubic meter | | mimon ganons (wgar) | 3.785×10^{-3} | cubic hectometer | | cubic foot (ft ³) | 2.832×10^{1} | cubic decimeter | | cubic foot (it) | 2.832×10^{-2} | cubic meter | | cubic-foot-per-second day [(ft ³ /s) d] | 2.447×10^3 | cubic meter | | cuesto recorde dal [(re /b) d] | 2.447×10^{-3} | cubic hectometer | | acre-foot (acre-ft) | 1.233×10^3 | cubic meter | | ,, | 1.233×10^{-3} | cubic hectometer | | | 1.233×10^{-6} | cubic kilometer | | | Flow | | | | - | | | cubic foot per second (ft ³ /s) | 2.832×10^{1} | liter per second | | | 2.832×10^{1} | cubic decimeter per second | | | 2.832×10^{-2} 6.309×10^{-2} | cubic meter per second | | gallon per minute (gal/min) | 6.309×10^{-2} | liter per second | | | 6.309×10^{-5} | cubic decimeter per second | | million gallons per day (Mgal/d) | 4.381×10^{1} | cubic meter per second cubic decimeter per second | | million ganons per day (wigai/d) | 4.381×10^{-2} | cubic meter per second | | | 4.301110 | cubic illeter per second | | | Mass | | | ton (short) | 9.072×10^{-1} | megagram or metric ton | Temperature in degrees Celsius (°C) may be converted to degrees Fahrenheight (°F) as follows: $^oF=(1.8x^oC)+32$